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ABSTRACT 

 
In the framework of the European project CORTEX, included in the H2020 program, the experimental 
campaign carried out with the CROCUS reactor, at the École Polytechnique Fédérale de Lausanne (EPFL) 
in Switzerland, aims at setting up methodologies and tools for the analysis and the interpretation of neutron 
noise in view of their industrial applications. An important part of the CORTEX project deals with code 
development and validation. In this paper, a new methodology for the simulation of neutron noise has been 
formulated and implemented in the APOLLO3 code. The method is based on an improved point-kinetics 
model employed in a fully heterogeneous 2D transport calculation. In this work, the theoretical derivation 
and the successive validation of the model are presented, comparing the Cross-Power Spectral Densities 
(CPSD) of measured and computed detector responses. Future work will consist in extending the 
application of the method to the analysis of 3D configurations, in particular for full reactor studies. 
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1. INTRODUCTION 
 
Research and industry have been aware of the existence of neutron noise since the beginning of the nuclear 
era. However, in recent years, a new interest in neutron noise measurements and simulation has risen among 
the research and industrial reactor physics community, including the CORTEX H2020 European Project, in 
which CEA actively participates. 
The objective of the project is to set up a noise-based core monitoring technique applicable to power and 
research reactors. In order to develop this technique, the data collected during neutron noise experimental 
campaign carried out in the CROCUS reactor [1] [2] are being used to validate computational tools 
developed by project members [3], among which the methodology and the model presented here. 
In this work, the CROCUS reactor and the COLIBRI device setups are shown [4], followed by the 
presentation of a new approach and numerical method for the APOLLO3 code [5] for neutron noise 
simulations. The solver is used to compute the reaction rate oscillation amplitudes in the detector locations. 
The calculated signals are post-processed to retrieve the CPSDs that are compared with measurements. 
 

2. EXPERIMENTAL SETUP 
 
2.1. CROCUS reactor and COLIBRI 
 
CROCUS is an experimental nuclear reactor used for research and teaching purposes, in the context of 
reactor physics and detection of ionizing radiation exercises. The reactor limited power of 100 W (so-called 
“zero power” reactor) turns out to be a big advantage, since few hours after the reactor shutdown, the 
operators can approach the core without risk of exposure. With a height of about 100 cm and a diameter of 
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about 58 cm, the reactor core has an almost cylindrical shape. The reactor core is constituted of two different 
fuel regions: the outer one is composed of metallic uranium fuel while the central one is constituted of 
ceramic uranium fuel pins, see Figure 1 and Table 1. All pins have an aluminum cladding and they are kept 
in position by means of an upper and lower grid, located about 100 cm apart, approximately corresponding 
to the active length of the pins. Two cadmium layers of 0.5 mm are embedded in the grids and used to 
reduce axial leakages. The core is contained in an aluminum tank with a diameter of about 130 cm, filled 
with light water acting as moderator and neutron reflector. The reactivity of the reactor is controlled by 
means of varying the water level and using the boron control rods. Finally, the COLIBRI device is installed 
in the reactor to oscillate a set of maximum 6×3 fuel pins, producing variations of neutron flux that are then 
recorded by the detectors. For further details about the COLIBRI design and operation refer to [4]. 
 

Figure 1. (a) View of the CROCUS reactor with the indication of its main components (b) zoom on the 
COLIBRI device. 

Table 1. Main characteristics of the uranium fuel rods in the CROCUS reactor during noise experiments [6]. 

Type Number [-] Enrichment [%] Pitch [cm] 
UO2 336 1.806 1.837 
Umetal 176 0.947 2.917 

 
2.2. Detectors and measurements 
 
To monitor neutron noise amplitude during the experiments, eleven detectors are installed in various 
locations inside the reactor, see Figure 1a and Table 2. Each measurement record lasts a sufficiently long 
time to cover several cycles of the COLIBRI device, and therefore of the flux oscillations. Measurements 
from the detectors are collected using three different data acquisition systems, provided by EPFL and 
referred to as EPFL, TUD and ISTec, with the last chosen as reference for the comparisons with the 
simulations. Before going further in the analysis of the data, it is necessary to point out that, unfortunately, 
during several tests, there were issues with some detectors, which were either affected by large electronic 
noise, unreliable or unavailable during the entire campaign (e.g. Det#1, Det#2) [7]. 
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Table 2. List of the available detectors installed in the CROCUS reactor [6]. 

Det# Type$ Brand Sensitive 
material Sensitivity Location X& 

[mm] 
Location Y& 

[mm] 
1 FC Photonis 235U coating 10-2 nth

-1 +35.8 +8.7 
2 FC Photonis 235U coating 10-2 nth

-1 -35.8 -8.7 
3 CIC Merlin-Gerin 10B coating 3×10-14 A.nth

-1 -8.6 +36.35 
4 CIC Merlin-Gerin 10B coating 3×10-14 A.nth

-1 +8.6 -36.35 
5 FC Photonis 235U coating 1 nth

-1 -29.8 15.4 
6 FC Photonis 235U coating 1 nth

-1 +29.8 -14.7 
7 PC - 10BF3 gas 10-2 nth

-1 -16.04 16.04 
8 PC - 10BF3 gas 10-2 nth

-1 -27.71 -10.21 
9 PC Transcommerce Int. 10BF3 gas 10-2 nth

-1 10.21 +27.71 
10 PC Transcommerce Int. 10BF3 gas 10-2 nth

-1 -10.21 -27.71 
11 MFC Photonis 235U coating 10-2 nth

-1 0 0 
$ FC = Fission chamber, CIC = compensated ionization chamber, PC = proportional counter, MFC = miniature fission chamber 
& The coordinates x = 0.0 and y = 0.0 correspond to the center of the core, see [6] or Figure 2. 

 
3. INTERPRETATION OF EXPERIMENTAL DATA 

 
Using different imposed amplitudes (A) and frequencies (ωc) of oscillations [6], twenty different tests have 
been performed recording signals in selected detector positions. The specific tests selected for the validation 
exercises are reported in Figure 3. Here, the experimental data analysis accomplished by EPFL is taken as 
reference [8]. 

Table 3. Operational parameters [6] of the experiments selected for the validation exercise. 

Exp. # A [mm] ωc [Hz] 
12 1.85 0.097 
13 2.00 0.972 

 
4. SIMULATION SETUP 

 
4.1. APOLLO3® CROCUS reactor model 
 
The APOLLO3® [5] code for reactor physics analysis is developed by CEA with joint financial support 
from Framatome and EDF. In the present work, the 2D version of the Two/Three Dimensions Transport 
(TDT) solver [9] based on the method of characteristics is used. The solver computes the static flux in 
various configurations depending on the shift amplitude of the cluster of 3 × 6 fuel pins connected to the 
COLIBRI device according to the values reported in [6]. To take into account the finite dimensions of the 
reactor and increase the representativeness of the calculations, axial leakage is estimated and accounted for 
in the neutron balance. 
 
4.2. Static simulations and leakage model 
 
Considering the heterogeneous reactor model with different pin displacements, see Figure 2, the TDT solver 
is used to compute the angular flux distributions by solving the critical problem defined as: 
 

𝛴𝛴�𝑡𝑡𝜓𝜓(𝑟𝑟,𝐸𝐸,Ω) = 𝐻𝐻𝐻𝐻(𝑟𝑟,𝐸𝐸,Ω) +
1
𝑘𝑘
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙(𝑟𝑟,𝐸𝐸), (1)   

 



where 𝑟𝑟 is the spatial coordinate, 𝐸𝐸 is the energy group, 𝛺𝛺 is the direction angle, 𝜓𝜓(𝑟𝑟,𝐸𝐸,Ω) is the angular 
flux, 𝜙𝜙(𝑟𝑟,𝐸𝐸)  is the scalar flux, 𝐻𝐻  is the scattering operator, 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡  is the total fission operator, 𝑘𝑘  is the 
multiplication eigenvalue and Σ�𝑡𝑡  is the equivalent total cross section of the problem. The value of the 
equivalent total cross section is defined as: Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸) = Σ𝑡𝑡(𝑟𝑟,𝐸𝐸) + 𝐷𝐷(𝐸𝐸)𝐵𝐵2, where Σ𝑡𝑡(𝑟𝑟,𝐸𝐸) is the total cross 
section from nuclear data and the 𝐷𝐷(𝐸𝐸)𝐵𝐵2 is the leakage coefficient times the buckling value. The 𝐷𝐷𝐵𝐵2 
term accounting for radial and axial leakage [10] is computed by solving the critical problem on an 
equivalent infinite homogeneous domain (subscript ℎ), where the homogeneous flux is the solution of the 
problem defined in integral form as: 
 

�𝛴𝛴𝑡𝑡,ℎ(𝐸𝐸) + 𝐷𝐷(𝐸𝐸)𝐵𝐵2�𝜙𝜙ℎ(𝐸𝐸) = 𝑄𝑄ℎ(𝐸𝐸), (2)   
 
and where the homogenized total source 𝑄𝑄ℎ is computed by summing the equivalent total fission 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡,ℎand 
scattering 𝐻𝐻ℎ sources, namely: 
 

𝑄𝑄ℎ(𝐸𝐸) = � 𝑑𝑑𝑟𝑟
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

�𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡,ℎ(𝑟𝑟,𝐸𝐸)𝜙𝜙(𝑟𝑟,𝐸𝐸) + � 𝑑𝑑Ω′
4𝜋𝜋

 𝐻𝐻ℎ𝜓𝜓(𝑟𝑟,𝐸𝐸,𝛺𝛺)�. (3)   

 

 
Figure 2. Computational mesh of the unperturbed CROCUS reactor and its detectors, see Table 2. The center 

XY of the coordinate reference system is also indicated. 

The size of the initial set of static flux distributions is equal to 𝑁𝑁, corresponding to a set of points equally 
spaced in time during the period of oscillation, see Figure 3. By taking advantage of the symmetry of the 
sine curve, some of these are replicated in the remaining points. Therefore, in this specific case, to save 
computational time, only five points, instead of eight, are computed. The results from the static simulation 
are useful for anticipating what one can expect as an outcome from the noise solver in the time domain. 
Comparing the unperturbed geometry and the one with a maximum outward displacement, see Figure 4, 
the flux deviation is ~1-2% in the pins close to COLIBRI, while in the detectors of interest the variations 
range from ~0.04% to 0.1%. These values are expected to have the same order of magnitude as the square 
root of the CPSDs obtained from the noise solver. This situation is of course not an optimal preamble for 
the following experimental analysis, since it shows that for the installed detectors the signal will be quite 
low and its uncertainty may play a key role. 



Validation of a time-dependent deterministic model for neutron noise 

 

  
Figure 3. Ideal sine movement (blue line) with selected displacements (red squares) used in the static 

simulations for experiment #12 (A = 1.85 mm and ωc = 0.097 Hz). 

 

  
Figure 4. Pin-wise absorption rate relative difference with respect to the unperturbed configuration 

considering a -1.85 mm displacement for experiment #12. 

 



4.3. The Improved Point-Kinetics model 
 
Advancing from a previous work [11], the presented model aims at giving a more detailed representation 
of neutron noise in the CROCUS reactor during COLIBRI tests. The newly developed Improved Point-
Kinetics model (IPK) model solves the reactor kinetics problem using a multi-group energy discretization 
starting from the flux and precursors concentration equations: 
 

�
1
𝑣𝑣
𝜕𝜕𝑡𝑡 + Ω ⋅ ∇ + Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸, 𝑡𝑡) �𝜓𝜓 = 𝐻𝐻𝐻𝐻 +

𝐹𝐹𝑝𝑝
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

𝜙𝜙 +
𝐹𝐹𝑑𝑑𝐶𝐶
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

 (4)   

𝜕𝜕𝑡𝑡𝐶𝐶𝑖𝑖(𝑟𝑟, 𝑡𝑡) =  −𝜆̅𝜆𝑖𝑖𝐶𝐶𝑖𝑖(𝑟𝑟, 𝑡𝑡) + 𝛽𝛽𝑖𝑖 �𝑑𝑑𝐸𝐸′
𝐸𝐸

𝜈𝜈Σ𝑓𝑓(𝑟𝑟,𝐸𝐸′, 𝑡𝑡)𝜙𝜙(𝑟𝑟,𝐸𝐸′, 𝑡𝑡), (5)   

 
where Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸, 𝑡𝑡) is the total cross section modified accounting for the 𝐷𝐷𝐵𝐵2 coefficient as determined in the 
static calculations, 𝜓𝜓 = 𝜓𝜓(𝑟𝑟,𝐸𝐸,Ω, 𝑡𝑡)  is the angular flux, 𝜙𝜙 = 𝜙𝜙(𝑟𝑟,𝐸𝐸, 𝑡𝑡)  is the scalar flux, 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑  is the 
dynamic eigenvalue [12] representative of the stationary oscillating regime calculated over the whole period 
of oscillation (𝑇𝑇), Σ𝑓𝑓 is the macroscopic fission cross section, 𝜈𝜈 is the average number of neutrons produced 
by fission, 𝛽𝛽𝑖𝑖  is the fraction of delayed neutron for family 𝑖𝑖 . The term 𝐹𝐹𝑝𝑝  refers to the prompt fission 
operator and 𝐹𝐹𝑑𝑑𝐶𝐶 = ∑ 𝜒𝜒𝑑𝑑,𝑖𝑖𝜆𝜆𝑖𝑖𝐶𝐶𝑖𝑖

𝑁𝑁𝑑𝑑
𝑖𝑖=1   is the contribution from the neutron precursor concentration, with 𝐶𝐶𝑖𝑖 

containing the convolution integral for the i-th precursor family with decay constant 𝜆𝜆𝑖𝑖 . The delayed 
neutron source is integrated in time using a suitable quadrature formula to account for delayed-neutron 
contributions, as previously discussed in [12]. 
In the present model, differently from [13] and from the traditional quasi-static approach (e.g. [14]), in the 
angular flux factorization, the shape 𝑆𝑆 and power 𝑃𝑃 functions preserve their energy dependence and are 
defined according to: 
 

𝜓𝜓(𝑟𝑟,𝐸𝐸,Ω, 𝑡𝑡) = 𝑆𝑆(𝑟𝑟,𝐸𝐸,Ω, 𝑡𝑡) ⋅ 𝑃𝑃(𝐸𝐸, 𝑡𝑡). (6)   
 
The normalization condition adopted for all the energy groups 𝑁𝑁𝐺𝐺  of the IPK model is defined as: 
 

1
𝑣𝑣𝑔𝑔
〈𝜓𝜓†�𝑟𝑟,𝐸𝐸𝑔𝑔,Ω′, 𝑡𝑡�, 𝑆𝑆�𝑟𝑟,𝐸𝐸𝑔𝑔,Ω′, 𝑡𝑡�〉 = 1   ,   ∀𝑡𝑡 ∧  ∀𝑔𝑔 ∈ [1,𝑁𝑁𝐺𝐺]. (7)   

 
where 𝑣𝑣𝑔𝑔 is the neutron speed in group 𝑔𝑔. 
To obtain the point-kinetics equations, Eq. (4) is multiplied by a weighting function 𝜓𝜓† and integrated over 
space and angle (integration is denoted by 〈… 〉) obtaining the general formulation of the problem: 
 

〈𝜓𝜓†,
1
𝑣𝑣
𝜕𝜕𝑡𝑡𝜓𝜓〉 + 〈𝜓𝜓†,Ω ⋅ ∇𝜓𝜓〉 + 〈𝜓𝜓†, Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸, 𝑡𝑡)𝜓𝜓〉 =

= 〈𝜓𝜓†,𝐻𝐻𝐻𝐻〉 +
1

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
〈𝜓𝜓†,𝐹𝐹𝑝𝑝𝜙𝜙〉+

1
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

〈𝜓𝜓†,𝐹𝐹𝑑𝑑𝐶𝐶〉. 
(8)   

 
In the present work, the weighting function is conveniently chosen as 𝜓𝜓† = 1,∀𝑡𝑡 ∧  ∀𝑔𝑔 ∈ [1,𝑁𝑁𝐺𝐺]  and, 
using the divergence theorem, the streaming term in Eq. (8) can be written for each energy group as: 
 

〈𝜓𝜓†,Ω ⋅ ∇𝜓𝜓〉 =
𝐽𝐽+ − 𝐽𝐽−

〈𝑆𝑆 𝑣𝑣⁄ 〉 𝑃𝑃. (9)   
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With some manipulations, accounting for Eqs. (6) and (7), it is finally possible to obtain the balance point-
kinetics equation for each energy group 𝑔𝑔: 
 

𝜕𝜕𝑡𝑡𝑃𝑃 +
1
𝑣𝑣
〈𝜕𝜕𝑡𝑡𝑆𝑆〉𝑃𝑃 +

𝐽𝐽+ − 𝐽𝐽−

〈𝑆𝑆 𝑣𝑣⁄ 〉 𝑃𝑃 + 〈Σ�𝑡𝑡𝑆𝑆〉𝑃𝑃 −  〈𝐻𝐻𝐻𝐻〉𝑃𝑃 =
1

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
〈𝐹𝐹𝑝𝑝𝑆𝑆〉𝑃𝑃 +

1
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

〈𝐹𝐹𝑑𝑑𝐶𝐶〉. (10)   

 
For the 𝑁𝑁 initial computed static distributions, normalized according to Eq. (7), all flux points in the phase 
space (𝑥⃗𝑥, 𝑡𝑡), where 𝑥⃗𝑥 = (𝑟𝑟,𝐸𝐸,Ω), are interpolated in time over 𝑀𝑀 = 𝐿𝐿 × 𝑁𝑁, with 𝐿𝐿 ∈ ℕ+, equally spaced 
points along the period, using a Fourier interpolation [15] of the kind: 

 𝑆𝑆(𝑥⃗𝑥, 𝑡𝑡) ≅ 𝑐𝑐0(𝑥⃗𝑥) + �𝑎𝑎𝑖𝑖(𝑥⃗𝑥) cos�
2𝜋𝜋
𝑇𝑇
𝑡𝑡� + 𝑏𝑏𝑖𝑖(𝑥⃗𝑥) sin�

2𝜋𝜋
𝑇𝑇
𝑡𝑡� ,

𝑁𝑁 2⁄

𝑖𝑖=1

 (11)   

where the coefficients of the series (𝑐𝑐0, 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖) are obtained as: 

 𝑐𝑐0(𝑥⃗𝑥) =  
1
𝑁𝑁
�𝑆𝑆�𝑥⃗𝑥, 𝑡𝑡𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

 (12)   

 𝑎𝑎𝑖𝑖(𝑥⃗𝑥) =  
2
𝑁𝑁
�𝑆𝑆�𝑥⃗𝑥, 𝑡𝑡𝑗𝑗� cos �

2𝜋𝜋
𝑇𝑇
𝑗𝑗 ⋅ 𝑡𝑡𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

, 𝑗𝑗 ≠ 𝑁𝑁 (13)   

 𝑎𝑎𝑁𝑁(𝑥⃗𝑥) =  
1
𝑁𝑁
�𝑆𝑆�𝑥⃗𝑥, 𝑡𝑡𝑗𝑗� cos�

2𝜋𝜋
𝑇𝑇
𝑁𝑁 ⋅ 𝑡𝑡𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

, 𝑗𝑗 = 𝑁𝑁 (14)   

 𝑏𝑏𝑖𝑖(𝑥⃗𝑥) =  2
𝑁𝑁
∑ 𝑆𝑆�𝑥⃗𝑥, 𝑡𝑡𝑗𝑗� sin �2𝜋𝜋

𝑇𝑇
𝑗𝑗 ⋅ 𝑡𝑡𝑗𝑗�𝑁𝑁

𝑗𝑗=1 . (15)   

 
Concerning the temporal treatment, while the classical quasi-static method would imply the use of two 
different time scales for the solution of the equations for shape (coarse) and power (refined) [14], a single 
time scale is used to solve the transient. The final problem is a system of 𝑀𝑀 × 𝑁𝑁𝑔𝑔 equations to be solved 
iteratively using the power iteration method. With the converged 𝑃𝑃(𝐸𝐸, 𝑡𝑡), the angular flux is reconstructed 
and followed by the calculation and treatment of the detector responses. 
 

5. VALIDATION OF COMPUTED RESULTS 
 
5.1. Comparisons with experiments #12 and #13 
 
In the present work, the computed results for experiments #12 and #13, see Table 3, are compared to 
measurements, see Figure 5 and Figure 6, respectively. 
The comparisons of CPSDx,5 (or equivalently CPSD5,x) amplitudes, see Figure 5a and Figure 6a, show an 
overall good agreement between computed and experimental results of CPSDs. The model slightly 
underestimates the amplitude of the signals for experiment #12, possibly as a consequence of the high 
sensitivity of the reactor transfer function at low frequencies [16], showing that small deviations from the 
determined oscillation frequency ωc may induce larger variations in the intensity of the signal. The model 
computes higher responses as the distance from COLIBRI decreases, showing that the spatial dependence 
of the results is consistent to what is expected from physics. In order to comment some experimental 
outcomes we can say the following: detector #3 and #10 are about the same distance from COLIBRI and 
one should expect to see almost the same response, as obtained by the simulation. However, this is not 



necessarily true for the measurements. Again, comparing detector #3 and #4, one expects that the signal 
should be higher in #3 due to its proximity to the noise source, but also in this case the model and the 
experiment are in contradiction. Further investigations are ongoing [7]. Again, it is worth making a 
comment on the reported uncertainties: the estimated error bar is of the order of 10-6 for a relative measured 
reaction rate variation value of the order of 10-5. By the rule of thumb, since the CPSD is the product of two 
signals of the same order of magnitude, it follows that the amplitude of the single detector signal is around 
~10-2 and its uncertainty ~10-3. With these numbers in mind, one may question the capability of the detector 
to provide such accuracy with such a small measured value. Unfortunately, the datasheets of the installed 
detector are not available. Given these open issues on the measurements uncertainties, additional work is 
currently being carried out to address them [7]. Finally, when looking at the signal phases relative to the 
one of the detector pair 6&5, see Figure 6, by supposing that this pair is in phase with COLIBRI, we expect 
to see an increasing delay as the distance from the reference point. The only exception is represented by 
detector #8, the closest to the COLIBRI boundary the one which may suffer from some spectral effects [3]. 
For the others, the expected behavior is captured by the simulations, while the experiments show some 
unexpected deviations, currently under investigation. Nevertheless, we can say that the IPK model provides 
results in an acceptable agreement with respect to the measurements, confirming thus the good capability 
of the code. 

Figure 5. 𝑪𝑪𝑪𝑪𝑪𝑪𝑫𝑫𝒙𝒙,𝟓𝟓 amplitudes for experiments (a) #12 and (b) #13, respectively. 

 

(a) (b)  
Figure 6. 𝑪𝑪𝑪𝑪𝑪𝑪𝑫𝑫𝒙𝒙,𝟓𝟓 relative phases for experiments (a) #12 and (b) #13, respectively. 
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For sake of completeness and to be consistent with analyses conducted by others [3] [8], the CPSDs of a 
given experiment have been normalized by the value of 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷6,5, see Figure 7, showing again that the code 
well agrees with experimental outcomes and always within the error bars when looking at experiment #13. 
 

Figure 7. Normalized 𝑪𝑪𝑪𝑪𝑪𝑪𝑫𝑫𝒙𝒙,𝟓𝟓 amplitudes for experiments (a) #12 and (b) #13, respectively. 

 
6. CONCLUSIONS 

 
This paper presents the recently implemented new options for the neutron noise solver of the APOLLO3 
general-purpose transport code and the application to the interpretation of the noise measurements in the 
COLIBRI experimental setup of the CROCUS reactor, conducted in the framework of the European 
CORTEX H2020 project. The approach adopted for the point-kinetics flux factorization procedure retains 
the energy dependency in both the shape and power. The time dependency of the space-energy distribution 
within an oscillation period is assessed using the fully heterogeneous transport solution in the relevant 
discrete instants of time. The interpretation of the experiment consisted in comparing the calculated CPSDs 
values with the measured ones, showing that, in absolute terms, the results provided by the model are in 
good agreement with the experiments, for both amplitude and phase. When comparing the CPSDs ratios, 
as done in other works within the project, the model well agrees within the experimental uncertainties, 
proving the accuracy of the presented methodology. Additional interpretations and parametric analyses are 
foreseen as the next steps of the development and the application of the code. 
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Appendix A 
Construction of matrix operators 

 
The IPK model presented is written using matrix operators in the form: 
 

(𝒯𝒯 + 𝒮𝒮𝑡𝑡 +ℛ −ℋ)𝑃𝑃 =
1

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
�ℱ𝑝𝑝 + ℱ𝑑𝑑�𝑃𝑃 (16)   

 
It is necessary that the formulation keeps an explicit energy dependence of 𝑃𝑃 in all the equations. In this 
section, the operators’ construction will be presented considering 𝑀𝑀 times-step and 𝑁𝑁𝑔𝑔 energy groups. In 
each indication of row or column of the matrix, the value 𝒾𝒾 = 𝑀𝑀 ⋅ (𝑔𝑔 − 1) and 𝒿𝒿 = 𝑀𝑀 ⋅ (𝑔𝑔′ − 1), where 𝑔𝑔 
and 𝑔𝑔′ are two generic energy groups. 
 
A.1 The time discretization operator 𝓣𝓣 
With the normalization condition of Eq. (7) , the operator 𝒯𝒯 =  1

𝑣𝑣𝑔𝑔
〈𝜓𝜓𝑔𝑔

†, 𝑆𝑆𝑔𝑔〉𝜕𝜕𝑡𝑡 reduces to 𝒯𝒯 =  𝜕𝜕𝑡𝑡, in which 

the time derivative is discretized using 4-th order finite difference on the generic time instant 𝑚𝑚: 
 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑚𝑚

=
𝑓𝑓𝑚𝑚−2 − 8𝑓𝑓𝑚𝑚−1 + 8𝑓𝑓𝑚𝑚+1 − 𝑓𝑓𝑚𝑚+2

𝛿𝛿𝛿𝛿
  (17)   

 
Therefore the element of matrix T are defined as: 
 

𝒯𝒯(𝒾𝒾 + 𝑚𝑚, 𝒾𝒾 + 𝑚𝑚) =  0 
𝒯𝒯(𝒾𝒾 + 𝑚𝑚, 𝒾𝒾 + 𝑚𝑚 − 2) =  1 12𝛿𝛿𝛿𝛿⁄  
𝒯𝒯(𝒾𝒾 + 𝑚𝑚, 𝒾𝒾 + 𝑚𝑚 − 1) =  −8 12𝛿𝛿𝛿𝛿⁄  
𝒯𝒯(𝒾𝒾 + 𝑚𝑚, 𝒾𝒾 + 𝑚𝑚 + 1) =  8 12𝛿𝛿𝛿𝛿⁄  
𝒯𝒯(𝒾𝒾 + 𝑚𝑚, 𝒾𝒾 + 𝑚𝑚 + 2) =  −1 12𝛿𝛿𝛿𝛿⁄  

(18)   

 
Taking advantage to the periodicity of the phenomenon, it is possible to couple the first two rows with the 
last two rows, and vice versa, by knowing that 𝑡𝑡1  =  𝑡𝑡𝑀𝑀 + 1 and 𝑡𝑡2 = 𝑡𝑡𝑀𝑀 + 2.  
 
A.2 The shape derivative operator 𝓢𝓢𝒕𝒕 
In the operator 𝒮𝒮𝑡𝑡 = 1

𝑣𝑣
〈𝜓𝜓†,𝜕𝜕𝑡𝑡𝑆𝑆〉 the derivative is evaluate using a first order finite difference. The operator 

is diagonal and computed using the interpolated shape at 𝑥⃗𝑥𝑔𝑔 = �𝑟𝑟,𝐸𝐸𝑔𝑔 ,Ω� and, considering the discrete time 
𝑡𝑡𝑚𝑚, it is expressed as:  
 

𝒮𝒮𝑡𝑡(𝒾𝒾 + 𝑚𝑚, 𝒾𝒾 +𝑚𝑚) = 

=
1
𝑣𝑣𝑔𝑔
�𝑑𝑑𝑟𝑟
𝑉𝑉

�𝑑𝑑Ω′
Ω

𝜓𝜓†(𝑥⃗𝑥𝑔𝑔, 𝑡𝑡𝑚𝑚)�𝑎𝑎𝑖𝑖�𝑥⃗𝑥𝑔𝑔� cos�
2𝜋𝜋
𝑇𝑇
𝑡𝑡𝑚𝑚� + 𝑏𝑏𝑖𝑖�𝑥⃗𝑥𝑔𝑔� sin�

2𝜋𝜋
𝑇𝑇
𝑡𝑡𝑚𝑚�

𝑁𝑁/2

𝑖𝑖=1

 
(19)   

 
A.3 The removal operator 𝓡𝓡 
The operator ℛ = 〈𝜓𝜓†,Σ�𝑡𝑡𝑆𝑆〉 accounts for neutron losses due to removal, axial and radial leakages. It is 
diagonal and using the scalar shape (i.e. integrated in angle), for the discrete time 𝑡𝑡𝑚𝑚, it is written as: 
 

ℛ(𝒾𝒾 + 𝑚𝑚, 𝒾𝒾 + 𝑚𝑚) = �𝑑𝑑𝑟𝑟
𝑉𝑉

�𝑑𝑑Ω′
Ω

𝜓𝜓†(𝑥⃗𝑥𝑔𝑔, 𝑡𝑡𝑚𝑚)Σ�𝑡𝑡�𝑟𝑟,𝐸𝐸𝑔𝑔 , 𝑡𝑡𝑚𝑚�𝑆𝑆(𝑥⃗𝑥𝑔𝑔, 𝑡𝑡𝑚𝑚) (20)   

 



A.4 The scattering operator 𝓗𝓗 
The scattering operator is expressed by: 
 

ℋ =  〈𝜓𝜓†,𝐻𝐻𝐻𝐻〉 = 〈𝜓𝜓†,�𝑑𝑑𝐸𝐸′
𝐸𝐸

�𝑑𝑑𝛺𝛺′
𝛺𝛺

𝛴𝛴𝑠𝑠(𝑟𝑟,𝛺𝛺′ → 𝛺𝛺,𝐸𝐸′ → 𝐸𝐸, 𝑡𝑡)𝑆𝑆(𝑟𝑟,𝐸𝐸′,𝛺𝛺′, 𝑡𝑡)〉 (21)   

 
Writing the scattering cross section as an expansion of scattering moments on Legendre polynomials: 
 

𝛴𝛴𝑠𝑠(𝑟𝑟,𝛺𝛺′ → 𝛺𝛺,𝐸𝐸′ → 𝐸𝐸, 𝑡𝑡) = 𝜎𝜎𝑠𝑠(𝑟𝑟,𝐸𝐸, 𝑡𝑡)𝑓𝑓𝑠𝑠(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸, 𝜇𝜇0) = 

= �
2𝑙𝑙 + 1

4𝜋𝜋
𝜎𝜎𝑙𝑙(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸, 𝑡𝑡)𝑃𝑃𝑙𝑙(𝜇𝜇0)

∞

𝑙𝑙=0

 (22)   

 
Where 𝜇𝜇0 = Ω′ ⋅ Ω and the expansion coefficients 𝜎𝜎𝑙𝑙(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸, 𝑡𝑡) are given by: 
 

𝜎𝜎𝑙𝑙(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸, 𝑡𝑡) = 2𝜋𝜋� 𝜎𝜎𝑠𝑠(𝑟𝑟,𝐸𝐸, 𝑡𝑡)𝑓𝑓𝑠𝑠(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸, 𝜇𝜇0)𝑃𝑃𝑙𝑙(𝜇𝜇0)𝑑𝑑𝜇𝜇0
1

−1
 (23)   

 
Since in (23) scattering moments and functions are taken from library, (21) becomes: 
 

ℋ =  〈𝜓𝜓†,𝐻𝐻𝐻𝐻〉 = 

= 〈𝜓𝜓†,�
2𝑙𝑙 + 1

4𝜋𝜋
𝑃𝑃𝑙𝑙(𝜇𝜇)

∞

𝑙𝑙=0

�𝜎𝜎𝑙𝑙(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸, 𝑡𝑡)
𝐸𝐸

� 𝑆𝑆(𝑟𝑟,𝐸𝐸′,𝜇𝜇′, 𝑡𝑡)𝑃𝑃𝑙𝑙(𝜇𝜇′)
1

−1
𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑′〉 (24)   

 
Using a multi-group approach, defining the ingoing and outgoing energies defined as 𝑔𝑔′ and 𝑔𝑔, respectively. 
Therefore at a given discrete time 𝑡𝑡𝑚𝑚, the scattering source in group 𝑔𝑔 from group 𝑔𝑔′ is defined by: 
 

ℎ𝑔𝑔,𝑔𝑔′,𝑚𝑚 = �𝜓𝜓†(𝑥⃗𝑥𝑔𝑔, 𝑡𝑡𝑚𝑚)
𝑉𝑉

⋅ 

�
2𝑙𝑙 + 1

4𝜋𝜋
𝑃𝑃𝑙𝑙(𝜇𝜇)

∞

𝑙𝑙=0

�𝜎𝜎𝑙𝑙�𝑟𝑟,𝐸𝐸𝑔𝑔′ → 𝐸𝐸𝑔𝑔, 𝑡𝑡𝑚𝑚�
𝐸𝐸

� 𝑆𝑆�𝑟𝑟,𝐸𝐸𝑔𝑔′, 𝜇𝜇′, 𝑡𝑡𝑚𝑚�𝑃𝑃𝑙𝑙(𝜇𝜇′)
1

−1
𝑑𝑑𝜇𝜇′𝑑𝑑𝐸𝐸′𝑑𝑑𝑟𝑟 = 

(25)   

 
Therefore the final form of the scattering operator is: 
 

ℋ(𝒾𝒾 + 𝑚𝑚, 𝒿𝒿 +𝑚𝑚) =  ℎ𝑔𝑔,𝑔𝑔′,𝑚𝑚 (26)   
 
A.5 The prompt fission operator 𝓕𝓕𝒑𝒑 
The prompt fission operator ℱ𝑝𝑝 = 〈𝜓𝜓†,𝐹𝐹𝑝𝑝𝑆𝑆〉  Considering 𝑗𝑗 = 1, … ,𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  fissile isotopes and the 
factorization of the delayed neutron fractions 𝛽𝛽𝑗𝑗(𝐸𝐸) = 𝜔𝜔�𝑑𝑑

𝑗𝑗𝑃𝑃𝑒𝑒𝑒𝑒
𝑗𝑗 (𝐸𝐸) [17], the neutrons produced by fission in 

group 𝑔𝑔′ and emitted in group 𝑔𝑔 can be computed as: 
 

ℱ𝑝𝑝 = 〈𝜓𝜓†(𝑥⃗𝑥, 𝑡𝑡), �𝜒𝜒𝑗𝑗
𝑝𝑝(𝑟𝑟,𝐸𝐸, 𝑡𝑡)

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗=1

� 𝑑𝑑𝐸𝐸′ �1 −𝜔𝜔�𝑑𝑑
𝑗𝑗𝑃𝑃𝑒𝑒𝑒𝑒

𝑗𝑗 (𝐸𝐸′)� 𝜈𝜈Σ𝑓𝑓,𝑗𝑗(𝑟𝑟,𝐸𝐸′, 𝑡𝑡)𝑆𝑆(𝑟𝑟,𝐸𝐸′, 𝑡𝑡)
𝐸𝐸

〉 (27)   

 
In the multi-group approach adopted here, the emission 𝑓𝑓𝑔𝑔,𝑔𝑔′,𝑡𝑡𝑚𝑚  of prompt neutrons in group 𝑔𝑔  from a 
fission occurred in group 𝑔𝑔′ at a given time 𝑡𝑡𝑚𝑚 is obtained from: 
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𝑓𝑓𝑔𝑔,𝑔𝑔′,𝑚𝑚 = �𝜓𝜓†(𝑥⃗𝑥, 𝑡𝑡𝑚𝑚)
𝑉𝑉

⋅ 

�𝜒𝜒𝑗𝑗
𝑝𝑝�𝑟𝑟,𝐸𝐸𝑔𝑔, 𝑡𝑡𝑚𝑚�

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗=1

� 𝑑𝑑𝐸𝐸′ �1 −𝜔𝜔�𝑑𝑑
𝑗𝑗𝑃𝑃𝑒𝑒𝑒𝑒

𝑗𝑗 �𝐸𝐸𝑔𝑔′�� 𝜈𝜈Σ𝑓𝑓,𝑗𝑗�𝑟𝑟,𝐸𝐸𝑔𝑔′ , 𝑡𝑡𝑚𝑚�
𝐸𝐸

𝑆𝑆�𝑟𝑟,𝐸𝐸𝑔𝑔′ , 𝑡𝑡𝑚𝑚� 𝑑𝑑𝑟𝑟 
(28)   

 
Where 𝜒𝜒𝑗𝑗

𝑝𝑝 is the prompt emission spectra and 𝜈𝜈Σ𝑓𝑓,𝑗𝑗 is the number of neutron produced by the fissions of 
the 𝑗𝑗-th isotope. Finally, the operator is built as: 
 

ℱ𝑝𝑝(𝒾𝒾 + 𝑚𝑚, 𝒿𝒿 + 𝑚𝑚) =  𝑓𝑓𝑔𝑔,𝑔𝑔′,𝑚𝑚 (29)   
 
A.6 The delayed fission operator 𝓕𝓕𝒅𝒅 
The operator ℱ𝑑𝑑 is built starting from the treatment in [12], where derivation of the quadrature formula for 
the delayed fission source is presented. For the here discretized problem, at a given discrete time 𝑡𝑡, the 
neutrons produced by fissions in group 𝑔𝑔’ and emitted in group 𝑔𝑔: 
 

𝑑𝑑𝑔𝑔,𝑔𝑔′,𝑚𝑚 = �𝜓𝜓†�𝑥⃗𝑥𝑔𝑔, 𝑡𝑡𝑚𝑚�
𝑉𝑉

⋅ 

�𝜆𝜆𝑖𝑖𝜒𝜒𝑖𝑖𝑑𝑑(𝑥⃗𝑥,𝐸𝐸𝑔𝑔, 𝑡𝑡𝑚𝑚)
𝑁𝑁𝑑𝑑

𝑖𝑖=1

� 𝜔𝜔𝑖𝑖,𝑚𝑚′(𝑡𝑡𝑚𝑚)𝛽𝛽𝑖𝑖�𝐸𝐸𝑔𝑔′�
𝑀𝑀

𝑚𝑚′=1

� 𝜈𝜈Σ𝑓𝑓,𝑗𝑗�𝑟𝑟,𝐸𝐸𝑔𝑔′ , 𝑡𝑡𝑚𝑚�
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗=1

𝑆𝑆�𝑟𝑟,𝐸𝐸𝑔𝑔′ , 𝑡𝑡𝑚𝑚� 𝑑𝑑𝑟𝑟 
(30)   

 
Where 𝜔𝜔𝑖𝑖,𝑚𝑚′ are the weights of the quadrature formula, 𝑁𝑁𝑑𝑑 is the number of delayed family precursors, 𝜆𝜆𝑖𝑖 
is the decay constant and 𝜒𝜒𝑖𝑖𝑑𝑑 is the delayed emission spectra for the i-th family, respectively. Finally, the 
operator is built as: 
 

ℱ𝑔𝑔(𝒾𝒾 + 𝑚𝑚, 𝒿𝒿 +𝑚𝑚) =  𝑑𝑑𝑔𝑔,𝑔𝑔′,𝑚𝑚 (31)   
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