

Proceedings of the Eleventh International AAAI Conference on Web and Social Media (ICWSM 2017)

Data Sets: Word Embeddings Learned from Tweets and General Data

Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh Nourbakhsh

Research and Development

Thomson Reuters

3 Times Square, NYC, NY 10036
{quanzhi.li, sameena.shah, xiaomo.liu, armineh.nourbakhsh}@thomsonreuters.com

Abstract

A word embedding is a low-dimensional, dense and real-
valued vector representation of a word. Word embeddings
have been used in many NLP tasks. They are usually
generated from a large text corpus. The embedding of a
word captures both its syntactic and semantic aspects.
Tweets are short, noisy and have unique lexical and
semantic features that are different from other types of text.
Therefore, it is necessary to have word embeddings learned
specifically from tweets. In this paper, we present ten word
embedding data sets. In addition to the data sets learned
from just tweet data, we also built embedding sets from the
general data and the combination of tweets with the general
data. The general data consist of news articles, Wikipedia
data and other web data. These ten embedding models were
learned from about 400 million tweets and 7 billion words
from the general text. In this paper, we also present two
experiments demonstrating how to use the data sets in some
NLP tasks, such as tweet sentiment analysis and tweet topic
classification tasks.

1. Introduction

Distributed representations of words are also called word

embeddings or word vectors. They help learning

algorithms achieve better performance in natural language

processing (NLP) related tasks by grouping similar words

together, and have been used in lots of NLP applications,

such as sentiment analysis (Socher et al. 2013; Mass et al.

2014; Tang et al. 2014, Li et al. 2016c), text classification

(Matt 2015; Li et al. 2016a), and recommendation (Li et al.

2016b).

Traditional bag-of-words and bag-of-n-grams hardly

capture the semantics of words, or the distances between

words. This means that words “walk,” “run” and “eat” are

equally distant in spite of the fact that “walk” should be

closer to “run” than “eat” semantically. Based on word

embeddings, “walk” and “run” will be very close to each

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other. In this study, the word embedding representation

model is computed using a neural network, and generated

from a large corpus – billions of words – without

supervision. The learned vectors explicitly encode many

linguistic regularities and patterns, and many of these

patterns can be represented as linear translations. For

example, the result of a vector calculation v(“Beijing”) –

v(“China”) + v(“France”) is closer to v(“Paris”) than any

other word vector.

Tweets are noisy, short and have different features from

other types of text. Because of the advantages of applying

word embeddings in NLP tasks, and the uniqueness of

tweet text, we think there is a need to have word

embeddings learned specifically from tweets (TweetData).

Tweets cover various topics, and spam is prevalent in tweet

corpora. In addition to spam, some tweets are semantically

incoherent or nonsensical, contain nothing but profanity,

and are focused on daily chitchat or advertisement, etc. We

consider both spam and such tweets with no substantial

content as “spam” (or “noise”). Vector models built on

these types of tweets will bring lots of noise to some

applications. To build vector models without using spam

tweets, we use a spam filter to remove the spam tweets.

But on the other hand, some applications may need

embeddings generated from all tweets, including the

regular tweets and spam tweets. To build accurate

embedding models, another question to address is whether

to include phrases or not. Here a phrase means a multi-

word term. An embedding model (or data set) for just

words is much smaller than that for both words and

phrases, and it will be more efficient for some applications

that only need embeddings for words. In this study, we use

a data-driven approach to identify phrases. To

accommodate various applications and use cases, we

generated four embedding sets using just TweetData,

which are the four combinations of with/without spam

tweets and with/without phrases

In some cases, such as the applications that need to work

with both tweets and regular text, we may need word

embeddings that are trained on both TweetData and

general text data (GeneralData). Therefore, we also built

four embedding data sets that were learned from the

training data that combine TweetData and GeneralData.

These four embedding sets are also from the combinations

of with/without spam tweets and including phrases or not.

In addition to these eight data sets, two data sets (with and

without phrases) that are built from just GeneralData are

also provided. Overall, ten word embedding data sets are

presented in this paper.

 The major contributions of this paper are:

- We publish ten word embedding data sets learned from

about 400 million tweets and 7 billion words from

general data. They can be used in tasks involving social

media data, especially tweets, and other types of textual

data. Users can choose different embedding sets based

on their use cases; they can also easily try all of them to

see which one provides the best performance for their

application.

- We also use two experiments to demonstrate how to use

these embeddings in practical applications. The second

experiment also shows the performance difference of the

tweet topic classification task on several data sets.

In the following sections, we first describe the

technologies used for generating the word embedding data

sets, then we present the data collections and preprocessing

steps for both TweetData and GeneralData, followed by

the descriptions of the ten data sets, and finally we present

the two experiments.

2. Technologies Used for Building Word

Embedding Data Sets

In this section we describe three technologies used in

building our word vector models: distributed word

representation, phrase identification and tweet spam

filtering

2.1 Distributed Word Representation

A distributed language representation X consists of an

embedding for every vocabulary word in space S with

dimension D, where D is the dimension of the latent

representation space. The embeddings are learned to

optimize an objective function defined on the original text,

such as likelihood for word occurrences. Word embedding

models have been researched in previous studies (Collobert

et al. 2011; Mikolov et al. 2013b; Socher et al. 2014).

Collobert et al. (2011) introduce the C&W model to learn

word embeddings based on the syntactic contexts of words.

Another implementation is the word2vec model from

(Mikolov et al. 2013a, 2013b). This model has two training

options, Continuous Bag of Words and the Skip-gram

model. The Skip-gram model is an efficient method for

learning high-quality distributed vector representations that

capture a large number of precise syntactic and semantic

word relationships. Based on previous studies and the

experiments we conducted in other tasks, the Skip-gram

model produces better results, and here we briefly

introduce it.

The training objective of the Skip-gram model is to find

word representations that are useful for predicting the

surrounding words in a sentence or a document. Given a

sequence of training words W1, W2, W3,. . . ,WN , the Skip-

gram model aims to maximize the average log probability.

where m is the size of the training context. A larger m will

result in more training data and can lead to a higher

accuracy, at the expense of the training time.

 Generating word embeddings from text corpus is an

unsupervised process. To get high quality embedding

vectors, a large amount of training data is necessary. After

training, each word, including all hashtags in the case of

tweet text, is represented by a real-valued vector. Usually

the dimension size ranges from tens to hundreds.

2.2 Phrase Identification

Phrases usually convey more specific meanings than

single-term words. In many phrases, each has a meaning

that is not a simple composition of the meanings of its

individual words. Therefore, it is important to also learn

vector representation for phrases, which are very useful in

many applications. To identify phrases from TweetData

and GeneralData, we use the approach described in

(Mikolov et al. 2013b). We first find words that appear

frequently together, and infrequently in other contexts. For

example, “New York City” is replaced by a unique token

in the training data, while a bigram “I am” will remain

untouched. The good thing about this approach is that we

can form many reasonable phrases without greatly

increasing the vocabulary size. In contrast, if we train the

Skip-gram model using all n-grams, it would be very

memory intensive. To identify phrases, a simple data-

driven approach is used, where phrases are formed based

on the unigram and bigram counts, using this scoring

function:

Where C (wi, wj) is the frequency of word wi and wj

appearing together. is a discounting coefficient to

prevent too many phrases consisting of infrequent words to

be generated. The bigrams with score above the chosen

threshold are then used as phrases. Then the process is

repeated 2-4 passes over the training data with decreasing

threshold value, so we can identify longer phrases

consisting of several words. The maximum length of a

phrase is limited to 4 words in our data sets. Other

parameters are set as the default values used in (Mikolov et

al. 2013b), and the code is available at:

(https://code.google.com/p/word2vec).

2.3 Tweet Spam Filter

We use the tweet "spam" filtering algorithm described in

(Liu et al. 2016) to identify spam tweets (or noise tweets).

It is more than just getting rid of standard spam. There are

a lot of tweets that carry little semantic substance, such as

profanity, chit-chat, advertisements, etc. The goal of this

spam filter is to mark all of these categories as spam, and

only preserve the informative tweets that contain

information of some interest. The spam filtering algorithm

is a hybrid approach that combines both rule-based and

learning-based methods. Inspired by studies of Yardi et al.

(2009) and Song et al. (2011), this approach uses features

of follower-to-friend relationship, tweet publication

frequency, and other indicators to detect standard spam.

The profanity and advertisement can be largely removed

using keyword lists. The chit-chat is identified by a

language model trained with conversational SMS

messages. These steps can help us chop off a significant

amount of unsubstantial tweets. We are able to obtain a set

of informative tweets after these filtering steps. We

basically use the following two steps:

Spam & Advertisement Filtering: The metadata of each

tweet contains detailed information about the author's

profile and the tweet's content. Given that Twitter has

already prevented spam with harmful URLs (Thomas et al.

2011), we only concentrate on signals from user profiles

and tweet content. Since our spam and advertisement

filtering algorithms share the same strategy, we combine

their introduction here. We followed the ideas from

DataSift Inc. (http://dev.datasift.com/docs/platform/csdl) to

design a set of practical filtering rules (see examples

below). To avoid hard cut-offs, each filtering rule

thresholds a tweet into three levels: ``noisy", ``suspicious"

and ``normal". At least one ``noisy" or two-plus

``suspicious" rules can mark a tweet as ``noisy".

Conversation Filtering: Following the approach in

(Balasubramanyan and Kolcz 2013), a topic model was

trained on two online conversation corpora with 20,584

messages. Chat topics were manually identified. When a

new tweet arrives, its posterior topic distribution is

inferred. If the probability mass concentrates on the chat

topics is above a threshold, this tweet is recognized as a

chat tweet. In addition, a few heuristics are applied to

enhance the chit-chat detection such as if a tweet contains

multiple first & second personal pronouns, emoticons and

emojis.

3. Word Embedding Data Sets

In this section, we first introduce the two training data

collections, TweetData and GeneralData, used for

generating the word embeddings, and the basic steps to

preprocess them. Then we introduce our ten word

embedding data sets (models), listed in Table 1. Their

names are self-explanatory. Here with/without spam

means whether or not the spam tweets are included in the

training data. Word+Phrases means this embedding data

set contains both words and phrases.

TweetDataWithoutSpam+GeneralData means we use

both TweetData (without spam) and GeneralData for

training this embedding model.

These ten data sets cover all the eight embedding sets

involving TweetData, which are the combinations of using

spam tweets or not, including phrases or not, and

integrating with GeneralData or not. In addition to these

eight data sets, two embedding sets (Dataset 5 and 6) using

only GeneralData are also generated. After the training

data is preprocessed, the word2vec’s Skip-gram model

(Mikolov et al. 2013b) is used to learn the word vector

models. Each data set will be explained in Section 3.3.

Table 1. The 10 word embedding data sets

Dataset

No
Name

1 TweetDataWithoutSpam_Word

2 TweetDataWithoutSpam_Word+Phrase

3 TweetDataWithSpam_Word

4 TweetDataWithSpam_Word+Phrase

5 GeneralData_Word

6 GeneralData_Word+Phrase

7 TweetDataWithoutSpam+GeneralData_Word

8
TweetDataWithoutSpam+GeneralData_Word

+Phrase

9 TweetDataWithSpam+GeneralData_Word

10
TweetDataWithSpam+GeneralData_Word

+Phrase

3.1 TweetData and the Preprocessing Steps

The tweets used for building our embedding models date

from October 2014 to October 2016. They were acquired

through Twitter’s public 1% streaming API and the

Decahose data (10% of Twitter’s streaming data) obtained

from Twitter. We randomly selected tweets from this

period, to make them more representative. Only English

tweets are used to build word embeddings. Totally, there

are 390 million English tweets. Based on our spam filter,

there are about 198 million non-spam tweets and 192

million spam tweets. The training data size will affect the

quality of word vectors. Our experiments based on tweet

topic classification and words similarity computation tasks

show that after the number of training tweets exceeds 100

million, the performance changes little. But from 5,000 to

1 million tweets, the boost is very significant. Detailed

information for each embedding data set is presented in

Table 2, 3 and 4.

Each tweet used in the training process is preprocessed

as below, and the resulting data is then processed by each

of the eight model building processes involving

TweetData. The preprocess steps are as follows:
- Tweet text is converted to lowercase.
- All URLs are removed. Most URLs are short

URLs and located at the end of a tweet.
- All mentions are removed. This includes the

mentions appearing in a regular tweet and the user
handles at the beginning of a retweet, e.g. ``RT:
@realTrump’’.

- Dates and years, such as ``2017’’, are converted
to two symbols representing date and year,
respectively.

- All ratios, such as ``3/23’’, are replaced by a
special symbol.

- Integers and decimals are normalized to two
special symbols.

- All special characters, except hashtags symbol #,
are removed.

These preprocessing steps are necessary, since most of the

tokens removed or normalized are not useful, such as

mentions and URLs. Keeping them will increase the vector

space size and computing cost. Stop words are not

removed, since they provide important context in which

other words are used. Stemming is not applied to words,

since some applications of these data sets may want to use

the original forms of the words. For applications that

require the same embedding for all the variations of a

word, they can combine their embeddings to generate a

unified one, e.g. using the average of all their embeddings.

3.2 GeneralData and the Preprocessing Steps

A pre-built word embedding model is provided by Mikolov

et al. (2013b), and it was trained on part of Google News

dataset (https://code.google.com/p/word2vec/). This model

contains 300-dimensional vectors for about 3 million

unique words and phrases. The phrases were obtained

using the same data-driven approach described in Section

2.2. Although this model was trained on a large set of

data, it has some limitations: (1) it was trained on only

news articles, the words and phrases in this mode are case-

sensitive; and (2) the texts were not cleaned before they

were fed to the training algorithm. Therefore, there are lots

of junk tokens in this model and they may affect the

performance of applications using it. We discuss this

problem in our second experiment. Another reason for

constructing our own GeneralDatacollection is that we

wanted to combine TweetData and GeneralData together

as training data to learn word embeddings, which will be

more appropriate for use cases that deal with both tweet

data and other general text data. The news articles used for

training the Google News word2vec vector model are not

available to public. To build our own GeneralData

collection and make it more representative, but not biased

toward only one type of text, such as news articles, we

collected data from five different sources, which have

different types of text. The five data sources are:

- Reuters’ news articles: 10 billion bytes of news

data from year 2007 to 2015 were collected from

Reuters’ news archive.

- First billion characters from Wikipedia

(http://mattmahoney.net/dc/enwik9.zip)

- The latest Wikipedia dump. There are about 3

billion words.

(http://dumps.wikimedia.org/enwiki/latest/enwiki-

latest-pages-articles.xml.bz2).

- The UMBC web-base corpus. There are around 3

billion words.

(http://ebiquity.umbc.edu/blogger/2013/05/01/um

bc-webbase-corpus-of-3b-english-words/)

- The "One Billion Word Language Modeling

Benchmark" data set. It contains almost 1 billion

words. (http://www.statmt.org/lm-benchmark/1-

billion-word-language-modeling-benchmark-

r13output.tar.gz)

The preprocessing steps are as following:
- All data is converted to plain text and lowercased.
- All URLs are removed from the text.
- Dates and years are converted to two symbols

representing date and year, respectively.
- All ratios are replaced by a special symbol.
- Integers and decimals are normalized to two

special symbols.
- All special characters are removed.

These preprocesses make sure that the general data is

compatible with the tweet data, since we need to combine

these two types of data for learning four of the ten

embedding models. Changing all characters to lowercase

will incorrectly merge some terms together, such as an

entity name and a regular word which happen to have the

same spelling, but this only affects a very small portion of

the terms. Without case folding, most words will have two

entries with different embeddings in the vector model,

which will affect the vector quality, and the term space will

increase greatly. However, it is possible that in some

special use cases, such as identifying named entities from

text, keeping the character cases may be a better strategy.

3.3 Word Embedding Data Sets and Metadata

3.3.1 Dataset1: TweetDataWithoutSpam_Word
For this vector model, the training tweets do not contain

spam tweets, and the GeneralData collection is not used.

We only consider single-term words and no multi-word

phrases are included. The basic statistics for the training

data set and the metadata of the embedding vector model

are shown in Table 2. About 200 million tweets are used

for building this model. Totally, 2.8 billion words are

processed. With a term frequency threshold of 5 (tokens

less than 5 occurrences in the training data set are

discarded), the total number of unique tokens (hashtags

and words) in this model is 1.9 million.

Table 2. Metadata of embedding data sets using only TweetData

Metadata

Dataset

Dataset1:

TweetDataWithout

Spam_Word

Dataset2:

TweetDataWithoutSpam

_Word+Phrase

Dataset3:

TweetDataWithSpam

_Word

Dataset4:

TweetDataWithSpa

m_Word+Phrase

Number of Tweets 198 million 198 million 390 million 390 million

Number of words in training

data
2.8 billion 2.8 billion 4.9 billion 4.9 billion

Number of unique words or

(words+phrases) in the trained

embedding model

1.9 million 2.9 million 2.7 million 4 million

Vector dimension size 300 300 300 300

Word and phrase frequency

threshold
5 10 5 10

Learning context windows size 8 8 8 8

Table 3. Metadata of embedding data sets using only GeneralData

Metadata

Dataset

Dataset5:

GeneralData_Word

Dataset6:

GeneralData_Word+Phrase

Number of words in training data 6.7 billion 6.7 billion

Number of unique words or (words+phrases)

in the trained embedding model
1.4 million 3.1 million

Vector dimension size 300 300

Word and phrase frequency threshold 5 8

Learning context windows size 8 8

Table 4. Metadata of embedding data sets using both TweetData and GeneralData

Metadata

Dataset

Dataset7:

TweetDataWithoutSpam

+GeneralData_Word

Dataset8:

TweetDataWithoutSpam

+GeneralData_

Word+Phrase

Dataset9:

TweetDataWithSp

am+GeneralData_

Word

Dataset10:

TweetDataWithSpam

+GeneralData_Word

+Phrase

Number of Tweets 198 million 198 million 390 million 390 million

Number of words from

GeneralData
6.7 billion 6.7 billion 6.7 billion 6.7 billion

Number of words in the

whole training data
9.5 billion 9.5 billion 11.6 billion 11.6 billion

Number of unique words

or (words+phrases) in the

trained embedding model

1.7 million 3.7 million 2.2 million 4.4 million

Vector dimension size 300 300 300 300

Word and phrase

frequency threshold
10 15 10 15

Learning context

windows size
8 8 8 8

The word embedding dimension size is set to 300. The

dimension size will affect the quality of a vector.

Generally, larger dimension size will give better quality.

We conducted experiments to see how the performance

changes with different sizes of word vector, for tweet topic

classification and word similarity computation tasks. Our

experiments show that after the vector size reaches 300, the

performance does not change significantly when the size

increases. But from sizes 10 to 100, the performance

improvement is very noticeable. The learning window size

(sliding context window for a word) is set to 8. As

mentioned before, a larger window size will result in more

training data and can lead to a higher accuracy, at the

expense of training time. Usually, a windows size of 5 to 8

is a good choice.

3.3.2 Dataset2:

TweetDataWithoutSpam_Word+Phrase

As explained earlier in this paper, phrases are needed in

some NLP related tasks, and embeddings for phrases may

help those applications. Section 2.2 describes an approach

we use to identify phrases from training data. The same

training data set from previous section is used for building

this embedding model. The only difference is that, for this

model, we first identify and mark phrases from the training

data, and then the tweets with detected phrases are fed into

the training process to generate embeddings for both words

and phrases.

Table 2 presents the related metadata of this model.

There are 2.9 million unique words and phrases in this

vector model. The frequency threshold for words and

phrases is set to 10 in this model, greater than 5 used in

Dataset1. This setting reduces the size of the model, since

it has both words and phrases.

In the final embedding file, the words in a phrase are

connected by “_” instead of a space. For example, “new

york” will be “new_york.” When looking up a phrase in

the embedding model, users need to first convert the space

between the phrase’s words to “_”.

3.3.3 Dataset3: TweetDataWithSpam_Word
Some applications may need embeddings generated from

all type of tweets, including spam tweets, and our spam

filter may not be appropriate for some applications.

Therefore, we also provide embedding data sets that are

built from all the tweets in the TweetData collection.

Related metadata for this model can be found from Table

2. A total of 390 million tweets are used in this model. The

number of words in the training data set is 4.9 billion, and

the number of unique words and phrases in the final

embedding model is 2.7 million.

3.3.4 Dataset4: TweetDataWithSpam_Word+Phrase
Similar to Dataset3, this data set is also learned from both

spam and non-spam tweets, but it includes phrases. The

total number of unique terms in this model is 4 million.

Compared to the last model, the number of unique terms

increases significantly, due to the phrases identified.

3.3.5 Dataset5: GeneralData_Word
This data set is learned from the GeneralData collection,

which consists of text types other than tweets. As

mentioned before, we provide this set in case some users

need embeddings from non-tweet data, or want to do some

comparison between embeddings from tweet data and non-

tweet data. This data set contains only words and its related

metadata are presented in Table 3.

3.3.6 Dataset6: GeneralData_Word+Phrase
Similar to Dataset5, this one is also learned from just

GeneralData, but it includes both words and phrases. Table

3 has the metadata for this model.

3.3.7 Dataset7:

TweetDataWithoutSpam+GeneralData_Word
Some applications or NLP tasks may need to deal with

both tweet data and general-domain data, and a word

embedding data set combining these two types of data may

provide better performance than the one learned from just

one of them. This is the motivation behind this dataset, as

well as also datasets 8, 9, and 10. From Table 4, we can

see that there are 1.7 millions unique words in this data set.

Compared to using just TweetData as the training data, we

have 6.7 billion more words from GeneralData included in

the training data. With a word frequency threshold 10, the

unique number of words in the final embedding data set is

1.7 million.

3.3.8 Dataset8:

TweetDataWithoutSpam+GeneralData_Word+Phrase
The only difference between this data set and Dataset7 is

that this one includes both words and phrases.

Consequently, the total number of unique terms in this set

is much larger, 3.7 million, than that in Dataset7, which is

1.7 million, even though this model has a larger term

frequency threshold, 15. Table 4 contains the related

metadata for this model.

3.3.9 Dataset9:

TweetDataWithSpam+GeneralData_Word
This set uses both spam and non-spam tweets from

TweetdData, together with GeneralData for training. It

contains embeddings for only words. Related metadata are

also presented in Table 4.

3.3.10 Dataset10:

TweetDataWithSpam+GeneralData_Word+Phrase

Compared to Dataset9, this one includes both words and

phrases. Table 4 shows that this data set has the most

unique terms, 4.4 million.

3.4 How to Retrieve the Embeddings

Each published embedding data set includes a binary file,

which contains the words (and phrases, for data sets

including phrases) and their embeddings. It also contains a

text file, which contains a list of all the words (and

phrases) in this data set and their frequencies. The text file

is just for reference purposes users can just use the binary

embedding file without the text file.

There are several options to retrieve the embeddings

from the binary model files. Here we just list some:

- Use Python’s gensim package, which has the

implementation of word2vec, available at:

http://radimrehurek.com/gensim/.

- Use a Java implementation of word2vec, available

at: http://deeplearning4j.org/word2vec.html.

- Use a C++ version of word2vec, available at:

https://code.google.com/archive/p/word2vec/

- Use the Python script we provide with the published

data sets.

The basic steps of looking up words or phrases from

these models (data sets) are very simple. (1) Load the

model into memory through one of the above methods. (2)

The model will be stored as a map with words or phrases

as the keys, and their embeddings (each represented as a

list of 300 real numbers), as the map values. Then one can

retrieve the embedding of a term by looking up the map. If

a term does not exist in this data set, the lookup will return

a null value. One simple solution for the non-existing terms

is to set their embedding to zero.

In addition to storing the embedding model as binary

file, we can also store them as plain text file, but the file

size would be very big (at least several gigabytes). If any

user needs the plain text format of data, we can also

provide it to them.

4. Experiments

We conducted two experiments: the first one uses a tweet

sentiment analysis task to show how to use the word

embedding data set, and the second one tests four

embedding data sets on tweet a topic classification task to

show their performance difference.

4.1 Experiment on Tweet Sentiment Analysis

In this experiment, we show how the word embeddings can

be used in a real NLP task, which is tweet sentiment

analysis. We are not going to compare our approach to

other methods, since that is out of the scope of this paper.

In this experiment, we just use one vector model, Dataset1:

TweetDataWithoutSpam_Word, to demonstrate how to use

it. The other embedding sets can be used in the same way.

For tweet sentiment analysis, we evaluate precision,

recall, F measure and accuracy. It is a two-way

classification task, i.e. we have two polarities: positive and

negative.

4.1.1 Sentiment Analysis Data Set

The experiment is conducted on a benchmark data set,

which is from task 9 of SemEval 2014 (Sara et al. 2014).

Its training set is the same as that of task 2 in SemEval

2013 (Nakov et al. 2013). The test set includes the test data

from 2013 and some new added tweets. The development

set is used for model development, and fine-tuning model

parameters. The actual tweet texts are not provided in these

data sets, due to privacy concerns. So we downloaded

these tweets from Twitter’s REST API for this experiment.

Table 5 shows the distributions of the downloaded tweets.

Table 5. Sentiment Analysis Dataset Statistics

Dataset Positive Negative Total

Train 2,294 853 3,147

Development 969 322 1,291

Test 1,588 439 2,027

4.1.2 Word Embeddings for Tweet Representation

Given a tweet, we process it by the following steps:

- First, use the same steps in Section 3.1 to
preprocess the tweet, and get its cleaned text.

- Second, for each word, we look up its embedding
from the vector model. The result is a 300-
dimension vector of real values. If a token is not
contained in the model, we can either ignore that
token, use a vector whose values are all 0 to
represent this token, or use the average of the
embeddings from words having the lowest
frequency in the model. In this experiment, we
just ignore the token if it does not exist in the
model file. Usually they are misspelled words.

- Now, for each word of this tweet, we have a real-
value vector. Because tweets have different
lengths, we need to use a fixed-length vector to
represent a tweet, so that we can use it in any
learning algorithm or application. The following
paragraph describes how we produce a tweet
representation from the embeddings of its words.

Tweet Representation: There are different ways to obtain

tweet representation from word embeddings. The most

common methods use the maximum (max), minimum

(min), or average (ave) of the embeddings of all words (or

just the important words) in a tweet (Socher et al. 2014;

Tang et al. 2014). Take the max as an example, to produce

the max vector, for each of the 300 dimensions, we use the

maximum value of all the word embeddings of this tweet

on this dimension. In this study, we try all these three

methods, and also the concatenation convolutional layer

(con), which concatenates max, min and ave together. The

concatenation layer is expressed as follow:

 Z(t) = [Zmax(t), Zmin(t), Zave(t)]

where Z(t) is the representation of tweet t.

For max, min and ave approaches, the dimension of a

tweet vector is 300. For the con approach, the dimension

size for a tweet is 900, since we concatenate three 300-

dimension vectors together.

A study from (Mitchell and Lapata 2008) shows that

using multiplication of embeddings can also give good

performance. Users can try this approach in their own

applications.

4.1.3 Result

In this experiment, we applied several classification

algorithms to find out which one performs the best, such as

LibLinear, SMO (Keerthi et al. 2011; Platt 1998), Random

Forest and Logistic Regression. Their performance was

comparable, with the LibLinear model (Fan et al. 2008)

performing slightly better. Here we present the results from

LibLinear. Table 6 shows the sentiment analysis result

using the four different convolution layer approaches. We

can see that ave and con perform better than the max and

min approaches. This result does not mean that they will

perform the same way in other use cases.

Table 6. Tweet sentiment analysis performance using word

embedding

Method Precision Recall F measure Accuracy

Max 78.6 80.4 79.1 80.4

Min 79.9 81.7 80.1 81.7

Ave 83.1 84.2 82.6 84.1

Con 82.6 83.4 82.8 83.4

Figure 1. Comparing embedding data sets on tweet topic

classification performance

4.2 Experiment on Tweet Topic Classification

This experiment is to show how some of the embedding

data sets perform differently on the tweet topic

classification task. We are not going to test all the ten

models in this experiment. These data sets may perform

differently in different applications. Users can try them in

their use cases to see which one performs the best. In this

experiment, we used embedding models learned from the

following four data sets: Dataset1, Dataset2, Dataset6, and

Dataset8. The reason for choosing these four is that from

the results of these four data sets, we can perform the

following comparisons: Word vs. Word+Phrase (Dataset 1

vs. Dataset 2), TweetData vs. GeneralData (Dataset2 vs.

Dataset6), TweetData vs. TweetData+GeneralData

(Dataset2 vs. Dataset8), and GeneralData vs.

TweetData+GeneralData (Dataset6 vs. Dataset8). We use

the GoogleNews word2vec data set as the baseline.

The task is to classify the test tweets into one of 11 topic

categories, such as Sports, Politics, and Business. The

labeled data set are from (Li et al. 2016). Totally, there are

25,964 labeled tweets, each of which belongs to one of the

11 topic categories. These tweets were split into training,

validation and test sets. We use the same tweet

representation method described in experiment 1, Section

4.1.2, to generate tweet embedding from its word

embeddings. The tweet embeddings are the features used

by classification algorithms.

We tried different classifiers, such as LibLiner and

SMO, and SMO performed the best. SMO is a sequential

minimal optimization algorithm for training a support

vector classifier (Keerthi et al. 2011; Platt 1998). The

results shown in Figure 1 are based on the SMO algorithm.

From Figure 1, we can see that all of our four data sets

perform better than the GoogleNews word2vec set.

Dataset1, 2 and 8 perform better than Dataset6, which

means, on tweet related tasks, the word embeddings

learned from tweet data are better than the embedding

models learned from other types of data. Dataset2 has a

better result than Dataset1, which shows that including

phrases in the vector model improves the classification

performance. Dataset8 is the best performer; this

demonstrates that combining both TweetData and

GeneralData together does improve the embedding quality,

and consequently, the topic classification performance.

5. Conclusion

Distributed word representations can benefit many NLP

related tasks. This paper presents ten word embedding

data sets learned from about 400 million tweets and

billions of words from general textual data. These word

embedding data sets can be used in Twitter related NLP

tasks. Our experiments also demonstrated how to use

these embeddings. Experimental results show that context

is important when a classification task is at hand. For

example, vectors trained on tweet data are more useful as

features for a tweet classification task, than vectors trained

on long form content. In addition, our experiments show

that phrase detection (even though it comes at the cost of

processing time) can generate more useful vectors. Lastly,

noise-filtering and spam detection can be helpful pre-

processing steps, especially when the task is concerned

with detecting the semantic topic of tweets.

References

R. Balasubramanyan and A. Kolcz. “w00t! feeling great today!"

chatter in twitter: Identification and prevalence. The

international conference on Advances in Social Network Analysis

and Mining (ASONAM 2013), pages 306 -310. IEEE, 2013.

Collobert, Ronan, Jason Weston, Leon Bottou, Michael Karlen,

Koray Kavukcuoglu, and Pavel Kuksa. Natural language

processing (almost) from scratch. Journal of Machine Learning

Research, 12:2493–2537, 2011.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.

LIBLINEAR: A Library for Large Linear Classification, Journal

of Machine Learning Research 9(2008), 1871-1874.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy,

2001. Improvements to Platt's SMO Algorithm for SVM

Classifier Design. Neural Computation. 13(3):637-649.

Maas, A.; Daly, R.; Pham, P.; Huang, D.; Ng, A. and Potts, C.,

2012. Learning word vectors for sentiment analysis, In

Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies

Matt, T., Document Classification by Inversion of Distributed

Language Representations, 2015. The 53th ACL conference, page

45-49, July 26-31, Beijing,

Mikolov, T.; Chen, K.; Corrado, G. and Dean J., 2013a.

Efficient Estimation of Word Representations in Vector Space. In

Proceedings of Workshop at ICLR.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. and Dean J.,

2013b. Distributed Representations of Words and Phrases and

their Compositionality. In Proceedings of NIPS.

Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh Nourbakhsh,

Rui Fang, 2016a, TweetSift: Tweet Topic Classification Based on

Entity Knowledge Base and Topic Enhanced Word Embedding,

the 25th ACM International Conference on Information and

Knowledge Management (CIKM 2016).

Quanzhi Li, Sameena Shah, Armineh Nourbakhsh, Xiaomo Liu,

Rui Fang, 2016b, Hashtag Recommendation Based on Topic

Enhanced Embedding, Tweet Entity Data and Learning to Rank,

the 25th ACM International Conference on Information and

Knowledge Management (CIKM 2016).

Quanzhi Li, Sameena. Shah, Rui Fang, Armineh Nourbakhsh,

Xiaomo Liu, 2016c, Tweet Sentiment Analysis by Incorporating

Sentiment-Specific Word Embedding and Weighted Text

Features, 2016 IEEE/ACM International Conference on Web

Intelligence (WI16)

Xiaomo Liu, Quanzhi Li, A. Nourbakhsh, Rui Fung, et al., 2016,

Reuters Tracer: A Large Scale System of Detecting & Verifying

Real-Time News Events from Twitter, CIKM16

J. Platt: Fast Training of Support Vector Machines using

Sequential Minimal Optimization. Advances in Kernel Methods -

Support Vector Learning, 1998.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin

Stoyanov, Alan Ritter, and Theresa Wilson. 2013. Semeval-2013

task 2: Sentiment analysis in twitter. In Proceedings of the 7th

International Workshop on Semantic Evaluation (SemEval 2013),

volume 13.

Rosenthal, Sara and Ritter, Alan and Nakov, Preslav and

Stoyanov, Veselin. SemEval-2014 Task 9: Sentiment Analysis in

Twitter. . In Proceedings of the 8th International Workshop on

Semantic Evaluation (SemEval 2014), Dublin, Ireland.

Jeff Mitchell and Mirella Lapata, Vector-based Models of

Semantic Composition, in Proceedings of ACL 2008.

Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.; Ng,

A. and Potts, C., 2014,. Recursive Deep Models for Semantic

Compositionality Over a Sentiment Treebank, EMNLP 2014.

Song, J., Lee, S.; and Kim, J. 2011. Spam filtering in twitter

using sender-receiver relationship. In Recent Advances in

Intrusion Detection, 301–317. Springer.

Tang, D.; Wei, F.; Yang, Y.; Zhou, M.; Liu, T. and Qin, B.

2014. Learning Sentiment-Specific Word Embedding for Twitter

Sentiment Classification, the 52th ACL conference, Baltimore,

Maryland.

K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended

accounts in retrospect: An analysis of twitter spam. The ACM

Internet Measurement Conference (IMC 2011), pages 243- 258.

ACM, 2011.

Yardi, S., Romero, D.; Schoenebeck, G.et al. 2009. Detecting

spam in a twitter network. First Monday 15(1).

