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ABSTRACT

Islanding is considered important problem that faces distributed
generation. This problem occurs when the protection system takes a correct
action to disconnect the fault as a result of that new isolated system is formed.
This study introduces a methodology for performing intentional islanding with
maximum possible benefits for distribution systems. The methodology is based
on an advanced load shedding algorithm to achieve load generation balance
and apply a control strategy to ensure a smooth transition from normal mode
to island mode with high load power quality. Generally, the load shedding
algorithm is applied to improve the reliability by serving maximum number of
customers. Investigation of the dynamic behavior of the distribution network
during transition due to intentional islanding is a main concern in this thesis.
When operating in the island mode, the local supervisory control system can
modify the generator frequency controller and voltage controller to guarantee
high power quality for the new isolated system. In addition, it is suggested to
assess the small signal stability of new islands to evaluate their performance
and give priority among different alternatives. Small signal stability study is
introduced for each island to check the stability for the new islands. IEEE 33-
bus system is taken as a case study to ensure the effectiveness of the introduced
methodology. The analysis is performed for a case study with optimal DG
locations and sizes. NEPLAN software is used for dynamics and small signal

stability investigations.






SUMMARY

Due to the increase in load demand, the utilization of DG technology
became a necessity in recent years. DG penetration increases power system
reliability, reduces power losses and enhances the voltage profile. However,
there are drawbacks facing the insertion of DG in power systems such as
malfunctioning of protection scheme and loss of mains (islanding). The
traditional precautions after islanding process are to disconnect distributed
generation (DG) to ensure safe operation. However, disconnection of DGs
reduces the island reliability and security. Many of the DG owners prefer to
control the islanding process and follow certain constraints and regulations for
the resulting isolated system, while maintaining the DGs to supply the local
load demand. Distribution systems are equipped with monitoring and control
systems that help to detect islanding states and create intentional island
configurations.

The aim of this study is to increase system reliability of distribution
systems via ensuring feeding electricity for most customers according to a
priority database. At the same time, it is important to adapt the control
behaviour and enhance the dynamics of intentional islands. The first step is to
select the optimal allocation of the DG in the case study taking into account
the possibility of intentional islanding. The second step is to choose the optimal
island configurations according to system topology, load shedding limit and
DG penetration level. The third step is to develop a load shedding algorithm
that identifies the suitable loads which can be supplied from local units in the
island. Furthermore, the load shedding algorithm has to facilitate the transition
moment and create more stable islands. The fourth step is to monitor the

dynamics of transition moment to island mode. Finally, it is important to



examine the quality of the power (voltage and frequency) delivered to the load
and modify the control settings if needed. The small signal stability analysis is
provided for different island configurations to give priorities for the operator
when there are different alternatives to be selected. Thus, it will be possible to
maintain the service to important loads and decrease the total economic losses

even with load variations.

Vi
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CHAPTER 1
Introduction

1.1 Motivation

In the modern world, electricity has become the lifeblood of
civilization. The quick escalating demand and the high dependability on
electricity necessitate reliable operation of the utilities especially for industrial
loads. Generally, the continuity of providing electrical power is vital. To
achieve the continuity of supplying electrical power to customers, researches
recommend many solutions such as upgrading old utilities, converting the
traditional systems to smart systems via installing automation equipment [1],
and installing distributed generation (DG) near load centers. Adding new DGs
increases the power system reliability [2]. If these DGs are dependent on
renewable energy resources such as Photovoltaic (PV) and wind turbines
(WT), other benefits are gained such as reducing CO2 emissions.

The large-scale investments, such as cement factories, install DGs to
generate their demand locally due to the high increase in electricity tariffs
especially when they are far from the main utility system [3]. Installing DGs
that depend on renewable energy is very expensive and, hence, isolated
industries depend on reliable energy sources such as diesel, micro-turbines or
small gas turbines [3]. Integrating these DGs with the grid increases the
reliability of the entire power system. However, adding DGs to distribution
systems has many drawbacks [4]. One of the main drawbacks facing this
procedure is the possibility of islanding occurrence. That is, a part of the
distribution system is isolated from the main grid network forming a new

island. Islanding is categorized into intentional and unintentional types [5].
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Therefore, it is important to develop new mechanisms to facilitate intentional
islanding process and guarantee the continuity of supplying important loads in
the local island. By achieving these objectives, the reliability of the distribution
system will be increased.

1.2 Distribution System Reliability

According to IEEE (PES definition) [6], reliability of power systems is
defined as: “Reliability is the probability of a device or a system performing
its function adequately, for the period of time intended, under the operating
conditions intended”. To be more specific, ref. [7] introduces another
definition to power system reliability which is “quantifying the ability of a
power system to provide an adequate and secure supply of electrical energy”.

Reliability is based mainly on adequacy and security [8]. Adequacy is
defined as “A measure of the ability of the power system to supply the
aggregate electric power and energy requirements of the customers within
components ratings and voltage limits, considering planned and unplanned
outages of system components”. Adequacy refers to “The capability of the
power system to supply the load in all the steady states in which the power
system may exist considering standards conditions” [8]. As can be understood,
the adequacy is related to the existence of generating power within the system
to satisfy the load demand all the time [8]. Security is the ability of the power
system to withstand sudden disturbances [8].

The reliability of the power system is a statistical problem [8]. Most of
the probabilistic techniques for reliability assessments are with respect to
adequacy assessments. There are three hierarchical levels for reliability
analysis. These levels are: reliability assessment of “generation”, “generation
and transmission” and “generation, transmission, and distribution”. Reliability

has five major indices [9] as indicated in Table 1-1.
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Table 1-1: Reliability Indices

Index Term Abbreviation Short note

System Average SAIFI Total number interruptions

Interruption
P Total number of customers
Frequency
System Average SAIDI customer interruption durations
Interruption Duration Total number of customers

Customer Average CAIFI

) Total number of customer interruptions
Interruption

Total number of customers interrupted

Frequency
Customer Average CAIDI Customer interruption durations
Interruption Duration Total number of customer interruptions
SAIDI
SAIFI
Customer Total CTAIDI . . .
. Customer interruption durations
Average Interruption -
Duration Total number of customers interrupted

All the mentioned indices in Table 1-1 measure interruptions of the
network (hours or times). In conclusion, decreasing the duration of
interruptions increases the reliability of the distribution system [10]. One of the
most important benefits from adding DGs in the system is the increase of

adequacy of the distributions systems [10].
1.3 Distributed Generations (DGs)

In the last decade, technological innovations and changes in economic
and regulatory environments have resulted in a renewed interest for the
distributed generation [11]. DG, as a concept, is not new because the first
power station was a small generating unit used to supply local loads and, thus,
it could be commonly called DG.

Most world countries, such as China and USA, are suffering from
pollution and greenhouse gases. The utilities encourage customers to increase

the dependency on renewable energy sources, where most of the modern DGs
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are based on renewable energy resources. The DGs technology commonly uses
DC systems because these systems use energy storage and power electronics
in their operations [12].

Ref [11] listed five major factors that contribute to this evolution, i.e.,
developments in distributed generation technologies, constraints on the
construction of new transmission lines, increased customer demand for highly
reliable electricity, the electricity market liberalization and concerns about

climate changes [11].

1.3.1 DG definition

Because of different governor regulations, the definition and size of
DGs are different from one country to another. For example, in the United
Kingdom, the turbine must be less than 100 MW to be considered as a DG
[13]. In Germany, the local utility built a 300 MW unit to provide heat and
electricity that are consumed locally and, so, this unit is considered as a DG.
In literature, many terms and definitions are used regarding DG [13]. Table 1-2
describes different definitions of the DG.

There are many terms that are used to express this technology or this
type of generation. As an example, in Anglo-American, the term “Embedded
generation” is used, while the term “Dispersed generation” is used in North
America countries and the term “Decentralized generation” is used in Europe
and part of Asia. Some authors define generation between 1 kW and 1 MW as
the dispersed generation. The term embedded generation seems to be more
appropriate to describe the DG whose power is consumed locally [13]. The
DGs can be categorized according to the type and rating. Some authors
recommend the categories shown in Fig 1-1.
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Table 1-2: Definition of Distributed Generation [14]

Source Definition

Distributed Power “Any small-scale power generation technology that

Coalition of America  provides electric power at a site closer to customers”

(DPCA)

International The distributed generation is

Conference on High 1. Not centrally planned

Voltage Electric 2. Usually connected to the distribution network

Systems (CIGRE) 3. Smaller than 50 or 100 MW

International Energy “The distributed generation is generating plant serving

Agency (IEA) customers on-site or providing support to distribution
level voltage”

US Department of “Distributed generation small, modular electricity

Energy (US. DOE) generators sited close to the customer load can enable
utilities to defer or eliminate costly investments in
transmission and distribution (T&D) system upgrades,
and provides customers with better quality, more reliable
energy supplies and a cleaner environment”

Institute of Electrical ~ ““Sources of electric power that are not directly

and Electronic connected to a bulk power transmission system and the

Engineers (IEEE) DR includes generator and energy storage technologies”

American Gas “Strategic placement of small power generating units (5

Association (AGA) kW to 25 MW) at or near customer loads”

Micro Medium

*1W<5kW o5 KW <5MW

MW

Fig 1-1: DGs Categories According to Size [13].
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1.3.2 DG Types

The objective of power system operation is to supply the load demand
at all locations within the power system economically and reliably as possible.
The traditional power system is based on centralized power stations such as
steam, gas, hydro and nuclear power plants [15]. The DG technology has been
appeared due to the drawbacks of centralized stations. Currently, many DG
technologies are available in the market and few types are still in the research
and development stage [15]. The DGs, which are currently available in the
market, are reciprocating engines, micro-turbines, combustion gas turbines,
fuel cells, photovoltaic and wind turbines. Each of them has its own befits and

limitations. Fig 1-2 indicates examples of DGs types.

1.3.3 The advantage of the DGs

Several published papers [16] confirm the feasibility of adding
distributed DG in electrical distribution networks. Moreover, many researchers
increase the benefits of these units by selecting the optimal locations of DGs
to improve the performance of distribution systems [17]. There are many
advantages gained from adding DG to the distribution system. This section
details some of these advantages.

1. DG will reduce loadings on substation power transformers during
peak hours and, thereby, extending the useful life of these equipment
and deferring planned substation upgrading.

2. Utilizing DG units reduces the necessity to build new transmission
and distribution lines or to upgrade existing ones.

3. Utilizing DG units reduces transmission and distribution line losses

and improves power quality and voltage profile of the system.
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-l Diesel Units
Traditional
Generators - Gas-turbine _PEMFC
Micro-turbine " AFC
i H PAFC
ELectrochemical
DG B Devices H Fuel cells H
H MCFC
i Brreries [ sorc
|| Non-Traditional | o Storage Dvices
Generators Flywheels| LI pmec
Photo Voltaic (PV)
Renewable
Devices

Wind Turbine (WT)

Fig 1-2: Varies Types of DGs in Power System

1.3.4 Challenges facing the DG

There are many challenges facing the insertion of distributed
generation in the electric utilities [18]. The following points summarize some
potential problems that face DG technologies.

1. One of the major challenges that face the DG utilization is the relatively
high capital costs per kW of installed power compared to large central
plants. The financial cost problem exists because the technologies used in
the DG fabrications are expensive. For instance, fabrication of efficient
solar cells [19], large-scale wind farms [20] or efficient fuel cells [21] need
a large amount of money in the research stages and in the design stage.

2. The second important problem that is facing the DG insertion is the

difficulty of controlling the system frequency after the insertion of the DG.
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3. The relation between DG and power quality is an ambiguous one.
Regardless of the advantages gained of adding DG to the distributed
network, the abovementioned drawbacks regarding system voltage and
frequency represent the harmful effect of DG insertion on the power
quality.

4. The disadvantage of inserting distributed units on the protection schemes
operations is stated as the follows:

a. Changing power flow affects the short-circuit level in the distribution
system and, so, the protection relays mal-operate. In this case, the
directional overcurrent protection must be used [22].

b. The existence of automatic recloser in case of the DG could cause
damage to the equipment.

5. Islanding or loss of mains is also a challenge that faces the DG penetration.
Unplanned islanding situations affect the safety of human and equipment.
Damage may occur with any attempt to reconnect the island with the
distribution system as mentioned earlier. The following section will

explain this phenomenon in detail.

1.4 Concept of Islanding

Loss of mains, or islanding, means that a portion of the electrical
system is isolated from the main grid intentionally or unintentionally. So,
islanding can be classified into two types: intentional and unintentional
islanding [5, 17].

1.4.1 Unintentional islanding
Unintentional islanding means that the system is divided into
subsystems when protective relaying detects abnormal conditions and takes

corrective action to isolate the faulty part forming small systems or islands.
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The Distributed Energy Resource (DER) may not be suited to control the
voltage and frequency of the isolated system. This means that the power quality
cannot be guaranteed by the utility. The voltage and frequency can go out of
range that could destroy the power system equipment. Even if the DER can
control voltage and frequency, the dispatch center of the utility may not be able
to supervise the DG.

The first precaution to overcome the drawbacks of unintentional
islanding is to detect the islanding condition. Then, the DG must be
disconnected until the fault is fixed and the current returns to flow. Now, the
DG can be resynchronized again with the system [23].

The main philosophy of detecting an islanding situation is to monitor
the DG output variables (voltage and frequency) and system variables and
decide whether an islanding situation has occurred from the changes in these
variables. Islanding detection techniques can be divided into remote and local
techniques, where local techniques can further be divided into passive, active
and hybrid techniques as shown in Fig 1-3.

Remote
Technique

Passive

Islanding Technique

Detection

Local

Technique Active Technique

Hybrid Technique

Fig 1-3: Islanding Detection Methods

1.4.2 Intentional islanding
The intentional islanding means that the network operator decides to
divide the distribution system into small parts because of a significant

disturbance or schedule maintenance [24]. In this case, the intentional
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islanding is planned in advance and the system and equipment are designed to
manage the situation. The DER has to be well suited to control voltage and
frequency in the islanded grid. Intentional islanding often exist in industrial
plants, where the process has surplus energy that can be used to produce
electricity. Examples are found in paper mills, sugar mills, cement factories,
oil fields and fertilizing factories that are often capable of producing a large
part of their electricity needs internally. During thunderstorms or other adverse
weather situations, these plants can be switched to local production of
electricity and isolate themselves from the surrounding grid. By performing
this islanding, the risk of disturbances due to lightning strokes and other faults
affecting the vulnerable process is limited. This type of islanding requires the
system to be equipped with monitoring, information exchange, and control
(MIC) equipment. Thus, it reduces the restoration time and decreases the

financial loss [25].

1.4.2.1 Intentional islanding benefits
Disconnecting DGs causes economic losses since the DGs mainly
depend on renewable energy resources [26, 27]. Many system supervisors
operate the new island as a standalone system. This way of control increases
the system reliability and security and guarantees service continuity for
important loads [28]. Intentional islanding has many benefits such as [24, 27]:
1. Improving reliability by providing energy to the islanded portion of the
electric power system during abnormal conditions or disturbances
2. Decreasing the power system restoring time and cost
3. Supplying the island at acceptable power quality regardless of the
status of the main network

4. Maintaining supplying energy to important customers

10
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1.4.2.2 Islands Types
According to IEEE standard [27], there are many types of islands such
as facility island, secondary island, lateral island, circuit island, substation

island, substation bus island, and adjacent circuit island [27]. Fig 1-4 indicates

these types.
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Fig 1-4: Island Types [27]

For creating a new island, the following consideration must be applied
[27].
1. The generator rating must be larger than load demand or a load shedding
strategy is applied to disconnect the loads to maintain power balance.
2. The voltage and frequency level must be within allowed levels.

11
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3. The voltage and frequency control strategies could be modified when

needed to ensure the overall stability.

1.5 Load Shedding Technique
The power system is designed for transmitting the power from

generation area to load locations under normal conditions and the system
should withstand contingency conditions [29]. One of the ways to decrease the
effect of the contingency problems is to disconnect the less important loads
(load shedding). Load shedding means deliberately disconnecting loads to
ensure a good power quality for remaining part of the power system [29]. This
disconnection could be either based on voltage level or frequency level of the
system to prevent all system blackout. So, the load shedding is classified into
two categories:

1. Undervoltage load shedding (UVLS)

2. Under-frequency load shedding (UFLS)

1.5.1 Undervoltage load shedding (UVLYS)

The under-voltage load shedding is that scheme which disconnects
some of the loads to prevent voltage collapse and ensure the voltage stability
in the system. For these types, the system must be monitored by MIC. The
main factors affecting the voltage stability or causing voltage collapse are [29]:

1. Transmission system limitation
2. Load behavior, including load tap changer performance

3. The influence of protection and control systems

1.5.2 Under-frequency load shedding (UFLS)

Unlike UVLS, the under frequency load shedding (UFLYS) is that type
of schemes that disconnects the load to maintain the frequency in the limited
range and prevent frequency collapse, which can lead to a cascading outage.

12
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UFLS is defined as a coordinated set of controls, which results in the decrease
of electrical loads in the power system [30].

The objective of an under-frequency load shedding scheme is to
quickly recognize generation deficiency within any system and automatically
shed a minimum amount of load. At the same time, it provides a quick, smooth
and safe transition of the system from an emergency situation to a post-
contingency condition such that a generation-load balance is achieved and the
nominal system frequency is restored [30].

1.6 Literature Review and Background

Many attempts are recorded to operate a part of a certain system as an
isolated system to achieve economic and technical benefits [26, 31]. In this
case, the system must be monitored to guarantee successful islanding transition
with achieving a power balance between the generation and the load. In many
situations, the balance can be achieved via load shedding. After the transition
to the island state, the stability of the island must be maintained under small or
large disturbances. Therefore, these considerations must be taken into account
in the planning stage [26].

In [26], an economic study is introduced for intentional islanding,
where some aspects related to the deregulated market are clarified. It is
concluded that the system is split during islanding and each island will have its
own market price according to a non-competitive situation. In this study, the
economic effect of disconnecting the DG is not taken into consideration.

A comparison between distributed control and supervisory control is
introduced in [32]. The authors also introduced Micro-Grid Management
Systems (MGMS) and control functions such as voltage control, frequency
control, operation cost optimization and other protective actions. This

reference introduced the actual timing for islanding before the protection

13
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system trips the local DG. The timing for each function is detailed in
hierarchical order and the authors also clarified the differences between each
function. These functions are realized through either a centralized or a
distributed MGMS framework.

A droop control method is introduced in [33], where an intelligent
control method is introduced using the Global Positioning System (GPS). The
control system in [33] described the relationship between the active and
reactive power with voltage and frequency. Authors of [33] showed the
relationship between the P-Q circle of a DG unit and P-f and Q-E droops. This
control wise, with two droops, enhanced the overall stability of the controller.
But in this paper [33], the stability[33][33][33][32][31][30][29] is investigated
for the radial system only.

Authors in [31] introduced a control scheme to enhance intentional
islanding. In this work, the control for inverter-based DG and the conditions
for transition to island state were the limitations of voltage and frequency
control. Another control strategy is introduced in [28] for inverter-based DG.
These controllers did not introduce a solution for power mismatch between the
generators and loads or the penetration levels for DGs. Authors in [34]
introduced a load shedding mechanism to control the intentional islanding
operations without considering DG penetration level or percentage load
shedding. Also, authors of [35] suggested some factors for assessing the
successful island operation. The study in [36] considers reliability assessment
of islands.

Two control strategies for islanding are discussed in detail in [24, 31].
However, the quality of the supplied power is not considered in these studies.
Another control strategy is introduced in [28] and [37] without considering
load shedding to achieve the balance between the loads and the generated

14
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power. A load shedding algorithm has been discussed in [38, 39] but the

authors did not introduce a validation for this load shedding on test systems.
The applications of load shedding in the distribution system are

discussed in [40]. This study did not test the load shedding in dynamic

transition and did not introduce a way for its implementation in real situations.

1.7 Thesis Objectives
The main objectives of the thesis can be summarized as follows:
1- Proposing general framework that enables the intentional islanding
for the distribution systems
2- Increasing the flexibility for decision-making by the system operator
by introducing many scenarios with priorities for the islanding
process
3- Evaluating the success of the load shedding algorithm to provide
acceptable dynamic behaviour during the transition moment.
4- Evaluating the small signal stability for all possible cases to give

priorities for different island alternatives.

1.8 Thesis Organization

In addition to chapter 1, which is the introduction of the thesis, the
thesis comprises five chapters that are organized as follows:

Chapter 2 introduces the dynamic modeling, the system description,
and optimal DG allocations for the case study. Also, this chapter introduces the
load flow calculations for the case study to validate the results of the optimal
DG allocations for the IEEE 33-bus system.

Chapter 3 presents a description of the proposed framework for load
shedding algorithm. The rest of this chapter presents a full example to illustrate

the intentional islanding process.

15
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Chapter 4 introduces the simulation results for the transition moment
from the normal grid-connected mode to island mode. This chapter introduces
the results of the load shedding required to form islands and island
combinations. The island configuration is used to study the transition process
to island operation with some constrains such as maximum DGs penetration
level and maximum percentage shed loads.

Chapter 5 presents the small signal stability analysis for the islands
and island combinations. Also, this chapter compares the minimum damping
factors of eigenvalues for all islands and island combinations.

Chapter 6 gives the conclusions and recommendations for future work

that can be carried out related to this thesis.
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CHAPTER 2
Investigated Network

This chapter comprises three sections. The first section introduces the
system description and optimal DG allocations, while the second section
introduces the dynamic modeling for the DGs components. The dynamic
models include the models of generators, turbines and excitation system. The
third section introduces the load flow calculations for the case study to validate

the results of the optimal DG allocations.

2.1 System Description

To further illustrate the method used in this study, a distribution system
like IEEE 69-bus system or IEEE 33-bus system is adopted. The system used
in this study is the IEEE 33-bus radial distribution system. This system
contains 33 buses and 32 loads and is fed from an infinite bus. The single line
diagram is shown in Fig 2-1, and the system data are given in Appendix A.

It is well known that this standard system is suffering from poor voltage
profile and high-power loss, where one of the solutions to these problems is

inserting DGs.

2.1.1 IEEE 33-bus load profile curve

Ref. [41] introduced the load profiles for IEEE 33-bus system. The load
profile of IEEE 33-bus has been converted to per unit values and is
demonstrated in Fig 2-2. The calculations base of the values indicated in this
Fig 2-2 is sum of the loads in this system which is 3.7 MW.
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2.1.2 Optimal DGs allocations

Inserting DGs could increase the distribution system reliability and
security [42]. Most common faults in the distribution systems are temporary
faults. Thus, the frequent temporary faults with the existence of DGs could
result in instability conditions and, hence, the overall reliability of the system
decreases.
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From the previous discussion, there is a stability limit for adding more
DGs to distribution systems. The stability is not the only limit of inserting more
DG units but also the size of conductors, power losses, economics, control
strategy...etc. So, the location and size of the DG units must be selected
optimally.

The optimal sizing and location of DG units in this study are
accomplished through two-steps. In the first step, the optimal location and
sizing of DG are identified to reduce power loss and enhance the voltage
profile, as detailed in [22, 34, 43]. The Reference [39], recommend five places
to add the DG to the IEEE 33-bus system, the locations of the five units is
determined by solving An optimization problem with Genatic algorithm
technique, the main objectives of this problem are enhance the voltage profile
and reduce the power loss. The results recommended installing DG units at
Buses 13, 16, 17, 30 and 31.

According to IEEE standards, there are many types of islands [27]. The
island type used in this study is the lateral island. In this type, the DGs are
required to be distributed over the laterals of the distribution system. Also, the
island operation requires adding more DGs to give more flexibility for
supplying the isolated loads. Therefore, two more units are inserted at Buses
20 and 23 to enable forming more islands. The selection of these two locations
considers the main constraints of total energy supplied by the DG units and
enables forming more islands when required. Thus, the total number of DG
units is seven with the locations as identified in Table 2-1. The rated power
factor for all DG units is 0.8.

The second step of optimal DGs allocation is to determine their sizes.
The sizes of DGs in the first step did not consider the penetration level. To

complete the second step of optimal DGs allocation, many modifications have
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to be carried out. The first one is to limit the output power of all DGs to 50%
as a maximum penetration level. This limitation has been imposed to realize
the practical operation and to reduce the harmful effect of the high penetration
level of DG [22, 44].

The limits of the DGs penetration level is introduced due to problems
related to distribution system operations. Increasing the penetration level
affects the flow of the power, levels of the harmonic and the levels of the
voltage [45].

However, the penetration level in the industrial system reaches a high
percentage usually (50%:70%) to provide an adequate supply of power to the
loads. The rise in voltage level could cause real problems and, so, robust
voltage control should be adopted in the system [45]. In this study, a limit of
50% is chosen to provide an adequate supply of power to the loads in the
proposed industrial system [40].

Table 2-1: Initial Optimal Allocation of DG Units

Bus Rating capacity (MVA) Operating power (MW)

13 0.25 0.1738
16 05 0.2914
17 0.25 0.0816
30 0.25 0.1789
31 0.5 0.3888
23 0.5 0.173
20 05 0.173

The second modification is the insertion of Static VAR Compensator
(SVC) at Bus 29 with capacity of 0.6 Mvar. This modification is required due
to the lack of reactive power for the local load connected at Bus 30 in the island
mode. The SVC is located at Bus 29 instead of Bus 30 since a DG unit is

located at Bus 30. Therefore, it is required to prevent any conflict between the
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SVC and the DG when they are located at the same bus. Generally, a restriction
is considered to exclude any bus that has a DG from insertion of any other
voltage controller device. Regarding the case study, Bus 30 is the most proper
one for inserting SVC, but it is excluded, and Bus 29 has the second priority.
The final optimal allocation of DG units is demonstrated in Table 2-2 with all
DG units having a rated power factor of 0.8.

Table 2-2: Final Optimal Allocation of DG Units
Bus Rated Active Power (MW)

13 0.169
16 0.338
17 0.169
20 0.338
23 0.338
30 0.169
31 0.338

2.2 Dynamic Models

In this study, the adopted DG type is gas turbine type, so the model of
the turbine and excited should selected according to Dg type. in this section
introduces the dynamic models of the system elements (generator, turbine and

Excitation system).

2.2.1 Generator model

In this thesis, the constant voltage third order sub-transient generator
model is used, where the transient parameters for all generators in the system
are the same. The detailed models are found in [46]. The model parameters that

are used in this study are presented in Appendix B.
2.2.2 Turbine model

There are many turbine models that are used in power system
investigations. The model employed in this study is GAST model that is
appropriate for small-cycle gas turbines. The data and detailed model are found
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in [47, 48]. The model and parameters that are used in this study are presented
in Appendix C.
2.2.3 Excitations system model

It is essential to control the generator voltage, especially in the island
mode, because the generator feeds the loads directly and separately from the
grid. There are three types of excitation systems which are DC excitation, AC
excitation and static excitation [49]. The DC excitation system utilizes DC
generators as a source of excitation [49]. The AC excitation systems utilize
alternators as a source of generator excitation. The AC output of the exciter is
rectified by either controlled or diode rectifiers to produce the direct current
which is needed for the generator field. The last type is the static excitation
systems, where the generator itself is the source of the exciter power, i.e., the
generator is self-excited. In this case, the generator must have an auxiliary
power source to provide field current and energize the generator at the start of
its operation [49].

The DG excitation system could be AC or static types [49, 50]. In this
study, the AC type is preferred because this type has fewer auxiliaries than
static type. Also, the model is suitable for large-scale simulations as reported
by IEEE [49]. So, the model used is in this study is AC4A [51]. The detailed
model and parameters are presented in Appendix D.

2.3 Load Flow Study

A load flow study is performed for the system in two cases, i.e., with
and without DG units. Fig 2-3 indicates the bus voltages in two cases i.e. with
DG and without DG the maximum voltage drop in case of the DG is not
included reaches to 7% while adding DG decrease this voltage drop to 1.8 %.

Table 2-3 summarizes the power losses in the two cases. As shown in Fig 2-3
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and Table 2-3, the IEEE 33-bus system is suffering from poor voltage level

and high-power loss before adding DG units. The load flow study after adding

the DG units confirms the visibility of adding the DG to the distribution

system.
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Fig 2-3: Bus Voltages of the Investigated Network

Table 2-3: Power Losses in the Investigated Network

Case Active power loss  Reactive power loss

MW pu Mvar pu
Without DG 0.16249  0.0439 0.108287  0.0293
With DG 0.037528 0.0101 0.02446 0.00661
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CHAPTER 3
Proposed Load Shedding Algorithm

To ensure a successful transition to island mode, the corresponding
precautions must be satisfied. Firstly, the power balance must be satisfied
between the loads and DGs. This balance can be achieved via the load shedding
mechanism. Secondly, there are certain methods to control the voltage and
frequency via the exciter Q-E droop and the turbine P-f droop speed (R),
respectively. Thirdly, the time for load disconnection in the load shedding
algorithm must be quick. Other precautions that are not mentioned here could
be assumed as found in IEEE 1547.4 [27].

3.1 Procedures and results of the load shedding

Load shedding (LS) means deliberate disconnection of specific loads

to maintain supplying power to the other connected loads with acceptable
power quality [24, 40]. There are two types of load shedding. The first type is
the under-voltage load shedding (UVLS), in which the loads are disconnected
to prevent voltage collapse or supply other connected loads in the allowable
voltage limit [17, 40]. The second type is the under frequency load shedding
(UFLS) that disconnects the loads to prevent the frequency collapse [17, 40].
Regarding the islanding process, load shedding becomes more

important for successful transition to stable islanding mode. The procedures
used for this study are based on the following principles:

1. Achieving maximum utilization for the DG to increase economic benefits

and improve the voltage profile
2. Disconnecting loads according to a predefined priority

3. Achieving fast and quick load shedding since it is accomplished online
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Load shedding in the isolated system (island) keeps the frequency
within permitted limits with a variation margin of 2% [10]. If the frequency is
lower than the previous value, an automated load shedding procedure based on
under-frequency relay is initialized to disconnect the loads according to the
following criteria:

1. The active and reactive power balance
2. Maximum benefits from all generators in the island
3. Importance of the load

A proposed Load Shedding Algorithm (LSA) is necessary for intentional
islanding operation to ensure the load-generation balance. This process should
be completed within minimum possible time to perform a successful transition
to islanding operation before the protection disconnects the DG. Fig 3-1
demonstrates the load shedding algorithm used for this study. As shown, the
proposed mechanism is based on the mentioned principles.

The LSA starts with receiving the control signal to initialize intentional
islanding routine, where this signal identifies the island loads and generating
units. The island data (generation, loads) are loaded from the system database
or estimated from the real system. The data stored in the system database could
be measured by PMU units. The second step is to disconnect any load that is
higher than the generators capability on the island. The third step is the ranking
of the allowable loads in scenarios according to their predefined priority and
then, the scenario that achieves maximum utilization of DGs is chosen. This
algorithm starts automatically by the control signal after any major
contingency for the actual system condition. The system condition is
forecasted in real time to get the updated data related to the stability of the

system.
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Fig 3-1: Load Shedding Algorithm

3.1.1 LSA Framework

This LSA is developed in MATLAB code and the system condition is
stored in a standard access database. This database is extracted using the
modeling software (NEPLAN). NEPLAN® is a high-end power system
analysis tool for applications in transmission, distribution, generation,
industrial, renewable energy systems, Smart Grid application [52]. All the
following results are obtained via this MATLAB script that is given in
Appendix E.

For this study, the load shedding procedure disconnects the loads
according to the following defined steps.

1. All loads that are greater than the generator rating will be disconnected.
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2. Suitable loads are selected to ensure supplying the maximum number
of customers.
An example is detailed to explain the load shedding process for the
island (4). The loads and generation in this island are shown in Table 3-1.
Table 3-1: Island (4) Loads and Generation

Load data
Priority Bus P (MW) Q (Mvar) | Priority Bus P(MW) Q (Mvar)
1 16 0.06 0.02 7 12 0.06 0.035
2 17 0.06 0.02 8 11 0.045 0.03
3 13 0.06 0.035 9 10 0.06 0.02
4 14 0.12 0.08 10 9 0.06 0.02
5 15 0.06 0.01 11 8 0.2 0.1
6 18 0.09 0.04 12 7 0.2 0.1
Generator data

Bus S (MVA) PF Bus S (MVA) PF

13 0.25 0.8 17 0.25 0.8

16 0.5 0.8 -

Island (4) active load power is equal to 1.075 MW, which cannot be
supplied by active power generation, i.e., 0.8 MW and hence, load shedding is
required. Table 3-1 indicates the load priority, which is developed according
to the assumed importance of loads. The highest priority, as shown in Table 3-
2, is assumed to be for loads connected to Bus 16 then, load center 17 and so
on. The algorithm will choose scenario two for 0.8 MW generation power
because the loads connected to Bus 8 is more important than load center at Bus
7.

Table 3-2: Load Shedding Scenarios

Scenario Load bus numbers for scenarios Summation of loads
number

1 16 17 13 14 15 18 12 11 10 9 0.675

2 16 17 13 14 15 18 12 11 8 - 0.7551

3 16 17 13 14 15 18 12 11 7 - 0.7551
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3.1.2 Case Study

This section introduces the dynamic analysis for four islands to
illustrate the working principles of the LSA. First of all, the type which had
been selected for island is lateral island [27] that is shown in Fig 3-2 with four
possible islands. The objective is to introduce the concept of intentional
islanding. All islands are detailed in the following sections. The program used

in this study is NEPLAN software package.
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Fig 3-2: The Case Study of Four Lateral Islands

3.1.2.1 Simulation results of Island (1)

The new island will be established intentionally by the network
operator or unintentionally using protective relaying. It is formed by the outage
of the line connecting Bus 3 with Bus 23. The line disconnection occurs after
2.0 s from the beginning of the simulation time. Island (1) contains Buses 23,
24 and 25. The data of island 1 are shown in Table 3-3. The first column of the

29



Islanding Scenarios for High Reliable Operation of Distribution Networks

Table contains the bus number and the loads are ranked by the defined priority
that is the load at bus 23 is more important than the load at bus 24 and so on.
Table 3-3: Data of Island (1)

Bus Load Generator rating

23 0.09 MW, 0.05 Mvar -

24 0.42 MW, 0.2 Mvar 0.5 MVA at 0.8 PF lag.
25 0.42 MW, 0.2 Mvar -

Fig 3-3, Fig 3-4, Fig 3-5 and Fig 3-6 show the voltage, frequency,
active power, and reactive power, respectively in two cases, i.e., with and
without load shedding. The loads will be disconnected after 0.1 s of line trip to
have successful intentional islanding. From Table 3-3, the load shedding
algorithm should be applied to disconnect the loads at Bus 24 and Bus 25. If
this load is not disconnected, the generator cannot support the voltage because
of the reactive power shortage as shown in Fig 3-6.

The generator will produce more reactive power to support the voltage
level but if the loads are not disconnected at a suitable time, the voltage will
collapse as shown in Fig 3-3. The power imbalance in this island will cause the
generator to trip by under frequency relay as shown in Fig 3-4 if the loads are

not disconnected at a suitable time.
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3.1.2.2 Simulation results of Island (2)

Similar to the case of Island (1), Table 3-4 summarizes generators and
loads information and the priority of the loads. In this island, the summation
of loads is less than the generator capability. Thus, the load shedding algorithm

will not be activated.
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Table 3-4: Data of Island (2)

Bus Load Generator rating

19 0.09 MW, 0.04 Mvar -

20 0.09 MW, 0.04 Mvar 0.5 MVA at 0.8 PF lag
21 0.09 MW, 0.04 Mvar -

22 0.09 MW, 0.04 Mvar -

As mentioned earlier, droop control is a method to control the

synchronous generator frequency. The generator will be isolated from the main
grid and the load frequency control will let the frequency to decrease to meet
the load demand. The governor of the generator at Bus 20 must increase the
output power by 0.382 pu to meet the load demand. This causes the generator
to operate at a frequency of 0.983 pu when the speed droop (R) of the turbine
15 0.047. The speed droop (R) of the governor needs to be changed to make the
generator operate at a higher frequency. When the speed droop is modified to
0.02, the generator frequency is increased to 0.993 pu. The second speed droop
is chosen to ensure a good operation with minimum voltage oscillations. So,

Fig 3-7 indicate the two-speed droops of the governor.
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£0.95" .
=
= 0.9 - —R=0.02 | -
5 —R=0.047
= 0.85 ‘ J ‘ *

0 0.2 0.4 0.6 0.8 1

Change in power (pu)
Fig 3-7: Speed Droops of Generators

Fig 3-8, Fig 3-9 and Fig 3-10 exemplify the behavior in the transient

stage. As shown in Fig 3-9, the frequency decreases to 0.982 pu because the
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turbine governor has a speed droop controller. This frequency is within the
acceptable range and the protection will not be activated to disconnect the
generator at Bus 20. But to improve the frequency level to be closer to its
nominal value, the turbine speed droop is modified to modify the frequency to
be 0.993 pu.
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Fig 3-9: Frequency of the Generator at Bus 20
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Fig 3-10: Output Active Power of the Generator at Bus 20
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3.1.2.3 Simulation results of Island (3)

Table 3-5 shows the load and generation in Island (3) as well as the
loads priority. As shown in the table, the load at bus 30 is more important than
the load at bus 31 and so on. Similar to Island (1), the generation is less than
loads, which causes frequency decrease. To prevent this problem, the loads at
Buses 26, 27 and 30 will be disconnected. The loads are disconnected based
on the working principles of the LSA.

Table 3-5: Data of Island (3)

Bus Load Generator rating

30 0.2 MW, 0.6 Mvar 0.25 MVA at 0.8 PF lag
31 0.15 MW, 0.07 Mvar 0.5 MVA at 0.8 PF lag
32 0.21 MW, 0.1 Mvar -

29 0.12 MW, 0.07 Mvar -

33 0.06 MW, 0.04 Mvar -

28 0.06 MW, 0.02 Mvar -

27 0.06 MW, 0.025 Mvar -

26 0.06 MW, 0.025 Mvar -

The loads at buses 27 and 26 had been disconnected because they have
the lowest priority among others loads in the island, while the load at bus 30 is
disconnected to achieve one of the LSA principles which is achieving the
maximum utilization for the local distributed generations units.

Fig 3-11, Fig 3-12 and Fig 3-13 demonstrate the behavior in the
islanding moment. For this island, the load will be disconnected after 0.6 s
from the transition moment. Fig 3-11 shows the frequency with and without
load shedding. The load shedding algorithm disconnects the loads after 0.6 s
when the frequency decreases to 0.98 pu. After the load shedding, the generator

frequency returns to its permitted value. The change in speed droop is no longer

34



Chapter 3: Proposed Load Shedding Algorithm

needed for this situation. Fig 3-12 shows the output active and reactive power

of the generators.
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3.1.2.4 Simulation results of Island (4)

Table 3-6 shows the data of Island (4). This island contains three
generators, dissimilar to other islands. Therefore, this island could exhibit
stability problems related to the angle stability between the generators in the
island. Loads of island (4) are larger than the allowable generation. Load
centers at Buses 9, 7 and 10 will be disconnected according to the load
shedding algorithm after 0.16 s. Fig 3-14 illustrates the time response of the

generators frequencies for Island (4).

Table 3-6: Data of Island (4)

Bus Load Generator rating
16 0.06MW, 0.02 Mvar 0.5 MVA at 0.8 PF lag
17 0.06 MW, 0.02 Mvar 0.25 MVA at 0.8 PF lag
13 0.06 MW, 0.035 Mvar 0.25 MVA at 0.8 PF lag
14 0.12 MW, 0.08 Mvar -
15 0.06 MW, 0.01 Mvar -
18 0.09 MW, 0.04 Mvar -
12 0.06 MW, 0.035 Mvar -
11 0.045 MW, 0.03 Mvar -
10 0.06 MW, 0.02 Mvar -
9 0.06 MW, 0.02 Mvar -
8 0.2 MW, 0.1 Mvar -
7 0.2 MW, 0.1 Mvar -
1 [ G at bus 13 with load shedding
Zo09s Vo
= : 11— G at bus 17 without load shedding
2'0.96 i
%0.94 H 9'98 : | -- G at bus 16 without load shedding
= 0.92 ‘0 > | -- G at bus 13 without load shedding
0.9 b
0 5 10 15 20

Time (s)

Fig 3-14: Frequency of the Generators at Buses 13, 16 and 17
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Fig 3-15 shows the rotor angle difference between the generators in the
island. This graph indicates that the system in the island will be stable after
creating this island.
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Fig 3-15: Rotor-angle Difference between the Generators in Island (4)

3.2 Island control tools

The system is controlled via two layers of control, i.e., centralized
control and distributed control systems [32]. Each control type has its role in
the transition moment. The role of the centralized control system is to initiate
the intentional islanding routine according to system stability studies. The role
of the disturbed control system is to control new island operation of the isolated
system [32].

The island is subjected to disturbances of increasing or decreasing the
local loads. The existence of control functions which regulate the output power
of the DG is an important issue. This regulation is performed via the distributed

control system (DCS).

The Automatic Voltage Regulator (AVR) is used to maintain the
generator output voltage fixed around the operating value and within permitted
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limit. However, it is essential to ensure that the load reactive power does not
exceed the rated reactive power of generators.

To control the speed of the generator, the governor can operate in many
modes such as droop control mode for power-sharing and isochrones mode for
the standalone applications [53]. The droop control is mainly used when the
generator is connected to the grid for active power-sharing.

The speed droop (R) is a relation between the change in frequency and
the change in generator output power, and it is regulated by the load frequency
control system to maintain the generator frequency at its original value.

When the generator operates in island mode, the isochrones mode
forces the output frequency of the generator to be fixed. Hence, it is impossible
to achieve load sharing if all generators in the system are controlled by this
type of control. However, it is useful for standalone applications since there is

no need for load sharing.

3.3 Summary
This chapter introduced LSA to enhance the intentional islanding
operations. It introduced also full dynamic analysis for four islands with

highlighting the control philosophy of the voltage and frequency.
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CHAPTER 4
Results of Transient Behaviour

This chapter introduces the dynamic analysis for the transition moment
from normal mode (grid-connected mode) to isolated mode (island mode). The
chapter illustrates the island configuration for the case study and the load
shedding results for all possible island and island combinations. Finally, the

results of the dynamic behavior of four islands are introduced.

4.1 Island Configuration

Choosing the island configurations is a challenging problem. Many
researchers propose new methodologies to choose the island configurations
such as the research introduced in [35], which introduced a probabilistic
approach to increase the probability of proper operation of the new islands.

In this study, the configuration is selected according to many practical
conditions. These conditions include the system topology, maximum DGs
penetration level, and allowable LS limit. The island configuration is chosen
based on two factors: the allocation of the DGs and the system load profile
during the day [41]. The load profile is illustrated in Fig 2-2. The average load
is 0.73 pu.

To realize practical and reasonable operation for the new islands, a limit
must be imposed for the disconnected loads. For this study, this limit is
assumed to be 30% in any new island for the average load [35]. The total
capacity of DGs is not exceeding 50% of the total demand in this system[54],
[55]. This configuration is indicated in Fig 4-1.
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Fig 4-1: IEEE 33-bus Island Configuration

4.2 LSA Result for Islands and Island Combinations

The percentage load shedding is calculated every hour according to the
load profile demonstrated in Fig 2-2. Some of these results are identical. For
simplification, the cases are clustered into 16 clusters. One case is selected
from every cluster to represent the cluster. These 16 cases are demonstrated in
Fig 4-2 for islands and islands combinations.

As shown in Fig 4-2, the percentages load shedding for combined
islands are less than the separated islands. Obviously, the reliability of the

system is increased by combining the islands.
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20 Load Shedding for All Islands Vs Load Changing
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Fig 4-2: Load Shedding of Islands and Combinations Versus Load Changes
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4.3 Time and loading limitations for successful
transition

4.3.1 Time limitations for successful transition

The maximum allowable time to disconnect the loads in any island for
the case study in chapter 3 is determined based on the stability limit for each
island. So, this time is not the same for different islands. Generally, the loads
have to be disconnected as fast as possible to prevent any stability problems.
In the island configuration, the timing to execute the LSA is determined based
on the time lag for the circuit breaker, algorithm execution time and
communication lag time [56]. This time is 15 cycles that is equivalent to 0.3 s

and thus, all shed loads have to be disconnected within 0.3 s.

4.3.2 Loading limitations for successful transition

In this section, all loading conditions for each island will be
demonstrated. The average loading condition will be considered at the last part
of this section.

Table 4-1 indicates the details of the DGs in each island, where the third
column in this table indicates the maximum output of the DG(s) for each island.
Table 4-2, Table 4-3, Table 4-4 and Table 4-5 indicate the detailed loading and
the percentage load shedding for island (1), island (2), island (3) and island (4),
respectively. The first column in these tables represents the 16 cases mentioned
in section 4.2, while the second column (P;s41n4) 1S the summation of all loads
in each island, the third column (Premainning) 1S the summation of the loads
that remain in service after applying the LSA, and finally “LS” represent the
percentage load shedding for each island. The “DG loading (%)” is the ratio

between the remaining loads and DG capacity for each island.
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Table 4-1: The Details of the DGs in Each Island

Island Number of the DG units Max Output of DGs (MW)
Island 1 1 0.33776
Island 2 1 0.33776
Island 3 2+SVC 0.507
Island 4 3 0.676

Table 4-2: The Detailed Load and DG loading for Island (1)

Percentage Load DG loading
Loading Pisigna MW)  Premainning (MW) LS (%) (%)
55 0.198 0.198 0 58.62
59 0.2124 0.2124 0 62.88
63 0.2268 0.2268 0 67.15
70 0.252 0.252 0 74.61
72 0.2592 0.2592 0 76.74
73 0.2628 0.2628 0 77.81
76 0.2736 0.2736 0 81.00
77 0.2772 0.2772 0 82.07
82 0.2952 0.2952 0 87.40
84 0.3024 0.3024 0 89.53
87 0.3132 0.3132 0 92.73
89 0.3204 0.3204 0 94.86
91 0.3276 0.3276 0 96.99
93 0.3348 0.3348 0 99.12
95 0.342 0.285 16.667 84.38
100 0.36 0.3 16.667 88.82
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Table 4-3: The Detailed Load and DG loading for Island (2)

Percentage Load DG loading
Loading Pistana (MW)  Premainning (MW) LS % (%)
55 0.253 0.253 0 74.91
59 0.2714 0.2714 0 80.35
63 0.2898 0.2898 0 85.80
70 0.322 0.322 0 95.33
72 0.3312 0.3312 0 98.06
73 0.3358 0.3358 0 99.42
76 0.3496 0.2812 19.56 83.25
77 0.3542 0.2849 19.56 84.35
82 0.3772 0.3034 19.56 89.83
84 0.3864 0.3108 19.56 92.02
87 0.4002 0.3219 19.56 95.30
89 0.4094 0.3293 19.56 97.50
91 0.4186 0.3367 19.56 99.69
93 0.4278 0.2604 39.13 77.10
95 0.437 0.266 39.13 78.75
100 0.46 0.28 39.13 82.90
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Table 4-4: The Detailed Load and DG loading for Island (3)

Percentage Load DG loading
loading Pisiana (MW)  Premainning (MW) LS % (%)
55 0.51 0.506 0 99.80
59 0.54 0.472 13.043 93.10
63 0.58 0.504 13.043 99.41
70 0.64 0.476 26.087 93.89
72 0.66 0.490 26.087 96.65
73 0.67 0.496 26.087 97.83
76 0.7 0.494 29.348 97.44
77 0.7 0.501 29.348 98.82
82 0.75 0.484 35.870 95.46
84 0.77 0.496 35.870 97.83
87 0.80 0.487 39.130 96.06
89 0.82 0.498 39.130 98.22
91 0.88 0.482 42.391 95.07
93 0.86 0.493 42.391 97.24
95 0.87 0.504 42.391 99.41
100 0.92 0.470 48.913 92.70
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Table 4-5: The Detailed Load and DG loading for Island (4)

Percentage Load DG
Loading loading

Pisiana (MW)  Premainning (MW) LS % %)
55 0.62 0.62 0 92.410
59 0.67 0.67 0 99.131
63 0.72 0.59 17.62 87.199
70 0.79 0.65 17.62 96.888
72 0.82 0.67 17.62 99.657
73 0.83 0.64 22.91 94.557
76 0.86 0.67 22.91 98.443
77 0.87 0.67 22.91 99.738
82 0.93 0.67 28.19 98.931
84 0.95 0.65 32.16 95.748
87 0.99 0.67 32.16 99.168
89 1.01 0.67 33.48 99.472
91 1.03 0.67 35.24 99.013
93 1.06 0.66 37.44 97.747
95 1.08 0.67 37.44 99.849
100 1.14 0.68 40.53 99.923
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For all islands, Table 4-6 summarizes the load shedding status under
the average loading conditions for each island. The dynamic behavior for each
island is investigated under the average loading conditions. The following
sections introduce the dynamic behavior for each island in the IEEE 33-bus

system.

Table 4-6: Load Shedding Details under Average Loading for Each Island

Island Percentage load shedding (%)  Disconnected loads
Island 1 0 -
Island 2 0 -
Island 3 26.1 Bus 33, 28, 27, 26
Island 4 22.9 Bus 7,9

4.4 The dynamic behavior of Island (1)

Generally, the loads will be disconnected, if required, after 0.3 s of the
control signal to form the island as mentioned earlier in the thesis. To form
Island (1), the following lines must be disconnected:

1. the line located between Bus 2 and Bus 3
2. the line located between Bus 5 and Bus 6
3. the line located between Bus 23 and Bus 24

Table 4-7 summarizes the loading and rating of DGs for this island that
contains 4 loads with one DG unit. According to the load shedding algorithm,
no load will be disconnected from this island. Fig 4-3 shows the variations of
voltage, frequency, active power and reactive power for the transition moment
of DG for Island (1). The voltage and frequency of the island will return to
normal values after the transition moment. The active and reactive powers are

changed also to meet the new loading conditions as shown in Fig 4-3.
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Table 4-7: Data of Island (1)

Bus number Load Generator rating
23 0.09 MW, 0.05 Mvar 0.422 MVA
3 0.09 MW, 0.04 Mvar -
4 0.12 MW, 0.08 Mvar -
5 0.06 MW, 0.03 Mvar -

Fig 4-3-A demonstrates the voltage of the DG at bus 23. This figure
indicates the returning of the output voltage to its nominal value to guarantee
high power quality of the supplied power. Fig 4-3-B indicates the output active
power of the DG at bus 23 in translation moment. The output power of the DG
is changed to meet the new demand of the island, where the active power was
increased from 0.4 pu in grid connected mode to 0.6 pu in island mode. The

transition between these stats causes tough dynamic as indicated in Fig 4-3-B.
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Fig 4-3: The Output Response of the Generator at Bus 23
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The reactive power demand in this island has been changed from 0.75
pu to -0.34 pu (negative sign means that the reactive power is generated) to
meet the new requirement of the loads as shown in Fig 4-3-C. Finally, Fig 4-3-
D indicates the frequency response of the DG inisland 1.

In this island, the frequency level has to be modified to enhance the
power quality since it will take a value around 0.99 pu. Changing the frequency
can be achieved via changing the speed droop (R) as shown in Fig 3-7.
According to the situation of the entire system, the distributed control system

will modify the speed droop (R) of the governor from 0.047 to 0.02 to ensure

better operation especially for the frequency that has to be maintained near its
nominal value, i.e., 1.0 pu as shown in Fig 4-3 at t=10 s. The 0.02 value is
realized via trial and error, where decreasing this value below 0.02 will cause

high oscillations.

4.5 The dynamic behaviour of Island (2)

As explained with island (1), Table 4-8 summarizes the loading and
rating of DGs for Island (2). The line located between Buses 1 and 2 will be
disconnected in addition to disconnecting the line located between Buses 2 and
3.

Table 4-8: Data of Island (2)

Bus number Load Generator rating
19 0.09 MW, 0.04 Mvar -
20 0.09 MW, 0.04 Mvar 0.422 MVA
21 0.09 MW, 0.04 Mvar -
22 0.09 MW, 0.04 Mvar -
2 0.1 MW, 0.06 Mvar -

Table 4-3 indicates the loading condition for island 2. As shown in this

table, the percentage load shedding under average loading is 0% meaning that
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no load will be disconnected. Fig 4-4 indicates the response of the DG

connected at bus 20.
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Fig 4-4: The Output Response of the Generator at Bus 20
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This response shows a successful tarnation to island mode. This
transition causes fluctuations in the voltage as indicates in Fig 4-4-A, while Fig
4-4-B indicates the active power response of the DG. Figure 4-4-C indicates
the output reactive power of the DG connected at bus 20. The output reactive
power change from 0.27 pu in grid connected mode to -0.38 pu in island mode
to meet the new load requirements.

The output active power changes from -0.41 pu in grid connected mode
to -0.78 pu in island mode, which causes fluctuations in the frequency as shown
in the figure Fig 4-4-D.

Similar to the previous island, the turbine droop speed needs to be
modified to increase the frequency level. The droop speed will be changed after
10 s as shown in Fig 4-4-D causing a small overshoot in voltage and the output

power as shown.

4.6 The dynamic behavior of Island (3)
Island (3) will be formed by disconnecting the line between Bus 6 and
Bus 26. Table 4-9 demonstrates the data of Island (3).
Table 4-9: Data of Island (3)

Bus number Load Generator rating

30 0.2 MW, 0.6 Mvar 0.211.MVA
31 0.15 MW, 0.07 Mvar 0.422MVA
32 0.21 MW, 0.1 Mvar -

29 0.12 MW, 0.07 Mvar SvC

33 0.06 MW, 0.04 Mvar -

28 0.06 MW, 0.02 Mvar -

27 0.06 MW, 0.025 Mvar -

26 0.06 MW, 0.025 Mvar -
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For average loading conditions of island 3, loads at buses 33, 28, 27
and 26 will be disconnected according to LSA. Fig 4-5 and Fig 4-6 illustrate
the response of the local DGs at buss 30 and 31 in three cases: without applying
the LSA (without disconnecting any loads), with disconnecting the load at bus
33 only (6.5 % load shedding) and with disconnecting loads identified by LSA.

Without disconnecting any loads, the frequency of DGs in the Island 3
will be decreased until disconnected by the protection system as shown in Fig
4-5-B and Fig 4-6-B. With disconnecting the load at bus 33 only, the DGs in
the island 3 will be overloaded as shown in Fig 4-5-C and Fig 4-6-C and the
frequency will decrease below the allowable limits as shown in Fig 4-5-B and
Fig 4-6-B. In this case, the protective relaying will disconnect the DGs to
prevent any damage.

When the LSA is applied, the loads at Buses 33, 28, 27 and 26 will be
disconnected to supply the remaining loads under acceptable power quality
(proper frequency and voltage) as shown in Fig 4-5 and Fig 4-6 .

In case of applying the LSA, the output active power of the generator
at Bus 30 is modified from -0.92 pu in island mode to -0.81 pu in grid
connected mode as shown in Fig 4-5-C, while the active power of the generator
at bus 31 is modified from -0.85 pu in grid connected mode to -0.73 pu in island
mode, as shown in Fig 4-6-C, to meet the new load requirements. The transition
in the active power will cause fluctuations in the frequency as shown in Fig
4-5-B and Fig 4-6-B.

For the reactive power, the output reactive power of the DG at bus 30
is modified from 0.39 pu in grid connected mode to 0 pu in island mode as
shown in Fig 4-5-D and the reactive power for the DG at bus 31 is modified

from 0.53 pu to -0.13 pu as shown in Fig 4-6-D to meet the new load
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requirements. This causes fluctuations in the voltage as shown in Fig 4-5-A
and Fig 4-6-A.
As a conclusion, the LSA guarantee a successful transition to island

mode and ensure high power guilty operations.
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4.7 The dynamic behavior of Island (4)

Island (4) will be formed by disconnecting the line between Bus 6 and
Bus 26 and the line between bus 6 and bus 7. Table 4-10 demonstrates the data
of Island (4).

The dynamic behavior for Island (4) under the average loading

conditions and the maximum loading condition is introduced in the following

sections.
Table 4-10: Data of Island (4)
Bus number Load Generator rating

16 0.06 MW, 0.02 Mvar 0.5 MVA at 0.8 PF lag
17 0.06 MW, 0.02 Mvar 0.25 MVA at 0.8 PF lag
13 0.06 MW, 0.035 Mvar 0.25 MVA at 0.8 PF lag
14 0.12 MW, 0.08 Mvar -

15 0.06 MW, 0.01 Mvar -

18 0.09 MW, 0.04 Mvar -

12 0.06 MW, 0.035 Mvar -

11 0.045 MW, 0.03 Mvar -

10 0.06 MW, 0.02 Mvar -

9 0.06 MW, 0.02 Mvar -

8 0.2 MW, 0.1 Mvar -

7 0.2 MW, 0.1 Mvar -

6 0.2 MW, 0.1 Mvar

Similar to island 3, under average loading conditions, loads at buses 7
and 9 will be disconnected according to LSA. Fig 4-7, Fig 4-8 and Fig 4-9
illustrate the response of the local DGs at buses 13, 16 and 17 in three cases:
without applying the LSA (without disconnecting any loads), disconnecting
the load at bus 9 only (6% load shedding) and applying the LSA.

For the first case, the load demand is higher than the DGs capability
and, so, the frequency of DGs in the Island 3 will decrease until it is

disconnected by the protection system as shown in Fig 4-7-B, Fig 4-8-B and
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Fig 4-9-B. In the second case, the DGs in the island will be overloaded as
shown in Fig 4-7-C, Fig 4-8-C and Fig 4-9-C and the frequency will decrease
below the allowable limits as shown in Fig 4-7-B, Fig 4-8-B and Fig 4-9-B.
So, in this case, the protective relaying will disconnect the DGs to prevent any
damage.

After applying the LSA, the loads at busses 7 and 9 will be
disconnected to supply the remaining loads with proper frequency and voltage
as shown in Fig 4-7, Fig 4-8 and Fig 4-9.

In case of applying the LSA, the output active power of the generator
at bus 13 is modified from -0.82 pu to -0.92 pu as shown in Fig 4-5-C, while
the active power of the generators at bus 16 and bus 17 is modified from -0.69
pu and -0.38 pu to -0.79 pu and -0.49 pu, respectively, as shown in Fig 4-8-C
and Fig 4-9-C, to meet the new load requirements. The transition in the active
power will cause fluctuations in the frequency as shown in Fig 4-7-B, Fig 4-8-
B and Fig 4-9-B.

For the reactive power, the output reactive power of the DG at bus 13
is modified from 0.57 pu to -0.5 pu as shown in Fig 4-7-D and the reactive
power for the DGs at bus 16 and bus 17 is modified from 0.33 pu and -0.57 pu
to -0.05 pu and -0.8 pu, respectively, as shown in Fig 4-8-D and Fig 4-9-D to
meet the new load requirements. This causes fluctuations in the voltage as
shown in Fig 4-7-A, Fig 4-8-A and Fig 4-9-A.
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Fig 4-7, Fig 4-8 and Fig 4-9 demonstrate the dynamic performance of
the DGs in Island (4) with successful transition to island mode. This island has
multi-DG units and the rotor-angle difference between generators must be
monitored. Fig 4-10 illustrates the rotor angle difference between DGs in island

4. This figure confirms successful transition to island mode.

The Rotor Angle Difference between DG at Bus 13 and DG at Bus 16
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Fig 4-10: The Rotor Angle Difference between each DG in island 4

In the following chapter, a small signal stability study for all islands in
the IEEE 33-bus system will be demonstrated for all loading conditions with

many scenarios for the distribution system operation.
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4.8 Summary

This chapter introduced the IEEE 33-bus Island configurations also the
dynamic of four island at the average loading conditions. In this chapter, the
timing for the transition moment is introduced. The transition moment includes
change in speed droop ration in case of island 1 and island 2. The rotor angle
difference for island 4 is monitored hence this island contains more than two
DG units. As conclusion for this chapter, the LSA succeed to enhance the

dynamic of the transition moment.
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CHAPTER 5
Results of Small Signal Stability Analysis

This chapter introduces the results of the small signal stability of
islands and island combinations. The mathematical algorithm is found in [52,
57]. The eigenvalue analysis is performed to all islands in the system under
various loading conditions to evaluate the stability degree for the system. After
that, the results are used to compare between alternative islands in the IEEE
33-bus system. The total number of islands and island combinations is 10 as
detailed in Table 5-1. For these configurations, the small signal stability is
evaluated for 16 loading conditions representing a daily change in the load
profile. The hourly load variation through one day is shown in the load profile
graph in Fig 2-2. As mention before, the 24 load cases are grouped into 16
groups according to the percentage load shedding and one case is chosen from

each group.

Table 5-1: Generators and Loads in Different Island Combinations

No Island Generators Number Load Number
1 Island 1 1 4
2 Island 2 1 5
3 Island 3 2 and SVC unit 8
4 Island 4 3 13
5 Island 1&2 2 9
6 Island 1&4 4 17
7 Island 3&4 5 and SVC unit 21
8 Island 1&3&4 6 and SVC unit 25
9 Island 1&2&4 5 13

10 Island 1&2&3&4 7 and SVC unit 30
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The following sections discuss the small signal stability analysis for four
islands to assess their stability. The analysis for islands combinations is

detailed in a separate section to compare these configurations.

5.1 Small Signal Stability Analysis for Islands

To assess the degree of stability of the new isolated system, small signal
stability analysis is performed for each island. The system is firstly linearized
to get the system matrix. Then, the eigenvalues are calculated for the system
matrix. The complex eigenvalues are formed in complex conjugate pairs. Each
pair is related to an oscillatory mode. It is well known that the negative real
part gives the damping of the state and the imaginary part represents the
frequency of oscillations.

Small signal stability assessment relies on dominant poles. The
eigenvalue (1), the frequency (w) and damping factor ({) of any eigenvalue

are calculated by equations (5-2) and (5-3), respectively [58].

A=a+j*B (5-1)

w = o + B2 (5-2)

(=—2% (5-3)
a? + p?

5.1.1 Small Signal Stability analysis of Island 1

Table 5-2 shows the active power of loads, percentage load shedding
and the shed loads for island 1 with increasing the percentage loading. This
island contains one generating unit. The limit of active power generation for
this island is 0.33776 MW. The load shedding algorithm is activated only for
loadings of 0.95 and 1 pu. So, this island is the best island to evaluate the effect

of increasing or decreasing percentage loading.
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Table 5-2: Island (1) Summary Table

Percentage  Load Active  Remaining load active  Percentage load  Shed

Loading Power (MW) power (MW) shedding loads
0.55 0.198 0.198 0 0
0.59 0.2124 0.2124 0 0
0.63 0.2268 0.2268 0 0

0.7 0.252 0.252 0 0
0.72 0.2592 0.2592 0 0
0.73 0.2628 0.2628 0 0
0.76 0.2736 0.2736 0 0
0.77 0.2772 0.2772 0 0
0.82 0.2952 0.2952 0 0
0.84 0.3024 0.3024 0 0
0.87 0.3132 0.3132 0 0
0.89 0.3204 0.3204 0 0
0.91 0.3276 0.3276 0 0
0.93 0.3348 0.3348 0 0
0.95 0.342 0.285 16.667 5

1 0.36 0.3 16.667 5

The dominant-eigenvalues locations of this island are indicated in Fig
5-1. The important eigenvalues to be monitored are indicated separately in Fig
5-2. With the load variation, the eigenvalue moves slightly from one location
to the other. The following remarks can be observed from this figure:

1. The locations of some poles change towards the stable region by
increasing the load such as Eigenvalues (2) and (3).

2. The locations of some Eigenvalues remain the same regardless of the
load variation such as Eigenvalue (1). The maximum participating factor
for this pole is related to the turbine, which is slow by nature.

3. The locations of some Eigenvalues move towards unstable region when

the load increases such as Eigenvalue (5) and (6) in Fig 5-1.
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For this case, the important Eigenvalues to be monitored are those
moving towards the unstable region. These eigenvalues are Eigenvalues (5)
and (6).

5.1.2 Small Signal Stability analysis of Island 2

Similar to island 1, the active power limit for the DG is 0.33776 MW.
Table 5-3 indicates the active power of loads, percentage load shedding and
the shed loads for island 2. Fig 5-3 demonstrates island (2) dominant
eigenvalues and Fig 5-4 indicates the important eigenvalue to be monitored in

this island, i.e., Eigenvalue (6).

Table 5-3: Island (2) Summary Table

Percentage Load Active Remaining load Percentage Load Shed
Loading Power (MW)  active power Shedding loads
(MW)

0.55 0.253 0.253 0 0
0.59 0.2714 0.2714 0 0
0.63 0.2898 0.2898 0 0
0.7 0.322 0.322 0 0
0.72 0.3312 0.3312 0 0
0.73 0.3358 0.3358 0 0
0.76 0.3496 0.2812 19.56 22
0.77 0.3542 0.2849 19.56 22
0.82 0.3772 0.3034 19.56 22
0.84 0.3864 0.3108 19.56 22
0.87 0.4002 0.3219 19.56 22
0.89 0.4094 0.3293 19.56 22
0.91 0.4186 0.3367 19.56 22
0.93 0.4278 0.2604 39.13 22,19
0.95 0.437 0.266 39.13 22,19
1 0.46 0.28 39.13 22,19
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With the load variation, the load shedding algorithm performs certain

changes in the island and, thus, the eigenvalues locations do not follow a

certain tendency as shown in Fig 5-4.
Table 5-4: Island (3) Summary Table

Percentage  Generation Load Disconnected loads
loading  Active power P P.onn LS %

0.55 0.507 0.51 0.506 0 -

0.59 0.507 0.54 0.472 13.043 27, 26

0.63 0.507 0.58 0.504  13.043 27,26

0.7 0.507 0.64 0.476  26.087 33, 28, 27, 26

0.72 0.507 0.66 0.490  26.087 33,28, 27, 26

0.73 0.507 0.67 0.496  26.087 33, 28, 27, 26

0.76 0.507 0.7 0.494  29.348 32,26

0.77 0.507 0.7 0501  29.348 32,26

0.82 0.507 0.75 0.484  35.870 32,27, 26

0.84 0.507 0.77 0.496  35.870 32,27, 26

0.87 0.507 0.80 0.487  39.130 29, 33, 28, 27, 26

0.89 0.507 0.82 0.498  39.130 29, 33, 28, 27, 26

0.91 0.507 0.88 0.482  42.391 32,28, 27,26

0.93 0.507 0.86 0.493  42.391 32,28, 27, 26

0.95 0.507 0.87 0.504  42.391 32,28, 27,26
1 0.507 0.92 0.470  48.913 32, 33, 28, 27, 26

5.1.3 Small Signal Stability analysis of Island 3
Island (3) has 24 states and, thus, the number of eigenvalues is 24. Fig

5-5 illustrates the variations of dominant eigenvalues with load variations in

this island. Some eigenvalues, such as 1, 3 and 4, have almost the same

locations despite the change in loading conditions as shown in Fig 5-6.
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Fig 5-7 demonstrates eigenvalue (2) and eigenvalue (7) with different
loading conditions. The damping factor of these eigenvalues is 1.0. The
moving trend of these eigenvalues is toward the stable region with increasing
the connected loads and after applying the load shedding.
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Fig 5-7: Eigenvalues 2 and 7 for Island (3) in Detail

The eigenvalues in Fig 5-8 have damping factors less than 1. So, it is
important to carefully monitor these eigenvalues because of their oscillatory
nature. Load shedding algorithm succeeded to limit variations of eigenvalue
(6) within the same margin despite the loading variation. The moving trend of

eigenvalue (9) is toward the instability region.
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As a conclusion, the island is stable for all loading conditions as shown
in Fig 5-6. This means that the remaining loads will be supplied and operated
with an acceptable level of stability. Similar results are obtained for other

islands.
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Fig 5-8: Eigenvalues 6 and 9 for Island (3) in Detail

5.1.4 Small Signal Stability analysis of Island 4

The difference of this island is that it has multi DG units and, thus, it
has more eigenvalues than the previous islands. The existence of multi DGs
increases the probability of instability conditions.

Table 5-5 indicates the summary of island (4) power. The limit of DG
capacity in this island is 0.676 MW. Figure 5-9 indicates the dominant

Eigenvalues in island (4).
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Table 5-5: Island (4) Summary Table

Percentage Load Active Remaining load Percentage Shed loads
Loading  Power (MW) active power (MW) Load Shedding
0.55 0.62 0.62 0 -
0.59 0.67 0.67 0 -
0.63 0.72 0.59 17.62 7
0.7 0.79 0.65 17.62 7
0.72 0.82 0.67 17.62 7
0.73 0.83 0.64 22.91 7,9
0.76 0.86 0.67 22.91 7.9
0.77 0.87 0.67 22.91 7,9
0.82 0.93 0.67 28.19 7,9,10
0.84 0.95 0.65 32.16 7,9,10,11
0.87 0.99 0.67 32.16 7,9,10,11
0.89 1.01 0.67 33.48 7,9, 10,12
0.91 1.03 0.67 35.24 7,8
0.93 1.06 0.66 37.44 7,9,10,11, 12
0.95 1.08 0.67 37.44 7,9,10,11, 12
1 1.14 0.68 40.53 7,8,9

5.1 The Results of Small Signal Stability for Islands
Combinations

Although combining islands gives opportunities for decreasing the

percentage load shedding meaning that more loads can be supplied by local

DGs, the eigenvalues of the new configurations must be monitored to

guarantee the stability of new systems.
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Fig 5-9: Behavior of Eigenvalues in Island (4)

Table 5-6 indicates all islands and island combinations scenarios for
intentional islanding. Small signal stability study has been performed for
individual islands and their combinations to assess the steady-state stability for

these configurations.
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Chapter 5: Results of Small Signal Stability Analysis

Table 5-6: System Scenarios for Intentional Islanding

Scenarios Islands
1 Islands (1) & (2) & (3) & (4)
Islands (1&2) & (3) & (4)
Islands (1&4) & (2) & (3)
Islands (1) & (2) & (3& 4)
Islands (1&2) & (3&4)
Islands (1&3&4) & (2)
Islands (1&2&4) & (3)
Islands (1&2&3&4)

00 NO O~ WDN

Table 5-7 indicates a summary of the results of small signal stability
study. The number of eigenvalues increases with island combinations due to
the increase of the number of machines. Generally, the island with a single DG
unit has more damping than the island with multi DG units.

For IEEE 33-bus system, to assess the degree of stability for every
scenario, minimum damping factors are calculated for the 16-loading cases
with 10 different islands (individual islands and islands combinations). Fig
5-10 indicates the minimum damping factor (¢) for different loading conditions
and different islands.

From Fig 5-10, all islands, except island (1) and island (2), have multi
DG units. The damping factors for all configurations, except island (1) and
island (2), are at the same level. Thus, the factor to choose a certain scenario
will be the percentage load shedding that is indicated in Fig 4-2. It is obvious
that choosing islands combination will not affect the system stability but will

increase the supplied loads.
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Chapter 5: Results of Small Signal Stability Analysis

Table 5-7: Summary of Small Signal Stability Study for All Configurations

_ _ Total No. No of dominant Smallest damping factor for all cases
Island configuration . .
of eigenvalues eigenvalues Damping factor Eigenvalue  Loading conditions

Islands (1) 12 7 0.30621 -0.854-2.655i 0.55
Islands (2) 12 7 0.31482 -0.875-2.638i 0.55
Islands (3) 24 14 0.10752 -1.3-12.021i 0.55

Islands (4) 36 21 0.10332 -1.261-12.14i 1

Islands (1&2) 24 14 0.11371 -1.377-12.031i 1
Islands (1&4) 48 28 0.11013 -1.344-12.129i 0.82
Islands (3&4) 60 35 0.10617 -1.297-12.147i 0.76
Islands (1&2&4) 60 35 0.11143 -1.373-12.245i 0.72
Islands (1&3&4) 72 42 0.10943 -1.338-12.154i 0.93
Islands (1&2&3&4) 84 49 0.10925 -1.339-12.173i 0.55
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Fig 5-10: Minimum Damping Factor for Islands and Islands Combinations
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CHAPTER 6

Conclusions and Suggestions for
Future Work

6.1 Conclusions

The dynamic transition to island operation is extensively investigated
for different islands regarding the IEEE 33-bus system. With 50% pentation
level of DGs units and 30% maximum limit for load shedding for each island,
a successful transition to island mode is achieved.

A load shedding algorithm is proposed to guarantee maintaining the
service for the maximum possible number of customers. This is achieved via
disconnecting the customers with low priority at the correct time. The dynamic
behavior during transition to island mode and small signal study is extensively
investigated to prove the visibility of the introduced load shedding algorithm.
The results showed that the load shedding algorithm can maintain service by
disconnecting appropriate customers in the proper time. It was also possible to
regulate the frequency to match network frequency by modifying the governor
mode or droop characteristic. This would facilitate the restoring of the system
after any intentional islanding process.

Small signal stability study proved stable steady state operation of the
resulting isolated systems. Eigenvalues tend to move within a small margin
after applying the load shedding algorithm. The obtained results of
investigating the damping factor proved the success of the load shedding
algorithm to maintain the steady state stability and the minor effect on the
Eigenvalues shift. Combining islands increases the reliability of the system but

needs many control signals to form the final configuration.



Islanding Scenarios for High Reliable Operation of Distribution Networks

6.2 Suggestions for Future work
The following points could be investigated in future studies:
1. Converting the system to fully automated system considering
possibility of islanding.
2. Studying the effect of renewable energy resources instead of the GAST
turbine model.

3. Studying the effect of intentional islanding on the protection system.
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Appendices

Appendix A: 33-Bus System Data

Table A: 33-Bus System Data

Line Data Bus Data
From To R(Q) X,(Q) Bus P(MW) Q (Mvar)

1 2 0.0575 0.0293 2 0.1 0.06
2 3 0.3076 0.1567 3 0.09 0.04
3 4 0.2284 0.1163 4 0.12 0.08
4 5 0.2378 0.1211 5 0.06 0.03
5 6 0.511 0.4411 6 0.06 0.02
6 7 0.1168 0.3861 7 0.2 0.1

7 8 0.4438 0.1467 8 0.2 0.1

8 9 0.6426 0.4617 9 0.06 0.02
9 10 0.6514 0.4617 10 0.06 0.02
10 11 0.1227 0.0405 11 0.045 0.03
11 12 0.2336  0.081 12 0.06 0.035
12 13 0.9159 0.7206 13 0.06 0.035
13 14 0.3379 0.4448 14 0.12 0.08
14 15 0.3687 0.3282 15 0.06 0.01
15 16 0.4657 0.34 16 0.06 0.02
16 17 0.8042 1.0738 17 0.06 0.02
17 18 0.4567 0.3581 18 0.09 0.04
2 19 0.1023 0.0976 19 0.09 0.04
19 20 0.9385 0.8457 20 0.09 0.04
20 21 0.2555 0.2985 21 0.09 0.04
21 22 0.4423 0.5848 22 0.09 0.04
3 23 0.2815 0.1924 23 0.09 0.05
23 24 0.5602 0.4424 24 0.42 0.2

24 25 0.559 0.4374 25 0.42 0.2

6 26 0.1267 0.0645 26 0.06 0.025
26 27 0.1773 0.0903 27 0.06 0.025
27 28 0.6607 0.5826 28 0.06 0.02
28 29 0.5017 0.4371 29 0.12 0.07
29 30 0.3166 0.1613 30 0.2 0.6

30 31 0.608 0.6009 31 0.15 0.07
31 32 0.1937 0.2258 32 0.21 0.1

32 33 0.2127 0.3308 33 0.06 0.04
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Appendix B: Generator Model

Table B: Generator model

Generator ID GENO03 GENO02 GENO08 GENO06 GENO1
Bus 13 31 30 16, 20, 23 17
Name units
H S 6.54 6.54 5.06 5.06 5.148
D MW/Hz 0 0 0 0 0
R pu 0.0031 0.0031 0.0014 0.0014 0
xd % 105 105 125 125 89.79
xd' % 18.5 18.5 23.2 23.2 60
xd" % 13 13 12 12 23
XQ % 98 98 122 122 64.6
Xq' % 36 36 715 715 64.6
xq" % 13 13 12 12 40
xl % 0 0 13.4 13.4 23.96
TdO' S 6.1 6.1 4.75 4.75 7.4
Tdo" S 0.04 0.04 0.06 0.06 0.03
Tq0' S 0.3 0.3 15 1.5 0
Tq0" S 0.099 0.099 0.21 0.21 0.033
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Appendix C: GAST Model
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Fig C: GAST Model
Table C: GAST Model Data
Name  Unit Description
R pu Speed Droop
T1 S Governor time constant
T2 S Combustion chamber time constant
T3 S Exhaust gas measuring system time constant
AT pu Ambient Temperature Load Limit
KT pu Adjusts the gain of the load-limited feed-back
VMAX  pu Maximum of turbine output
VMIN pu Minimum of turbine output
DTURB pu Speed damping constant introduced by the gas turbine motor
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Appendix D: AC4A Model
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Fig D: AC4A Model
Table D: AC4A Model Data
Name Unit Description
TR S Voltage transducer filter time constant
VIMA . . . .
X pu Maximum value of limitation of the integrator signal VI
VIMI . o . .
N pu Minimum value of limitation of the integrator signal VI
TC S Voltage regulator time constant
B S Voltage regulator time constant
KA pu Regulator gain
TA S Voltage regulator time constant
VRM . -
pu Maximum limit of VR
AX
VRMI - .
N pu Minimum limit of VR
KC o A parameter for calculating the maximum value of the limiter

for the output signal EFD
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Appendix E: LSA MATLAB Script

Contents

» load the data

= elimination 1 of the loads require high active power

= elimination 2 of the loads require high reactive power
= third stage

= check the load and generator scenarios

= output of the program

function load shed=load shedding (load, gen)

%$load shedding function the input is load (act (mw)
react (mvar) name id) and

% gen (s (MVA) pf)

load the data

load act power=load.act;

load react power=load.react;

load id=load.id;

load numbre=length (load act power);

active genration cap=sum((gen.s).* (gen.pf));

reactive genration cap=sum((gen.s).*sin(acos((gen.pf))))
elimination 1 of the loads require high active power
id=find(load act power>=active genration cap);

load act power (id)=[]

load react power(id)=[];
load id(id)=I[];

elimination 2 of the loads require high reactive power

id=find(load react power>=reactive genration cap);
load act power (id)=[];

load react power(id)=[];

load_id(id)=I[];

third stage

sum_act=0;
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sum_react=0;

create the system scenarios

for nl=1l:1length(load act power)
i=1;
clear scenarios scenarios names scenarios id
sum_act=load act power (nl);
sum react=load react power (nl);
scenarios (i)=load act power (nl);
scenarios id(i)=load id(nl);
for n2=1:length(load act power)
if nl~=n2
if sum act<active genration cap ||
sum react<reactive genration cap
i=i+1;
sum_act=sum act+load act power (n2);
scenarios (i)=load act power (n2);
scenarios id(i)=load id(n2);
end
if
sum_act>active genration cap]| |sum react>reactive genrati
on_cap
sum act=sum act-load act power (n2);
scenarios (1)=0;

scenarios id(i)=[];
end
end
end
scenarios id all(nl, :)=zeros(l, (length(load id)));
scenarios id all(nl, :)=[scenarios id

zeros (1, (length (scenarios id all(nl,:))-
length(scenarios id)))];

scenarios genration value(nl, :)=scenarios;

sum_sin (nl)=sum(scenarios);

sum_sin_test(n1)=sum(scenarios)+(l/nl)*.OOl; % give
wight to the load as rink

end
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Output of the program

load shed.scenarios id all=scenarios_id all;

load shed.scenarios genration value=scenarios genration
value;

load shed.sum sin=sum sin;

load shed.sum sin test=sum sin test;

[M, scenarios numbre] = max(sum sin test);3%max get the
max and the number in the cell

load shed.scenarios numbre=scenarios_numbre;

load shed.island id=scenarios id all (scenarios numbre, :)
load shed.load out service=serviceload(load.id,load shed
.island id);

http://www.mathworks.com/products/matlab/
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Appendix F: Eigenvalue of Island Combinations
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Fig F1: Eigenvalues of combined Island 1 and Island 2
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Fig F2: Eigenvalues of combined Island 1 and Island 4
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