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One of the most challenging problems in computational geometry is closest pair of points given n
points. Brute force algorithms[1] and Divide and conquer[1] have been verified and the lowest

complexity of O(nlog (n)) attributed to latter class of algorithms, with worst case being for the former
Corresponding Author:  peing 0(n?). We propose a method of partitioning the set of n-points based on the least area rectangle
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that can circumscribe these points.
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INTRODUCTION

We circumscribe a rectangle for the set of points S, =
{(x1,¥1), «oe . Cxp, y)} with smallest possible area, partition it
into k parts width and length wise such that k2 number of
cells result.

Hypothesis 1: Candidate for closest pair identification is the
cell with maximum density pymax = Max (Ny;/A,), where,
A = |(max = Xmin) Wmax = Ymin)k?, 1 is the 1" cell and
minimum is found here.

Hypothesis 2: Candidate for closest pair identification is the
cell with minimum density pyxmin = Min (Ny;/AL), wWhere,

Ak = |(xmax - xmin)(ymax - ymin)llkzx [ is the lth CE“,
minimum is found here.

Hypothesis 3: Candidate for closest pair identification is the
cell with a density p, = Ny;/A,,where, A, = |(Xmax —
Xomin) Vmax — Ymin)K?, U is the 1" cell, minimum is found
here.

Problem:

Find {(x;:), (xj,yj)} S.T d;;(distance) is a minimum.
\/dij = (; — %)%+ — y))?

logd;j

=~ = log(xi; = %)) +log(yi — )

=
Formulating an objective function or Reduction that solves
the easier problem
Minimize Z = |log(xi - xj)| + |log(yi - yj)|
v Xmin < Xi < Xmax
Xmin < xj < Xmax

Ymin < YVi < Ymax
YVmin < yj < Ymax
Let X=|log (x; — x;)| and Y=|log (y; — ;)|
Z=X+Y
| X-Y|>0
0<X<|log (xmax - xmin)|
0<Y<|log (ymax - ymin)|
Following the conventional linear programming this would
turn out to be an NP hard problem, i.e O (n?) or higher orders.

With the improved solver proposed by Cohen e.t al [2], it
takes Ox(n“log(n/s)) time where o is the exponent of matrix
multiplication and 6 is the relative accuracy.

Dividing the smallest circumscribing rectangle into k? cells,
assuming minimum is found for the ** cell.

Although when minimum computed for individual cell by
divide and conquer algorithm[1] results in a complexity of
O(nlog(n)) , with k? iterations Recurrence relation of
complexity becomes T(n) = k?0(n®log(n/s)) specifically
if Hypothesis 3 holds true

In real scenarios either of three hypotheses hold true, but for
cases with Hypothesis 2 or 1, We could get the complexity to
0 * (n“log(n/d)), here the input size n <<n; where n; is
the sample size.

For the formulation above w = 1 and

By iteratively increasing partition size k = 1,2,3, ... we can
reduce the absolute overall complexity.

Although it’s impossible to theoretically reduce the
complexity beyond 0 (n“log(n/3)) we can enhance the divide
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and conquer strategies based on density distribution of
partitioned points in a 2-D space for reduced overall compute
time[3].
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