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One of the most challenging problems in computational geometry is closest pair of points given n 

points. Brute force algorithms[1] and Divide and conquer[1] have been verified and the lowest 

complexity of 𝑂(𝑛𝑙𝑜𝑔(𝑛)) attributed to latter class of algorithms, with worst case being for the former 

being 𝑂(𝑛2). We propose a method of partitioning the set of n-points based on the least area rectangle 

that can circumscribe these points. 
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INTRODUCTION 

We circumscribe a rectangle for the set of points 𝑆𝑛 =

{(𝑥1, 𝑦1), … . (𝑥𝑛 , 𝑦𝑛)}  with smallest possible area, partition it 

into k parts width and length wise such that 𝑘2 number of 

cells result. 

 Hypothesis 1: Candidate for closest pair identification is the 

cell with maximum density 𝜌𝑘𝑚𝑎𝑥 = 𝑀𝑎𝑥 (𝑁𝑘𝑙/𝐴𝑘), where, 

𝐴𝑘 = |(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)|/𝑘2, 𝑙  is the 𝑙𝑡ℎ cell and 

minimum is found here.  

Hypothesis 2: Candidate for closest pair identification is the 

cell with minimum density 𝜌𝑘𝑚𝑖𝑛 = 𝑀𝑖𝑛 (𝑁𝑘𝑙/𝐴𝑘), where, 

𝐴𝑘 = |(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)|/𝑘2, 𝑙  is the 𝑙𝑡ℎ cell, 

minimum is found here.  

Hypothesis 3: Candidate for closest pair identification is the 

cell with a density 𝜌𝑘 = 𝑁𝑘𝑙/𝐴𝑘,where, 𝐴𝑘 = |(𝑥𝑚𝑎𝑥 −

𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)|/𝑘2, 𝑙  is the 𝑙𝑡ℎ cell, minimum is found 

here.  

Problem:   

Find {(𝑥𝑖,𝑦𝑖), (𝑥𝑗 , 𝑦𝑗)} S.T 𝑑𝑖𝑗( 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) is a minimum.  

√𝑑𝑖𝑗 = (𝑥𝑖 − 𝑥𝑗)2+(𝑦𝑖 − 𝑦𝑗)2 

𝑙𝑜𝑔𝑑𝑖𝑗

2
= 𝑙𝑜𝑔(𝑥𝑖 − 𝑥𝑗) + log (𝑦𝑖 − 𝑦𝑗) 

Formulating an objective function or Reduction that solves 

the easier problem  

       Minimize  𝑍 = |𝑙𝑜𝑔(𝑥𝑖 − 𝑥𝑗)| + |𝑙𝑜𝑔(𝑦𝑖 − 𝑦𝑗)| 

                                    ∀         𝑥𝑚𝑖𝑛 < 𝑥𝑖 < 𝑥𝑚𝑎𝑥 

                                    𝑥𝑚𝑖𝑛 < 𝑥𝑗 < 𝑥𝑚𝑎𝑥  

 𝑦𝑚𝑖𝑛 < 𝑦𝑖 < 𝑦𝑚𝑎𝑥  

𝑦𝑚𝑖𝑛 < 𝑦𝑗 < 𝑦𝑚𝑎𝑥  

Let X=|𝑙𝑜𝑔(𝑥𝑖 − 𝑥𝑗)| and Y=|𝑙𝑜𝑔(𝑦𝑖 − 𝑦𝑗)|  

Z=X+Y 

| X-Y| >0 

0<X<|𝑙𝑜𝑔(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)| 

0<Y<|𝑙𝑜𝑔(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)| 

Following the conventional linear programming this would 

turn out to be an NP hard problem, i.e 𝑂(𝑛2) or higher orders.  

 

With the improved solver proposed by Cohen e.t al [2], it 

takes O∗(𝑛𝜔log(n/δ)) time   where ω is the exponent of matrix 

multiplication and δ is the relative accuracy. 

Dividing the smallest circumscribing rectangle into 𝑘2 cells, 

assuming minimum is found for the 𝑙𝑡ℎ cell.  

Although when minimum computed for individual cell by 

divide and conquer algorithm[1] results in a complexity of 

𝑂(𝑛𝑙𝑜𝑔(𝑛)) , with 𝑘2 iterations Recurrence relation of 

complexity becomes  𝑇(𝑛) = 𝑘2𝑂(𝑛𝜔log(n/δ)) specifically 

if Hypothesis 3 holds true  

In real scenarios either of three hypotheses hold true, but for 

cases with Hypothesis 2 or 1, We could get the complexity to 

𝑂 ∗ (𝑛𝜔log(n/δ)), here the input size n <<𝑛𝑇  where  𝑛𝑇  is 

the sample size.  

For the formulation above 𝜔 = 1  and  

By iteratively increasing partition size  𝑘 = 1,2,3, … we can 

reduce the absolute overall complexity.  

Although it’s impossible to theoretically reduce the 

complexity beyond 𝑂(𝑛𝜔log(n/δ)) we can enhance the divide 
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and conquer strategies based on density distribution of 

partitioned points in a 2-D space for reduced overall compute 

time[3].   
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