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Abstract

In this paper we describe the architecture of a Platform as a Service
(PaaS) oriented to computing and data analysis. In order to clarify the
choices we made, we explain the features using practical examples, applied
to several known usage patterns in the area of HEP computing. The
proposed architecture is devised to provide researchers with a unified view
of distributed computing infrastructures, focusing in facilitating seamless
access. In this respect the Platform is able to profit from the most recent
developments for computing and processing large amounts of data, and to
exploit current storage and preservation technologies, with the appropriate
mechanisms to ensure security and privacy.
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1 Introduction

In the past decade, European research institutions, scientific collaborations and
resource providers have been involved in the development of software frameworks
that eventually led to the set-up of unprecedented distributed e-infrastructures
such as the European Grid Infrastructure (EGI) [1]; their collaboration made it
possible to produce, store and analyze Petabytes of research data through hun-
dreds of thousands of compute processors, in a way that has been instrumental
for scientific research and discovery worldwide.

This is particularly true in the area of High Energy Physics, where dis-
tributed computing has been instrumental as data analysis technology in the
framework of the LHC computing Grid (WLCG) [2].

New technological advancements, such as virtualization and cloud comput-
ing, pose new important challenges when it comes to exploit scientific computing
resources. Services to researchers need to evolve in parallel to maximize effec-
tiveness and efficiency, in order to satisfy different scenarios: from everyday
necessities to new complex requirements coming from diverse scientific commu-
nities.

In order to expose to researchers the power of current technological capa-
bilities, a key challenge continues to be accessibility. Virtualization techniques
have the potential to make available unprecedented amounts of resources to re-
searchers. However, serving scientific computing is much more complex than
providing access to a virtualized machine. It implies being able to support in a
secure way complex simulations, data transfer & analysis scenarios, which are
by definition in constant evolution.

This is particularly the case of the HEP areas, where we can distinguish
three paradigmatic usage scenarios:

• Massive data analysis at the LHC and experiments which in general must
deal with analysis of large amounts of data in computing farms. The
paradigmatic case is the data analysis of the LHC at experiments like CMS
and ATLAS. During LHC Run 1, the tools developed by WLCG oriented
to Grid computing worked very smoothly. However, both the amount of
data involved in Run 2 and beyond, and the evolution of the computing
infrastructures implies that new scenarios for accessing resources need
to be devised. The experiments CMS and ATLAS have both already
analyzed the technical feasibility of using resources in cloud mode (see
[4, 5]).

• High Performance Computing in facilities with low latency interconnects
dedicated to Monte Carlo Simulations, for example for Lattice Quantum
Chromodynamics (Lattice QCD). Resource requirements for development
phases are medium size clusters with up to a few hundred cores; in the
production phase, Lattice QCD is served by large HPC farms which can
require from a few thousand, up to tens of thousands of cores for ground
breaking projects. The storage requirements are in the order of a few
Terabytes for development and Petabyte for production phases [6].
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• Phenomenological simulation & prediction codes, often including legacy
software components and complex library dependencies. The resources
requirements can reach about a thousand cores, with storage in the range
of the Terabyte. Here one current showstopper for researchers is the possi-
bility of having installed the right environment (in terms of legacy libraries
for example) [7].

Making computing and storage resources really exploitable by scientists im-
plies adapting access and usage procedures to the user needs. The challenge
that remains is developing such procedures in a manner which is reliable, se-
cure, sustainable, and with the guarantee that results are reproducible.

In order to settle the scenario where our Platform is to be deployed, we
must specify what we mean by the term resources. By this we always refer
to a large pool of computing and storage resources, in which the users do not
need to know (because it is not relevant for the computation) which machine
it is actually being used. If the computing requirements would have a strong
hardware dependency (optimized for a particular processor), or if the application
is so large scale that a significant fraction of the available resources in a given
computing center needs to be used, the discussion would be completely different.

This is the context of the work of the HORIZON 2020 project INDIGO-
DataCloud, referred to as INDIGO from now on [3], addressing the challenge of
developing advanced software layers, deployable in the form of a data/computing
platform, targeted at scientific communities.

In this paper we present an architectural design to satisfy the challenges
mentioned above, and which we have developed in the framework of the IN-
DIGO project. We highlight the interrelations among the different components
involved and outline the reasoning behind the choices that were made.

The remainder of this paper is structured as follows.
We first summarize the proposed progress beyond the state of the art (sec-

tion 2). In order to motivate our choices we next describe several generic user
scenarios in Section 3, with the main functionalities we want to satisfy, offering
a global, high-level view of the INDIGO architecture highlighting the interre-
lations among the different layers. Section 4 describes the architecture of the
PaaS layer, together with the description of the user interfaces to be developed.
Section 5 is devoted to the computer center layer of the architecture. In par-
ticular, it describes the middleware choices and developments needed to fully
support the PaaS layer at the infrastructure level. Section 6 describes how IN-
DIGO interfaces with users. Finally, section 7 describes the solutions for unified
data management.

The paper is concluded by Section 8, drawing some conclusions and high-
lighting future work.

2 Proposed progress beyond the state-of-the-art

In order to provide the reader with a global understanding of the practical
implications of this work, we highlight here the technical progress we intend to
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achieve at the different layers that compose a scientific computing infrastructure.

2.1 Infrastructure layer

At the resource provider level, computing centers offer resources in an Infras-
tructure as a Service (IaaS) mode. The main challenges to be addressed at this
level are:

1. Improved scheduling for allocation of resources by popular open source
Cloud platforms, i.e. OpenStack [23] and OpenNebula [22].

In particular, both better scheduling algorithms and support for spot-
instances are currently much needed. The latter are in particular needed
to support allocation mechanisms similar to those available on commercial
clouds such as Amazon Web Services and Google Cloud Platform, while
the former are useful to address the fact that typically all computing
resources in scientific data centers are always in use.

For LHC data analysis several attempts at using such spot-instances in
the framework of commercial cloud providers have already taken place in
the experiment CMS [4] and ATLAS [5]. Having an open source software
framework supporting such operation mode at the IaaS level will therefore
be very important for the centers aiming to support such data analysis
during LHC Run 2 and beyond.

2. Improved Quality of Service (QoS) capabilities of storage resources. The
challenge here is to develop a better support for quality of services in
storage, to enable high-level storage management systems (such as FTS)
and make it aware of information about the underlying storage qualities.

The impact of such QoS when applied to storage interfaces such as dCache
will be obvious for LHC Data analysis and for the long-term support,
preservation and access of experiment data.

For example can we save a lot of redundant copies, when the high level
storage manager knows how many copies are already available at one stor-
age location. Due to a lack of this information the assumption made is
that only one copy is available.

3. Improved capabilities for networking support. This is particularly the case
when it comes to deploy tailored network configurations in the framework
of OpenNebula and OpenStack.

4. Improved and transparent support for Docker containers.

Containers provide an easy and efficient way to encapsulate and transport
applications. Indeed, they represent a higher level of abstraction than the
crude concept of a ”virtual machine”. The benefits of using containers,
in terms of easiness in the deployment of specialized software, including
contextualization features, eg. for phenomenology applications, are clear.

4



They offer obvious advantages in terms of performance when compared
with virtual machines, while also opening the door to exploit specialized
hardware such as GPGPUs and low-latency interconnection interfaces (In-
finiBand).

The general idea here is to make containers ”first-class citizens” in scien-
tific computing infrastructures.

2.2 Platform layer

In the next layer we find the PaaS layer. This is a set of services whose objective
is to leverage disparate hardware resources coming from the IaaS level (Grid of
distributed clusters, public and private clouds, HPC systems) to enhance the
user experience.

In this context a PaaS should provide advanced tools for computing and for
processing large amounts of data, and to exploit current storage and preservation
technologies, with the appropriate mechanisms to ensure security and privacy.
The following points describe the most important missing capabilities which
today require further developments:

1. Improved capabilities in the geographical exploitation of Cloud resources.
End users do not need to know where resources are located, because the
PaaS layer should be hiding the complexity of both scheduling and bro-
kering.

2. Support for data requirements in Cloud resource allocations. Resources
can be allocated where data is stored, therefore facilitating interactive
processing of data. The benefits of such an enhancement are clear for
software stacks for interactive data processing tools such as ROOT [18]
and PROOF [19].

3. Support for application requirements in Cloud resource allocations. For
example, a given user can request to deploy an application on a cluster
with Infiniband interfaces, or with access to specialized hardware such as
GPGPUs. Elasticity in the provisioning of such specialized small size clus-
ters for development purposes would have a great impact in the everyday
work of many researchers in the area of Lattice QCD for example.

4. Transparent client-side import/export of distributed Cloud data.

5. Deployment, monitoring and automatic scalability of existing applications,
including batch systems on-demand. For example, existing applications
such as web front-ends, PROOF clusters or even a complete batch sys-
tem cluster (with appropriate user interfaces) can be automatically and
dynamically deployed in highly-available and scalable configurations.

6. Integrated support for high-performance Big Data analytics and workflow
engines such as Taverna [15], Ophidia [16] or Spark [17].

7. Support for dynamic and elastic clusters of computational resources.
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2.3 User interface layer

In the next layer we find the user interface, which is responsible to convey all
the above mentioned developments to the user. This means in particular that
it should provide ready-to-use tools for such capabilities to be exploited, with
the smoothest possible learning curve.

Providing such an interface between the user and the infrastructure poses
two fundamental challenges:

1. Enabling infrastructure services to accept state of the art user authenti-
cation mechanisms (e.g. OpenID connect, SAML) on top of the already
existing X.509 technology. For example, distributed authorization policies
are very much needed in scientific cloud computing environments, there-
fore a dedicated development effort is needed in this area. Hence, the
Authentication and Authorization Infrastructure (AAI) is a key ingredi-
ent to be fed into the architecture.

2. Making available the appropriate libraries, servlets and portlets, imple-
menting the different functionalities of the platform (AAI, data access,
job processing, etc.) that are the basis to integrate such services with
known user tools, portals and mobile applications.

3 Motivation and High Level view of the Archi-
tecture

We have designed an architecture containing the elements needed to provide sci-
entific users with the capability of using heterogeneous infrastructures, adressing
the challenges described above. In the following we describe the rational and
motivations of the technical choices we made.

As a first step we have performed a detailed user requirements analysis,
whose main conclusions we show in the form of two generic scenarios: the first
is computing oriented, while the second is data analysis oriented. For full details
containing user communities description and detailed usage patterns we refer to
our requirements document [20].

3.1 Pilot user scenarios

Our architecture is based on the analysis of a number of use cases originating
from different research communities in the areas of High Energy Physics, Envi-
ronmental modelling, Bioinformatics, Astrophysics, Social sciences and others.
From this requirements analysis we have extracted two generic usage scenarios,
which can support a wide range of applications in these areas.

The first generic user scenario is a computing portal service. In such scenario,
computing applications are stored by the application developers in repositories
as downloadable images (in the form of VMs or containers). Such images can

6



Figure 1: User Community Portal Service

be accessed by users via a portal, and require a back-end for execution; in the
most common situation this is typically a batch queue.

The number of nodes available for computing should increase (scale out) and
decrease (scale in), according to the workload. The system should also be able
to do Cloud-bursting to external infrastructures when the workload demands
it. Furthermore, users should be able to access and reference data, and also to
provide their local data for the runs. A solution along these lines is shown in
Figure 1.

A second generic use case is described by scientific communities that have a
coordinated set of data repositories and software services (for example PROOF,
or R-studio) to access, process and inspect them. Processing is typically inter-
active, requiring access to a console deployed on the data premises. In Figure 2
we show a schematic view of such a use case.

As pointed out in the introduction, the current technology based on lightweight
containers and related virtualization developments make it possible to design
software layers in the form of platforms that support such usage scenarios in a
relatively straightforward way.

We can see already many examples in the industrial sector, in which open
source PaaS solutions such as OpenShift or Cloud Foundry are being deployed
to support enterprise work in different sectors [12].

However, the case of supporting scientific users is more complex, first be-
cause of the heterogeneous nature of the infrastructures at the IaaS level (i.e.
the resource centers), and secondly because of the inherent complexity of the
scientific work requirements. The key point here is to find the right agreement
to unify interfaces between the PaaS and IaaS levels.
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Figure 2: Data Analysis Service

3.2 PaaS layers over production scientific e-Infrastructures

For the architecture to go beyond just a theoretical implementation of tools
and APIs, we must include the practicalities of the computing centers in the
discussion. The architecture should be capable of supporting the interaction
with the resource centers via standard interfaces. Here the word standard is
meant in a very wide sense including de jure as well as de facto standards.

Virtualization of resources is the key word in order to properly address the
interface with the resource centers. In other words, the software stack should
be able to virtualize local compute, storage and networking IaaS resources,
providing those resources in a standardized, reliable and performing way to
remote customers or to higher level federated services.

The IaaS layer is normally provided to scientists by large resource cen-
ters, typically engaged in well-established European e-infrastructures. The e-
infrastructure management bodies or the resource centers themselves will select
the components they operate. Therefore, the success of any software layer in
this respect is being able to be flexible enough as to interact with the most
popular choices of the computer centers, without interfering, or very minimally,
in the operation of their facilities.

As a consequence, as a part of the development effort, we have analyzed a
selection of the most prominent components to interface computing and storage
in the resource centers, and develop the appropriate interfaces to high-level
services based on standards. Figure 3 shows a schematic view of the interrelation
among those components.

The PaaS core components will be deployed as a suite of small services using
the concept of “micro-service” . This term refers to a software architecture style,
in which complex applications are composed of small independent processes
communicating with each other via lightweight mechanisms like HTTP resource
APIs. The modularity of micro-services makes the approach highly desirable for
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Figure 3: High-level view of the interaction between the IaaS and the PaaS layer

architectural design of complex systems, where many developers are involved.
Kubernetes [13], an open source platform to orchestrate and manage Docker

[14] containers, will be used to coordinate the micro-services in the PaaS. Ku-
bernetes is extremely useful for the monitoring and scaling of the services, and
will ensure the reliability of all of them. In Figure 4 we show the high-level view
of the PaaS in which the interrelations among services are also indicated with
arrows.

The following list briefly describes the key components of the INDIGO PaaS:

• the Orchestrator: this is the core component of the PaaS layer. It receives
high-level deployment requests from the user interface software layer, and
coordinates the deployment process over the IaaS platforms;

• the Identity and Access Management (IAM) Service: it provides a layer
where identities, enrolment, group membership, attributes and policies to
access distributed resources and services can be managed in a homoge-
neous and interoperable way;

• the Monitoring Service: this component is in charge of collecting monitor-
ing data from the targeted clouds, analysing and transforming them into
information to be consumed by the Orchestrator;

• the Brokering/Policy Service: this is a rule-based engine that allows to
manage the ranking among the resources that are available to fulfil the
requested services. The Orchestrator will provide the list of IaaS instances
and their properties to the Rule Engine. The Rule Engine will then be
able to use these properties in order to choose the best site that could
support the users’ requirements. The Rule Engine can be configured with
different rules in order to customize the ranking;

• the QoS/SLA Management Service: it allows the handshake between a
user and a site on a given SLA; moreover, it describes the QoS that a
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specific user/group has, both over a given site or generally in the PaaS
as a whole. This includes a priority for a given user, i.e. the capability
to access different levels of QoS at each site (e.g., Gold, Silver, Bronze
services);

• the QoS/SLA Management Service: it allows the handshake between a
user and a site on a given SLA; moreover, it describes the QoS that a
specific user/group has, both over a given site or generally in the PaaS
as a whole. This includes information about the actual service quality of
storage spaces and stored files at endpoints plus the possibility to change
these service qualities for stored data.

• the Managed Service/Application (MSA) Deployment Service: it is in
charge of scheduling, spawning, executing and monitoring applications and
services on a distributed infrastructure; it is implemented as a workflow
programmatically created and executed by the Orchestrator, as detailed
in the next section.

• the Infrastructure Manager (IM) [38]: it deploys complex and customized
virtual infrastructures on IaaS Cloud deployment providing an abstraction
layer to define and provision resources in different clouds and virtualization
platforms;

• the Data Management Services: this is a collection of services that provide
an abstraction layer for accessing data storage in a unified and federated
way. These services will also provide the capabilities of importing data,
schedule transfers of data, provide a unified view on QoS and distributed
Data Life Cycle Management.

Figure 4 shows also the interaction between the MSA core service and the
external components Apache Mesos, Marathon and Chronos [25, 27, 28]. These
are open-source components that have been selected after a deep analysis of the
cutting edge technologies for application and container management.

Mesos is a smart resource manager originally conceived as research project
at UC Berkeley and currently used in production by the industrial sector as
well.

Mesos abstracts CPU, memory, storage and other compute resources away
from machines (physical or virtual) and allows sharing them across different
distributed applications (called frameworks). Sophisticated two-level scheduling
and efficient resource isolation are the key-features of this middleware that are
exploited in the INDIGO PaaS, in order to run different workloads (long-running
services, batch jobs, etc) on the same resources while preserving isolation and
prioritizing their execution.

The Mesos cluster architecture [26] is organized in two sets of nodes: mas-
ters, which coordinate the work, and slaves, which execute it. The master nodes
are responsible for handling the resources available on the slaves and offer them
to the frameworks according to specific policies; then the frameworks are re-
sponsible for the application specific scheduling policy. This allows for more
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Figure 4: Key components of the PaaS and their high-level interrelations
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fine-tuned scheduling and dynamic partitioning of resources and for application
aware scheduling.

The MSA service is implemented as a complex workflow managed by the
Orchestrator that delegates to two already available Mesos frameworks for de-
ploying containers on the IaaS sites: Marathon, which allows to deploy and
manage Long-Running Services, and Chronos, which allows to execute jobs.

The capabilities of Mesos and its frameworks will be enhanced by adding
crucial features like: the elasticity of the Mesos cluster that will automatically
shrink or expand depending on the tasks queue, as detailed in the next section,
the automatic scaling of the user services that run on top of the Mesos cluster,
a stronger authentication mechanism based on OpenID Connect.

4 Architecture of the PaaS Layer

Generally speaking, a Platform as a Service (PaaS) is a software suite, which
is able to receive programmatic resource requests from end users, and execute
these requests provisioning the resources on some e-infrastructures.

In the INDIGO approach, the PaaS will deal with the instantiation of ser-
vices and with application execution upon user requests relying on the concept
of micro-services. In turn, the micro-services will be managed using Kuber-
netes, in order, for example, to select the right end-point for the deployment of
applications or services. Cross-site deployments will also be possible.

The language in which the PaaS is going to receive end user requests is
TOSCA [21] (Topology and Orchestration Specification for Cloud Applications).
It is an OASIS specification for the interoperable description of application and
infrastructure cloud services, the relationships between parts of these services,
and their operational behaviour. In particular we will be using the TOSCA
simple profile in YAML Version 1.0 1.

TOSCA has been selected as the language for describing applications, due
to the wide-ranging adoption of this standard, and since it can be used as
the orchestration language for both OpenNebula (through the IM [38]) and
OpenStack (through Heat [24]).

The PaaS Core provides an entry point to its functionality via the Orchestra-
tor service, which features a RESTful API that receives a TOSCA-compliant de-
scription of the application architecture to be deployed. Providing such TOSCA-
compliance enhances interoperability with existing and prospective software.

Users can choose between accessing the PaaS core directly or using a Graph-
ical User Interface or simple APIs. A user authenticated on the INDIGO Plat-
form will be able to access and customize a rich set of TOSCA-compliant tem-
plates through a GUI-based portlet.

The INDIGO repository will provide a catalogue of pre-configured TOSCA
templates to be used for the deployment of a wide range of applications and

1http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-
Simple-Profile-YAML-v1.0-csprd01.html
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services, customizable with different requirements of scalability, reliability and
performance.

In these templates a user can choose between two different examples of
generic scenarios:

• Scenario A. Deploy a customized virtual infrastructure starting from a
TOSCA template that has been imported, or built from scratch (see Fig-
ure 5). The user will be able to access the deployed customized virtual
infrastructure and run/administer/manage applications running on it.

• Scenario B. Deploy a service/application whose life-cycle will be directly
managed by the PaaS platform (see Figure 6). The user will be returned
the list of endpoints to access the deployed services.

In both cases the selected template can be submitted to the PaaS Orches-
trator using its REST API endpoint. Then, the Orchestrator collects all the
information needed to generate the deployment workflow:

• Health status and capabilities of the underlying IaaS platforms and their
resource availability from the Monitoring Service;

• Priority list of sites sorted by the Brokering/Policy Service on the basis of
rules defined per user/group/use-case;

• QoS/SLA constraints from the SLA Management System;

• The status of the data files and storage resources needed by the ser-
vice/application and managed by the Data Management Service.

This information is used to perform the matchmaking process and to decide
where to deploy each service. Note that the Orchestrator is able to trigger the
data migration function provided by the Data Management Service component
if the data location does not meet the application deployment requirements.

As pointed out before, the MSA is implemented as a deployment plan man-
aged by the workflow engine provided by the Orchestrator, that, starting from
the TOSCA template that describes the deployment request, creates the work-
flow programmatically.

The MSA workflow relies on the capabilities of Mesos to manage the dis-
tributed set of IaaS resources: its execution is accomplished through a set of
calls to the APIs endpoints of the Mesos cluster, whose architecture consists of
one or more master nodes, and of slave nodes that register with the master and
offer resources from the IaaS nodes.

The master node is aware of the state of the whole IaaS resources, and can
share and assign them to the different applications (called frameworks in the
Mesos terminology) according to specific scheduling policies. Mesos provides a
default scheduling algorithm, the Dominant Resource Fairness (DRF)[29], but
it is possible to develop custom algorithms and easily configure Mesos to use
them thanks to its modular (plugin) architecture.
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Deployment of Customized Virtual 
Infrastructures using INDIGO-DataCloud

Orchestrator 
Service

Brokering/
Policy Service

QoS/SLA 
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Managed Services/
Applications (MSA) 

Service
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Service

Data 
Management 
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Infrastructure 
Manager

TOSCA

IAM Service

GridHPC 
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SAGA
POSIX / 
WebDavSAGA

POSIX / 
WebDav

EUDAT

CDMI

GUI-based 
Portlets

Repository

TOSCA-
compliant 
Templates

1. Access

2. Authenticate

3. Select /
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9.a Delegate 
Deploy

5. Status
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7. Agree

8.a Transfer
 (Optional)

8.b. Transfer 
(Optional)

4. Deploy
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Delegate 
Deploy
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CDMI

OpenStack
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9.b.2 
Provision & 
Configure

...

Virtual Infrastructure for 
User Application/Service

10. Deliver VMs

...

Figure 5: Deployment of a customized virtual infrastructure: When a cus-
tomized virtual infrastructure deployment is requested (scenario A), the Or-
chestrator manages the instantiation and configuration of the required resources
(e.g. virtual machines) on the selected IaaS infrastructure using the REST APIs
exposed by the IaaS orchestrator (i.e. Heat or IM) of the INDIGO sites or del-
egating the interaction with external clouds to a dedicated instance of the IM.
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Deployment of a Managed Service/
Application using INDIGO-DataCloud

Orchestrator 
Service
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Figure 6: Deployment of a managed service/application: When a managed
PaaS service deployment is requested (scenario B), the Orchestrator interacts
with the Managed Service/Application (MSA) Deployment Service in order to
supervise its deployment on the elastic Mesos cluster that will host the user
application/service.
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The Automatic Scaling Service, based on EC3/CLUES [30], ensures the
elasticity and scalability of the Mesos cluster by monitoring its status. When
additional computing resources (worker nodes) are needed, the Orchestrator will
be requested to deploy them on the underlying IaaS matching the QoS/SLA,
health and user/group/use-case policies selected by the Broker.

In the case of Long-Running Services, the Management Service/Application
(MSA) deployment Service will use Marathon [27] (a container orchestration
platform available in the Mesos framework) to ensure that the services are always
up and running. Marathon is able to restart the services, migrate them if
problems occur, handle their mutual dependencies and load-balancing, etc.

The MSA Deployment Service will also use Chronos [28] (a fault tolerant
scheduler available in the Mesos framework) to execute applications having in-
put/output requirements or dependencies. It may also handle the rescheduling
of failed applications, or simple workflows composed by different applications.

By leveraging the Mesos plugin-based architecture, new frameworks can be
developed, such as the one able to deploy a batch cluster (e.g. HTCondor) on
demand, in order to meet specific use-cases. For example, batch execution of
LHC data analysis is often using HTCondor to manage the job scheduling [8]

With respect to Data Management Services, some interfaces are provided to
advanced users for specific data management tasks.

First of all, the OneData [31] component provides several features: a web-
based interface for managing user spaces (virtual folders) and controlling access
rights to files on a fine-grained level, a Posix interface to a unified file system
namespace addressing both local and remote data, caching capabilities and the
possibility to map object stores such as S3 [42] to Posix filesystems. Addition-
ally, the FTS-3 [32] service will provide a web-based interface for monitoring
and scheduling large data transfers.

Furthermore, all the standard interfaces exposed by the data management
components will be accessible to users’ applications as well through standard
protocols such as CDMI [33] and WebDAV [34].

5 Architectural impact on the Infrastructure

The impact of the implementation of INDIGO software developments at the
level of infrastructure resource providers is a key discussion to guarantee the
adoption of the solutions being developed.

A successful architecture should be able to provide the means to unify the
interfaces between the PaaS layer and the core services. This is necessary, as
resources sites have already their own administration software installed. A PaaS,
like any software layer dealing with resource management, needs to be totally
customizable to guarantee a good level of adoption by infrastructure providers.

Therefore our strategy is to focus on the most popular standards and provide
well-documented common interfaces to these. Examples are OCCI [9], TOSCA
or a consistent container support for OpenStack and OpenNebula. An example
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in the data area is the support of CDMI for the various storage systems like
dCache, StoRM, HPSS and GPFS.

A closely related goal, often being the result of the topic discussed previ-
ously, is the functional unification between different software systems. Support
is being introduced in the IM to be able to deploy application architectures
described in TOSCA on the different Cloud back-ends supported by the IM,
including OpenNebula, OpenStack and public Cloud providers. In particular,
for OpenStack, the heat-translator project will be employed to deploy TOSCA-
compliant architectural descriptions on OpenStack sites

Another area of development which is currently demanded by scientific com-
munities is the introduction of ”Quality of Service” and ”Data Life-cycle Poli-
cies” in the data area. This is the result of the various ”Data Management
Plans, DMP” provided by data intensive communities and also required by the
European Commision (EC) when submitting proposals. One important aspect
of DMPs is the handling of quality of service and access control of precious and
irreproducible data over time, resulting in support and manageability of those
attributes at the site or storage system level.

Although the different types of resources are closely interlinked, we distin-
guish between Computing, Storage and Network resources for organizational
reasons.

In the computing area the provision of standard APIs is covered by sup-
porting OCCI at the lowest resource management level and TOSCA at the
infrastructure orchestration level.

Within the storage area, common access and control mechanisms are eval-
uated for negotiating data quality properties, e.g. access latency and retention
policies, as well as the orchestration of data life cycles for archival. Together
with established standardization bodies, like RDA[11] and OGF[10], we envision
to extend the SNIA CDMI protocol[33] for our purposes.

Similarly for Networking, we need to evaluate commonalities in the use of
Software Defined Networks (SDN) between different vendors of network appli-
ances.

One notably attractive concept is that all features developed at the IaaS
level will not only be available through the INDIGO PaaS layer, but can be
utilized by users accessing the IaaS layer directly.

Similarly, tracking of user identities is available throughout the entire exe-
cution stack. Consequently, users can be monitored down to the IaaS layer with
the original identities they provided to portals or workflow engines when logged
via the PaaS INDIGO layer.

5.1 Software to interface the Resource Centers with the
PaaS

Based on the scientific use cases we have considered (see [20]), we identified a
set of features that have the potential to impact in a positive way the usability
and easy access to the Infrastructure layers.
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In the computing area, these features are enhanced support for containers,
integration of batch systems, including access to hardware specific features like
InfiniBand and General Purpose GPUs, support for trusted container reposito-
ries, introduction of spot instances and fair-share scheduling for selected Cloud
Management Frameworks (CMF), as well as orchestration capabilities common
to INDIGO selected CMFs using TOSCA. See Figure 7 for a graphical repre-
sentation.

In certain applications, the use of ‘Containers’ as a lightweight alternative
to hypervisor-based virtualization is becoming extremely popular, due to their
significantly lower overhead. However, support in major Cloud Management
Frameworks (CMFs) is still under development or does not exist at all.

For OpenStack and OpenNebula, the top two CMF’s on the market, IN-
DIGO, in collaboration with the corresponding Open Source communities, is
spending significant efforts to make containers first-class citizens and, concern-
ing APIs and management, indistinguishable from traditional VMs.

While in OpenStack integration of Nova-Docker will introduce support for
Docker containers, for OpenNebula, additional developments are required. In
particular,we have developed OneDock [39], which introduces Docker as an ad-
ditional hypervisor for OpenNebula, maintaining full integration with the Open-
Nebula APIs and web-based portal (SunStone)

Although cloud-like access to resources is becoming popular and cloud mid-
dleware is being widely deployed, traditional scientific data centers still provide
their computational power by means of Batch Systems for HTC and HPC. Con-
sequently, it is interesting to facilitate the integration of containers in batch
systems, providing users with the ability to execute large workloads embedded
inside a container.

With the pressure of optimizing computer center resources but at the same
time providing fair, traceable and legally reproducible services to customers,
available cloud schedulers need to be improved. Therefore, we are focusing on
the support of spot-instances allowing brokering resources based on SLAs and
prices. Technically this feature requires the CMF to be able to preempt active
instances based on priorities.

On the other hand, to guarantee an agreed usage of compute cycles inte-
grated over a time interval, we need to invest in the evaluation and development
of fair-share schedulers integrated in CMFs. This requires a precise recording
of already used cycles and the corresponding readjustment of permitted current
and future usage per individual or group. The combination of both features al-
lows resource providers to partition their resources in a dynamic way, ensuring
an optimized utilization of their infrastructures.

The middleware also provides local site orchestration features by adopting
the TOSCA standard in both OpenStack and OpenNebula, with similar and
comparable functionalities.

Finally, resource orchestration is also covered within this architecture. Al-
though this area can be managed at a higher level, we will provide compute,
network and storage resource orchestration by means of the TOSCA language
standard at the IaaS level as well. As a result, both, the upper platform layer
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Figure 7: Infrastructure view of the INDIGO architecture

and the infrastructure user may deploy and manage complex configurations of
resources more easily.

While in the cloud computing area, the specification of service qualities,
e.g. number and power of CPUs, the amount of RAM and the performance of
network interfaces, is already common sense, negotiating fine grained quality of
service in the storage area, in a uniquely defined way, is not offered yet.

Therefore, the high level objective of the storage area is to establish a stan-
dardized interface for the management of Quality of Services (QoS) and Data
Life Cycle in Storage (DLC). Users of e-infrastructures will be enabled to query
and control properties of storage areas, like access latency, retention policy and
migration policies with one standardized interface. A graphical representation
of the components is shown in Figure 8.

To engage scientific communities into this endeavour as early as possible,
INDIGO initiated a working group within the framework of the Data Research
Alliance [11] (RDA), and will incorporate ideas and suggestions of that group
at any stage of the project into the development of the system2.

As with all infrastructure services, the interface is supposed to be used by
either the PaaS storage federation layer or by user applications utilizing the
infrastructure directly.

This will be pursued in a component-wise approach. Development will focus
on QoS and interfaces for existing storage components and transfer protocols

2See https://owncloud.indigo-datacloud.eu/index.php/s/Ur7ORPKM8lF0adQ
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Figure 8: Storage services from the INDIGO architecture perspective

that are available at the computer centers. Ideally, the Storage QoS component
can be integrated just like another additional component into existing infras-
tructures.

Besides providing the translation layer between the management interface
and the underlying storage technologies, the software stack needs to be inte-
grated into an existing local infrastructure.

The high level objective of the network area is to provide mechanisms for
orchestrating local and federated network topologies. To unify the orchestration
management, we will ensure that the network part of the OCCI open standard
can be used in INDIGO supported CMFs: OpenStack and OpenNebula.

6 Interfacing with the user

The INDIGO architecture needs to address the challenge of guaranteeing a sim-
ple and effective final usage, both for software developers and application run-
ning.
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Figure 9: Components involved in the Authentication and Authorization process
from the user to the infrastructure perspective

A key component with a big impact on the end-user experience is the authen-
tication and authorization meachanism employed to access the e-infrastructures.

On the next layer, the possibility of using user friendly end-points in the
form of graphical interfaces, that user communities may tailor to their needs is
a also big plus to enhance the end-user experience.

6.1 Identity Management in the INDIGO Architecture

We have designed a service providing user identity so that consistent authoriza-
tion decisions can be enforced across distributed services. We can see an schema
of the problem we intend to tackle in Figure 9.

Today users have different digital identities (e.g., institutional credentials,
social logins, certificates) and want the ability to leverage these identities for
their scientific computing needs.

So one problem that must be solved is how to map different identities to
the same individual so that consistent authorization and accounting can be
performed at various levels of the infrastructure.

This identity harmonisation problem, which we describe in more detail in
our AAI architecture document [45], has many aspects that need to be tackled:

• ability to authenticate users coming with different credentials

• ability to recognize which credentials are linked to which individuals, and
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Figure 10: Architecture of the Identity Access Management INDIGO service.

provide a unique identifier linked to the individual (orthogonal to the
different credentials used)

• ability to link attributes to the identity that can be used to define and
enforce authorisation policies

• ability to provision identity information and authorisation policies to re-
lying services

To address these points we have developed a service called Identity Access
Management (IAM), which provides a central solution for identity harmonisa-
tion, user authentication and authorisation.

In particular, it provides a layer where identities, enrollment, group mem-
bership and other attributes management as well as authorization policies on
distributed resources can be managed in a homogeneous way leveraging the
supported federated authentication mechanisms (see Figure 10).
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The IAM service supports standard authentication mechanisms as SAML,
OpenID-connect (OIDC) and X.509. The user identity information collected in
this way is then exposed to relying services through OpenID-connect interfaces.
In a way, the IAM acts as a credential translator for relying services, harmonizing
the different identity of the users and exposing them using a single standardized
protocol. This approach simplifies integration at services as it doesn’t force
each service to understand and support each authentication mechanism used by
users.

OpenID-connect was chosen as the identity layer in INDIGO for the following
reasons:

• easier integration in services. Most services today are exposed via REST-
ful APIs and OpenID-connect fits naturally to that use case and many
products that are part of the INDIGO stack already support an OIDC
integration (e.g., OpenStack, Kubernetes);

• support for a dynamic computing environment: OIDC naturally supports
dynamic client registration so that trust can be enstabilished across ser-
vices without human intervention (but according to well-defined policies);

• support for offline access: being based on OAuth2, OIDC naturally sup-
ports offline access in a way which is independent of the authentication
mechanism used;

The IAM service will represent an identity hub for INDIGO services, and
provides standard interfaces (SCIM [44]) for the provisioning/deprovisioning of
user and group information at relying services.

The IAM integrates with the Indigo Token Translation Service (TTS) to sup-
port non-HTTP services (ssh, Amazon S3) and provide other needed credential
translation functionality (ie, X.509 certificate generation).

The IAM deployment model is flexible: it can be deployed centrally to ac-
comodate a federated infrastructure and large user communities, or locally at a
site to provide local identity harmonisation/attribute management services.

6.2 Graphical User Interfaces

We have developed the tools needed for the development of APIs to access the
INDIGO PaaS framework. It is via such APIs that the PaaS features can be
exploited via Portals, Desktop Applications or Mobile Apps. Therefore, the
main goals of such endeavour from a high level perspective are to:

• Provide User Friendly front-ends demonstrating the usability of the PaaS
services;

• Manage the execution of complex workflows using PaaS services;

• Develop Toolkits (libraries) that will allow the exploitation of PaaS ser-
vices at the level of Scientific Gateways, desktop and mobile applications;
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• Develop an Open Source Mobile Application Toolkit that will be the base
for development of Mobile Apps (applied, for example, to a use case pro-
vided by the Climate Change community).

The architectural elements of the user interface (see Figure 11) can be de-
scribed as follows:

• FutureGateway Portal: it provides the main web front-end, enabling most
of the operations on the e-infrastructure. A general-purpose instance of
the Portal will be available to all users.

Advanced features that can be included via portlets are:

– Big Data Portlets for Analytics Workflows - aiming at supporting
a key set of functionalities regarding big data and metadata man-
agement, as well as support for both interactive and batch analytics
workflows.

– Admin Portlet - to provide the web portal administrator with a con-
venient set of tools to manage access of users to resources.

– Workflow Portlets - to show the status of the workflows being run on
the infrastructure, and provide the basic operations.

• FutureGateway Engine: it is a service intermediating the communication
between e-Infrastructures and the other user services developed. It in-
corporates many of the functionalities provided by the Catania Science
Gateway Framework [36], extended by others specific to INDIGO. It ex-
poses a simple RESTful API for developers building portals, mobile and
desktop applications. Full details can be found in [41].

• Scientific Workflows Systems: these are the scientific workflow manage-
ment systems orchestrating data and job flow. We have selected Ophidia,
Galaxy, LONI and Kepler as the ones more demanded by the user com-
munities.

• Wfms plug-ins – these are plug-ins for the Scientific Workflow Systems
that will make use of the FutureGateway Engine REST API, and will
provide the most common set of the functionalities. These plug-ins will be
called differently depending on the Scientific Workflow system (modules,
plug-ins, actors, components).

• Open Mobile Toolkit: these are libraries that make use of the FutureGate-
way Engine REST API, providing the most common set of the function-
alities that can be used by multiple domain-specific mobile applications
running on different platforms. Foreseen libraries include support for iOS
and Android and, if required, for WindowsPhone implementations.

• INDIGO Token Translation Service Client - The Token Translation Service
client enables clients that do not support the INDIGO-token to use the
INDIGO AAI architecture.
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Figure 11: Interaction between components from the point of view of the user
interface services

7 Unified Data Access

The main goal in providing unified data access at the PaaS level is providing
users with seamless access to data. The challenge resides in hiding the complex-
ities and heterogeneities between the infrastructures where the data is actually
being stored. This is particularly more important in the case of federated data
infrastructures such as the deployment of LHC data over the WLCG [2].

As a matter of fact data access interoperability is currently the main chal-
lenge when it comes to federated data management. Various Grid and Cloud
infrastructures use different data management and access technologies, either
open source or proprietary. Although some solutions exist, such as CDMI, none
is widely accepted and thus we need to define a unified API for users to access
data from heterogeneous infrastructures in a coherent manner.

In the case of LHC data analysis in Run-2 we expect a much more het-
erogenous infrastructure in place, besides the WLCG Grid, resources based on
cloud-like provision is also being explored. Therefore it becomes critical to pro-
vide a certain level of integration.

The INDIGO PaaS provides three data management services that allow ac-
cessing federated data in an unified way. Depending on how data are stored/accessible,
they will be made available through a different services in a way which is trans-
parent to the user (see Figure 12). In order to access and manage data, we will
exploit the interfaces provided by the infrastructure layer:

• Posix and WebDAV for data access.

• GridFTP for data transfer.

• CDMI for the Metadata Management.
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Figure 12: Data access high-level description and involved services

• REST APIs to expose QoS features of the underline storage.

7.1 OneData Service

OneData [31] is a server-client type of service whose main purpose is to provide
a unified federated and optimized data access based on various APIs as well as
legacy POSIX protocol. It allows transparent access to storage resources from
multiple data centers simultaneously. OneData automatically detects whether
data is available on local storage and can be accessed directly, or whether it has
to be fetched from remote sites.

Support for federation is achieved by the possibility of establishing a dis-
tributed provider registry, where various infrastructures can setup their own
provider registry and build trust relationship between these instances, allowing
users from various platforms to share their data transparently

The main dependence of OneData is on the storage providers. For One-
Data to work the storage providers needs to expose CDMI or S3 interfaces, and
supporting POSIX access to site storage.

The architecture comprises two major components: oneprovider and oneclient.
The former is installed in datacenters to provide a unified view of the site filesys-
tems.

The client side connects to the providers which the user registered in One-
Data portal, and his spaces are automatically provisioned from these providers.

If data are stored on a POSIX-compliant filesystem and the site admin is
willing to install the OneData gateway, data can be accessed with a more pow-
erful graphical interface, including:

• ACLs and QoS management.
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• Posix access (also remotely).

• Web or WebDAV access.

• Simple metadata management (based on the concept of key-value pair).

• Data movement, replication and caching across the site of the federation.

• Transparent local caching of data.

• Transparent translation of object storage resources (for example available
through an S3 [42] interface) to a Posix filesystem.

7.2 FTS Service

The FTS service will be exploited for the capability of managing third-party
transfers among griftp servers. It will be used in order to import data from
external gridftp servers, globus-online compatible services, etc. Support to FTS
is needed in order to provide access to most WLCG storage elements. We
describe here the main functionalities for completeness.

For authentication FTS uses VOMS proxies. It optimizes transfers by mon-
itoring the performance currently active transfers and adjusting the number of
concurrent transfers on the fly.

The users typically only provide file origin and destination storage elements.
After submitting origin and destination to the client the user can monitor the
progress, query the status, cancel and delete transfer requests and resubmit
previously unsuccessful requests. A successful transfer from source to destina-
tion using the specified protocol (srm/gsiftp/http/root) can be verified by a
checksum that was added during request creation.

7.3 Dynafed Service

Dynafed [35] is a federated namespace of distributed storage namespaces. It
provides a very fast loose coupling of storage endpoints as a single name-space
exposed via HTTP and WebDAV.

This allows to have federation of existing storage endpoints without the need
of maintaining a file catalog for global to local file name translation.

The purpose of providing this service in the PaaS is to cover the case in
which data are available only via a WebDAV gateway, they can be aggregated
using DynaFed. Users will be able to read them via a federation layer regardless
of where the data are really stored.

To wrap things up, in the INDIGO PaaS framework, the user will provide
information about the data needed to execute the desired service/application,
and how those data are to be accessed, at the level of the TOSCA Template.

Given the data requirements described in the template, the orchestrator will
be able to understand if it has to request either FTS or OneData to schedule a
data import/movement, or if instead it is better to move the application “close”
to the data.
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At the end of this cycle the data will be available to the end user service
exploiting OneData or DynaFed. This will allow also legacy application/services
to be supported with their native data access approach (WebDAV or Posix).

In summary the end user has the possibility to handle data in several ways:

• Asking for an import action using a TOSCA Template exploiting FTS and
Gridftp.

• Uploading files or directories using a web interface.

• Importing data from his desktop via a Dropbox-like tool.

8 Conclusions and future work

The INDIGO Architecture, based on a three level approach (User Interface,
PaaS layer and Infrastructure Layer), is able to fulfil the requirements described
in the introduction.

At the Infrastructure site level the architecture provides new scheduling al-
gorithms for open source Cloud frameworks. Also very importantly, it provides
dynamic partitioning of batch versus cloud resources at the site level. By im-
plementing the Cloud bursting tools available in the architecture, the site can
also have access to external infrastructures.

The infrastructure site is also enhanced with full support to containers, where
the local containers repositories can as well be securely synchronized with dock-
erhub external repositories, facilitating enormously the automatic instantiation
of applications.

From the point of view of data, the architecture is able to integrate local
and remote Posix access for all types of resources: bare metal, virtual machines
or containers. In particular it provides transparent mapping of object storage
to Posix, and a transparent Gateway to existing filesystem (like GPFS or LUS-
TRE).Data access is also enhanced with the support to WebDAV, GridFTP and
CDMI access.

Using pre-defined available TOSCA templates we are also able to provide
a high level of automatism for a number of scenarios. Furthermore, the PaaS
scenario has the advantage that the management of the application/services has
advanced capabilities related with service resilience that make it very attractive
for users. For example, in the case of failure of one the services or of an appli-
cation, the platform itself will take care of restarting the service or re-executing
the application.

Throughout this paper we have summarized the work performed at the in-
frastructure, Platform and user interface level, which also includes the descrip-
tion and implementation of some typical use case scenarios, to provide more
clarity as to what we want to support with this architectural construction.

The plan is to deliver a first release of the platform by July 2016, imple-
menting the most important features to let users deploy their services and ap-
plications across a number of testbed provided by the INDIGO partners, and
provide developers with an initial feedback.
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In the second INDIGO release, scheduled by March 2017, we plan to also
integrate advanced support for features such as moving applications to Cloud
infrastructures, addressing Cloud bursting, enhancing data services and provid-
ing additional sample templates to support use cases as they are presented by
scientific communities. The release cycle, roadmap and key procedures of the
INDIGO software are described here [43].
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