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Abstract. Phishing is the most-used malicious attempt in which at-
tackers, commonly via emails, impersonate trusted persons or entities to
obtain private information from a victim. Even though phishing email
attacks are a known cybercriminal strategy for decades, their usage has
been expanded over last couple of years due to the COVID-19 pandemic,
where attackers exploit people’s consternation to lure victims. There-
fore, further research is needed in the phishing email detection field.
Recent phishing email detection solutions that extract representational
text-based features from the email’s body have proved to be an appro-
priate strategy to tackle these threats. This paper proposes a comparison
approach for the combined usage of Natural Language Processing (TF-
IDF, Word2Vec, and BERT) and Machine Learning (Random Forest,
Decision Tree, Logistic Regression, Gradient Boosting Trees, and Naive
Bayes) methods for phishing email detection. The evaluation was per-
formed on two datasets, one balanced and one imbalanced, both of which
were comprised of emails from the well-known Enron corpus and the most
recent emails from the Nazario phishing corpus. The best combination
in the balanced dataset proved to be the Word2Vec with the Random
Forest algorithm, while in the imbalanced dataset the Word2Vec with
the Logistic Regression algorithm.

Keywords: Natural Language Processing, Machine Learning, Phishing,
Email, TF-IDF, Word2Vec, BERT, Random Forest, Logistic Regression

1 Introduction

Email is the most usual and versatile form of written enterprise communica-
tions, especially nowadays, where the COVID-19 pandemic drove to a shift from
office to home-based work. Meanwhile, cyber-criminals saw the pandemic crisis
as an opportunity to exploit email communications to conduct phishing attacks,
where they appear as a reputable entity and attempt to steal private information



2 Bountakas et al.

such as login credentials, install a malware, or lure the victim to visit infected
websites. Within a year (mid 2019 to mid 2020), email threats increased by
more than 64% [1] [2]. Nowadays, an outburst of phishing email attacks related
to COVID-19 has been observed [3], which in a period of one month (Febru-
ary 2020 and March 2020) has seen an increased rate of 667% [4]. Moreover,
the development of decentralized data access and cloud services has caused a
paradigm shift in communication and file sharing, which in this world of ubiq-
uitous communication cultivates a breeding ground for phishing email attacks.
Phishing email attacks are accountable for 90% of data breaches, causing an av-
erage financial loss of $3.86 million1, which means that phishing emails are more
responsible for the disclosure of private and confidential information than other
attack types. Moreover, 85% of organizations have been victims of phishing2 at
least one time.

As one can understand, the detection of phishing emails is crucial to com-
bat these attacks. Phishing email detection is an active research area for more
than a decade. However, with the expansion of phishing emails, the effective-
ness of earlier detection approaches, which relied mostly on filtering techniques,
like heuristic and blacklisting, is poor [5]. As a next step, researchers attempted
to exploit Machine Learning (ML) methods that focus on the emails’ contents,
such as the email headers, domain, hyperlinks, and word lists to detect phishing
emails; nevertheless, the email’s contents can be forged leading to false conclu-
sions [6]. Currently, the evolution of Natural Language Processing (NLP) and,
more specifically, word embedding techniques have contributed to the develop-
ment of robust phishing email detection approaches that emphasize the morphol-
ogy and semantics of the emails’ text [7]. Recent works treat the phishing email
detection problem as a text classification task, namely, they take into account
only the emails’ text and apply NLP methods to handle the textual features
[8]. The Term Frequency - Inverse Document Frequency (TF-IDF) [9] is a well-
known method to measure the significance of a word in a document. In the last
couple of years it has been the most used NLP technique in the phishing email
detection field, where it was deployed as a weighting factor of the words that
appear in the email corpus [10] [5] [11] [12]. Word2Vec [13] is a popular method
for the creation of word embeddings, namely vector representations of a word,
which has seen a few applications in the phishing email detection for the iden-
tification of word associations between different emails of an email corpus [14]
[15]. Furthermore, recent advances in ML, such as the emergence of a new lan-
guage model known as Bidirectional Encoder Representations from Transformers
(BERT) [16], have revealed promising results in an wide range of classification
problems, like malware detection [17] [18] [19] and email user classification [20].
BERT’s key innovation is that it can learn the context of a particular word
considering both the previous and next words. While previous language models
contemplate only one direction to generate unidirectional representations, BERT

1 https://retruster.com/blog/2019-phishing-and-email-fraud-statistics.html
2 https://www.keepnetlabs.com/phishing-statistics-you-need-to-know-to-protect-

your-organization/
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takes into account both right-to-left and left-to-right directions to produce bidi-
rectional representations. However, to the best of our knowledge, it has not been
applied yet to the extraction of textual features from phishing emails.

The motivation of this work stems from the tremendous growth of phish-
ing attacks over the last couple of years, as well as from the inability of the
current detection solutions to curb this threat. Recent surveys point out that a
major drawback in the phishing email detection field is that previous researches
did not consider the advancement of phishing email attacks (i.e., they are using
email samples that came from old sources) [7] [8]. A second motivation point is
the fact that the efficacy of an ML phishing detection method that focuses on
the email’s body text using NLP heavily relies on the cooperation of the NLP
method with the ML algorithm. However, previous works have not considered
deploying several combinations of NLP techniques with ML algorithms (here-
after, the combination of an NLP method with an ML algorithm is referred to
as NLP/ML) to identify the most powerful pair (i.e., the NLP/ML pair that
achieves the best performance). Overall, we argue that new efficient detection
technologies are needed to limit the ongoing threat of phishing email attacks.

In this paper, a comparison approach for the combined usage of NLP and
ML methods is introduced that is based on the detection of phishing emails
focusing only on the textual information of the emails’ body field. More specifi-
cally, the proposed comparison approach contains five tasks, the Email Parsing,
the Pre-processing, the Textual Feature Extraction, the Feature Selection, and
the Classification. The Email Parsing and the Pre-processing tasks extract and
clean the emails’ body texts respectively. The Textual Feature Extraction task
constructs the text-based feature set using NLP methods, while the Feature Se-
lection identifies a feature subset with the most informative features. Finally,
the Classification task deploys ML algorithms to classify the emails between be-
nign and phishing. A novel aspect of the proposed approach is that the Textual
Feature Extraction task employs three different NLP methods, named TF-IDF,
Word2Vec, and BERT, to extract the textual features from the emails, which are
later combined with five ML algorithms (Logistic Regression, Decision Tree, Ran-
dom Forest, Gradient Boosting Trees, and Naive Bayes) to identify the NLP/ML
pair that will attain the best results. Two experiments were performed to evalu-
ate the proposed comparison approach. The first experiment was performed on a
balanced dataset, where the number of phishing emails is the same as the num-
ber of benign emails. The second experiment was performed on an imbalanced
dataset, where the ratio between phishing and benign emails is 1:10. Another
novelty of this work is that the evolution of phishing emails has been consid-
ered by deploying only new phishing emails (2015-2020) in the experiments. The
experimental results, which were based on numerous evaluation metrics (e.g.,
F1-score, accuracy, precision, recall, etc.), showed that the best NLP/ML com-
bination for balanced data is the Word2Vec/Random Forest, and for imbalanced
data it is the Word2Vec/Logistic Regression. In summary, our contributions lie
in the following aspects:
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– We propose a comparison approach for phishing email detection that com-
bines different NLP methods with various ML algorithms.

– We comprehensively evaluate the proposed approach to identify the best
NLP/ML combination.

– We take into account the evolution of phishing emails, by employing only
new emails (2015-2020).

– We deploy the BERT language model for the extraction of textual features
from phishing emails.

– We provide the source code of our approach as open-source to facilitate the
security community in detecting phishing email attacks.

The remaining of this paper is structured as follows. Section 2 elaborates on
recent previous related works that focus on the emails’ text highlighting their ad-
vantages and drawbacks. Section 3 analyzes the proposed comparison approach.
Section 4 evaluates the numerous NLP/ML combinations and discusses the re-
sults of the experiments. Finally, section 5 summarizes the critical points and
outlines the conclusions drawn.

2 Related Work

The majority of phishing email detection approaches in the literature process the
email’s text to identify text-based features and deploy ML and Neural Network
(NN) methods to distinguish phishing from benign emails. The application of
both NLP and ML/NN for the extraction of informative features from the emails’
text and the classification of emails respectively has played an important role in
the phishing email detection [21].

Previous works in this area have employed contextual [22], semantic [23], and
syntactic [24] features from the emails’ text. A recent work that has the same
ground as ours is proposed in [12]. The authors focused on the emails’ text to
distinguish phishing from benign emails. To do so they utilized two techniques,
namely TF-IDF and Doc2Vec (a word embedding technique that is based on
Word2Vec), to prepare the text-based features and several ML classifiers, such
as Decision Tree, Naive Bayes, AdaBoost, Logistic Regression, K-nearest neigh-
bor, Support Vector Machines, and Random Forest, to predict whether an email
is phishing. Two imbalanced datasets (4082 benign & 501 phishing emails and
5088 benign & 612 phishing emails) were deployed to measure the effectiveness
of the classifiers, using the accuracy as a metric, and the results indicate that
the ML classifiers performed better with the Doc2Vec method. The drawback of
this work is that the authors did not use a metric that is suitable for imbalanced
data, such as F1-score. Instead, they measured the efficacy of their approach us-
ing accuracy, which is biased towards the majority class (namely, the class that
contains the most samples, which in their case is the benign emails). The work
in this paper improves the approach that presented in [12] (a) by performing
feature selection before the classification process to identify the features that
contribute to better classification performance, (b) by deploying Word2Vec and
BERT techniques, which are new and more well-known in text classification tasks
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than Doc2Vec, (c) by utilizing F1-score metric that depicts the model’s perfor-
mance when tested in imbalanced data more precisely, and d) by considering the
evolution of phishing emails using only new phishing emails.

In [15], the authors presented a phishing detection framework that is based
on Recurrent Convolutional NNs, named THEMIS. The Word2Vec method was
utilized to obtain the vector sequences from the character-level and word-level
of both the emails’ header and body fields. THEMIS accomplished 99.848%
detection accuracy with a 0.043% FPR. Towards the same direction, the method
proposed in [25] combined Convolutional NNs and Keras Word Embedding to
detect phishing emails focusing on the text. The authors compared two datasets,
one with email headers and one without. The results showed that the model
achieves higher detection accuracy (96.8%) when the email headers are not taken
into account. A drawback of both [15] and [25] is that the authors did not consider
the evolution of phishing emails, which is a significant limitation as the phishing
emails have evolved over the years. Furthermore, another limitation of [25] is
that the authors deployed an imbalanced dataset (4082 benign and 501 phishing
emails) in their experiments, and measure the classifiers’ performance only on
the classification accuracy without utilizing other metrics (e.g., F1-score, AUC)
that depict better the performance on imbalanced data.

The authors of [26] proposed a methodology, named SAFE-PC, for the de-
tection of new phishing campaigns. Their research exploited NLP techniques to
extract five features from a real-world dataset of a tier-1 research university:
i) commonly known phishing words and their synonyms, ii) words associated
with the tier-1 research institution, iii) commonly occurring phishing words from
the deployed corpus and their synonyms, iv) proper noun organization names
and their types, and v) structural features in the email. A RUSBoost classifier
(it combines data sampling and boosting) with three weak learners (i.e., Naive
Bayes, Decision Trees, and Perceptron classifiers) was applied to the phishing and
benign emails. SAFE-PC detected 71% of the phishing emails, which had been
erroneously classified by the Sophos antivirus whilst having an FPR of 15%. Fur-
thermore, SAFE-PC outperformed SpamAssassin, which was non-competitive as
it had a detection rate of less than 10%. In [27], the authors considered also fea-
tures like word counts, punctuation, and stopwords. They extracted in total 26
features, which were utilized to compare different ML models. The best results
were accomplished by linear kernel SVM (83% TPR and 96% TNR). The limi-
tations of the aforementioned works are mainly on the deployed features, which
mostly relied on variations of words, stop words, punctuation counts, and ratios
between them that can be easily evaded by adversaries.

Gualberto et al. [5] aimed at extracting distinctive features from the text
of phishing emails. The authors dealt with several problems, such as the text
context portion that was contained in the extracted feature set, the sparsity, and
“the curse of dimensionality”. With 10 features their approach reached 99.95%
accuracy with the XGBoost algorithm. An extension of their previous work [5]
was presented in [10], where the authors developed a multi-stage approach to
discover the purpose of the email (phishing or benign). The text-based features
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were extracted via the TF-IDF technique and two methods were employed to
process the features further. In the first method, the Chi-Square method as
well as the Mutual Information were exploited to enhance the dimensionality
reduction, whilst in the next method the Principal Component Analysis along
with Latent Semantic Analysis techniques were deployed. The second method
accomplished the best performance with the XGBoost algorithm (100% accuracy
and 100% F1-score) using the SpamAssassin3 and Nazario datasets [28]. Both [5]
and [10] attain comparable results on the same dataset that contains 4150 benign
and 2279 phishing emails; however, in [5] the evaluation was performed using
cross-validation, while in [10] the dataset was separated into 70% for training and
30% for testing (namely, 1261 benign and 678 phishing emails). Moreover, the
evolution of phishing emails has not been considered in any of these researches
as the deployed phishing emails are outdated.

In [11], the authors employed TF-IDF and dimensionality reduction tech-
niques for the classification of emails between phishing and benign. The experi-
ments were performed on the IWSPA dataset [29], where promising results were
achieved (99.9% accuracy); however, the authors mentioned that their ML clas-
sifiers overfit the testing data due to the imbalanced dataset. A combination
of the TF-IDF technique with domain-level features was proposed in [30]. The
authors utilized both TF-IDF textual features and 40 domain-level features as
input to the ML classifiers. For the experiments, the IWSPA dataset was used,
and the best performance, in terms of F1-score (0.98), was attained by the Logis-
tic Regression classifier. The evaluation data of both [11] and [30] are outdated
as IWSPA dataset mostly contains old phishing emails.

Another recent work is [31], where the authors proposed a detection system
that utilizes Recurrent Neural Networks (RNNs) for the detection of phishing
emails taking into account only the textual structure of the email. To perform
the classification a word tokenization took place. For the evaluation, the authors
compared the RNN classifier on two datasets (in which only the benign emails
have been changed) with the “textAnalysis” classifier proposed in [32] and the
Dynamic Markov Chain (DMC) model proposed in [33]. The RNN classifier
outperforms the “textAnalysis” classifier; however, it did not manage to achieve
better results than the DMC model. The drawback of this work is mainly on
the deployed phishing emails, where the authors did not mention their creation
date, hence it is uncertain whether in this work the evolution of phishing emails
was considered. Also, the performance of the model that was proposed in [31]
was worse than the performance of DMC.

In general the major limitations that were identified in the literature are: lim-
ited evaluation metrics or metrics that are inappropriate to measure the classi-
fiers performance (e.g., in case of imbalanced data) [12] [25] [30] [11], the phishing
emails that have been deployed for evaluation purposes are old [25] [15] [31] [5]
[10], and in some works the considered textual features are not robust [26] [27].
Moreover, although NLP and ML have been utilized in phishing email detec-
tion for several years, the literature misses proofs regarding which NLP method
3 https://spamassassin.apache.org/
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works better for phishing email detection. The previous researches in the field
did not elaborate on various NLP methods to extract text-based features and
support their arguments.

In this paper, we focused on the emails’ body text, which has been proved
that it can achieve state-of-the-art results in the detection of phishing attacks.
However, we considered that the classifiers’ efficiency greatly depends on the
way that the text is processed to extract the text-based features that will be fed
in the ML algorithms. Therefore, the main hypothesis of this paper is to iden-
tify the most appropriate NLP/ML combination for phishing email detection by
comparing three state-of-the-art methods (i.e., TF-IDF, Word2Vec, and BERT)
and five well-known ML algorithms (Logistic Regression, Decision Tree, Random
Forest, Gradient Boosting Trees, and Naive Bayes). To the best of our knowl-
edge, we are the first that deployed BERT for the extraction of textual features
from phishing emails. The comparison was performed in the same environmental
setup, using the same datasets. Furthermore, the limitations of the literature,
which were discussed in the previous paragraph, have been addressed in this
research. First, the evolution of phishing emails was considered by employing in
the experiments the newest phishing emails (2015-2020) of the Nazario dataset
(see Section 4.1). Second, two experiments were performed, one with a balanced
dataset and one with an imbalanced dataset to evaluate the proposed approach
on different benign/phishing email ratios, as well as to highlight the fact that
the accuracy is an inappropriate metric for imbalanced data. The experimental
results on the imbalanced dataset were based on the outcome of the F1-score
metric that measures the algorithm’s performance without being biased (like
accuracy).

3 Proposed Approach

In this section, the details of the proposed comparison approach are presented.
In subsection 3.1, an overview of the approach is depicted. Subsections 3.2 and
3.3 describe the parsing and the pre-processing of the emails respectively. In
subsection 3.4, the textual feature extraction process is described, where three
different NLP methods have been employed. Finally, subsection 3.6 presents the
final task, which is the classification process.

3.1 Overview

The main objective of this work is to find the best NLP/ML pair for the textual
feature extraction and the classification of phishing emails by comparing state-
of-the-art techniques. In Figure 1, the architecture of the proposed approach is
presented. The email parsing task associates the extracted body text of emails
with their respective class and places them in a matrix. The pre-processing task
is responsible for cleaning the emails’ text and converting them to a uniform
format. To this end, the texts are converted into lowercase, and the special char-
acters, stopwords, and punctuation marks are removed. Then, the lemmatization
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process takes place, where the various inflected forms of the words are grouped to
be considered as a single item. In the textual feature extraction task the TF-IDF,
Word2Vec, and BERT NLP methods are applied to the clean text to extract the
textual features, which will be in a form that is understandable by the ML clas-
sifiers. The feature selection task, using the Chi-square method, discriminates
the features to maintain only the most informative ones to reduce the training
time and increase the classification accuracy. The selected features are then sub-
mitted to the classification task, where several well-known ML algorithms have
been utilized to classify the emails between benign and phishing.

Phishing &
Benign Emails

Classification

Benign Phishing

Email Parsing

Pre-processing

TF-IDF

WordNet

Word2Vec BERT

Textual Feature Extraction

Logistic
Regression Decision Tree Naive BayesRandom Forest GBT

Chi-Square

Features Selection

Fig. 1: Proposed Approach Architecture

3.2 Email Parsing

The email parsing is the process through which the emails’ text bodies are sep-
arated from the other email fields and stored together. Before analyzing how
the parsing of emails is performed, it is important to mention the grounds for
focusing only on the emails’ bodies, without considering other information such
as the email’s headers. We argue that the email’s body text includes a wealth
of information that can be utilized for the detection of phishing emails, as it is
usually random since it is controlled by people. However, the body of phishing
emails reveals similar traits, in deep semantics, which vary from benign emails.
Moreover, by dealing only with the email’s body, our approach avoids the pro-
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cessing of personal information, such as the sender and receiver headers of the
email.

Both benign and phishing emails undergo a parsing phase, where their corre-
sponding body texts are extracted. During the parsing phase, the emails’ texts
are organized in a matrix along with their respective class (phishing or benign) to
facilitate the pre-processing task in the processing of the emails. This is achieved
by putting each email’s text to a matrix with n rows, where n is the number
of email samples and two columns, where the first column refers to the emails’
body text (e) and the second to the email’s class (l).

M =


e1×2 l1×2
e2×1 l2×2
e3x1 l3×2

...
...

en×1 ln×2

 (1)

3.3 Pre-processing

The pre-processing task is a fundamental task of the proposed approach, as it
removes irrelevant and redundant information from the emails’ body texts, as
well as it converts the texts into a uniform format. The purpose of this task is
to facilitate the textual feature extraction task identifying the most informative
words of the emails’ corpus. This is achieved by employing the first column of
the matrix M (e) as input, where the emails’ body texts are included. More
specifically, all the words are transformed into lowercase and all the special
characters, punctuation marks, stopwords, and HTML elements (in case they
appear in an email) are removed. The hyperlinks that may exist in the email’s
body text are replaced with a fixed string (if it was replaced with a word and
this word appears in the text then the results will be forged). Afterwards, a
tokenization process takes place, in which the words of the text are separated by a
delimiter and converted from a string to a list of words. In our case, we considered
each token/word as a sequence of characters (a-z), so this was our delimiter.
Later, the pre-processing phase continues with the lemmatization phase that is
the core of the pre-processing task.

Lemmatization is the process that reduces the inflectional forms of a word
to keep its root form; thus, the resulting word set, which is going to be pro-
cessed by the NLP algorithms, is smaller because all the inflections of a word
are converted to one. An alternative method to convert a word to its original
form is stemming. Even though both methods have the same goal, we chose the
lemmatization, as it is based on a morphological analysis of the words, hence it
provides a meaningful form of the words, while stemming cuts the end or/and
the beginning of a word based on prefixes and suffixes of inflected words. The
lemmatization process needs a vocabulary that contributes to the identification
of the words’ original form (known as lemma). For this purpose, the WordNet
database [34] was employed as the vocabulary. WordNet is a popular lexical
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repository that includes semantic relations between words in many (more than
200) languages. In WordNet, the words are linked into semantic relations and
grouped into conceptual synonym sets (synsets) that express the meaning of a
notion. The connection among these sets offers a grid of substantially related
works and notions that enhance the outcome of NLP. This approach deploys the
WordNet to reduce the semantics of the emails’ texts. Namely, via the lemmati-
zation process, the diversity of the text has been reduced by replacing a group
of words that are synonyms and have the same lemma. For instance, the lemma
of the word better is the word good. Moreover, the Part-of-Speech (POS) tagging
process has been used. The POS indicates the grammatical category of each
word (i.e, noun, verb, adjective, and adverb) and facilitates the lemmatization
process to further reduce the word instances.

3.4 Textual Feature Extraction

We treated the phishing email detection problem as a text classification task,
which is an essential part of NLP. Therefore, the textual feature extraction task
applies NLP methods for converting the output of the pre-processing task of
the email’s body text into text-based features to be processed by the ML al-
gorithms. In this way, our approach could be also applied to data that do not
contain private and sensitive information, i.e., email addresses, domains, etc.
To accomplish this task, three well-known NLP methods, named TF-IDF [9],
Word2Vec [13], and BERT [16], have been employed. The rationale for selecting
three methods was to test their performance in the same environment and con-
clude which method is better when combined with ML algorithms. The result of
this task is three diverse feature sets generated by each method. In the following
paragraphs, we elaborate more on TF-IDF, Word2Vec, and BERT to facilitate
the reader to comprehend the presented notions.

Method 1: TF-IDF The TF-IDF [9] is a method often deployed in information
retrieval, text mining, and in recent years it has been applied also in phishing
email detection [10] [5]. We applied TF-IDF in the emails’ clean text to extract
the text-based features. TF-IDF outputs a weight that indicates the importance
of a word in a collection of email texts. The weight is computed using two terms:

1. Term frequency (TF): It depicts the number of times a given word (term)
appears in the text. Since each text is of a different size, TF is normalized
to avoid a bias toward bigger texts. The TF of a term t in an email e is
computed as:

TF (t, e) = ft,e∑
t′ϵe

ft′,e
, (2)

where ft,e is the frequency of the term t in the email e.
2. Inverse document frequency (IDF): It depicts the general importance

of a term in a collection of emails. It is calculated as a logarithm of the ratio
of the total number of emails to the number of emails in which the term
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appears. If t is a term and C is a collection of emails, the IDF is computed
as:

IDF (t, C) = log n

|eϵC : tϵe|
, (3)

where n is the total number of emails in C.

The TF-IDF weight is the product of TF and IDF, and is computed as:

TF−IDF (t, e, C) = TF (t, e) ∗ IDF (t, C). (4)

Based on the TF-IDF weight (equation 4) the importance of a word in the email
corpus is calculated, which contributes in the construction of the text-based
feature set.

Method 2: Word2Vec The Word2vec [13] has gained a lot of popularity in the
text mining field; however, it is not so popular in the phishing email detection
field [15]. It is a method for NLP, which is capable of capturing the context of a
word in a text, its relation with other words, semantic and syntactic similarity,
etc. Word2Vec deploys a NN model to learn word connections from a big col-
lection of texts, which in this work is a collection of email texts. In particular,
Word2Vec creates a vectorized representation of words, named embeddings, in
which similar words are close distance-wise in the embedded space. Word2Vec
is implemented in two ways, (a) Continuous Bag of Words (CBOW), and (b)
skip-gram. The CBOW method predicts the target word based on the context;
namely, the order of words does not influence the prediction. The skip-gram
deploys the neighboring words to predict the target word. In this work, the skip-
gram method has been deployed along with the hierarchical softmax method to
train the model. The train complexity of skip-gram is calculated by:

Q = C ∗ (D + D ∗ log2(V )) (5)

Where (C) denotes the maximum distance of the words, (D) depicts the word
representation, and (V) the dimensionality. In skip-gram, every word w is con-
nected with two vectors that represent the word (uw) and the context (vw).
The probability of correctly predicting a word wi by giving a word wj using the
softmax method is:

p(wi|wj) = euwi
vwj∑V

l=1 eulvwj

(6)

The Word2Vec text-based feature set is created based on the equations 5 and 6.

Method 3: BERT The emergence of BERT [16] has brought a significant ad-
vance in NLP tasks, as its core innovation is that it applies bidirectional trans-
former4 encoders to get the contextual meaning of a text. Namely, as opposed
4 Transformer [35] is a NN model that is based solely on attention mechanism and it

performs well on language understanding tasks.
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to directional models (e.g., Recurrent NN, Convolutional NN, etc), which read
the text from one direction (right-to-left or left-to-right), BERT reads the entire
text from both directions. This feature allows the model to learn the context of
a word based on the previous and next words. For instance, for the models that
do not consider the context (like TF-IDF and Word2Vec), the word “account”
would have the same representation in both “account for my actions” and in
“bank account”, while BERT will generate a representation of each word based
on the other words in the sentence.

BERT performs two main steps:

1. Input processing: Prior to embedding, a [CLS] token is added at the beginning
of the input text (in our case the email’s body), which shows the starting
point. In case that a pair of sentences is used as input a [SEP] token is
applied to separate the two sentences. During the embedding process, the
text is parsed into three embedding layers: (1) The token embedding layer,
which finishes the word segmentation and encodes the words via a vocabulary,
(2) the segment embedding layer, which facilitates the model to differentiate
the pair of sentences, and (3) the position embedding layer, which helps the
model to acquire the sequence information of words. The input representation
of the text is constructed by summing the embeddings of each layer and is
used by the model to extract the feature vectors.

2. Pre-training strategies:
– Mask Language Model (MLM): A technique to randomly mask 15% of

the words of a text, which are given to the model during the training and
it tries to predict them. In this way, BERT learns the context of the text.

– Next Sentence Prediction (NSP): In cases that two sentences are used
as input to the BERT model, NSP facilitates the model to learn the
relationship between the sentences (MLM helps the model to learn the
relationship between the words), namely whether there is a semantic
connection between the two sentences.

For each word in the body text of emails, both the previous and the next words
are considered to produce the BERT text-based feature set.

3.5 Feature Selection

The feature selection task aims to identify a subset of the most informative
features from the original text-based feature set to improve the performance of
the ML classifiers in terms of accuracy and training time [36]. In this research, the
Chi-Square feature selection [37] was used, as in previous works it has achieved
promising results and it is easy to implement [38] [10]. The input data in this
task is the feature sets of the three NLP methods (i.e., TF-IDF, Word2Vec, and
BERT), and the output is a reduced subset for each method.

Chi-Square is a hypothesis test relating to statistics, which measures the
relationship between two variables and identifies the level of correlation. This
paper measures the dependency of a text-based feature with the email’s class
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(i.e., phishing or benign). The score of Chi-Square is calculated by the equation
(7):

x2 =
n∑

l=1

(Ol − El)2

El
, (7)

where Ol is the observed frequency, namely the number of observations of a class,
and El is the expected frequency, namely the number of expected observations
of a class when the feature and the class are independent. When the value of the
equation 7 is closer to 0 the feature depends less on the class, otherwise, when
the value is closer to 1, it depends more on the class.

3.6 Classification

The classification task is the crux of the proposed approach. The detection of
phishing emails is by nature a binary classification problem. That is, the emails
are grouped into two classes, benign emails, and phishing emails. We employ a
binary variable to depict the class of an email, namely x = 0 when the email
is benign and x = 1 when the email is phishing. The binary classification is
performed via supervised ML. The objective of supervised learning is to find a
discriminating function that learns to predict the output (email’s class) based
on the input (email’s features).

The input of the classification is the three feature subsets created in the
feature selection task, while the output is the prediction of the ML algorithm.
To carry out the classification task and the comparative analysis, five well-known
ML algorithms were deployed. These are: Logistic Regression (LR) [39], Decision
Tree (DT) [40], Random Forest (RF) [41], Gradient Boosting Trees (GBT) [42],
and Naive Bayes (NB) [43]. The grounds for choosing these algorithms were based
on their performance that has been proved before in several binary classification
tasks, as well as on previous works in the phishing email detection field. The
classification task is divided into two phases; (1) the training phase, where a
training dataset is used that contains the samples along with their label (benign
or phishing) and the algorithm learns the discriminating function, and (2) the
testing phase, where a testing dataset, which contains the samples without their
associated labels, is provided to the trained algorithm and it predicts the label
of each sample. The training phase concludes with one trained model for each
algorithm that are later deployed by the testing phase to classify the emails
between benign and phishing.

An essential part of the classification task is the hyperparameter tuning.
Hyperparameters are the parameters of the algorithm that control the learn-
ing process and as hyperparameter tuning is defined the process of optimizing
their value. In this approach, the hyperparameters’ values have been estimated
via manual tuning, which might require more effort, but it contributes to a
deeper understanding of each algorithm’s behavior and to a better knowledge
of how the modifications of the hyperparameters affect the training of the al-
gorithm. In particular, for the LR algorithm the hyperparameters that accom-
plished the best results are: the maxIter=10 (maximum number of iterations for
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the classifier’s training), the threshold=0.5 (the threshold in the case of binary
classification), the regParam=0.0 (regularization parameter), and the elastic-
NetParam=0.0 (ElasticNet mixing parameter, linearly combines the L1 and L2
penalties. In our case, where the value is 0.0, there is only the L2 penalty). For
the DT algorithm the hyperparameters that deployed are: maxDepth=5 (the
maximum depth of the trained tree), maxBins=32 (the maximum number of
bins when categorizing continuous features), and minInfoGain=0.0 (the mini-
mum information gain, after which a split at a tree node is considered). For the
RF algorithm the hyperparameters that contributed to better performance are:
the numTrees=20 (the number of trees that are to be trained as part of the RF
classifier), maxBins=32, minInfoGain=0.0, and maxDepth=5. For the GBT the
deployed hyperparameters are: the maxDepth=3, the maxIter=5 (the maximum
number of gradient boosting iterations), the maxBins=16, the stepSize=0.1 (the
learning rate / step size towards reducing each estimator’s contribution), and
the lossType=’logistic’ (the Loss function which is aimed to be minimized with
the classifier’s training process - we used the Logistic Loss). Finally, for the NB
the smoothing=1.0 hyperparameter utilized (the smoothing parameter assists
against the issue of zero probability in the NB algorithm).

4 Evaluation

This section presents a comprehensive evaluation of the proposed approach
through its classification results. The experiments conducted in this paper were
performed in a virtual machine stored in a VMWare ESXi server with Intel
Xeon 4114, 2.20 GHz x 8 CPU, and 16 GB RAM. The OS of the virtual ma-
chine was Ubuntu 20.04 64-bit. The comparison approach was implemented in
Apache Spark [44]. At this point, it is important to mention that the source-code
is released as open-source5 to help the security community to curb the threat of
phishing emails.

4.1 Datasets

The experimental data were obtained from two publicly available email collec-
tions; the Enron email corpus [45] that was used as the benign dataset and the
Jose Nazario’s phishing corpus [28] that was used as the phishing dataset. Ac-
cording to the survey in [8], these datasets have been widely used in previous
works. The Enron corpus is a large dataset that contains about 500,000 emails
from 158 employees of the Enron Corporation. It is one of the few publicly avail-
able mass collections of real emails in which the emails were made public during
the legal investigation of the corporation. Benign emails correspond to interac-
tions among different employees on day-to-day work issues. Over the years, the
Enron corpus gained popularity as it was used in various research fields, such as
phishing detection, NLP, and data mining [15] [46] [47]. The phishing corpus, at
5 https://github.com/KostasKoutrou/Text Phishing Email ML Classification
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Table 1: Balanced dataset.
Dataset Benign Phishing Total
Training set 1,125 1,125 2,248
Testing set 282 282 566
Total 1,407 1,407 2,814

Table 2: Imbalanced dataset.
Dataset Benign Phishing Total
Training set 11,200 1,125 12,325
Testing set 2,800 282 3,082
Total 14,000 1,407 15,407

the time of writing, is the most popular phishing email dataset as it has been
deployed in various relevant research works over the years [22] [23] [24] [10] [5].
The phishing emails of the corpus came from the personal inbox of its creator,
which contains several phishing emails from 2004 until 2020. In this work, we
focused on the quality of the phishing emails and not the quantity, thus, we have
deployed only the newer phishing emails that take into account the progress of
the phishing email attack (i.e., the phishing email structure is not the same as
it was ten years ago). For this reason, all the phishing emails from the years
2015-2020 were used.

Two diverse datasets were created for the evaluation of the proposed ap-
proach; the balanced dataset and the imbalanced dataset. In both datasets, we
have utilized all the phishing emails from the years 2015-2020 of the phishing
corpus, which in total are 1,407. In the balanced dataset the same number of
benign emails has been randomly chosen from the Enron corpus. Regarding the
imbalanced dataset, a more realistic scenario6 has been considered in which the
ratio between phishing and benign emails are 1:10. Therefore, 14,000 emails
have been randomly chosen from the Enron corpus. The ratio between training
and testing in both experiments is 80:20. The structure of the balanced and
imbalanced datasets is presented in Table 1 and Table 2 respectively.

4.2 Metrics

Considering that True Positive (TP) is the number of correctly classified phishing
emails, False Positive (FP) is the number of mistakenly classified benign emails,
True Negative (TN) is the number of correctly classified benign emails, and
False Negative (FN) is the number of mistakenly classified phishing emails, the
deployed metrics upon which we rely our evaluation are the following:

6 In daily basis the benign emails that an organization receives are much more than
the phishing emails
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– Recall: Depicts the correctly classified phishing emails compared to the total
number of phishing emails:

TPR = TP

TP + FN
(8)

– Precision: Depicts the correctly classified phishing emails compared to the
total number of emails that were classified as phishing:

Precision = TP

TP + FP
(9)

– Accuracy: Percentage of correctly classified emails compared to the total
number of emails:

Accuracy = TP + TN

TP + TN + FP + FN
(10)

– F1-Score: A metric to measure the accuracy, which considers both the preci-
sion and recall, namely it calculates the balance between the precision and
recall. It presents a better measure in case of class imbalance (e.g. when the
phishing emails are fewer than benign).

F1−Score = 2 ∗ Precision ∗ Recall

Precision + Recall
= TP

TP + 1
2 (FP + FN)

(11)

– False Positive Rate (FPR): Represents the mistakenly classified benign emails
compared to the total number of benign emails:

FPR = FP

FP + TN
(12)

– False Negative Rate (FNR): Represents the mistakenly classified phishing
emails compared to the total number of phishing emails:

FNR = FN

TP + FN
(13)

– Receiver Operating Characteristic (ROC) Curve: Is a graph that plots the
TPR and the FPR. Particularly, it depicts the performance of a classifica-
tion algorithm at various classification thresholds. As an easy to understand
guideline, the closer the ROC curve is to the shape of an upside down L, the
better.

– Area Under the ROC Curve (AUC): Measures the area under the ROC curve.

4.3 Results & Discussion
Fifteen different combinations of NLP and ML methods have been tested in this
paper. In particular, the TF-IDF, Word2Vec, and BERT methods were joined
with five state-of-the-art ML algorithms, which are the LR, DT, RF, GBT, and
NB. The performance of each combination was evaluated on different ratios
between the emails (phishing and benign) using a balanced dataset with the
same ratio of emails and an imbalanced dataset with ten times more benign
emails than phishing.
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Experiment 1: Balanced Dataset In the balanced dataset, the accuracy is
used as a metric for the identification of the best detection performance, since
the distribution of the samples across the classes is equal and it is a metric easier
for the reader to comprehend.

For the TF-IDF method, all the ML algorithms accomplished more than 90%
accuracy. In particular, RF, BN, LR, GBT, and DT, achieved 93.41%, 92.77%,
92.48%, 91.47%, and 90.17% classification accuracy respectively. However, the
best results were divided between the RF and LR classifiers. RF achieved the
best results on accuracy, precision, FPR, and AUC, while LR achieved the best
results in recall, F1-score, and FNR. Thus, on the balanced dataset the TF-
IDF method had a greater performance with the RF and the LR classifiers. The
results of TF-IDF on all the evaluation metrics in the balanced dataset are shown
in Table 3. The ROC curves for TF-IDF are presented in Figure 2, where one
can notice that the plots of RF, NB, and GBT are almost similar, nevertheless
the AUC of RF is slightly greater.

With the Word2Vec method, overall, all the ML algorithms achieved better
classification results than TF-IDF, since the accuracy of all ML algorithms was
above 95%. More specifically, RF, GBT, LR, DT, and NB accomplished 98.95%,
97.48%, 96.77%, 96.25%, and 95.64% classification accuracy respectively. The
results indicate that the RF performs better than the other algorithms with
the Word2Vec features attaining highest accuracy with very little FPR (1.4%)
and FNR (0.68%). The results of Word2Vec on all the evaluation metrics in the
balanced dataset are depicted in Table 4. The ROC curves for Word2Vec are
shown in Figure 3, where in general the results were promising for all the ML
algorithms, and especially for the RF, LR, and GBT that achieved more than
99% AUC. On average, the ROC curves in Word2Vec are the best among the
three NLP methods.

The ML algorithms with BERT accomplished the worst results in comparison
with TF-IDF and Word2Vec. The worst accuracy (66.54%) was achieved by the
NB, while the best (84.49%) was achieved by LR. The accuracy of DT, RF, and
GBT ranged from 80.68% (DT) to 83.27% (RF). Furthermore, LR attained the
lowest FNR (15.9%), while the lowest FPR was accomplished by RF (6.4%).
The results of BERT on all the evaluation metrics in the balanced dataset are
depicted in Table 4. The ROC curves for BERT are presented in Figure 4. As it
can be noticed, the BERT ROC curves are the worst of the three NLP methods.

Table 3: TF-IDF results balanced dataset.
Classifier Accuracy Precision Recall F1-score FPR FNR AUC
LR 0.9248 0.9110 0.9488 0.9295 0.1013 0.0511 0.9766
DT 0.9017 0.9063 0.8864 0.8962 0.0841 0.1135 0.8385
RF 0.9341 0.9743 0.8837 0.9268 0.0207 0.1162 0.9795
GBT 0.9147 0.9301 0.8837 0.9268 0.0207 0.1162 0.9761
NB 0.9277 0.9652 0.8853 0.9235 0.0309 0.1146 0.5479
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Table 4: Word2Vec results balanced dataset.
Classifier Accuracy Precision Recall F1-score FPR FNR AUC
LR 0.9677 0.9755 0.9554 0.9653 0.0213 0.0445 0.9948
DT 0.9625 0.9535 0.9709 0.9621 0.0456 0.0290 0.9532
RF 0.9895 0.9863 0.9931 0.9897 0.0140 0.0068 0.9988
GBT 0.9748 0.9727 0.9761 0.9744 0.0264 0.0238 0.9961
NB 0.9564 0.9646 0.9479 0.9562 0.0349 0.0520 0.8200

Table 5: BERT results balanced dataset.
Classifier Accuracy Precision Recall F1-score FPR FNR AUC
LR 0.8449 0.85 0.8409 0.8454 0.1510 0.1590 0.8834
DT 0.8068 0.8358 0.7577 0.7949 0.1452 0.2422 0.6945
RF 0.8327 0.9243 0.7357 0.8193 0.0640 0.2642 0.9098
GBT 0.8245 0.8185 0.8339 0.8261 0.1849 0.1660 0.9184
NB 0.6654 0.7407 0.5223 0.6126 0.1877 0.4776 0.5169

Experiment 2: Imbalanced Dataset When the accuracy is deployed to mea-
sure the performance of an ML algorithm on imbalanced data it leads to biased
results, as its estimation is biased towards the class that contains the most sam-
ples (in our case its the benign). To overcome this challenge, we deployed the
F1-score metric that is less susceptible to be affected by class imbalance.

For the TF-IDF method, as one can notice from Table 6, the LR and GBT al-
gorithms made the most accurate predictions with 89.96% and 81.83% F1-scores
respectively. The DT algorithm accomplished 70.3% F1-score, while the RF and
NB did not perform well. Moreover, the inappropriateness of accuracy as a mea-
surement in experiments with imbalanced data can be seen in the results of NB,
where even though all the phishing samples were misclassified, its classification
accuracy was 92.05%. The ROC curve of all the ML algorithms with TF-IDF
features in the imbalanced dataset can be seen in Figure 5, where LR overcome
all the other algorithms.

In this experiment, again the ML algorithms with Word2Vec, overall, accom-
plished better results in comparison with TF-IDF. In particular, the LR attained
a 92.41% F1-score. Overall, the performance of all the ML algorithms, except
from NB (it failed to classify all the phishing samples), was promising as they
achieved more than 84% F1-score. The detailed results of all the ML algorithms
with the Word2Vec features, as well as the ROC curves can be found in Table
7 and Figure 6 respectively. Similarly to the experiments performed with the
balanced dataset, in this case as well, the use of Word2Vec resulted in the best
ROC curves among the three NLP methods.
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Fig. 2: ROC curve TF-IDF balanced
dataset.

Fig. 3: ROC curve Word2Vec balanced
dataset.

Fig. 4: ROC curve BERT balanced
dataset.

As in experiment 1, the ML algorithms did not manage to accomplish good
results with BERT features, since the F1-score of all the algorithms was worse
than the F1-scores with TF-IDF and Word2Vec features. The greatest F1-score
was achieved by LR (63.92%) and it was significantly lower than the score of LR
with TF-IDF (89.96%) or with Word2Vec (92.41%). Table 8 presents the results
of all the ML algorithms with BERT in the imbalanced dataset, while the ROC
curves are shown in Figure 7.

Table 6: TF-IDF results imbalanced dataset.
Classifier Accuracy Precision Recall F1-score FPR FNR AUC
LR 0.9841 0.9031 0.8961 0.8996 0.0082 0.1038 0.9861
DT 0.9592 0.8655 0.5919 0.7030 0.0081 0.4080 0.5539
RF 0.9443 1 0.3193 0.4841 0 0.6806 0.9666
GBT 0.9728 0.9032 0.7480 0.8183 0.0071 0.2519 0.9792
NB 0.9205 0 0 0 0 1 0.5317
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Table 7: Word2Vec results imbalanced dataset.
Classifier Accuracy Precision Recall F1-score FPR FNR AUC
LR 0.9862 0.9319 0.9163 0.9241 0.0067 0.0836 0.9966
DT 0.9768 0.9082 0.7908 0.8455 0.0069 0.2091 0.7753
RF 0.9769 0.9441 0.7602 0.8423 0.0039 0.2397 0.9830
GBT 0.9901 0.9736 0.8566 0.8477 0.8521 0.0139 0.1522
NB 0.9195 0 0 0 0 1 0.8658

Table 8: BERT results imbalanced dataset.
Classifier Accuracy Precision Recall F1-score FPR FNR AUC
LR 0.9407 0.6286 0.6501 0.6392 0.0337 0.3498 0.9087
DT 0.9347 0.6527 0.4982 0.5651 0.0246 0.5017 0.2472
RF 0.9388 0.7142 0.5105 0.5954 0.0197 0.4894 0.8947
GBT 0.9399 0.6861 0.5774 0.6271 0.0253 0.4225 0.9263
NB 0.9199 0.8125 0.050 0.0945 0.0010 0.9498 0.5446

Discussion Regarding the first experiment, in the balanced dataset, almost
all the algorithms with both TF-IDF and Word2Vec attained promising results.
However, the results indicate that the Word2Vec features are more informative
for the ML algorithms, as in all the evaluation metrics, their results were bet-
ter. More specifically, the Word2Vec/RF pair attained the best classification
performance with 98.97% accuracy and it proved to be the best combination
when trained with balanced data. In the second experiment, we relied only on
the f1-score to make decisions about the NLP/ML combinations, as it is the
most accurate metric for imbalanced data. Again, the ML algorithms with the
Word2Vec features performed better, achieving state-of-the-art results. Based
on the results of the second experiment, we concluded that the Word2Vec/LR
pair is the best combination when trained with imbalanced data, since it had the
highest F1-score (92.41%). BERT, even though it is a powerful NLP method,
did not manage to accomplish good results when deployed for textual feature
extraction and combined with ML algorithms for phishing email detection. Fi-
nally, based on the results of the second experiment, one can notice that the
accuracy is not an appropriate metric to measure the performance of classifiers
in imbalanced datasets, as its results are biased towards the majority class.

5 Conclusion

The modus operandi of modern phishing attacks leverage the unprecedented
events due to the COVID-19 pandemic, to deceive users and threaten their pri-
vacy by gaining access to their private information, such as credentials, and
banking accounts. This research focused on the comparison of different combi-
nations of NLP and ML methods for the detection of phishing emails to identify
which combination performs better on phishing email detection. The TF-IDF,
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Fig. 5: ROC curve TF-IDF imbalanced
dataset.

Fig. 6: ROC curve Word2Vec imbal-
anced dataset.

Fig. 7: ROC curve BERT imbalanced
dataset.

Word2Vec, and BERT NLP methods were deployed to extract textual features
from the emails’ body text and build three distinct feature sets. Each feature set
was then processed by the chi-squared feature selection method to identify the
most informative features that will be fed on the LR, DT, RF, GBT, and NB
to classify the emails between phishing and benign. To evaluate the NLP/ML
combinations two experiments were performed, one with a balanced ratio be-
tween the phishing and benign emails and one with an imbalanced ratio, where
the benign emails are ten times more than phishing. The evaluation results
showed that the Word2Vec method is the most appropriate for an ML phishing
email detection approach that focuses on the emails’ body text. In particular,
the Word2Vec/RF combination accomplished the best results in the balanced
dataset and the Word2Vec/LR in the imbalanced.

The future work will focus on an approach that will combine two types of
features, namely features retrieved via the NLP methods from the emails’ body
(which were the main focus of this paper) and features retrieved from the email’s
contents, such as URLs, email header fields, and attachments, to test whether
this approach will lead to better results. Furthermore, the classification task will
be reinforced using deep learning algorithms to tune the results of the phishing
email detection approach.
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