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Abstract 

A word embedding is a low-dimensional, dense and real-
valued vector representation of a word. Word embeddings 
have been used in many NLP tasks. They are usually 
generated from a large text corpus. The embedding of a 
word captures both its syntactic and semantic aspects. 
Tweets are short, noisy and have unique lexical and 
semantic features that are different from other types of text.   
Therefore, it is necessary to have word embeddings learned 
specifically from tweets. In this paper, we present ten word 
embedding data sets. In addition to the data sets learned 
from just tweet data, we also built embedding sets from the 
general data and the combination of tweets with the general 
data. The general data consist of news articles, Wikipedia 
data and other web data.  These ten embedding models were 
learned from about 400 million tweets and 7 billion words 
from the general text. In this paper, we also present two 
experiments demonstrating how to use the data sets in some 
NLP tasks, such as tweet sentiment analysis and tweet topic 
classification tasks. 

1. Introduction  

Distributed representations of words are also called word 

embeddings or word vectors. They help learning 

algorithms achieve better performance in natural language 

processing (NLP) related tasks by grouping similar words 

together, and have been used in lots of NLP applications, 

such as sentiment analysis (Socher et al. 2013; Mass et al.  

2014; Tang et al. 2014, Li et al. 2016c), text classification 

(Matt 2015; Li et al. 2016a), and recommendation (Li et al. 

2016b). 

Traditional bag-of-words and bag-of-n-grams hardly 

capture the semantics of words, or the distances between 

words. This means that words “walk,” “run” and “eat” are 

equally distant in spite of the fact that “walk” should be 

closer to “run” than “eat” semantically. Based on word 

embeddings, “walk” and “run” will be very close to each 
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other. In this study, the word embedding representation 

model is computed using a neural network, and generated 

from a large corpus – billions of words – without 

supervision. The learned vectors explicitly encode many 

linguistic regularities and patterns, and many of these 

patterns can be represented as linear translations. For 

example, the result of a vector calculation v(“Beijing”) – 

v(“China”) + v(“France”) is closer to v(“Paris”) than any 

other word vector. 

Tweets are noisy, short and have different features from 

other types of text. Because of the advantages of applying 

word embeddings in NLP tasks, and the uniqueness of 

tweet text, we think there is a need to have word 

embeddings learned specifically from tweets (TweetData).  

Tweets cover various topics, and spam is prevalent in tweet 

corpora.  In addition to spam, some tweets are semantically 

incoherent or nonsensical, contain nothing but profanity, 

and are focused on daily chitchat or advertisement, etc. We 

consider both spam and such tweets with no substantial 

content as “spam” (or “noise”).  Vector models built on 

these types of tweets will bring lots of noise to some 

applications. To build vector models without using spam 

tweets, we use a spam filter to remove the spam tweets. 

But on the other hand, some applications may need 

embeddings generated from all tweets, including the 

regular tweets and spam tweets. To build accurate 

embedding models, another question to address is whether 

to include phrases or not. Here a phrase means a multi-

word term. An embedding model (or data set) for just 

words is much smaller than that for both words and 

phrases, and it will be more efficient for some applications 

that only need embeddings for words. In this study, we use 

a data-driven approach to identify phrases. To 

accommodate various applications and use cases, we 

generated four embedding sets using just TweetData, 

which are the four combinations of with/without spam 

tweets and with/without phrases 



  

  

 

In some cases, such as the applications that need to work 

with both tweets and regular text, we may need word 

embeddings that are trained on both TweetData and 

general text data (GeneralData). Therefore, we also built 

four embedding data sets that were learned from the 

training data that combine TweetData and GeneralData. 

These four embedding sets are also from the combinations 

of with/without spam tweets and including phrases or not. 

In addition to these eight data sets, two data sets (with and 

without phrases) that are built from just GeneralData are 

also provided.  Overall, ten word embedding data sets are 

presented in this paper. 

 The major contributions of this paper are: 

- We publish ten word embedding data sets learned from 

about 400 million tweets and 7 billion words from 

general data. They can be used in tasks involving social 

media data, especially tweets, and other types of textual 

data. Users can choose different embedding sets based 

on their use cases; they can also easily try all of them to 

see which one provides the best performance for their 

application. 

- We also use two experiments to demonstrate how to use 

these embeddings in practical applications. The second 

experiment also shows the performance difference of the 

tweet topic classification task on several data sets. 

In the following sections, we first describe the 

technologies used for generating the word embedding data 

sets, then we present the data collections and preprocessing 

steps for both TweetData and GeneralData, followed by 

the descriptions of the ten data sets, and finally we present 

the two experiments. 

2. Technologies Used for Building Word 

Embedding Data Sets 

In this section we describe three technologies used in 

building our word vector models: distributed word 

representation, phrase identification and tweet spam 

filtering  

2.1 Distributed Word Representation 

A distributed language representation X consists of an 

embedding for every vocabulary word in space S with 

dimension D, where D is the dimension of the latent 

representation space. The embeddings are learned to 

optimize an objective function defined on the original text, 

such as likelihood for word occurrences. Word embedding 

models have been researched in previous studies (Collobert 

et al. 2011; Mikolov et al. 2013b; Socher et al. 2014). 

Collobert et al. (2011) introduce the C&W model to learn 

word embeddings based on the syntactic contexts of words. 

Another implementation is the word2vec model from 

(Mikolov et al. 2013a, 2013b). This model has two training 

options, Continuous Bag of Words and the Skip-gram 

model. The Skip-gram model is an efficient method for 

learning high-quality distributed vector representations that 

capture a large number of precise syntactic and semantic 

word relationships. Based on previous studies and the 

experiments we conducted in other tasks, the Skip-gram 

model produces better results, and here we briefly 

introduce it. 

The training objective of the Skip-gram model is to find 

word representations that are useful for predicting the 

surrounding words in a sentence or a document. Given a 

sequence of training words W1, W2, W3,. . . ,WN , the Skip-

gram model aims to maximize the average log probability. 

 
where m is the size of the training context. A larger m will 

result in more training data and can lead to a higher 

accuracy, at the expense of the training time.   

 Generating word embeddings from text corpus is an 

unsupervised process. To get high quality embedding 

vectors, a large amount of training data is necessary. After 

training, each word, including all hashtags in the case of 

tweet text, is represented by a real-valued vector. Usually 

the dimension size ranges from tens to hundreds. 

2.2 Phrase Identification 

Phrases usually convey more specific meanings than 

single-term words. In many phrases, each has a meaning 

that is not a simple composition of the meanings of its 

individual words. Therefore, it is important to also learn 

vector representation for phrases, which are very useful in 

many applications.  To identify phrases from TweetData 

and GeneralData, we use the approach described in 

(Mikolov et al. 2013b). We first find words that appear 

frequently together, and infrequently in other contexts. For 

example, “New York City” is replaced by a unique token 

in the training data, while a bigram “I am” will remain 

untouched. The good thing about this approach is that we 

can form many reasonable phrases without greatly 

increasing the vocabulary size. In contrast, if we train the 

Skip-gram model using all n-grams, it would be very 

memory intensive.  To identify phrases, a simple data-

driven approach is used, where phrases are formed based 

on the unigram and bigram counts, using this scoring 

function: 

 
Where C (wi, wj) is the frequency of word wi and wj 

appearing together.  is a discounting coefficient to 

prevent too many phrases consisting of infrequent words to 

be generated.  The bigrams with score above the chosen 

threshold are then used as phrases. Then the process is 

repeated 2-4 passes over the training data with decreasing 



  

  

 

threshold value, so we can identify longer phrases 

consisting of several words. The maximum length of a 

phrase is limited to 4 words in our data sets.  Other 

parameters are set as the default values used in (Mikolov et 

al. 2013b), and the code is available at: 

(https://code.google.com/p/word2vec). 

2.3 Tweet Spam Filter 

We use the tweet "spam" filtering algorithm described in 

(Liu et al. 2016) to identify spam tweets (or noise tweets). 

It is more than just getting rid of standard spam. There are 

a lot of tweets that carry little semantic substance, such as 

profanity, chit-chat, advertisements, etc. The goal of this 

spam filter is to mark all of these categories as spam, and 

only preserve the informative tweets that contain 

information of some interest. The spam filtering algorithm 

is a hybrid approach that combines both rule-based and 

learning-based methods. Inspired by studies of Yardi et al. 

(2009) and Song et al. (2011), this approach uses features 

of follower-to-friend relationship, tweet publication 

frequency, and other indicators to detect standard spam. 

The profanity and advertisement can be largely removed 

using keyword lists. The chit-chat is identified by a 

language model trained with conversational SMS 

messages. These steps can help us chop off a significant 

amount of unsubstantial tweets. We are able to obtain a set 

of informative tweets after these filtering steps. We 

basically use the following two steps: 

Spam & Advertisement Filtering: The metadata of each 

tweet contains detailed information about the author's 

profile and the tweet's content. Given that Twitter has 

already prevented spam with harmful URLs (Thomas et al. 

2011), we only concentrate on signals from user profiles 

and tweet content. Since our spam and advertisement 

filtering algorithms share the same strategy, we combine 

their introduction here. We followed the ideas from 

DataSift Inc. (http://dev.datasift.com/docs/platform/csdl) to 

design a set of practical filtering rules (see examples 

below). To avoid hard cut-offs, each filtering rule 

thresholds a tweet into three levels: ``noisy", ``suspicious" 

and ``normal". At least one ``noisy" or two-plus 

``suspicious" rules can mark a tweet as ``noisy".  

Conversation Filtering: Following the approach in 

(Balasubramanyan and Kolcz 2013), a topic model was 

trained on two online conversation corpora with 20,584 

messages. Chat topics were manually identified. When a 

new tweet arrives, its posterior topic distribution is 

inferred. If the probability mass concentrates on the chat 

topics is above a threshold, this tweet is recognized as a 

chat tweet. In addition, a few heuristics are applied to 

enhance the chit-chat detection such as if a tweet contains 

multiple first & second personal pronouns, emoticons and 

emojis. 

3. Word Embedding Data Sets 

In this section, we first introduce the two training data 

collections, TweetData and GeneralData, used for 

generating the word embeddings, and the basic steps to 

preprocess them.  Then we introduce our ten word 

embedding data sets (models), listed in Table 1. Their 

names are self-explanatory. Here with/without spam 

means whether or not the spam tweets are included in the 

training data. Word+Phrases means this embedding data 

set contains both words and phrases. 

TweetDataWithoutSpam+GeneralData means we use 

both TweetData (without spam) and GeneralData for 

training this embedding model. 

These ten data sets cover all the eight embedding sets 

involving TweetData, which are the combinations of using 

spam tweets or not, including phrases or not, and 

integrating with GeneralData or not.  In addition to these 

eight data sets, two embedding sets (Dataset 5 and 6) using 

only GeneralData are also generated. After the training 

data is preprocessed, the word2vec’s Skip-gram model 

(Mikolov et al. 2013b) is used to learn the word vector 

models. Each data set will be explained in Section 3.3. 

 
Table 1. The 10 word embedding data sets 

Dataset 

No 
Name 

1 TweetDataWithoutSpam_Word 

2 TweetDataWithoutSpam_Word+Phrase 

3 TweetDataWithSpam_Word 

4 TweetDataWithSpam_Word+Phrase 

5 GeneralData_Word 

6 GeneralData_Word+Phrase 

7 TweetDataWithoutSpam+GeneralData_Word 

8 
TweetDataWithoutSpam+GeneralData_Word 

+Phrase 

9 TweetDataWithSpam+GeneralData_Word 

10 
TweetDataWithSpam+GeneralData_Word 

+Phrase 

3.1 TweetData and the Preprocessing Steps 

The tweets used for building our embedding models date 

from October 2014 to October 2016. They were acquired 

through Twitter’s public 1% streaming API and the 

Decahose data (10% of Twitter’s streaming data) obtained 

from Twitter.  We randomly selected tweets from this 

period, to make them more representative.  Only English 

tweets are used to build word embeddings. Totally, there 

are 390 million English tweets. Based on our spam filter, 

there are about 198 million non-spam tweets and 192 

million spam tweets. The training data size will affect the 



  

  

 

quality of word vectors. Our experiments based on tweet 

topic classification and words similarity computation tasks 

show  that after the number of training tweets exceeds 100 

million, the performance changes little. But from 5,000 to 

1 million tweets, the boost is very significant. Detailed 

information for each embedding data set is presented in 

Table 2, 3 and 4.  

Each tweet used in the training process is preprocessed 

as below, and the resulting data is then processed by each 

of the eight model building processes involving 

TweetData. The preprocess steps are as follows:  
- Tweet text is converted to lowercase.  
- All URLs are removed. Most URLs are short 

URLs and located at the end of a tweet.   
- All mentions are removed. This includes the 

mentions appearing in a regular tweet and the user 
handles at the beginning of a retweet, e.g. ``RT: 
@realTrump’’.  

- Dates and years, such as ``2017’’, are converted 
to two symbols representing date and year, 
respectively.  

- All ratios, such as ``3/23’’, are replaced by a 
special symbol. 

- Integers and decimals are normalized to two 
special symbols.  

- All special characters, except hashtags symbol #, 
are removed. 

These preprocessing steps are necessary, since most of the 

tokens removed or normalized are not useful, such as 

mentions and URLs. Keeping them will increase the vector 

space size and computing cost. Stop words are not 

removed, since they provide important context in which 

other words are used. Stemming is not applied to words, 

since some applications of these data sets may want to use 

the original forms of the words. For applications that 

require the same embedding for all the variations of a 

word, they can combine their embeddings to generate a 

unified one, e.g. using the average of all their embeddings. 

3.2 GeneralData and the Preprocessing Steps 

A pre-built word embedding model is provided by Mikolov 

et al. (2013b), and it was trained on part of Google News 

dataset (https://code.google.com/p/word2vec/). This model 

contains 300-dimensional vectors for about 3 million 

unique words and phrases. The phrases were obtained 

using the same data-driven approach described in Section 

2.2. Although this model was trained on a large set of 

data, it has some limitations: (1) it was trained on only 

news articles, the words and phrases in this mode are case-

sensitive; and (2) the texts were not cleaned before they 

were fed to the training algorithm. Therefore, there are lots 

of junk tokens in this model and they may affect the 

performance of applications using it. We discuss this 

problem in our second experiment.  Another reason for 

constructing our own GeneralDatacollection is that we 

wanted to combine TweetData and GeneralData together 

as training data to learn word embeddings, which will be 

more appropriate for use cases that deal with both tweet 

data and other general text data. The news articles used for 

training the Google News word2vec vector model are not 

available to public. To build our own GeneralData 

collection and make it more representative, but not biased 

toward only one type of text, such as news articles, we 

collected data from five different sources, which have 

different types of text.  The five data sources are: 

- Reuters’ news articles: 10 billion bytes of news 

data from year 2007 to 2015 were collected from 

Reuters’ news archive.    

- First billion characters from Wikipedia 

(http://mattmahoney.net/dc/enwik9.zip) 

- The latest Wikipedia dump. There are about 3 

billion words. 

(http://dumps.wikimedia.org/enwiki/latest/enwiki-

latest-pages-articles.xml.bz2).  

- The UMBC web-base corpus. There are around 3 

billion words. 

(http://ebiquity.umbc.edu/blogger/2013/05/01/um

bc-webbase-corpus-of-3b-english-words/) 

- The "One Billion Word Language Modeling 

Benchmark" data set. It contains almost 1 billion 

words. (http://www.statmt.org/lm-benchmark/1-

billion-word-language-modeling-benchmark-

r13output.tar.gz) 

The preprocessing steps are as following:  
- All data is converted to plain text and lowercased. 
- All URLs are removed from the text.  
- Dates and years are converted to two symbols 

representing date and year, respectively.  
- All ratios are replaced by a special symbol. 
- Integers and decimals are normalized to two 

special symbols.  
- All special characters are removed. 

These preprocesses make sure that the general data is 

compatible with the tweet data, since we need to combine 

these two types of data for learning  four of the ten 

embedding models. Changing all characters to lowercase 

will incorrectly merge some terms together, such as an 

entity name and a regular word which happen to have the 

same spelling, but this only affects a very small portion of 

the terms. Without case folding, most words will have two 

entries with different embeddings in the vector model, 

which will affect the vector quality, and the term space will 

increase greatly. However, it is possible that in some 

special use cases, such as identifying named entities from 

text, keeping the character cases may be a better strategy. 

3.3 Word Embedding Data Sets and Metadata 

3.3.1 Dataset1: TweetDataWithoutSpam_Word 
For this vector model, the training tweets do not contain 

spam tweets, and the GeneralData collection is not used. 

We only consider single-term words and no multi-word 

phrases are included.  The basic statistics for the training 

data set and the metadata of the embedding vector model 

are shown in Table 2. About 200 million tweets are used 

for building this model. Totally, 2.8 billion words are 



  

  

 

processed.  With a term frequency threshold of 5 (tokens 

less than 5 occurrences in the training data set are 

discarded), the total number of unique tokens (hashtags 

and words) in this model is 1.9 million.  
 

Table 2. Metadata of embedding data sets using only TweetData 

Metadata 

Dataset 

Dataset1: 

TweetDataWithout

Spam_Word 

Dataset2: 

TweetDataWithoutSpam

_Word+Phrase 

Dataset3: 

TweetDataWithSpam

_Word 

Dataset4: 

TweetDataWithSpa

m_Word+Phrase 

Number of Tweets 198 million 198 million 390 million 390 million 

Number of words in training 

data 
2.8 billion 2.8 billion 4.9 billion 4.9 billion 

Number of unique words or 

(words+phrases) in the trained 

embedding model 

1.9 million 2.9 million 2.7 million 4 million 

Vector dimension size 300 300 300 300 

Word and phrase frequency 

threshold 
5 10 5 10 

Learning context windows size 8 8 8 8 
 

 
Table 3. Metadata of embedding data sets using only GeneralData 

Metadata 

Dataset 

Dataset5: 

GeneralData_Word 

Dataset6: 

GeneralData_Word+Phrase 

Number of words in training data 6.7 billion 6.7 billion 

Number of unique words or  (words+phrases) 

in the trained embedding model 
1.4 million 3.1 million 

Vector dimension size 300 300 

Word and phrase frequency threshold 5 8 

Learning context windows size 8 8 
 

 
Table 4. Metadata of embedding data sets using both TweetData and GeneralData 

Metadata 

Dataset 

Dataset7: 

TweetDataWithoutSpam 

+GeneralData_Word 

Dataset8: 

TweetDataWithoutSpam 

+GeneralData_ 

Word+Phrase 

Dataset9: 

TweetDataWithSp

am+GeneralData_

Word 

Dataset10: 

TweetDataWithSpam 

+GeneralData_Word

+Phrase 

Number of Tweets 198 million 198 million 390 million 390 million 

Number of words from 

GeneralData 
6.7 billion 6.7 billion 6.7 billion 6.7 billion 

Number of words in the 

whole training data 
9.5 billion 9.5 billion 11.6 billion 11.6 billion 

Number of unique words 

or (words+phrases) in the 

trained embedding model 

1.7 million 3.7 million 2.2 million 4.4 million 

Vector dimension size 300 300 300 300 

Word and phrase 

frequency threshold 
10 15 10 15 

Learning context 

windows size 
8 8 8 8 

 



  

  

 

 
The word embedding dimension size is set to 300. The 

dimension size will affect the quality of a vector. 

Generally, larger dimension size will give better quality. 

We conducted experiments to see how the performance 

changes with different sizes of word vector, for tweet topic 

classification and word similarity computation tasks. Our 

experiments show that after the vector size reaches 300, the 

performance does not change significantly when the size 

increases. But from sizes 10 to 100, the performance 

improvement is very noticeable. The learning window size 

(sliding context window for a word) is set to 8. As 

mentioned before, a larger window size will result in more 

training data and can lead to a higher accuracy, at the 

expense of training time. Usually, a windows size of 5 to 8 

is a good choice.  

3.3.2 Dataset2: 

TweetDataWithoutSpam_Word+Phrase  

As explained earlier in this paper, phrases are needed in 

some NLP related tasks, and embeddings for phrases may 

help those applications. Section 2.2 describes an approach 

we use to identify phrases from training data. The same 

training data set from previous section is used for building 

this embedding model. The only difference is that, for this 

model, we first identify and mark phrases from the training 

data, and then the tweets with detected phrases are fed into 

the training process to generate embeddings for both words 

and phrases. 

Table 2 presents the related metadata of this model. 

There are 2.9 million unique words and phrases in this 

vector model. The frequency threshold for words and 

phrases is set to 10 in this model, greater than 5 used in 

Dataset1. This setting reduces the size of the model, since 

it has both words and phrases.    

In the final embedding file, the words in a phrase are 

connected by “_” instead of a space. For example, “new 

york” will be “new_york.” When looking up a phrase in 

the embedding model, users need to first convert the space 

between the phrase’s words to “_”. 

3.3.3 Dataset3: TweetDataWithSpam_Word 
Some applications may need embeddings generated from 

all type of tweets, including spam tweets, and our spam 

filter may not be appropriate for some applications. 

Therefore, we also provide embedding data sets that are 

built from all the tweets in the TweetData collection. 

Related metadata for this model can be found from Table 

2. A total of 390 million tweets are used in this model. The 

number of words in the training data set is 4.9 billion, and 

the number of unique words and phrases in the final 

embedding model is 2.7 million.  

3.3.4 Dataset4: TweetDataWithSpam_Word+Phrase 
Similar to Dataset3, this data set is also learned from both 

spam and non-spam tweets, but it includes phrases.  The 

total number of unique terms in this model is 4 million. 

Compared to the last model, the number of unique terms 

increases significantly, due to the phrases identified.  

3.3.5 Dataset5: GeneralData_Word 
This data set is learned from the GeneralData collection, 

which consists of text types other than tweets.  As 

mentioned before, we provide this set in case some users 

need embeddings from non-tweet data, or want to do some 

comparison between embeddings from tweet data and non-

tweet data. This data set contains only words and its related 

metadata are presented in Table 3. 

3.3.6 Dataset6: GeneralData_Word+Phrase 
Similar to Dataset5, this one is also learned from just 

GeneralData, but it includes both words and phrases. Table 

3 has the metadata for this model. 

3.3.7 Dataset7: 

TweetDataWithoutSpam+GeneralData_Word 
Some applications or NLP tasks may need to deal with 

both tweet data and general-domain data, and a word 

embedding data set combining these two types of data may 

provide better performance than the one learned from just 

one of them.  This is the motivation behind this dataset, as 

well as also datasets 8, 9, and 10.  From Table 4, we can 

see that there are 1.7 millions unique words in this data set. 

Compared to using just TweetData as the training data, we 

have 6.7 billion more words from GeneralData included in 

the training data. With a word frequency threshold 10, the 

unique number of words in the final embedding data set is 

1.7 million.  

3.3.8 Dataset8: 

TweetDataWithoutSpam+GeneralData_Word+Phrase 
The only difference between this data set and Dataset7 is 

that this one includes both words and phrases. 

Consequently, the total number of unique terms in this set 

is much larger, 3.7 million, than that in Dataset7, which is 

1.7 million, even though this model has a larger term 

frequency threshold, 15. Table 4 contains the related 

metadata for this model. 

3.3.9 Dataset9: 

TweetDataWithSpam+GeneralData_Word 
This set uses both spam and non-spam tweets from 

TweetdData, together with GeneralData for training. It 

contains embeddings for only words. Related metadata are 

also presented in Table 4. 

3.3.10 Dataset10:  

TweetDataWithSpam+GeneralData_Word+Phrase 

Compared to Dataset9, this one includes both words and 

phrases. Table 4 shows that this data set has the most 

unique terms, 4.4 million.  

3.4 How to Retrieve the Embeddings 

Each published embedding data set includes a binary file, 

which contains the words (and phrases, for data sets 

including phrases) and their embeddings. It also contains a 

text file, which contains a list of all the words (and 

phrases) in this data set and their frequencies. The text file 

is just for reference purposes users can just use the binary 



  

  

 

embedding file without the text file.  

There are several options to retrieve the embeddings 

from the binary model files. Here we just list some: 

- Use Python’s gensim package, which has the 

implementation of word2vec, available at:  

http://radimrehurek.com/gensim/. 

- Use a Java implementation of word2vec, available 

at: http://deeplearning4j.org/word2vec.html.  

- Use a C++ version  of word2vec, available at:  

https://code.google.com/archive/p/word2vec/ 

- Use the Python script we provide with the published 

data sets. 

The basic steps of looking up words or phrases from 

these models (data sets) are very simple. (1) Load the 

model into memory through one of the above methods. (2) 

The model will be stored as a map with words or phrases 

as the keys, and their embeddings (each represented as a 

list of 300 real numbers), as the map values. Then one can 

retrieve the embedding of a term by looking up the map.  If 

a term does not exist in this data set, the lookup will return 

a null value. One simple solution for the non-existing terms 

is to set their embedding to zero. 

In addition to storing the embedding model as binary 

file, we can also store them as plain text file, but the file 

size would be very big ( at least several gigabytes). If any 

user needs the plain text format of data, we can also 

provide it to them. 

4. Experiments 

We conducted two experiments: the first one uses a tweet 

sentiment analysis task to show how to use the word 

embedding data set, and the second one tests four 

embedding data sets on tweet a topic classification task to 

show their performance difference. 

4.1 Experiment on Tweet Sentiment Analysis 

In this experiment, we show how the word embeddings can 

be used in a real NLP task, which is tweet sentiment 

analysis. We are not going to compare our approach to 

other methods, since that is out of the scope of this paper.  

In this experiment, we just use one vector model, Dataset1: 

TweetDataWithoutSpam_Word, to demonstrate how to use 

it. The other embedding sets can be used in the same way.   

For tweet sentiment analysis, we evaluate precision, 

recall, F measure and accuracy. It is a two-way 

classification task, i.e. we have two polarities: positive and 

negative.  

4.1.1 Sentiment Analysis Data Set 

The experiment is conducted on a benchmark data set, 

which is from task 9 of SemEval 2014 (Sara et al. 2014). 

Its training set is the same as that of task 2 in SemEval 

2013 (Nakov et al. 2013). The test set includes the test data 

from 2013 and some new added tweets. The development 

set is used for model development, and fine-tuning model 

parameters. The actual tweet texts are not provided in these 

data sets, due to privacy concerns. So we downloaded 

these tweets from Twitter’s REST API for this experiment. 

Table 5 shows the distributions of the downloaded tweets. 

 
Table 5. Sentiment Analysis Dataset Statistics 

Dataset Positive Negative Total 

Train 2,294 853 3,147 

Development 969 322 1,291 

Test 1,588 439 2,027 

 

4.1.2 Word Embeddings for Tweet Representation  

Given a tweet, we process it by the following steps: 

- First, use the same steps in Section 3.1 to 
preprocess the tweet, and get its cleaned text. 

- Second, for each word, we look up its embedding 
from the vector model. The result is a 300-
dimension vector of real values.  If a token is not 
contained in the model, we can either ignore that 
token, use a vector whose values are all 0 to 
represent this token, or use the average of the 
embeddings from words having the lowest 
frequency in the model. In this experiment, we 
just ignore the token if it does not exist in the 
model file. Usually they are misspelled words. 

- Now, for each word of this tweet, we have a real-
value vector. Because tweets have different 
lengths, we need to use a fixed-length vector to 
represent a tweet, so that we can use it in any 
learning algorithm or application. The following 
paragraph describes how we produce a tweet 
representation from the embeddings of its words.        

Tweet Representation: There are different ways to obtain 

tweet representation from word embeddings. The most 

common methods use the maximum (max), minimum 

(min), or average (ave) of the embeddings of all words (or 

just the important words) in a tweet (Socher et al. 2014; 

Tang et al. 2014).  Take the max as an example, to produce 

the max vector, for each of the 300 dimensions, we use the 

maximum value of all the word embeddings of this tweet 

on this dimension.   In this study, we try all these three 

methods, and also the concatenation convolutional layer 

(con), which concatenates max, min and ave together.  The 

concatenation layer is expressed as follow: 
 

     Z(t) = [Zmax(t), Zmin(t), Zave(t)] 

 
where Z(t) is the representation of tweet t. 

For max, min and ave approaches, the dimension of a 

tweet vector is 300.  For the con approach, the dimension 

size for a tweet is 900, since we concatenate three 300-

dimension vectors together. 

A study from (Mitchell and Lapata 2008) shows that 

using multiplication of embeddings can also give good 

performance. Users can try this approach in their own 

applications. 



  

  

 

4.1.3 Result 

In this experiment, we applied several classification 

algorithms to find out which one performs the best, such as 

LibLinear, SMO (Keerthi et al. 2011; Platt 1998), Random 

Forest and Logistic Regression. Their performance was 

comparable, with the LibLinear model (Fan et al. 2008) 

performing slightly better. Here we present the results from 

LibLinear. Table 6 shows the sentiment analysis result 

using the four different convolution layer approaches. We 

can see that ave and con perform better than the max and 

min approaches. This result does not mean that they will 

perform the same way in other use cases.   

 
Table 6.  Tweet sentiment analysis performance using word 

embedding 

Method Precision Recall F measure Accuracy 

Max 78.6 80.4 79.1 80.4 

Min 79.9 81.7 80.1 81.7 

Ave 83.1 84.2 82.6 84.1 

Con 82.6 83.4 82.8 83.4 

 

 
Figure 1. Comparing embedding data sets on tweet topic 

classification performance 

4.2 Experiment on Tweet Topic Classification 

This experiment is to show how some of the embedding 

data sets perform differently on the tweet topic 

classification task. We are not going to test all the ten 

models in this experiment. These data sets may perform 

differently in different applications. Users can try them in 

their use cases to see which one performs the best. In this 

experiment, we used embedding models learned from the 

following four data sets: Dataset1, Dataset2, Dataset6, and 

Dataset8. The reason for choosing these four is that from 

the results of these four data sets, we can perform the 

following comparisons: Word vs. Word+Phrase (Dataset 1 

vs. Dataset 2), TweetData vs. GeneralData (Dataset2 vs. 

Dataset6), TweetData vs. TweetData+GeneralData 

(Dataset2 vs. Dataset8), and GeneralData vs. 

TweetData+GeneralData (Dataset6 vs. Dataset8). We use 

the GoogleNews word2vec data set as the baseline. 

The task is to classify the test tweets into one of 11 topic 

categories, such as Sports, Politics, and Business. The 

labeled data set are from (Li et al. 2016).  Totally, there are 

25,964 labeled tweets, each of which belongs to one of the 

11 topic categories. These tweets were split into training, 

validation and test sets. We use the same tweet 

representation method described in experiment 1, Section 

4.1.2, to generate tweet embedding from its word 

embeddings. The tweet embeddings are the features used 

by classification algorithms. 

We tried different classifiers, such as LibLiner and 

SMO, and SMO performed the best. SMO is a sequential 

minimal optimization algorithm for training a support 

vector classifier (Keerthi et al. 2011; Platt 1998). The 

results shown in Figure 1 are based on the SMO algorithm. 

From Figure 1, we can see that all of our four data sets 

perform better than the GoogleNews word2vec set.  

Dataset1, 2 and 8 perform better than Dataset6, which 

means, on tweet related tasks, the word embeddings 

learned from tweet data are better than the embedding 

models learned from other types of data. Dataset2 has a 

better result than Dataset1, which shows that including 

phrases in the vector model improves the classification 

performance. Dataset8 is the best performer; this 

demonstrates that combining both TweetData and 

GeneralData together does improve the embedding quality, 

and consequently, the topic classification performance.   

5. Conclusion 

Distributed word representations can benefit many NLP 

related tasks. This paper presents ten word embedding 

data sets learned from about 400 million tweets and 

billions of words from general textual data. These word 

embedding data sets can be used in Twitter related NLP 

tasks. Our experiments also demonstrated how to use 

these embeddings. Experimental results show that context 

is important when a classification task is at hand. For 

example, vectors trained on tweet data are more useful as 

features for a tweet classification task, than vectors trained 

on long form content. In addition, our experiments show 

that phrase detection (even though it comes at the cost of 

processing time) can generate more useful vectors. Lastly, 

noise-filtering and spam detection can be helpful pre-

processing steps, especially when the task is concerned 



  

  

 

with detecting the semantic topic of tweets. 
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