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Abstract Cloud computing has been one of the disruptive technologies to
change the traditional application operation for the last decades. The success
of Cloud boosts ever more newly-built data centers. Although these data cen-
ters are distributed all around the world, the computing resources are managed
in a relatively centralized manner within one big data center. For a specific
small area, the centralized Cloud lacks the dispersion to satisfy the require-
ments of collaborative applications, e.g., the nearest data center might still be
too far to satisfy the network latency. Through spreading the computing re-
sources at the edge of the network, the emerging Edge computing can complete
the data processing before uploading to Cloud. However, Edge computing still
stays at the conceptual and experimental stage. Trust and incentive model
are missing to motivate the Edge node and micro Cloud owners to share the
computing infrastructure resources for building a more generalized and decen-
tralized ecosystem. Traditional method of building trust through authority is
not applicable in current edge environment, which is more like peer-to-peer re-
lationship between the customer and provider. To tackle this issue, ALLSTAR
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is proposed, which is a blockchain-based approach to enhance the trust for
equally combining all the Cloud and Edge resources to be seamlessly leveraged
by the application. The ALLSTAR approach is a systematic solution to realize
decentralized resource management, including Cloud and Edge resource shar-
ing and trading, and target at building the trustworthy ALLSTAR ecosystem.
In this paper, we first analyze the challenges of utilizing distributed Cloud and
Edge resources, and describe the overall architecture of ALLSTAR, including
the related key techniques, detailed application development and operations
processes as well as the new business model. Moreover, an empirical study
on the permissioned blockchain evaluation is conducted. The study not only
demonstrates the ALLSTAR approach is feasible but also provides insights of
which blockchain to choose when constructing such an ecosystem.

Keywords Blockchain · DevOps · Edge Computing · Resource Management

1 Introduction

As Web 3.0 rears into action, decentralization of core services across every facet
of online activities is in the need for a powerful, open, data-driven, user-centric,
interoperable platform or ecosystem to operate emerging applications Jeferry
et al. (2015). In this context, with the wide adoption of novel paradigms such as
Internet of Things (IoT), robotics, and crowdsourcing, ever more applications
require operation at a larger scale in both involved users (e.g., cooperative
crowd storytelling) and required infrastructure (e.g., mixing networked high-
end servers and low-end client devices). Such Next Generation Internet (NGI)1

collaborative applications exhibiting high business values (e.g., precise service
recommendation) and essential societal impacts (e.g., robotics in health care)
require critical runtime time constraints (e.g., sensitive latency in immersive
virtual realities (VR)), intensive artificial intelligence (AI) (e.g., processing
natural languages during social interactions), and strict trust (e.g., using self-
made media via social networks).

Cloud computing has been a major disruptive technology in the last decade
providing resources-as-a-service for diverse Internet applications Buyya et al.
(2009). According to Gartner’s report, it is poised to grow by around 27.5%
and expected to reach $1,250 billion by 2025. While Cloud offers elastic ca-
pacity and customizable connectivity over a large-scale network, the resilience,
sustainability and human-centric collaborative requirements of NGI applica-
tions demand an interoperable end-to-end ecosystem design that pushes the
infrastructure services, traditionally bounded within big data centers, towards
remote nodes closer to the data sources. These concerns are partially ad-
dressed by federating Cloud services with emerging Edge and Fog computing
paradigms with reduced overheads of transferring distributed data into remote
data centers Shi et al. (2016). Since the data can be processed in the Edge or
Fog nodes, the pressure of Cloud can be reduced and the application can also

1 https://www.ngi.eu/about/



ALLSTAR 3

retrieve response faster. However, most of the Edge devices are maintained by
a specific organization, or application developers and operators construct their
own Edge nodes and devices. For example, the Edge resources are provided by
base stations and are owned by the Shanghai Telecom company in Guo et al.
(2020). By contrast, application operators utilize their own local cluster to
work as Edge resources in Qian and Andresen (2016). Teerapittayanon et al.
(2017) propose to deploy the neural network across multiple Edge devices,
such as sensors and cameras, in a distributed manner. The issue is that these
devices must be physically owned by the application developer to control and
operate. Hence, the lack of an effective mechanism to motivate the Edge owner
to share the resource hinders the Edge application developer to further utilize
resources distributed around the world.

This paper introduces the ALLSTAR approach, a blockchain-based ecosys-
tem to provide a solution for achieving collaborations among Cloud/Edge re-
source providers and application developers/operators. The goal of this solu-
tion is to leverage the blockchain as the underlying support to enhance the
trust among the resource providers and application developers when further
motivating the Edge device owners to share their resources. We further con-
duct an empirical study on the evaluation of scalability, stability, and resource
consumption of different blockchain platforms, which demonstrates the feasi-
bility of the ALLSTAR approach.

In the rest of this paper, we demonstrate the challenges of utilizing current
Cloud and Edge resources to orchestrate NGI collaborative applications as well
as related works in Section 2. To address the challenges, we propose the ALL-
STAR approach and introduce the detailed architecture components in Section
3. We also presents the business model and the application DevOps lifecycle
between resource providers and application developers/operators when adopt-
ing ALLSTAR approach in the same section. Furthermore, Section 4 conducts
an empirical study on blockchain to demonstrate the feasibility of utilizing
blockchain as the fundamental layer. Finally, Section 6 concludes the paper.

2 Challenges and Related Works

Traditional Clouds are maintained by several well-known providers, such as
Amazon, Google. Although their data centers are distributed around the world,
the management method within one data center is still centralized. Especially,
the distribution of the data centers is still limited. Zooming in to a small re-
gion, the resources within one data center are still too centralized to satisfy the
application requirements, such as low latency, fast response, etc. Therefore, we
illustrate the challenges of developing and operating applications within such a
complex computing environment as the underlying infrastructure in Figure 1.
The green part of the figure represents the state of the art of orchestrating
applications with the current Cloud computing infrastructure. When further
considering to add the more decentralized Edge resources as the underlying
infrastructure, we identified five critical barriers in the current Cloud envi-
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Fig. 1: The state of the art of the application DevOps in current Cloud com-
puting environment and challenges when further considering Edge resources

ronments that hinder the development, management and operation of NGI
collaborative applications. We demonstrate these barriers by considering a
crowd engaged live video and real-time storytelling use-case, the goal of which
is for elastic collection and distribution of collaborative, trusted, high-quality
live content and story opinions from a massive number of dynamically engaged
crowd participants across hostile network channels. This use case is provided
by an information broadcast and video encoding company called MOG Tech-
nologies SA from Portugal.

Barrier 1: Difficulty to develop and operate (DevOps) applications over
heterogeneous infrastructures across distributed Cloud data centers and Edge
devices. The MOG development team needs to keep their live event and sto-
rytelling service continuously online when incorporating dynamic customer
requirements and feedback. Unfortunately, current Cloud DevOps solutions
fail in automating continuous testing, integration, deployment and monitoring
of distributed applications over heterogeneous resources, such as Clouds (e.g.,
for video processing and switching), Edge (e.g., for video and user contribu-
tion pre-checking), and mobile devices (e.g., media rewarding), due to diverse
resource management models and interfaces.

Barrier 2: Difficulty to guarantee application and system level perfor-
mance over heterogeneous infrastructures. For business-critical customers, MOG
needs to ensure the performance of the application and deliver a guaranteed
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service quality (QoS). However, the diverse abstraction models on resource
performance and data access constraints, such as security and privacy, result
in inconsistent views from different providers. MOG cannot effectively plan
its infrastructure capacity across provider boundaries to schedule and bal-
ance task loads among distributed Edge nodes and Cloud data centers, for
effectively runtime handling of the dynamic data, energy, cost and security
constraints.

Barrier 3: High complexity in controlling infrastructures consisting of het-
erogeneous distributed Cloud data centers and Edge resources. When system
performance degrades (due to imbalanced load, device defects or security at-
tacks), the high complexity of the heterogeneous infrastructure hampers MOG
from making real-time decisions to adapt the infrastructure, especially when
considering performance, energy, security, and cost, together with the lack of
effective formal control verification mechanisms.

Barrier 4: Difficulty to utilize advanced hardware accelerators in virtu-
alized infrastructures. MOG developers heavily rely on natural language pro-
cessing and deep neural networks to process the collected stories. Advanced
specialized hardware like GPU and FPGA can largely accelerate the computa-
tion of such machine learning (ML) tasks but is only available in data centers
of few public providers. MOG lacks a flexible and optimized commodity so-
lution for accelerating its data processing, ML, and other resource-intensive
tasks, capable of considering different hardware characteristics and virtual in-
frastructure constraints.

Barrier 5: Insufficient business support for providers in building on-demand
trustworthy resource federations. MOG developers often need to consider not
only services from different Cloud providers, but also special remote Edge de-
vices deployed close to the event site where the live video platform operates.
The current centralized quality control mechanisms available in the Cloud,
built upon several layers of abstraction, do not suffice, hampering MOG from
effectively federating heterogeneous resources from different providers. MOG
strives for a trustworthy solution supported by a proper business model un-
derneath that dynamically federates high quality and reliable resources on-
demand in response to its real-time application demands.

In fact, there are plenty of tools and academic research working on how to
utilize the Cloud resources. For example, OpenNebula2 or OpenStack3, pro-
vide different virtual infrastructure functions, known as APIs (Applications
Programming Interfaces), to access physical resources through the hardware
virtualization, while they are not targeting at managing Edge resources. On
the other hand, academic works mainly focus on Cloud resource allocation
and scheduling. Venkateswaran and Sarkar (2018) optimize the application
deployment process on hybrid Clouds and achieve the best-fit hosting com-
bination. Wang et al. (2011) enhance the makespan and the reliability of a
workflow application through evaluating the Cloud resource reputation. Zi-

2 https://opennebula.org/
3 https://www.openstack.org/
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afat and Babamir (2018) develop the algorithm selecting a proper Cloud to
run the task according to the data center geolocation. All these works lack an
efficient solution for the application to program and control the computing in-
frastructure in the DevOps lifecycle. Although our previous work CloudsStorm
framework tackling the resource management issue from the application De-
vOps perspective Zhou et al. (2018, 2019a), it still mainly focuses on working
with Cloud resources, which is insufficient for a more complex Edge computing
environment.

At runtime, to ensure the service quality, SLA (Service Level Agreement)
is leveraged by Cloud computing for compensating the customer when the
service quality is not met Faniyi and Bahsoon (2015). However, this agreement
is based on the trust that the Cloud provider would behave honestly. However,
Edge providers or micro Cloud providers in the new computing environment
have the peering relationship with the customer Wang et al. (2020); Higuchi
et al. (2018). Hence, the providers do not have the sufficient capability to
endorse their services.

Blockchain is the technology proposed to solve the trust concern Nofer
et al. (2017). It is an innovative technology to make every participant having
trust in a decentralized ledger through a consensus algorithm, such as Proof
of Work (PoW) Nakamoto (2008), and Practical Byzantine Fault Tolerance
(PBFT) Castro and Liskov (1999). The blockchain using the PoW type of
consensus algorithm is classified as permissionless blockchain, which is open
to allow any participant to join. The blockchain using the PBFT type of con-
sensus algorithm is classified as permissioned blockchain, which only allows a
fixed set of participants to join. Moreover, the blockchain-based smart contract
technique is developed to enable the application execution on a blockchain
platform Buterin (2014). Its execution process can benefit from the blockchain
features and, therefore, can be trusted.

To enhance the trust between the provider and the customer, there are also
some initial efforts paid in the Cloud environment to apply these blockchain
related techniques. For instance, Nakashima and Aoyama (2017) automate
the Cloud SLA enforcement using blockchain. We also previously proposed
the witness model in Zhou et al. (2019b); Uriarte et al. (2020) to improve
the trustworthiness of demonstrating whether a Cloud service violation really
happens. However, a comprehensive and systematic consideration for estab-
lishing collaborations among different roles of the ecosystem is still missing,
especially when Edge resources are involved in the ecosystem.

3 The ALLSTAR Approach

3.1 Design Requirements

By analyzing the current barriers, we firstly highlight a number of requirements
when designing an approach to address these issues:
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– Resilient and seamless management across data center VMs (e.g., running
heavy machine learning tasks), Edge computers (e.g., handling communi-
cation among mobile devices collecting live videos from users), and mobile
devices (e.g., processing user inputs or lightweight learning processing),
required to facilitate the application operation;

– Effective infrastructure adaptation during the crowd journalism applica-
tion operation for manipulating the network topology and resources, and
relocating tasks (e.g., when dealing with security attacks), alongside Cloud
services scaling and load balancing;

– Data privacy and security ensured when processing data (e.g., personal
information), especially when coming from distributed sources (e.g., from
crowd users or robots);

– Critical time constraints required by crowd journalism applications involv-
ing user interactions (e.g., in the immersive VR) or decision making (e.g.,
in the business recommendation);

– SLAs required by all applications and guaranteed as QoS metrics by re-
source providers (even by multiple providers jointly hosting a single dis-
tributed crowd journalism application);

– Trustworthy service trading ecosystem based on the blockchain technology
for sharing digital assets (e.g., individual story contributions) or developer
media with use tracking;

– Hardware characteristics, in particular accelerators, required in the virtu-
alized environment to optimize the training of the machine learning tasks
such as neural networks.

These requirements cover the key aspects in the development and operation
lifecycle of the MOG’s crowd journalism use case, including their virtual host-
ing infrastructure and their service management model. To solve these require-
ments, the current Internet, the Cloud, Fog, and Edge computing paradigms,
blockchain, AI, ML, and the Cloud DevOps software engineering concept are
important starting points. However, these technologies currently focus on dif-
ferent aspects and do not seamlessly work in a unified ecosystem. Therefore, we
propose ALLSTAR architecture to unify them as a single integrated approach
and to guarantee a flexible approach for citizen-based journalism use case in
MOG. The objective of “ALLSTAR” is to flatten the computing architecture of
the infrastructure and make Edge resources equal to Cloud resources from the
business perspective. Hence, more Edge resource will be motivated to adopt
our approach and freely join the ecosystem. With their contributions in pro-
viding a more decentralized computing infrastructure, the requirements of the
MOG use case can be satisfied. Since the computing resources in the environ-
ment are organized in a decentralized manner, the traditional centralized solu-
tions cannot operate so many heterogeneous resources from different providers,
and also cannot provide the trust for all the providers and customers. Because
traditional public cloud providers are endorsed by their companies. However,
the relationship between micro cloud/edge providers and customers is more
like peer-to-peer. The customer cannot easily believe the provider would offer
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the guaranteed service as the customer requests. To tackle this issue, tradi-
tional method is through the endorsement by a trusted authority. This method
is not practical, since there is usually no trusted authority in our edge environ-
ment. On the other hand, blockchain is an emerging technology to build trust
in such a distributed environment, which naturally fits in this scenario Zheng
et al. (2018). Therefore, we consider leveraging blockchain to construct the
trust layer for the edge environment.

3.2 Architecture Overview

As mentioned above, a more decentralized “Cloud+Edge” ecosystem requires
new business models and application DevOps procedures, considering that the
resources are complex and heterogeneous. Therefore, the proposed architecture
targets at solving following four challenging questions:

1) How to describe diverse resources and services in the ecosystem?
2) How to use a descriptive model to build a seamless DevOps solution?
3) How to consider hardware features to optimize application function con-

tainerization and deployment?
4) How to provide a decentralized environment for sharing digital assets

(e.g., infrastructure resources, software services, data)?
Hence, ALLSTAR designs four subsystems in response to above questions,

as shown in Figure 2.

1. Heterogeneity-AS-code toolKIT (HASKIT) provides an open modeling
language for describing heterogeneous resources and services in the ALL-

ALLSTAR 
ecosystem and the 
corresponding
approach

Fig. 2: The architecture overview of the ALLSTAR approach and the related
roles of the corresponding ecosystem
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STAR ecosystem, including both functional (e.g., application components
and network topology) and non-functional properties (e.g., QoS, QoD, and
data accessibility constraints) of an NGI collaborative application at a dif-
ferent stage of its lifecycle. Moreover, it provides tools to other subsystems
to validate the specification composed by application developers, make con-
trol decisions, and analyze the service reputations during the operation of
the application.

2. CRoss-Edge seamless infrAstructure orchestration Framework (CREAF)
provides tools and APIs (Application Programming Interface) for applica-
tion developers to plan the necessary capacity for an application, automate
the provisioning of the underlying virtual infrastructure and the deploy-
ment of application components. The CREAF subsystem also provides
tools to monitor, diagnose, and control the application at runtime.

3. HardWare chAracterized Function vIRtualization framework (WAFIR)
provides a framework that focuses on hardware accelerators (e.g., GPU
and FPGA) and OS-level (Operating System) virtualization (e.g., through
containers) for meeting application QoS concerns. The framework also pro-
vides special care on security isolation and energy optimization.

4. Service fEderation defined Trustworthy Inter-Chain platform (SETIC)
provides a blockchain-based decentralized fabric for the ALLSTAR ecosys-
tem to record the service transactions among providers and consumers,
enforces the SLAs using smart contracts, and provides secure-by-design ser-
vices for naming, lookup, resource discovery, and querying acquired knowl-
edge.

3.3 Technical Details

The ALLSTAR software architecture consists of a novel combination of state-
of-the-art technologies in DevOps, Cloud, Fog, and Edge computing, Blockchain.
For each component mentioned in the previous section, we present the detailed
description of sub-components and related technologies. The details are shown
in Figure 3 using different colored boxes, where each colored box represents
the main component.

3.3.1 Heterogeneity-AS-code toolKIT (HASKIT)

The Heterogeneity-AS-code toolKIT (HASKIT) provides: 1) an open descrip-
tion language called ALLSTAR Modelling Language (ALLSTAR-ML); 2) a
number of tools for validating the model; 3) decision making mechanisms for
applications runtime control; 4) reputation auditing for the participants in the
ecosystem.

– ALLSTAR Modeling Language (ALLSTAR-ML) provides an open descrip-
tion language for modeling not only the key elements in both NGI applica-
tions (e.g., services, components, functions, and dependencies among them)
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and infrastructures (e.g., resource types, devices and network topologies),
but also the properties of these elements at different security and access
constraints levels (e.g., QoS, QoE, and QoD). The language examines the
industrial modeling standards (e.g., TOSCA ) and Cloud ontologies (e.g.,
INDL, mOSAIC) for describing Cloud-Edge computing infrastructures and
extends them with flexible semantic linking to effectively capture and spec-
ify properties, which are derived from new characteristics of NGI collabo-
rative applications.

– Interactive ALLSTAR-ML verifier provides verification support for both
functional and non-functional requirements of applications, as specified in
the NGI collaborative application model. It verifies the application logic,
time, quality constraints, as well as security and privacy requirements in the
context of requirement modeling, application composition, provisioning,
and deployment.

– Complex NGI-Cloud control decision validator applies complex systems
theories, such as (probabilistic) Boolean networks and dynamical systems,
to validate the consequences a control decision may cause on the graph
representation of the runtime Cloud infrastructure status. Efficient control
algorithms detect the factors driving the infrastructure into a critical state,
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which may affect the overall performance and stability of the application.
Furthermore, it proposes solutions in case of identified problems.

– Reputation auditor for ecosystem participants provides a reputation model
focused on QoS experiences and history to audit the behavior of the ecosys-
tem participants. The results are achieved not only based on end users feed-
back, but also on violation detection reports during the crowd-based SLA
enforcement. The SETIC blockchain-based fabric explained later provides
this information.

3.3.2 CRoss-Edge seamless infrAstructure orchestration Framework
(CREAF)

The CRoss-Edge seamless infrAstructure orchestration Framework (CREAF)
provides a unified and robust interface for agile and programmatic seam-
less application-infrastructure orchestration considering heterogeneity across
Cloud and Edge resources. CREAF also empowers ALLSTAR with smart, au-
tomated infrastructure capacity planning, and resource management. It em-
ploys predictive analysis of application-infrastructure driven requirements to
simplify scaling and provisioning with improved operational efficiency, and also
minimize management costs.

– Interactive NGI application-infrastructure programming environment cre-
ates the description, with privacy-by-design features in accordance to GDPR
guidelines, using ALLSTAR-ML and the interactive verification tool pro-
vided by HASKIT for user-centric support approaches. CREAF further
leverages real-time analytics based on intelligent optimization and deep
learning heuristics, to measure against infrastructure and application-driven
metrics. It provides proactive deployment insights of the application and
the infrastructure management is based on ALLSTAR-ML constraints and
specifications. It also considers performance issues, data privacy, security,
application needs, unexpected traffic spikes or even to control costs between
providers across Cloud and Edge boundaries.

– Infrastructure planner with automated integration capability enhances the
continuous provisioning, deployment, testing, and intra-service orchestra-
tion DevOps processes across the software development lifecycle. Firstly,
it is able to plan the infrastructure capacity according to the application
requirements. Meanwhile, it simplifies and accelerates the transition from
manual to automated continuous service delivery, ensuring full capability
across the federation of heterogeneous physical and virtual infrastructures,
services and applications. Precisely, CREAF utilizes the existing industrial
DevOps tools (e.g., Kubernetes , Puppet , Chef ) and provides AI-driven
services to automate the data analysis and accelerate routine operations
(e.g., continuous integration, provisioning, deployment, testing, and deliv-
ery) with effective infrastructure usage and collaboration.

– Systematic NGI application-infrastructure diagnoser, which is fed with co-
variate performance metrics and measurements across heterogeneous Cloud
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and Edge infrastructures, monitors and exploits the application and infras-
tructure orchestrated resource history as a baseline. It exploits the baseline
performance against small performance deviations (e.g., network conges-
tions, delays, and bandwidth allocations) and flags a possible heterogeneous
resource anomalous condition in need of further proactive actions.

– Seamless cross-Edge infrastructure orchestrator considers the geographi-
cally dispersed and fragile networked infrastructures orchestration within
and across Cloud data centers. It exploits open source orchestration tools
(e.g., Kubernetes) and automates the operations not limited to application-
driven development, production and deployment, but also incorporates
infrastructure adjustments. Such adjustment owes to complex and het-
erogeneous architecture design integration, including microservices, hybrid
Cloud, Edge computing and IoT systems.

3.3.3 hardWare chAracterized Function vIRtualization framework (WAFIR)

The hardWare chAracterized Function vIRtualization framework (WAFIR)
provides hardware accelerator aware virtualization and function containeriza-
tion for quality-critical NGI applications. By adopting proper level of virtu-
alization techniques (e.g., VM, container, and unikernel ), WAFIR creates
self-contain portable components for application functions according to the
requirements and available hardware acceleration capacity (e.g., Intel, ARM,
Nvidia GPU, FPGA), and publishes them to the knowledge mesh within
the fabric of SETIC (see next section) based on the ALLSTAR-ML schema.
WAFIR also provides CREAF with underlying hardware acceleration support
for optimizing application function deployment.

– Hardware portable function virtualizer supports different types of hard-
ware, able to expose to the correct acceleration depending on the applica-
tion SLA. In the particular case of FPGAs, specific hardware extensions
enable dynamic resource allocation, reconfiguration and runtime migration.

– Quality-critical and energy-aware function composer allows application de-
velopers iteratively select the ingredients of application functions and op-
timize them based on the energy and performance constraints, and the
availability of the hardware accelerators choosing the suitable level of vir-
tualization (e.g., container, VM, or unikernel) for different performance
and security requirements.

– Security and performance isolator, for mixed criticality tasks in NGI ap-
plications, isolates functional safety critical workloads from untrusted con-
nected applications to ensure security and performance. A secure enclave
will leverage CPU processor extensions, such as ARM TrustZone and Intel
SGX, to ensure a secure environment.

3.3.4 Service fEderation defined Trustworthy Inter-Chain platform (SETIC)

The Service fEderation defined Trustworthy Inter-Chain platform (SETIC)
provides the underlying blockchain and smart contract support for construct-
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ing the decentralized Cloud ecosystem, in which participants collaborate with-
out relying on a centralized authority. Infrastructure providers can dynami-
cally join and leave the ecosystem, and offer their resources as a service to the
community of application developers and operators.

– Service federation defined inter-chain fabric mainly provides two aspects of
functionalities: application DevOps management and the application exe-
cution environment. For the management perspective, the inter-chain fab-
ric provides: 1) the underlying blockchain for transactions and interactions
among the different assets providers in the Cloud ecosystem, including in-
frastructure resources, services and models; 2) an interoperable fabric for
interconnecting different blockchains used in the ecosystem. For the execu-
tion perspective, the inter-chain fabric provides customizable blockchain-
as-a-service for service federation defined applications, which can be ex-
ecuted as smart contracts on a new blockchain on demand. The content
on the blockchain includes data, software, media content, etc. Through
combining different chains, the fabric exploits the trade-off between the
system performance and consensus mechanisms according to the transac-
tion types: permissionless blockchain with more trust and less efficiency,
and permissioned blockchain with conversely less trust and more efficiency
instead.

– Evolutionary knowledge mesh manages the information and the knowledge
in the decentralized ecosystem using the underlying inter-chain fabric, in-
cluding 1) infrastructure provider information (e.g., prices, capacity, and
special hardware feature), 2) a catalogue of virtualized application func-
tion repository for agile deployment, 3) application naming information for
delivering services to end users, and 4) reputation from crowds and user
feedback.

– Crowd-based trustworthy smart contract enforcer provides a trustworthy
mechanism for service providers and consumers to automate specific service
transactions, required by the applications in the ecosystem (e.g., negotiat-
ing prices, payment conditions, and violation conditions), with incentivized
witnesses model to credibly feedback about the off-chain events. The re-
sults of this module also play an important role in generating the providers’
reputation.

– Context-aware fabric service broker enables users to interact with the inter-
chain fabric and knowledge mesh, for example for publishing service on the
mesh and semantically discovering resources or other types of assets from
the ecosystem. It can also interact with executable smart contract code for
negotiating SLA, generating new smart contracts, or detecting violation
during enforcement.

3.4 The Business Model and DevOps Lifecycle

ALLSTAR combines the HASKIT, CREAF, WAFIR, and SETIC subsystems
into a single ecosystem with high development modularity, with each sub-
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system encapsulating features and modules as microservices. The integration
interfaces among subsystems and microservices define a high-level abstract
and generic application-programming interface (API) to ensure portability and
sustainability, so that new implementations are able to interoperate with the
existing ones as the technology evolves. The ALLSTAR ecosystem integration
has three main scenarios: 1) decentralized ALLSTAR ecosystem instantiation;
2) decentralized business model of resource providers; 3) application develop-
ment and operation in the ecosystem. We briefly explain each scenario in the
following key steps.

Firstly, the decentralized ALLSTAR ecosystem instantiation sets up a
working ecosystem in four steps: a) Initialization. The first component needs
to be initialized in the ALLSTAR ecosystem is the knowledge mesh of SETIC,
which can initialized by creating specialized ALLSTAR smart contract on a
blockchain; b) User registration. The knowledge mesh provides interfaces for
a blockchain participant to register his/her account (e.g., wallet address) in
the ecosystem as a specific role, e.g., application developer, an application
operator, resource provider, or end user; c) Service publishing. A provider
can announce his/her services by publishing service description (using the
ALLSTAR-ML) into a catalogue in the knowledge mesh; d) Service state up-
date. A provider is also able to modify the statue (e.g., availability) of his/her
service by setting availability state of the corresponding smart contract of the
catalogue in the knowledge mesh.

Secondly, users buy services from providers by creating smart contracts
of the SLA, using SETIC. The decentralized business model for buying and
provisioning resources in the ecosystem has four steps: a) Discover service.
A user (e.g., application developer or operator) can discover services using
the context-aware fabric service broker provided by SETIC based on the
ALLSTAR-ML schema; b) Check reputation. The user may invoke the HASKIT
reputation auditor to check the resource provider reputation, performed with-
out a centralized third party and with trustworthy results; c) Sign contract.
The user (e.g., application developer) can directly buy services from a provider
invoking SETIC to negotiate and sign a smart contract with the provider based
on quality constraints, and to initialize crowd-based trustworthy smart con-
tract enforcer for detecting service violation; d) Provision service. A service
provider can utilizes the hardware portable function virtualizer of WAFIR to
provision virtual resources on top of specific hardware. The resource provi-
sioning and application function deployment is often embedded as part of the
DevOps lifecycle. We will discuss them in more detail in the next scenario.

Thirdly, the DevOps application development lifecycle, embedding the re-
source provisioning and application function deployment, operates the appli-
cation in the ecosystem in seven steps: a) Develop application. An applica-
tion developer utilizes the interactive application-infrastructure programming
environment from CREAF to customize the virtual infrastructure by invok-
ing infrastructure information from the knowledge mesh. The developer also
queries providers on their resources availability, prices, reputation, and so on;
b) Plan capacity. CREAF performs dynamic capacity planning to optimize
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the application and the required virtual infrastructure, and invokes the inter-
active ALLSTAR-ML verifier for dynamically verifying whether the composed
application and virtual infrastructure match the performance and data secu-
rity constraints; c) Sign contract. The application developer uses SETIC to
negotiate and sign smart contracts with the selected resource providers, after
the application and infrastructure design; d) Provision service. CREAF provi-
sions the resources and invokes the quality-critical and energy-aware function
composer of WAFIR to create a suitable application function for deployment
based on application requirements and available components. CREAF deploys
a blockchain-as-a-service and registers it to the knowledge mesh of SETIC,
if the application needs its own blockchain services; e) Runtime adaptation.
CREAF enables the runtime application operators to diagnose the infrastruc-
ture failures according to the monitoring information and perform control de-
cisions with support from the complex NGI-Cloud control decision validator
(provided by HASKIT); f) Automated pipeline. CREAF continuously consid-
ers changes in the application or its virtual infrastructure and continuously
automates the pipeline during the application lifecycle; g) Feedback collection.
SETIC provides decentralized naming services to deliver the application ser-
vice to the end user. Furthermore, the end user is able to feedback with the
QoS experiences.

4 Empirical Study of ALLSTAR Blockchain Infrastructure

According to the design requirements, the core function of ALLSTAR is to
leverage the blockchain as the underlying infrastructure to enhance the trust
among the decentralized resource providers when further motivating the Edge
device owners to share their resources. The HASKIT, CREAF, and WAFIR
are designed and developed mainly for programming and controlling the het-
erogeneous Cloud and Edge resources, optimizing the application DevOps on
them. To tackle this issue, we have proposed different solutions in our previous
work, such as scheduling algorithms in Hu et al. (2020) Hu et al. (2018) and in-
frastructure resource programming frameworks in Koulouzis et al. (2020) Zhou
et al. (2019a). Therefore, the blockchain as the fundamental layer of the entire
architecture is the key part to support all the upper transactions. In order to
demonstrate the feasibility of the ALLSTAR approach, we conduct an empir-
ical study on different blockchain platforms to analyze their performance and
provide insights for choosing the proper blockchain platform when construct-
ing the ALLSTAR ecosystem.

4.1 Preliminaries

In the previous section, we have already discussed that the blockchain is the
main component of the SETIC to provide a decentralized Cloud/Edge envi-
ronment. The performance of the blockchain will directly affect the efficiency
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of the decentralized ALLSTAR framework when motivating resource providers
to adopt our approach and join the ecosystem easily. It is, therefore, important
to discuss the performance of ALLSTAR blockchain infrastructure.

In general, blockchains can be permissionless or permissioned. Platforms
like Bitcoin4 and Ethereum5 are permissionless blockchains, which means any-
one can choose to join the network. Due to the performance limitations of cur-
rent permissionless blockchains, and the huge energy and money consumption
when deploying and executing smart contracts, it is not desirable to implement
all the functions of ALLSTAR ecosystem on the permissionless blockchain
platform. By contrast, the permissioned blockchains, which have exhibited
better performance and demonstrated great potential to provide trustworthy
and security services in various industrial scenarios, are more suitable in our
ecosystem to work as decentralized infrastructure solutions. We designed the
Inter-chain fabric in the SETIC module, hoping to combine the advantages
of different permissioned blockchains to achieve our goal of creating a trusted
trading environment for different Cloud and Edge resource providers. To eval-
uate these functionalities of SETIC, we designed three experiments which will
be discussed in this section.

First of all, we would like to clarify the basic assumptions and settings of
our experiments.

– We would not discuss the performance of permissionless blockchain plat-
forms because these data can be easily obtained from major monitoring
protocols (e.g. Etherscan6). Instead, our evaluation mainly focuses on the
discussion of performance comparison of different permissioned blockchain
platforms under the same scenario, which is lacking in most current studies.

– Although different platforms implement their own consensus algorithms,
the evaluation in this paper focuses on the comparison of different blockchain
platforms and does not specifically discuss the comparison of consensus al-
gorithms. In our previous research, we have demonstrated that there are
some differences in the performance of different consensus algorithms under
the same platform Shi et al. (2019). However, we believe that the impact
of consensus algorithms on performance is limited by the framework itself.

– A basic smart contract was leveraged to model the decentralized Cloud/Edge
market and to benchmark different blockchain platforms. The functions of
this smart contract include general operations in a decentralized Cloud/Edge
market, e.g., generating new transactions (write) and querying existing
transactions (read). We leave the complex functional design of smart con-
tracts as our future work.

– Regarding the benchmark metric, the performance of the blockchain is
measured by the commonly adopted metric “throughput” in permissioned
blockchain community. It is defined as the rate at which write/read op-
erations are committed to the blockchain (as shown in equation 1) and

4 https://bitcoin.org/en/
5 https://www.ethereum.org/
6 https://etherscan.io/
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can reflect whether the underlying infrastructure (blockchain) of the de-
centralized Cloud/Edge solution can meet the requirements of industrial
applications.

Write/Read Throughput =
Total Write/Read Operations

Total T ime in Seconds
(1)

– Five promising blockchain platforms were selected as our decentralized in-
frastructure and evaluation objects, namely Hyperledger Sawtooth, Hyper-
ledger Iroha, Hyperledger Fabric, Hyperledger Besu, and Ethereum7. These
platforms have been involved in many successful commercial projects. It
should be noted that Ethereum is not used as a permissionless blockchain
but as a private deployment platform. A more detailed comparison of those
5 platforms is illustrated in Table 1

– We used a MacBook Pro laptop as the running machine, with 2.9 GHz Intel
Core i5 CPU and 16 GB 1867 MHz DDR3 memory. We used docker con-
tainer to deploy our blockchain network. All of our code and experimental
details are open source on Github8.

4.2 Results

Based on the above assumptions and settings, we designed experiments with
three dimensions to discuss scalability, stability, the resource consumption
(CPU, memory) of various blockchain platforms. More specifically, the exper-
iments related to scalability is to explore the blockchain performance under
different transaction input patterns. Performance stability experiments lever-
age the same transaction input rate to test the distribution and stability of
throughput results. Finally, the resource consumption experiment discussed
the CPU and memory consumption of different blockchain platforms under
different transaction models.

4.2.1 Scalability Evaluation

In this experiment, we used the transaction input rates that increased linearly
from 10 tps to 100 tps to observe the performance scalability of the blockchain
platform when facing different levels of transaction requests. In practical sce-
narios, it often happens that blockchain transaction requests increase rapidly
in a short period of time. Therefore, such a rate control strategy can simulate
the performance change of the blockchain platform when processing transac-
tion requests with different densities.

Figure 4a shows the changes in write throughput of different blockchain
platforms at different transaction input rates. When the rate increases, the

7 For simplicity, Sawtooth, Iroha, Fabric, Besu, and Ethereum are used in the following
text.

8 https://github.com/ZeshunShi/ALLSTAR
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Table 1: Comparison of Five Permissioned Blockchain Platforms

Type Hyperledger
Sawtooth

Hyperledger
Iroha

Hyperledger
Fabric

Hyperledger
Besu

Ethereum
(Private)

General
Descrip-
tion

A framework
for building
enterprise-
grade per-
missioned
blockchain
with a focus
on security,
scalability, and
modularity.

A framework
designed to
be simple and
easy to incor-
porate into
infrastructure
or IoT projects
that require
blockchain.

An open source
enterprise-
grade per-
missioned
blockchain
with a highly
modular and
configurable
architecture.

An Ethereum
client de-
signed to be
enterprise-
friendly for
both public
and private
permissioned
network use
cases.

Ethereum is a
decentralized,
open-source
blockchain
with smart
contract func-
tionality.

Consensus
Protocols

Pluggable
consensus al-
gorithm e.g.,
Raft, PBFT,
and PoET
(hardware
based)

A Byzantine
fault tolerant
consensus al-
gorithm called
YAC

Pluggable or-
dering service
e.g., Raft and
Kafka (dep-
recated in
v2.x)

Several consen-
sus algorithms
including
PoW, PoA
(IBFT, IBFT
2.0, Etherhash,
and Clique)

Use PoW in
most cases,
other options
include PoS
and PoA

Smart
Contract

- Transaction
Processor
- Written in
Python or
Javascript

- Built-in smart
contracts called
“commands”

- Chaincode
- Written in
Golang or
JavaScript
- Run in Docker
containers

- Smart con-
tract
- Written in So-
lidity or Vyper

- Smart con-
tract
- Written in So-
lidity or Vyper

Token

- None
- Currency can
build via trans-
action proces-
sors

- No Iroha
token
- Sora is a Iroha
based project
support XOR
token

- None
- Currency
can build via
Chaincode

- None
- Currency can
build via smart
contract

- Ether (ETH)
is the native
cryptocurrency
of the platform

Features

Supports EVM
bytecode smart
contracts
and parallel
transaction
execution.

A robust per-
mission system
using accounts
and roles mech-
anism.

Private chan-
nel technique,
which are
essentially sep-
arate ledgers.

The first
Hyperledger
blockchain
project that
can operate on
a permission-
less blockchain.

Provide pro-
grammability
on blockchain.
The most
successful
blockchain
platforms after
Bitcoin.

performance trend is to increase first and then stabilize at the bottleneck value.
It can be seen that the performance of Fabric is significantly better than other
blockchain platforms. Besu takes second place, and the remaining three are
at the same level. For Fabric, the performance bottleneck is reached when the
input rate is 70 tps. Whereas for Iroha, Sawtooth, and Ethereum, when the
input rate reaches 20 tps, the performance already reached their bottleneck.
In general, the performance of Iroha, Sawtooth, and Ethereum shows some
fluctuations, but the performance of Sawtooth tends to be the worst. It can
also be seen that Ethereum outperforms Iroha at high transaction input rates
(greater than 50 tps).
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Similarly, Figure 4b shows the changes in read throughput of different
blockchain platforms. In order to show trends and bottlenecks more clearly,
we increased the maximum input rate to 300 tps. It can be seen that com-
pared with write performance, the read performance of major blockchain plat-
forms has been greatly improved. Overall, Iroha performed the best, with a
bottleneck of around 200 tps, followed by Ethereum, Besu, and Fabric. Not
surprisingly, Sawtooth has the worst read performance, with a bottleneck of
about 60 tps.
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Fig. 4: Impact of transaction input rate on blockchain performance

4.2.2 Stability Evaluation

In this experiment, we used a fixed transaction input rate with 100 tps and
repeat it 10 times to observe the performance stability of the blockchain plat-
form when facing the same transaction request multiple times. In fact, such
an experimental setup can reveal the performance of the blockchain platform
in the continuous processing of the same or similar transaction requests.

As can be seen from Figure 5a, in terms of write throughput, the perfor-
mance of Fabric is the most stable one, and its throughput is much higher than
other platforms. Although Ethereum’s performance is relatively stable as well,
the average throughput is not high, only about 14 tps. Iroha, Sawtooth, and
Ethereum are at the same level and their stability is relatively poor. In terms
of read throughput, although Sawtooth has the most stable performance and
small fluctuations, its throughput is far less than the other four. In contrast,
Fabric and Iroha have better stability whereas Besu has the worst one, which
can be seen from Figure 5b .
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Fig. 5: Variation in throughput of different blockchain platforms

4.2.3 Resource Consumption Evaluation

In this experiment, we use a linear transaction input rate to observe the CPU
and memory resource consumption of the blockchain platform when facing
transaction requests under dynamic transactions patterns.

As can be seen from Figure 6a, in general, the memory consumption of
several blockchain platforms is relatively stable. More specifically, Ethereum
is more sensitive to memory consumption in our transaction mode. Its aver-
age memory consumption is about 970 MB for write and 1280 MB for read.
Sawtooth and Besu have similar memory consumption for write/read, both be-
tween 500-600 MB. Iroha and Fabric have similar memory consumption, both
of which are around 330 MB. In addition, the memory consumption of read
operation is more stable than write operation on most platforms. Ethereum
is a special case. Although its overall memory consumption for write is more
stable than read , there are three outliers in the write part.

Compared with the stable memory consumption, the CPU utilization of
the different platform changes significantly and tends to be unstable, as shown
in Figure 6b. Most platforms have higher CPU utilization when doing write
operations, except for Ethereum. Among them, Sawtooth has the most CPU
usage, and its average CPU utilization for write and read reached 119% and
107%, respectively. This proves that the current transaction input volume has
reached the performance bottleneck. Iroha has the lowest CPU utilization,
with write/read operations for only 25% and 5%.

There are also some findings from the scatter plot shown in Figure 7a and
Figure 7b. With the linear increase of transaction input rate from 0 to 100
tps, the improvement of the read performance of the platform is more obvious
than the write performance. At the same time, the increase in transaction input
rate is usually accompanied by an increase in memory consumption. Finally,
when the input rate is increased, the changing trend of CPU utilization shows
dynamic fluctuations and worse stability.
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100
90

80
700

10

60

Tran
sac

tion Input R
ate

 (tp
s)

20

1400 50

30

1200

40

401000

50

Memory Consumption (MB)

30800

Th
ro

ug
hp

ut
 (t

ps
)

60
70

600 20

80

400 10

90

200

100

00

(a) Memory consumption vs. Throughput

100
90

80
700

10

60270

Tran
sac

tion In
put R

ate
 (tp

s)

20

240 50

30

210

40

40180

50

CPU Utilization (%)

150 30

Th
ro

ug
hp

ut
 (t

ps
)

60

120

70

2090

80

60 10

90

30

100

00

(b) CPU utilization vs. Throughput

Fig. 7: Scatter plot of blockchain resource consumption impact on performance.
Blue, green, yellow, cyan, and red dots represent Sawtooth, Iroha, Ethereum,
Besu, and Fabric, respectively. The triangle represents read operations, and
the circles represent write operations.

4.3 Discussion

Based on the observations above, we draw the conclusions as follows:

1. In terms of performance scalability, with the increase of input transaction
volume, the write/read performance of different blockchain platforms will
first increase and then reach its bottleneck. Specifically, Fabric has the
highest write performance of 66 tps, and Iroha has the highest read perfor-
mance bottleneck at around 203 tps. By contrast, Sawtooth has the worst
overall performance, with write and read bottlenecks of about 13 tps and
60 tps, respectively.
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2. In terms of platform performance stability, Fabric has the most stable
write transaction performance. Although Sawtooth has the most stable
read performance, its average throughput is very low. In contrast, Iroha
has both stable and the highest average read performance.

3. In terms of platform resource consumption, Ethereum needs more mem-
ory consumption under our transaction patterns. Its average memory con-
sumption is about 970 MB for write and 1280 MB for read. Sawtooth and
Besu have comparable memory consumption for write/read between 500-
600 MB. The same situation comes to Iroha and Fabric, both of which
are around 330 MB. In addition, when the transaction rate increases, it
is usually accompanied by an increase in memory consumption. However,
the CPU utilization is in a state of random dynamic fluctuations.

The above experimental results give us a lot of insights when building an
ALLSTAR decentralized Cloud/Edge framework. By analyzing the demand of
ALLSTAR on the underlying blockchain infrastructure, we believe that write
throughput is the most important metric for evaluating ALLSTAR in response
to new service transactions submitted by large-scale Cloud/Edge users. At
the same time, the resource consumption of the ALLSTAR blockchain should
be maintained at a low level to cope with the limited computing power of
lightweight Edge devices.

In our experiments, Fabric has the optimal write throughput in terms of
scalability and stability, while the read throughput remains at an acceptable
level. It also has the lowest and most stable memory consumption. Therefore,
we conclude that Fabric is the best choice to build ALLSTAR at this moment.
This is in line with our expectation that Fabric is currently the most successful
permissioned blockchain available in the market. Our next plan is to choose
Fabric as the main infrastructure to build the ALLSTAR framework.

At the same time, we suggest that Sawtooth and Ethereum (private) are
not good choices for ALLSTAR because they either show too low throughput
or consume too many CPU/memory resources. Nevertheless, each platform
has its own features and there exist trade-offs between different platforms. For
example, while Iroha is less impressive in terms of write throughput, it has
the highest read throughput and the most stable and lowest CPU consump-
tion, which is a perfect choice for lightweight Edge devices. In practice, the
inter-chain protocol of the SETIC subsystem will suggest users according to
their specific needs to select and customize the right blockchain to build the
ALLSTAR ecosystem.

5 Conclusion

This paper describes a typical scenario in the “Cloud+Edge” environment
when involving Edge resources for orchestrating collaborative applications. We
analyze five barriers in such a dynamic and complex environment, when consid-
ering various small Edge resource providers. To motivate resource providers to
join the ecosystem and optimize the application DevOps lifecycle being faced
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with the complex environment, we propose the ALLSTAR approach, which
targets at the vision that Edge infrastructure resources can equally contribute
to the computing environment for usage, just as the Cloud resources. In this
scenario, all the related roles, including Cloud/Edge resource providers, appli-
cation developers/operators and end users, construct the ALLSTAR ecosys-
tem. Different from the existing work, this paper considers the problem of the
“Cloud+Edge” resource sharing and trading for the application orchestration,
and put forward the solution in a systematic view, including components of
HASKIT, CREAF, WAFIR, and SETIC. We present technique details of each
component, and specifically detail three lifecycles to show how different roles
interact with each other and support the business model. As the blockchain
technique is adopted as the underlying trust layer, we further conduct an
empirical study on evaluating different blockchain platforms, including their
scalability, stability, and resource consumption. The results demonstrate that
the permissioned blockchain is feasible to be leveraged in the inter-chain fabric
as design. Furthermore, the systematic comparison provides the insights for
choosing a proper blockchain when constructing the ecosystem.
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