

2540 Anand Sunder , IJMCR Volume 10 Issue 01 January 2022

Volume 10 Issue 01 January 2022, Page no. – 2540-2541

Index Copernicus ICV: 57.55, Impact Factor: 7.184

DOI: 10.47191/ijmcr/v10i1.03

Closest Pair Algorithms in 2D Space, a Commentary on Complexity and

Reductions

Anand Sunder

Master of Science, Texas Tech

ARTICLE INFO ABSTRACT

Published Online:

05 January 2022

Corresponding Author:

Anand Sunder

One of the most challenging problems in computational geometry is closest pair of points given n

points. Brute force algorithms[1] and Divide and conquer[1] have been verified and the lowest

complexity of 𝑂(𝑛𝑙𝑜𝑔(𝑛)) attributed to latter class of algorithms, with worst case being for the former

being 𝑂(𝑛2). We propose a method of partitioning the set of n-points based on the least area rectangle

that can circumscribe these points.

KEYWORDS: Metric Spaces, Existence, Uniqueness, Differential Equations, MATLAB.

INTRODUCTION

We circumscribe a rectangle for the set of points 𝑆𝑛 =

{(𝑥1, 𝑦1), … . (𝑥𝑛 , 𝑦𝑛)} with smallest possible area, partition it

into k parts width and length wise such that 𝑘2 number of

cells result.

 Hypothesis 1: Candidate for closest pair identification is the

cell with maximum density 𝜌𝑘𝑚𝑎𝑥 = 𝑀𝑎𝑥 (𝑁𝑘𝑙/𝐴𝑘), where,

𝐴𝑘 = |(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)|/𝑘2, 𝑙 is the 𝑙𝑡ℎ cell and

minimum is found here.

Hypothesis 2: Candidate for closest pair identification is the

cell with minimum density 𝜌𝑘𝑚𝑖𝑛 = 𝑀𝑖𝑛 (𝑁𝑘𝑙/𝐴𝑘), where,

𝐴𝑘 = |(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)|/𝑘2, 𝑙 is the 𝑙𝑡ℎ cell,

minimum is found here.

Hypothesis 3: Candidate for closest pair identification is the

cell with a density 𝜌𝑘 = 𝑁𝑘𝑙/𝐴𝑘,where, 𝐴𝑘 = |(𝑥𝑚𝑎𝑥 −

𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)|/𝑘2, 𝑙 is the 𝑙𝑡ℎ cell, minimum is found

here.

Problem:

Find {(𝑥𝑖,𝑦𝑖), (𝑥𝑗 , 𝑦𝑗)} S.T 𝑑𝑖𝑗(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) is a minimum.

√𝑑𝑖𝑗 = (𝑥𝑖 − 𝑥𝑗)2+(𝑦𝑖 − 𝑦𝑗)2

𝑙𝑜𝑔𝑑𝑖𝑗

2
= 𝑙𝑜𝑔(𝑥𝑖 − 𝑥𝑗) + log (𝑦𝑖 − 𝑦𝑗)

Formulating an objective function or Reduction that solves

the easier problem

 Minimize 𝑍 = |𝑙𝑜𝑔(𝑥𝑖 − 𝑥𝑗)| + |𝑙𝑜𝑔(𝑦𝑖 − 𝑦𝑗)|

 ∀ 𝑥𝑚𝑖𝑛 < 𝑥𝑖 < 𝑥𝑚𝑎𝑥

 𝑥𝑚𝑖𝑛 < 𝑥𝑗 < 𝑥𝑚𝑎𝑥

 𝑦𝑚𝑖𝑛 < 𝑦𝑖 < 𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛 < 𝑦𝑗 < 𝑦𝑚𝑎𝑥

Let X=|𝑙𝑜𝑔(𝑥𝑖 − 𝑥𝑗)| and Y=|𝑙𝑜𝑔(𝑦𝑖 − 𝑦𝑗)|

Z=X+Y

| X-Y| >0

0<X<|𝑙𝑜𝑔(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)|

0<Y<|𝑙𝑜𝑔(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)|

Following the conventional linear programming this would

turn out to be an NP hard problem, i.e 𝑂(𝑛2) or higher orders.

With the improved solver proposed by Cohen e.t al [2], it

takes O∗(𝑛𝜔log(n/δ)) time where ω is the exponent of matrix

multiplication and δ is the relative accuracy.

Dividing the smallest circumscribing rectangle into 𝑘2 cells,

assuming minimum is found for the 𝑙𝑡ℎ cell.

Although when minimum computed for individual cell by

divide and conquer algorithm[1] results in a complexity of

𝑂(𝑛𝑙𝑜𝑔(𝑛)) , with 𝑘2 iterations Recurrence relation of

complexity becomes 𝑇(𝑛) = 𝑘2𝑂(𝑛𝜔log(n/δ)) specifically

if Hypothesis 3 holds true

In real scenarios either of three hypotheses hold true, but for

cases with Hypothesis 2 or 1, We could get the complexity to

𝑂 ∗ (𝑛𝜔log(n/δ)), here the input size n <<𝑛𝑇 where 𝑛𝑇 is

the sample size.

For the formulation above 𝜔 = 1 and

By iteratively increasing partition size 𝑘 = 1,2,3, … we can

reduce the absolute overall complexity.

Although it’s impossible to theoretically reduce the

complexity beyond 𝑂(𝑛𝜔log(n/δ)) we can enhance the divide

https://doi.org/10.47191/ijmcr/v10i1.03

“Closest Pair Algorithms in 2D Space, a Commentary on Complexity And Reductions”

2541 Anand Sunder , IJMCR Volume 10 Issue 01 January 2022

and conquer strategies based on density distribution of

partitioned points in a 2-D space for reduced overall compute

time[3].

REFERENCES

1. Subash Suri, Closest Pair Problem:

https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf

2. Michael B. Cohen, Yin Tat Lee, Zhao Song, 2020,

Solving Linear Programs in the Current Matrix

Multiplication Time:

https://arxiv.org/abs/1810.07896

3. Meysam Aghighi ,2017, Computational Complexity

of some Optimization Problems in Planning:

https://www.divaportal.org/smash/get/diva2:10870

96/FULLTEXT03

4. Brute Force Closest Pair and Convex-Hull:

http://www.csl.mtu.edu/cs4321/www/Lectures/Lect

ure%206%20%20Brute%20Force%20Closest%20P

air%20and%20Convex%20and%20Exhausive%20

Search.html

https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
https://arxiv.org/search/cs?searchtype=author&query=Cohen%2C+M+B
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C+Y+T
https://arxiv.org/search/cs?searchtype=author&query=Song%2C+Z
https://arxiv.org/abs/1810.07896
https://www.divaportal.org/smash/get/diva2:1087096/FULLTEXT03
https://www.divaportal.org/smash/get/diva2:1087096/FULLTEXT03
http://www.csl.mtu.edu/cs4321/www/Lectures/Lecture%206%20%20Brute%20Force%20Closest%20Pair%20and%20Convex%20and%20Exhausive%20Search.htm
http://www.csl.mtu.edu/cs4321/www/Lectures/Lecture%206%20%20Brute%20Force%20Closest%20Pair%20and%20Convex%20and%20Exhausive%20Search.htm
http://www.csl.mtu.edu/cs4321/www/Lectures/Lecture%206%20%20Brute%20Force%20Closest%20Pair%20and%20Convex%20and%20Exhausive%20Search.htm
http://www.csl.mtu.edu/cs4321/www/Lectures/Lecture%206%20%20Brute%20Force%20Closest%20Pair%20and%20Convex%20and%20Exhausive%20Search.htm

