Molar volume, viscosity and conductance studies of nickel sulphate in water and aqueous mannitol

Shashi Kant* and Kushal Kumar

Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla-171 005, Himachal Pradesh, India

Manuscript received 17 March 2008, accepted 7 August 2008

Abstract : Molar volume, viscosity and conductance of nickel sulphate in water and 2, 4 and 6 wt. % of aqueous mannitol solutions have been evaluated from density, viscosity and conductance data respectively at temperatures 303.15, 308.15, 313.15 and 318.15 K. The solute-solvent interactions for nickel sulphate in water and various compositions of aqueous mannitol have been inferred from ϕ_v^0 , *B*-coefficient of Jones-Dole equation and Λ_m^0 values. The structure making/breaking behaviour of nickel sulphate is inferred from the sign of $[\partial^2 \phi_v^0/\partial T^2]_p$, *dB/dT* and temperature coefficient of Walden product i.e. $d(\Lambda_m^0 \eta_0)/dT$ values. It has been found that nickel sulphate behaves as structure-breaker in water and structure-maker in 2, 4 and 6 wt. % of aqueous mannitol solutions from molar volume, viscosity and conductance studies. The energy of activation for nickel sulphate in different composition of aqueous mannitol have also been calculated from conductance and viscosity data.

Keywords : Molar volume, viscosity, conductance, nickel sulphate-water-mannitol system.

Introduction

The study of apparent molar volumes of electrolytes at infinite dilution, B parameter of Jones-Dole equation and their dependence on temperature, molar conductance at infinite dilution and Walden product studies can furnish useful information on the nature of solute-solvent interactions. The behaviour of electrolytes in aqueous carbohydrates and carbohydrates containing small quantity of ions which are present in body fluids have recently been subject of interest¹⁻⁷. Increasing concern over the toxicity of metals in environment has led to increase research activity to indentify the fate of these metal ions in the organisms. Nickel is an essential trace element for several hydrogenase and ureases enzymes. Its deficiency in food slows down the functioning of liver in chicks. It is highly toxic to plants and moderately toxic to mammals. The nickel requirement for adults should not exceed 25-35 mg/day, as it disturbs Mg and Zn metabolism. Nickel is carcinogenic if present in higher concentration in biological system. The study of nickel sulphate in water and 2, 4 and 6 wt. % of aqueous mannitol at 303.15, 308.15, 313.15 and 318.15 K temperature was carried out to understand the nature of solute-solute and solute-solvent interactions by measuring the density, molar volume, molar conductance and viscosity of their solutions.

Experimental

Water used for solutions had specific conductance in range 0.1-1.0 \times 10⁻⁶ Ω^{-1} cm⁻¹. Nickel sulphate and mannitol (AnalaR) were dried over anhydrous calcium chloride for more than 48 h and used as such. All the solutions were prepared by weight and conversion of molality to molarity was done by using the standard expres $sion^8$. The concentration range of NiSO₄.7H₂O in water and 2, 4 and 6 wt. % aqueous mannitol solutions was 0.01 to 0.12 M. The density was measured with the help of DSA (Density and Sound Analyser) 5000, Antor Paar, GmbH, Garz, Austria. Viscosity was determined with the help of capillary type Viscometer⁹. The conductance was measured with the help of calibrated Digital conductivity meter, CM 180, Elico Limited. All measurements were made in a water bath maintained at 30, 35, 40, 45 °C $(\pm 0.05).$

Results and discussion

The apparent molar volume of nickel sulphate in water and 2, 4 and 6 wt. % of aqueous mannitol solutions have been calculated from density data (Table 1) by using eq. (1),

$$\phi_{\rm v} = \frac{M_2}{d^{\rm o}} - \frac{1000(d-d^{\rm o})}{mdd^{\rm o}} \tag{1}$$

Concentration,	Density,	Apparent molar	Relative viscosity	Molar conductance
$C \times 10^{2}$	d	volume, ϕ_v	(η/η _o)	Λ_{m}
(mol L ⁻¹)	(g cm ⁻³)	$(cm^3 mol^{-1})$		$(\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$
		Water		
Temp. = 303.15 K	$d_0 = 0.995670$		$\eta_{o} = 0.79730 \text{ cP}$	
0.9946	0.997435	105.30	1.00542	150.81
1.9872	0.999175	106.36	1.01216	140.90
3.9659	1.002608	107.80	1.02497	128.60
5.9359	1.005986	108.94	1.03879	119.61
7.8972	1.009321	109.87	1.05229	111.43
9.8496	1.012614	110.70	1.06583	104.57
11.7932	1.015879	111.36	1.08008	98.36
Temp. = 308.15 K	$d_0 = 0.994060$		$\eta_0 = 0.71900 \text{ cP}$	
0.9930	0.995807	107.55	1.00430	161.12
1.9839	0.997535	108.32	1.01005	151.22
3.9593	1.000947	109.53	1.02264	138.91
5.9260	1.004314	110.43	1.03562	128.25
7.8841	1.007645	111.15	1.04938	120.50
9.8333	1.010934	111.86	1.06275	113.90
11.7738	1.014203	112.37	1.07692	107.02
Temp. = 313.15 K	$d_0 = 0.992240$		$\eta_0 = 0.65260 \text{ cP}$	
0.9912	0.993973	109.47	1.00373	171.51
1.9803	0.995690	110.09	1.00943	161.59
3.9520	0.999092	110.92	1.02204	149.29
5.9151	1.002456	111.58	1.03467	140.32
7.8696	1.005794	112.06	1.04854	130.88
9.8154	1.009095	112.57	1.06164	123.28
11.7525	1.012375	112.96	1.07518	116.57
Temp. = 318.15 K	$d_{\rm o} = 0.990250$		$\eta_{0} = 0.59720 \text{ cP}$	
0.9892	0.991982	110.14	1.00304	181.96
1.9763	0.993699	110.71	1.00822	177.10
3.9441	0.997102	111.49	1.02074	159.73
5.9034	1.000469	112.11	1.03372	149.08
7.8540	1.003803	112.64	1.04672	141.33
9.7961	1.007112	113.07	1.05977	133.73
11.7295	1.010395	113.45	1.07329	127.03
		2% Aqueous mannitol		
Temp. = 303.15 K	$d_{\rm o} = 1.002160$		$\eta_0 = 0.84128 \text{ cP}$	
1.0013	1.004095	86.48	1.00604	129.83
2.0007	1.005950	90.31	1.01266	124.96
3.9934	1.009558	94.50	1.02679	115.19
5.9774	1.013019	98.10	1.03988	107.07
7.9528	1.016428	100.36	1.05491	100.59
9.9188	1.019727	102.66	1.06797	95.78
11.8751	1.022932	104.86	1.08132	90.95

 Table 1. Densities, apparent molar volumes, relative viscosities and molar conductance of nickel sulphate in different compositions of aqueous mannitol at different temperatures

				Table-1 (contd.)
Temp = 308.15 K	$d_{a} = 1.000390$		$\eta_0 = 0.75668 \text{ cP}$	(,
0.9995	1.002350	84.48	1.00579	150.07
1.9973	1.004240	87.81	1.01222	135.18
3.9867	1.007876	92.80	1.02568	130.43
5.9675	1.011342	97.05	1.03903	122.33
7 9394	1.014722	100.06	1.05237	115.88
9 9022	1.018017	102.57	1.06568	110.08
11 8552	1.021218	104.89	1.07860	104.60
Temp = 313.15 K	$d_{\rm o} = 0.998176$		$\eta_{\rm o} = 0.68143 \ {\rm cP}$	
0.9974	1.000186	80.11	1.00584	160.42
1.9930	1.002110	84.24	1.01198	150.52
3 9785	1.005799	90.02	1.02492	138.24
5 9556	1.009319	94.51	1.03776	125.93
8 8067	1.014241	99.19	1.05482	114.69
9 8832	1.016070	100.55	1.06332	110.29
11 8325	1.019261	103.40	1.07561	103.95
$T_{\rm emp} = 318.15 K$	d = 0.996586		$\eta_0 = 0.62318 \text{ cP}$	
0 0059	0.998615	78.67	1.00577	180.76
1 0800	1.000577	81.85	1.01149	165.83
3 0726	1.004309	87.98	1.02318	151.03
5.9720	1.007906	92.03	1.03437	139.56
7 0127	1.011305	96.34	1.04584	128.91
9 9601	1.014615	99.66	1.05768	120.58
11 8150	1.017832	102.53	1.06906	112.56
11.0139		4% Aqueous mannitol		
Temp -303.15 K	$d_{0} = 1.009241$		$\eta_0 = 0.88601 \text{ cP}$	
1 0083	1.011169	85.22	1.00766	119.01
2 0147	1.013022	88.79	1.01466	114.16
4 0212	1.016585	93.87	1.02766	106.93
6.0188	1.020036	97.18	1.04183	99.69
8 0067	1.023313	100.81	1.05558	94.92
9 9852	1.026552	103.22	1.06845	91.14
11 0537	1.029701	105.45	1.08189	87.00
$T_{emp} = 308.15 K$	$d_{1} = 1.007513$		$\eta_{o} = 0.79488 \text{ cP}$	
1 0066	1.009472	82.60	1.00762	139.08
2 0114	1.011353	86.32	1.01451	129.26
4 0147	1.014950	92.03	1.02717	122.05
6 0001	1 018391	96.28	1.04108	113.16
7 9940	1 021701	99.85	1.05426	106.33
9 9693	1.024921	102.74	1.06672	100.31
11 0344	1.028039	105.38	1.07982	95.52
Temp -313 15 K	d = 1.005566		$\eta_0 = 0.72049 \text{ cP}$	
1 0047	1.007553	80.34 *	1.00743	149.29
2 0076	1.009449	84.72	1.01443	144.45
4 0073	1.013069	90.93	1.02685	127.27
5.9982	1.016535	95.32	1.04027	118.37

J. Indian Chem. Soc., Vol. 85, November 2008

7.0705				Table-1 (contd.)
7.9795	1.019836	99.38	1.05286	110.28
9.9509	1.023030	102.73	1.06539	103.51
11.9126	1.026165	105.33	1.07829	97.38
Temp. = 318.15 K	$d_0 = 1.003215$		$\eta_{\rm o} = 0.65431 \ {\rm cP}$	
1.0024	1.005228	78.40	1.00718	169.59
2.0030	1.007149	82.83	1.01428	159.76
3.9984	1.010822	88.99	1.02636	142.56
5.9850	1.014305	93.97	1.03872	130.33
7.9621	1.017621	98.35	1.05056	121.83
9.9297	1.020845	101.74	1.06196	112.79
11.8874	1.023991	104.52	1.07373	105.15
		6% Aqueous mannitol		
Temp. = 303.15 K	$d_{\rm o} = 1.016660$		$\eta_{\rm o} = 0.94130 \ \rm cP$	
1.0157	1.018585	83.48	1.00907	108.29
2.0295	1.020434	87.10	1.01636	103.48
4.0504	1.023979	92.45	1.02941	96.29
6.0621	1.027363	96.66	1.04409	92.38
8.0638	1.030615	100.22	1.05726	88.05
10.0556	1.033794	102.93	1.06955	84.53
12.0372	1.036900	105.21	1 08269	81.41
Temp. = $3.08.15 \text{ K}$	$d_0 = 1.014906$		n = 0.84176 cP	
1.0140	1.016852	81.86	1 00890	128.20
2.0261	1.018715	85.83	1.01615	118.46
4.0437	1.022280	91.56	1 02928	111.28
6.0523	1.025715	95.38	1.04266	104.09
8.0508	1.028955	99.53	1.05590	98.13
10.0398	1.032170	102.12	1.06822	92.63
12.0179	1.035235	104.96	1.08044	87.37
Temp. = 313.15 K	$d_0 = 1.012967$	1.00044 07.37		
1.0121	1.014948	78 90	$\eta_0 = 0.73504.01$	148 20
2.0223	1.016824	83.97	1.00800	133 51
4.0364	1.020430	89.88	1.01006	121.40
6.0414	1.023860	94.52	1.02882	114 21
8.0364	1.027119	98.78	1.04145	108.26
10.0217	1.030310	101.87	1.05597	101.78
11.9962	1.033365	104.92	1.00012	96 70
Temp. $= 318.15 \text{ K}$	$d_0 = 1.010743$		n = 0.68708 aB	90.70
1.0099	1.012742	77 71	$\eta_0 = 0.08798 \text{ CP}$	159 13
2.0179	1.014645	82.83	1.01568	149 66
4.0279	1.018278	88.69	1.01308	134.07
6.0289	1.021748	93.28	1.02/74	104.07
8 0198	1.024992	98.10	1.04007	122.14
10 0015	1.028230	101.05	1.03224	104 08
11 9724	1.031315	101.05	1.00400	07 77
11.7/47		104.10	1.0/3/8	91.12

where d^0 is the density of solvent, d is the density of solution, m is the molality of solution and M_2 is the mo-

lecular weight of nickel sulphate. Errors in φ_v were calculated from eq. (2),

Shashi Kant et al. : Molar volume, viscosity and conductance studies of nickel sulphate in water etc.

$$\Delta \phi_{\rm v} = (2\Delta d/d^2) \ (1000/m + M_2) \tag{2}$$

Eq. (2) assumes error to be associated with the density of solution (d) and solvent (d^0). Moreover, errors associated with determination of solution concentration are not the limiting factor while calculating the apparent molar volumes. The error in apparent molar volume as derived from eq. (2) was estimated to range from ± 0.06 cm³ mol^{-1} at 0.01 *M* concentration to ± 0.10 cm³ mol⁻¹ at 0.12 M concentration. The densities of various solutions of nickel sulphate in water and 2, 4 and 6 wt. % of aqueous mannitol obey Root's equation and justify the use of Masson's eq. (3) for the estimation of the limiting apparent molar volume,

$$\phi_{\rm v} = \phi_{\rm v}^0 + S_{\rm v} \sqrt{C} \tag{3}$$

where ϕ_v^0 and S_v are calculated from the intercept and slope from the extrapolation of the plots of ϕ_v versus \sqrt{C} . The values of limiting apparent molar volume and slopes S_v are recorded in Table 2. The slope S_v in Masson's equation may be attributed to be as a measure of ion-ion or solute-solute interactions 10-12, low and positive values accounts for weak solute-solute interactions in water and 2. 4 and 6 wt. % of aqueous mannitol solutions. There is a decrease in inter ionic interactions with increase in tem-

perature for nickel sulphate in water, which may be due to more solvation of metal ions with rise in temperature and increase in inter ionic interaction with increase in the temperature for nickel sulphate in 2, 4 and 6 wt. % of aqueous mannitol solutions, which may be due the decrease in solvation of metal ions.

The ϕ_v^o is a measure of solute-solvent interactions¹³. The ϕ_v^0 values for nickel sulphate in water are higher than ϕ_v^0 values for nickel sulphate in 2, 4 and 6 wt. % of aqueous mannitol solutions, which indicates that solutesolvent interactions are more in water than in aqueous mannitol solutions. The ϕ_v^0 values for nickel sulphate in water increases with increase in temperature and it may be due to decrease in hydrogen bonding between water molecules with increase in temperature, thus making more free water molecules available for solvation of metal ions and hence solute-solvent interactions increases with increase in temperature. On the other hand ϕ_v^0 values for nickel sulphate in 2, 4 and 6 wt. % of aqueous mannitol decreases with increase in temperature and it may be due to increase in moleculer interactions in water-mannitol system due to extensive hydrogen bonding and thus making less free water molecules available for solvation of metal ions and consequently solute-solvent interactions

in different compositions of aqueous mannitol at different temperatures					
Mannitol	Temp. (T)	φo	S _v	Φe	$\Delta \phi_v^o =$
wt. %	(K)	(cm ³ mol ⁻¹)	$(\text{cm}^3 \text{ L}^{1/2} \text{ mol}^{-3/2})$	$(cm^3 mol^{-1} K^{-1})$	$(\Phi_v^0 \text{ NiSO}_4 \text{ in aq mannitol } - \Phi_v^0 \text{ NiSO}_4 \text{ in water})$
0	303.15	102.83	0.249	0.682	· –
0	308.15	105.54	0.200	0.483	-
0	313.15	108.06	0.143	0.284	-
0	318.15	108.78	0.137	0.085	-
2	303.15	79.57	0.739	-0.858	-23.26
2	308.15	76.03	0.845	-0.766	-29.51
2	313.15	70.85	0.952	-0.674	37.21
2	318.15	68.23	0.995	-0.582	-40.55
4	303.15	77.03	0.828	-0.815	-25.80
4	308.15	73.20	0.937	-0.695	-32.34
4	313.15	70.19	1.027	-0.575	-37.87
4	318.15	67.56	1.080	-0.455	-41.22
6	303.15	74.47	0.895	-0.507	-28.36
6	308.15	72.48	0.939	-0.482	-33.06
6	313.15	68.68	1.052	-0.457	-39.38
6	318.15	66.94	1.081	-0.432	-41.84

Table 2. Limiting apparent molar volume (ϕ_{v}^{0}), S_{v} , apparent molar expansibility (ϕ_{p}^{0}) and excess molar volume ($\Delta \phi_{v}^{0}$) of nickel sulphate

(7)

decreases with increase in temperature.

The temperature dependence of ϕ_v^0 for nickel sulphate in water and 2, 4 and 6 wt. % of aqueous mannitol solutions can be expressed as :

$$\phi_v^0 = -1932.65 + 12.747T - 0.0199T^2$$
 (4)
= (NiSO₄.7H₂O in water)

$$\phi_{v}^{0} = 1185.32 - 6.436T + 0.0092T^{2}$$
 (5)

$$= (NiSO_4.7H_2O \text{ in } 2 \text{ wt. } \% \text{ aq. mannitol})$$

$$\phi_{v}^{0} = 1426.90 - 8.091T + 0.012T^{2} \tag{6}$$

$$= (N_1SO_4. / H_2O \text{ in 4 wt. \% aq. mannitol})$$

$$= 457.99 - 2.023T + 0.0025T^2$$

$$\phi_v^0 = 457.99 - 2.023T + 0.0025T^2$$
 (*
= (NiSO₄.7H₂O in 6 wt. % aq. mannitol) ·

where T is the temperature in Kelvin.

The limiting apparent molar expansibility, $\phi_E^0 = (\partial \phi_v^0 / \partial T)_p$, calculated for nickel sulphate from eqs. (4), (5), (6) and (7) are given in Table 2. The values of ϕ_E^0 decreases with increase in temperature for nickel sulphate in water, indicates the absence of "caging effect¹⁴" and its behaviour is just like common electrolytes^{15,16}. The increase in ϕ_E^0 values with increase in temperature for nickel sulphate in aqueous mannitol, indicates the presence of "caging effect¹⁴" and its behaviour is just like symmetrical tetra-alkyl ammonium salts and like cupric chloride in aqueous mannitol⁶.

The structure making/breaking capacity of nickel sulphate may be interpreted with the help of Hepler's reasoning¹⁷, i.e. on the basis of sign of $(\partial^2 \phi_v^0 / \partial T^2)_p$. It has been shown from general thermodynamic eq. (8),

$$(\partial \overline{C}_{p}^{0} / \partial P) p = -T (\partial^{2} \phi_{v}^{0} / \partial T^{2})_{p}$$
(8)

where \overline{C}_p^0 is the partial molar heat capacity at infinite dilution. From eq. (8), it is clear that structure making electrolytes should have a positive value of $(\partial^2 \phi_v^0 / \partial T^2)_p$ and structure breaking electrolytes should have negative value of $(\partial^2 \phi_v^0 / \partial T^2)_p$. For nickel sulphate in water sign of $(\partial^2 \phi_v^0 / \partial T^2)_p$ has been found to be negative and for nickel sulphate in 2, 4 and 6 wt. % of aqueous mannitol sign of $(\partial^2 \phi_v^0 / \partial T^2)_p$ has been found to be positive, which suggests that nickel sulphate acts as structure breaker in water and structure maker in 2, 4 and 6 wt. % of aqueous mannitol solutions.

The limiting excess molar volume of nickel sulphate

for different compositions of mannitol have been estimated from eq. (9),

$$\Delta \phi_{v}^{O} (\text{excess}) = \phi_{v}^{O} (A) - \phi_{v}^{O} (B)$$
(9)

where $\phi_v^0(A)$ is the limiting apparent molar volume of nickel sulphate in different compositions of aqueous mannitol and $\phi_v^0(B)$ is the limiting apparent molar volume of nickel sulphate in water. The negative value of excess molar volume of nickel sulphate in aqueous mannitol solution may be attributed to the decrease in solute-solvent interactions at infinite dilution.

Viscosity studies :

The viscosity data (Table 1) has been analyzed on the basis of Jones-Dole equation¹⁸,

$$\eta_{\rm s}/\eta_{\rm o} = 1 + A\sqrt{C} + BC \tag{10}$$

where η_s and η_o are viscosities of solution and solvent respectively, *C* is the molar concentration and *A* and *B* are constants. The values of *A* and *B* have been determined from the intercept and slope of linear plots of $\eta_s/$ $\eta_o - 1/\sqrt{C}$ versus \sqrt{C} . The values of *A* and *B* of different solutions are recorded in Table 3.

Parameter A of Jones-Dole equation represents the contribution from solute-solute interactions¹⁹. The values of A, shows that ion-ion interactions for nickel sulphate in water decreases with increase in temperature, which may be due to more solvation of metal ions. The ion-ion interactions in case of nickel sulphate in aqueous mannitol solutions increases with increase in temperature and composition of metal ions with increase in temperature and composition.

The *B* parameter which measures the structure making/breaking capacity of an electrolyte in a solution also contain a contribution from structural effects and is responsible for solute-solvent interactions in a solvent²⁰. It has been emphasized by a number of workers that dB/dTis more important criteria²¹ for determining solutesolvent interactions, as positive *B*-coefficient obtained from aqueous mannitol can be interpreted as merely due to large size ion. Viscosity study of a number of electrolytes has shown that structure-maker will have negative dB/dTand structure-breaker will have positive dB/dT. The temperature effect on nickel sulphate in water shows a posi-

in different compositions of aqueous mannitol at different temperatures					
Mannitol	Temp. (T)	A	В	Λ _m	$Λ_m^o$ η _o
wt. %	(K)	$(L \text{ mol}^{-1})^{1/2}$	(L mol ⁻¹)	$(\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$	$(\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1} \text{ poise})$
0	303.15	-1.80	0.728	171.5	1.38
0	308.15	-3.29	0.744	182.6	1.31
0	313.15	-3.80	0.749	193.8	1.26
0	318.15	-4.64	0.760	206.9	1.24
2	303.15	-1.19	0.723	147.1	1.23
2	308.15	-1.18	0.700	164.2	1.24
2	313.15	-0.74	0.659	183.6	1.25
2	318.15	-0.10	0.586	206.2	1.28
4	303.15	0.94	0.656	132.6	1.17
4	308.15	1.16	0.634	155.8	1.23
4	313.15	1.24	0.619	172.6	1.24
4	318.15	1.71	0.573	196.2	1.27
6	303.15	2.80	0.606	118.9	1.12
6	308.15	2.92	0.587	143.1	1.20
6	313.15	3.00	0.567	164.2	1.23
6	318.15	3.05	0.544	183.7	1.26

Table 3. Values of parameters of Jones-Dole equation, limiting molar conductance, Λ_m^o and Walden product for nickel sulphate

tive sign of dB/dT and a negative sign of dB/dT in 2, 4 and 6 wt. % of aqueous mannitol thereby showing that nickel sulphate behaves as structure-breaker in water and structure-maker in 2, 4 and 6 wt. % of aqueous mannitol solutions.

The effect of temperature on the viscosity is given by eq. (11),

$$\eta = A \ e^{\mathrm{E}\eta/\mathrm{R}\mathrm{T}} \tag{11}$$

where A is a constant and E_{η} is the activation energy for the viscous flow²² and other symbols have their usual significances. The values of E_{η} for nickel sulphate in water and 2, 4 and 6 wt. % of aqueous mannitol solutions were calculated from the slope of the linear plots of log η versus 1/T and are given in Table 4.

Table 4. Values of Ecomposition	$_{\eta}$ and E_{Λ} for nickel sulplitions of aqueous mannit	hate in different ol
% Composition of	E_{Λ}	
aqueous mannitol	(kJ mol ⁻¹)	(kJ mol ⁻¹)
	0.04 m	
0	15.31	10.81
2	15.95	13.80
4	16.01	13.43
6	16.67	17.41

		Table-4 (contd.)
	0.06 m	
0	15.36	11.49
2	16.05	12.37
4	16.06	13.73
6	16.73	15.61
	0.08 m	
0	15.39	12.24
2	16.09	12.24
4	16.09	11.25
6	16.76	13.43
	0.10 m	
0	15.43	12.99
2	16.19	11.25
4	16.17	10.13
6	16.79	12.37
	0.12 m	
0	15.52	13.67
2	16.31	10.20
4	16.20	10.20
6	16.80	10.13

Conductance studies :

The limiting molar conductance Λ_m^o for nickel sulphate in water and 2, 4 and 6 wt. % of aqueous mannitol

solutions were obtained by extraploating the linear plots of $\Lambda_{\rm m}$ (Table 1) versus \sqrt{C} to zero concentration. The limiting molar conductance for nickel sulphate in water and 2, 4 and 6 wt. % aqueous mannitol solutions at 303.15, 308.15, 313.15 and 318.15 K temperatures are recorded in Table 3, shows that limiting molar conductance increases with increase in temperature, which may be due to increase in ionic mobility of free Ni²⁺, SO₄²⁻ ions at infinite dilution.

Since in the state of infinite dilution, the motion of an ion is limited solely by its interaction with surrounding solvent molecules, there are no other ions with in a finite distance. Therefore evaluation of Λ_m^0 should give equally reliable information regarding ion-solvent interactions²³. Greater value of Λ_m^0 may therefore be interpreted as a measure of greater ion-solvent interactions. The order of solute-solvent interactions for nickel sulphate in aqueous mannitol solutions follow as : water > 2 wt. % aq. mannitol > 4 wt. % aq. mannitol > 6 wt. % aq. mannitol. It

Fig. 1. Plot of activation energy vs percentage composition of aq. mannitol for nickel sulphate (0.06 m).

may be due to more solvation of metal ions in water than water-mannitol system and it may also be due to increase in association of nickel sulphate with increase in mannitol composition. The Walden product data $(\Lambda_m^0\eta_0)$ have been recorded in Table 3. The structure making/breaking nature of electrolyte have been determined from temperature coefficient of Walden product i.e. $[d (\Lambda_m^0\eta_0)/dT]^{24}$. The negative temperature coefficient of Walden product for nickel sulphate in water suggests an increase in the ion-solvent interactions which indicates that nickel sulphate in water behaves as structure-breaker. The positive temperature-coefficient of Walden product for nickel sulphate in aqueous mannitol suggests that there is decrease in the ion-solvent interactions which indicates that nickel sulphate in aqueous mannitol behaves as structure-maker.

The effect of temperature on conductance is given by equation²⁵,

$$\Lambda = \Lambda_0 \ e^{-E_{\Lambda}/RT} \tag{12}$$

where E_{Λ} is the activation energy for conduction and other symbols have their usual significance. The values of E_{Λ} for nickel sulphate in water and 2, 4 and 6 wt. % aqueous mannitol were calculated from the slope of the linear plots of log Λ versus 1/T and are given in Table 4.

A sample plot of activation energy from viscosity and conductance data versus percentage composition of aqueous mannitol for nickel sulphate (0.06 m) is shown in Fig. 1. The energy of activation for conductance²⁵, E_{Λ} should be less than energy of activation for viscous flow, E_{η} and it has been found that $E_{\Lambda} < E_{\eta}$ for nickel sulphate (0.04–0.12 m) in water and 2, 4 and 6 wt. % of aqueous mannitol solutions.

References

- V. Vitagliaso, G. Borriello, D. Volbe and O. Ortona, J. Soln. Chem., 1986, 15, 811.
- J. P. Morel, C. Chermet and N. M. Deroriers, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 2567.
- Shashi Kant and Rekha Kumari, J. Indian Chem. Soc., 1998, 75, 398.
- S. K. Lomesh and Rekha Kurnari, J. Indian Chem. Soc., 1999, 76, 300.
- 5. S. K. Lomesh, Neelam Sharma and Sushil Kumar, J. Indian Chem. Soc., 2004, 81, 881.
- 6. Shashi Kant, Pankaj Dogra and Sushil Kumar, Indian J. Chem., Sect. A, 2004, 43, 2555.
- S. K. Lomesh, Pawan Jamwal and Rakesh Kumar, J. Indian Chem. Soc., 2006, 83, 156.

- 8. G. K. Ward and F. J. Millero, J. Soln. Chem., 1974, 3, 417.
- R. L. Blokhra and M. L. Parmar, Aust. J. Chem., 1974, 27, 1407.
- 10. Ram Gopal and Ramanand Pathak, Indian J. Chem., Sect. A, 1978, 16, 250.
- 11. Ram Gopal and Ramanand Pathak, J. Indian Chem. Soc., 1978, 55, 128.
- 12. F. J. Millero, J. Chem. Eng. Data, 1973, 18, 407.
- 13. R. L. Blokhra, Satish Kumar and Shashi Kant, J. Indian Chem. Soc. 1988, 65, 391; 1992, 69, 73.
- F. J. Millero in "Structure, Thermodynamics and Transport Processes in Water and Aqueous Solutions", ed. R. A. Horne, Wiley Interscience, New York, 1970, Ch. 13.
- 15. F. J. Millero and W. Drost Hansen, J. Phys. Chem., 1968, 72, 1758.
- 16. F. J. Millero, Chem. Rev., 1971, 71, 147.

- 17. L. G. Hepler, Can. J. Chem., 1969, 47, 4613.
- G. Jones and M. Dole, J. Am. Chem. Soc., 1929, 51, 2050.
- 19. H. Falkenhagen and M. Dole, Phys., 1929, 30, 611.
- E. R. Nightingale in "Chemical Physics of Ionic Solution", eds. B. E. Conway and R. G. Barradas, Wiley, New York, 1966, 93.
- 21. T. S. Sharma and J. C. Ahluwalia, *Rev. Chem. Soc.* London, 1973, 2, 217.
- 22. S. Glasstone, K. J. Laidler and H. Eyring, "The Theory of Rate Processes", McGraw-Hill, New York, 1941.
- 23. R. A. Robinson and R. H. Stokes, "Electrolyte Solutions", Butterworths, London, 1970, 407.
- 24. R. L. Blokhra and P. C. Verma, *Electrochem. Acta*, 1977, 22, 485.
- 25. J. O'M. Bockris and A. K. N. Reddy, "Modern Electrochemistry", Vol. 1, 555.