
marco craveiro

NOTES ON MODEL DR IVEN ENGINEER ING

NOTES ON MODEL DR IVEN ENGINEER ING

marco craveiro

A Literature Review
University of Hertfordshire

December 2021 — v1.1

Marco Craveiro: Notes on Model Driven Engineering A Literature Review
© 2021

location:
Hatfield

time frame:
December 2021

Malembe malembe. — old Angolan proverb.

ABSTRACT

Model Driven Engineering (MDE) is an established approach for the engineer-
ing of software systems. MDE distinguishes itself from related approaches
due to its explicit focus on the modeling of entities within a software system,
and on the transformations that can be applied to them.

The present manuscript provides a brief introduction to key MDE concepts,
with an associated critique where applicable, and discusses its interaction with
two important aspects of the software engineering discipline: the software
development process itself, and the modeling of variability within a software
product.

The target audience for this work are experienced software engineers with
little to no knowledge of model driven techniques, and practitioners who wish
to revisit the fundamentals.

vii

CONTENTS

i Fundamentals
1 Introduction 3
2 Towards a definition of MDE 7
2.1 What, if anything, is MDE? . 7
2.2 MDE as a ”body of knowledge” . 8
2.3 A Hierarchy of Modeling Approaches 9
2.4 The Model-Driven Jungle . 10
2.5 Conditions at the Boundaries . 11
2.6 Pragmatism in a Fuzzy Discipline 11
2.7 Discussion . 12
3 Models and Transformations 15
3.1 Why Model? . 15
3.2 What Kind of Model? . 17
3.2.1 Syntax . 17
3.2.2 Semantics . 18
3.3 Models and Metamodels . 18
3.4 Metamodelling Hierarchy . 18
3.5 Models and Their Transformations 21
3.5.1 Taxonomy . 21
3.5.2 Applications . 22
3.6 Modeling Languages and Their Purposes 23
3.7 Determining the Modeling Approach 24
3.8 Modeling Languages and Programming Languages 25
4 From Problem Space to Solution Space 29
4.1 Spaces and Levels of Abstraction 29
4.2 The Structure of the Solution Space 31
4.2.1 Technical Spaces . 31
4.2.2 Platforms . 33

ii Integrations
5 MDE and the Software Development Process 41
5.1 Software Development Methodologies 42
5.2 Iterative or Structured? . 43
5.3 Two-Track Development . 44
6 MDE and Variability Modeling 51
6.1 Software Product Line Engineering 51
6.2 Variability Management and Variability Models 52
6.3 Feature Modeling . 54
6.4 Integrating Feature Modeling with MDE 56

iii Outlook
7 Conclusion 63

iv Annex
a Concept Map 69

ix

L I ST OF F IGURES

Figure 2.1 Hierarchy of modeling approaches 9
Figure 3.1 OMG four-layer metamodel architecture 19
Figure 3.2 Example of the four-layer metamodel architecture . . 20
Figure 3.3 Basic model transformation concepts 21
Figure 3.4 Relationships between MT, metamodels and models. . 22
Figure 3.5 Fundamental MDE terminology. 24
Figure 3.6 Taxonomy of computer languages within MDE. 26
Figure 3.7 Propagating information between modeling languages

and programming languages 27
Figure 4.1 Phases of the software development lifecycle, abstrac-

tion levels and language types 30
Figure 4.2 Problem space, solution space, TS and platforms . . . 32
Figure 4.3 Platforms and associated concepts 33
Figure 4.4 Mapping between a PIM and three PSM. 34
Figure 5.1 Two-track development. 45
Figure 5.2 Problem domain decoupling. 46
Figure 5.3 Typical MDE application. 47
Figure 5.4 MDE application with AC-MDSD. 47
Figure 5.5 Different approaches to infrastructure development. . 48
Figure 6.1 Variability management in time. 53
Figure 6.2 Symbols used in cardinality-based feature modeling. . 55
Figure 6.3 Sample feature model. 55
Figure 6.4 Mapping abstract models to detailed representations. 57
Figure 6.5 Positive and negative variability techniques. 57
Figure A.1 Concept map for the Dogen domain 69

xi

ACRONYMS

AC-MDSD Architecture-Centric MDSD.
AO Aspect Oriented.
AO-MD-PLE Aspect-Oriented Model Driven PLE.
AOP Aspect Oriented Programming.
API Application Programming Interface.
ATL Atlas Transformation Language.

BDD Binary Decision Diagram.

CLR Common Language Runtime.
CNF Conjunctive Normal Form.
CVL Common Variability Language.

DOM Document Object Model.
DSL Domain Specific Language.

EMF Eclipse Modeling Framework.

FODA Feature-Oriented Domain Analysis.
FOP Feature-Oriented Programming.

GMF Graphical Modeling Framework.
GP Generative Programming.
GPML General Purpose Modeling Language.

IDE Integrated Development Environment.
IPC Implicit Presence Conditions.

J2EE Java Platform Enterprise Edition.
JSON JavaScript Object Notation.
JVM Java Virtual Machine.

LDL Layer Definition Language.

M2M Model-to-Model.
M2T Model-to-Text.
MASD Model Assisted Software Development.
MBE Model Based Engineering.
MBSE Model-based Systems Engineering.
MDA Model Driven Architecture.
MDD Model Driven Development.
MDE Model Driven Engineering.
MDSD Model Driven Software Development.
MDSE Model Driven Software Engineering.
MIC Model-Integrated Computing.
MOP Model Oriented Programming.

xiii

MT Model Transformation.

OMG Object Management Group.
OO Object-Oriented.
OVM Orthogonal Variability Modeling.

PCL Product Configuration Language.
PDM Platform Description Model.
PIM Platform Independent Model.
PM Physical Model.
PSM Platform Specific Model.

QVT Query / View/ Transformation.

RTE Round-Trip Engineering.

SAX Simple API for XML.
SDLC Software Development Lifecycle.
SDM Software Development Methodology.
SPLE Software Product Line Engineering.

T2T Text-to-Text.
TS Technical Space.

UML Unified Modeling Language.

XML Extensible Markup Language.
XSD XML Schema Definition Language.

Part I

FUNDAMENTALS

1
INTRODUCT ION

Better integration of such models and code should significantly increase
the opportunity to effect change through the models, rather than simply
modifying the code directly.

— Krzysztof Czarnecki [Völ+13]

Model Driven Engineering (MDE) is an approach to the development of
software systems based on modeling and transformations. The present

monograph provides a succinct characterisation of key aspects of MDE, and
discusses its interaction with both the software development process and the
management of variability. The analysis here presented was carried out in
the spirit of an academic literature review, with the purpose of sketching out
basic boundaries across the vast field of MDE.

The present work is best understood as the Companion Notes or preamble of
our doctoral dissertation; its objective is to supply the basic building blocks
required by those unfamiliar with modeling technologies to fully understand
the argument there put forward.1 In addition, the material should also be
suitable to experienced software engineers who need an introduction to MDE, Target audience
such as developers wanting to participate in the development of Dogen — a
software project led by the author of this document.2,3 Finally, experienced
MDE practitioners may also be served by the manuscript if they wish to revisit
and critique some of the discipline’s foundational concepts.

The work is divided into three parts, and it is organised as follows:

• Part i: Fundamentals: Tackles key theoretical aspects of the discipline
of MDE. It is composed of the following chapters:

– Chapter 1: Introduction — The present chapter, providing an
overview of the manuscript.

– Chapter 2: Towards a definition of MDE — Attempts to charac- Organisation
terise MDE according to commonly used terms in computer science
such as paradigm, methodology and others of the same ilk.

– Chapter 3: Models andTransformations—Provides a short overview
of the two most important concepts in MDE, models and transfor-

1 Whilst the material here presented is extremely relevant to our analysis of MDE’s theoretical
framework, it was deemed to have insufficient novelty when compared to the field’s state of the
art — feel as we might that these chapters make important points not elsewhere made.

2 https://github.com/MASD-Project/dogen

3 Those requiring a more thorough introduction to the subject matter are guided towards [BCW12]
and [Völ+13].

3

https://github.com/MASD-Project/dogen

4 introduction

mations; describes the modeling activity, and relates modeling lan-
guages to programming languages.

– Chapter 4: From Problem Space to Solution Space — Introduces
the problem space and the solution space, and discusses their rela-
tionship withMDE. Relates these concepts to platforms and Technical
Spaces (TSs).

• Part ii: Integrations: Discusses the integration of MDE with related
software engineering concepts. It is comprised of the following chapters:

– Chapter 5: MDE and the Software Development Process—Places
MDE in the context of the typical software development process,
broaching the challenges of this integration.

– Chapter 6: MDEandVariabilityModeling—Provides an overview
of variabilitymodeling, and suppliesmany of the primitives needed
to contextualise variability management in the presence of MDE.

• Part iii: Outlook: Contains a single chapter with our conclusions:

– Chapter 7: Conclusion — Summarises the present work and dis-
cusses points for further study.

introduction 5

2
TOWARDS A DEF IN IT ION OF MDE

It is striking to see however, that though MDE is supposed to be about
precise modelling, MDE core concepts are not defined through precise
models. [...] In such conditions, it is very difficult to understand how
the basic concepts of MDE are related, and how they can be mapped to
existing Technological Spaces.

— Jean-Marie Favre [Fav04]

The first challenge facing a newMDEpractitioner is in obtaining a rigorous
definition of the discipline and its boundaries. The present chapter aims to

guide the reader towards an understanding of the discipline, across a difficult
landscape.

The chapter is organised as follows. First, Section 2.1 will get our bearings by
positioningMDE against a number of computer science terms such as paradigm
and methodology. Section 2.2 will then home in on the aspects related to a body
of knowledge, and it is followed by a discussion of the hierarchical model of Chapter

overviewmodeling approaches (Section 2.3). We will then discuss the complexities
associated with the vast number of acronyms in the field (Section 2.4), sketch
out the boundaries of the discipline (Section 2.5) and understand the role of
pragmatism in modeling (Section 2.6). The chapter concludes with a brief
discussion outlining our views on the role of MDE (Section 2.7).

2.1 what, if anything, is mde?

Defining the nature of MDE is not quite as simple as it may appear. On one
hand, informal characterisations abound, with most similar in spirit to what
Cuesta proposes (emphasis ours):

[Within MDE, software] development processes are conceived
as a series of steps in which specification models, as well as those
which describe the problem domain, are continually refined, until
implementation domain models are reached — along with those Informal

characterisationwhich make up the verification and validation of each model, and
the correspondence between them. In [MDE], the steps in the
development process are considered to be mere transformations
between models.1,2 [Cue16] (p. 1)

1 This quote was translated from the original Spanish by the author. The reader is advised to
consult the primary source.

2 The nature of models within MDE, as well as that of transformations, is analysed in greater detail
on Chapter 3.

7

8 towards a definition of mde

On the other hand, formal definitions are found wanting. To make matters
worse, the literature remains unclear as to whether MDE is an approach
[Fav04], a methodology [BCW12], a technical space [Béz05a], a paradigm
[Völ+13; GHN10], all, some or neither of these. Furthermore, there is aUnclear status,

lax terminology degree of imprecision as to how most of these terms are generally used within
computer science. As an example, Harper made known his dissatisfaction
with the term paradigm in his essay ”What, if anything, is a programming
paradigm?”, stating:

The trouble with programming paradigms is that it is rather dif-Programming
paradigms ficult to say what one is, or how we know we have a new one.

Without precise definitions, nothing precise can be said, and no
conclusions can be drawn, either retrospectively or prospectively,
about language design. [Har17]

MDE literature steers into similarly difficult terrain. In [BCW12], Brambilla et
al. call MDE a methodology but then hasten to qualify they (emphasis ours)

[…] realise thatmethodology is an overloaded term, whichmay have
several interpretations. In this context we are not using the term
to refer to a formal development process, but instead as a set of
instruments and guidelines […]. [BCW12] (p. 7)

Those qualifications and the imprecision of the language raise concerns as
to the usefulness of the term, so we choose instead to side with Matinnejad
[Mat11] as well as Asadi and Ramsin [AR08], who make a strong case for
calling MDE an approach or a general framework rather than a methodology.3Approach,

general framework With regards to the remaining terms: heeding Harper’s warnings above, we
feel one should refrain from using the term paradigm altogether; and, whilst
agreeing with the notion of MDE as a technical space, we address it in what we
believe to be a more fitting context (cf. Section 4.2.1).

The matter does not rest here, though, for there are additional viewpoints that
must be taken into account when attempting to characterise MDE.

2.2 mde as a ”body of knowledge”

In our opinion, MDE is more than an approach. For our purposes, MDE is
to be understood as a large body of knowledge focused on the employment
of modeling as the principal driver of software engineering activities. This
choice of wording may appear controversial at first sight, given the position ofBody of

knowledge Mussbacher et al. [Mus+14] — who stated that ”[unlike] most other fields of
engineering, model-driven engineering does not have a Body of Knowledge
(BoK) as such.” Nevertheless, both views can be reconciled by accepting a
distinction between a formal Body of Knowledge — which MDE lacks — and an
informal body of knowledge — which we posit MDE is.

3 This matter is argued further on Section 5.1, where we address the relationship between MDE and
the software development process, and articulate a stronger argument as to why MDE should not
be considered to be a methodology. Furthermore, we also provide additional context on software
development methodologies.

2.3 a hierarchy of modeling approaches 9

The idea can perhaps be clarified by recourse to the words of Fairley and
Chaffer (emphasis ours):

Every profession is based on a body of knowledge, although that
knowledge is not always defined in a concise manner. In cases where Informal body

of knowledgeno formality exists, the body of knowledge is ”generally recognized”
by practitioners and may be codified in a variety of ways for a
variety of different uses. [BF+14]

This, we believe, is an apt description of MDE from the perspective of the
MDE practitioner. But in order for a practitioner to make sense of this vast
and diverse body of knowledge, it is useful to arrange it into some form of
structure.

2.3 a hierarchy of modeling approaches

One commonmethod of overlaying structure intoMDE is by way of classifying
the application of modeling within the software development process. Here,
researchers often distinguish between three different ”levels” of modeling use,
with each level seen as a super-set of the preceding [Ame; WHR14; BCW12]. Hierarchy of modeling

approaches, MBEAt the lowest level sits Model Based Engineering (MBE), where models are
employed as a formof inter and intra-team communication anddocumentation.
Within MBE, models are an input to the development process but, typically,
software engineers are responsible for manually translating them into source
code.

Next, at an intermediate level, sits Model Driven Development (MDD), where
the software development process is driven entirely by models, and whose
translation to code is performed by automated means. Finally, MDE is located MDD, MDE
at the highest level of the hierarchy; it orchestrates all engineering activities
of a software system via modeling, including its development, operation and
maintenance.4 Figure 2.1 provides a graphical illustration of these relation-
ships.

Figure 2.1: Hierarchy of modeling approaches. Source: Author’s drawing based on a
diagram by Whittle et al. [WHR14]

Whilst this hierarchy is conceptually convenient and appeals to the intuition of
most software engineers — possibly because it echoes earlier notions around

4 Here we resort to Bourque et al.’s definition of Software Engineering: ”[…] the application of a
systematic, disciplined, quantifiable approach to the development, operation, and maintenance
of software; that is, the application of engineering to software.” [Abr+04]

10 towards a definition of mde

Object-Based and OO programming5 — in practice, the layers are notoriously
difficult to tease apart and are thus of limited use outside introductorymaterial.
Indeed, empirical observations such as those of Hutchinson et al. [Hut+11]Practical difficulties
reveal that they are closer to a spectrum of possibilities rather than a set of
well-defined categories. As a result, the terms Model Driven Development
(MDD) and MDE are used interchangeably in much of the literature, and
their presence often merely signifies ”a model-driven approach” instead of
the more technical meaning intended by the hierarchy. And, sadly, this is just
the end of the beginning of the confusing terminology.

2.4 the model-driven jungle

Matters are further complicated by the existence of a number of additional
model-driven approaches and methodologies outside the hierarchy, similar in
characteristics but differing in naming, such as Model Driven Software Engi-
neering (MDSE) [BCW12], Model Driven Software Development (MDSD)
[SVC06], Model Driven Architecture (MDA) [Poo01], Model-Integrated Com-
puting (MIC) [Spr04], Model Oriented Programming (MOP) [BL13], Model-Variants, flavours
based Systems Engineering (MBSE) [Est+07] and many others. The literature
customarily refers to these as MDE variants [BCW12] (p. 10) or MDE flavours
[Völ+13] (p. 11), but these are not precise terms. Interestingly, our review
did not uncover a much needed taxonomy or a detailed comparative study
characterising variants and their relationships, in what appears to be a glaring
gap in the literature.

The need for grouping is certainly present, for it is cumbersome have to name
variants individually when making arguments that apply to model-driven in
general. Völter sought to redress this shortcoming by grouping variants under
the umbrella term MD* [Völ09] and it quickly became established practice in
the literature. However, it is not yet clear if the existence of this grouping hasMD*
helped or hindered those seeking to understand what MDE is, specially as
there is no rigorous definition of themembers of the group nor of its properties,
much beyondVölter’s original—anduncharacteristically carefree— comment:
”I use MD* as a common moniker for MDD, MDSD, MDE, MDA, MIC, and all
the other abbreviations for basically the same approach.” [Völ09]

With a hint of well-placed irony, Brambilia et al. spoke of the MD* Jungle
[BCW12] (p. 9), adding that (emphasis ours) ”MDE can be seen as the superset
of all these variants, as any [MD*] approaches could fall under the MDE
umbrella.” [BCW12] (p. 10) It is in this sense that the term MDE is to beMDE as the

superset understood within this dissertation — a sense, we believe, that is entirely
consistent with its role as a body of knowledge. However, questions are then

5 The adjectives based, oriented, and driven are rife throughout computer science and software
engineering, obscuring somewhat their intent and differences. For example, Meyer is not entirely
convinced about how oriented and based are used in the OO context (emphasis his): ”Because
the English words based and oriented do not readily evoke the conceptual difference between
encapsulation techniques and OO languages, ’object-based’ is a little hard to justify, especially to
newcomers.” [Mey88] (p. 1100) The modeling community largely circumvented such difficulties
by giving preference to driven — e.g. model-driven — over the arguably more obvious oriented —
e.g. ”model-oriented”. As Stahl et al. put it, ”The adjective ’driven’ in ’Model-Driven Software
Development’ — in contrast to ’based’ — emphasizes that this paradigm assigns models a central
and active role: they are at least as important as source code.” [Völ+13] (p. 4)

2.5 conditions at the boundaries 11

raised as to how best determine what is inside the informal body of knowledge,
as opposed to what remains outside.

2.5 conditions at the boundaries

Much like the boundaries fromwithin, the boundaries fromwithout are no less
troublesome to isolate. Over time, MDE has been integrated with a number
of existing approaches and methodologies such as Software Product Line
Engineering (SPLE) [PBDL05], Agile [Mat11], Generative Programming (GP)
and Domain Engineering [Cza98] — to name but a few — to an extent that Unclear boundaries
its now difficult to determine whether certain concepts should be included as
part of MDE’s body of knowledge or are extraneous to it. A similar problem
occurs with terms defined in its variants such as Model Driven Architecture
(MDA), particularly for those which have wider applicability to modeling
problems outside the MDE variant itself.

Our review of the literature did not uncover any adequate solutions to this
thorny problem. Though by no means authoritative, our approach was to
include in the present analysis all of the concepts that are relevant to our Integrations
purposes and to use the notion of integrations where the concepts are more
obviously external to MDE — e.g., ”Agile integration” (cf. Part ii). But all the
difficulties discussed thus far point out there may be a deeper malaise with
the discipline itself.

2.6 pragmatism in a fuzzy discipline

Jörges et al. encapsulated all of these themes in a manner that could be con-
strued as an indictment to the entire endeavour (emphasis ours):

This ”fuzziness” or lack of precision can be observed for most
of the vocabulary used in the context of MD*. There is still no
established fundamental theory of modeling and related concepts that Fuzziness,

lack of precisionwould be comparable to the maturity achieved in other disciplines
of computer science, such as compiler construction. [Jör13] (p. 14)

However, behind the lack of precision lies method, as Bézivin’s incisively
explains: ”[we] are not interested here by a theoretical definition […] but by
an engineering one, i.e. a definition that will help users to implement and
maintain systems.” [Béz05a] Citing Fowler [Fow04], Brambilla et al. go as far Need for

pragmatismas warning practitioners to ”[b]eware of statements of pure principles: when it
comes down to it, the real point of software engineering practice is to increase
productivity, reduce errors, and cut code.” [BCW12] (p. 23) Translated to
the software development vernacular, MDE sees fuzziness as a feature, not a
bug. This is a very significant statement of intent. For the remainder of this

12 towards a definition of mde

work we shall refer to it as the Pragmatism Principle, albeit restated in a slightly
different form:6

Whendefining termswithinMDE’s body of knowledge, engineering
definitions are preferred over theoretical definitions. That is, prag-Pragmatism Principle
matic definitions that help practitioners implement and maintain
the systems of today, even when imprecise, are preferred over
rigorous theoretical definitions that are either not yet completely
formulated or that fail to meet the helpfulness criteria.

In our opinion, the Pragmatism Principle helps explain the apparent fuzziness
of a significant subset of MDE’s vocabulary for, in an environment where
operational definitions abound, there is a permanent danger of duplication,
inconsistencies and misunderstandings. After all, what suffices for one useConsequences of

pragmatism case may not do at all for others. Nonetheless, we view the Pragmatism
Principle as an important factor in MDE’s progress and find it to be consistent
with our view of MDE as a body of knowledge rather than a methodology or
a paradigm, as we are no longer constrained by a need for rigour at all costs
or even for overall consistency.

Note that the Pragmatism Principle is not a carte blanche to legitimise and
empower sloppy reasoning. Rigour is still important toMDE, as are theoretical
foundations, and the lack of fundamentals often appears in MDE research
roadmaps [FR07; Mus+14]. The Pragmatism Principle merely justifies usingImportance

of rigour an empiric approach to enable progress whilst the theoretic foundations are
being laid, and presupposes the ability to make a trade-off between rigour and
applicability where needed. And these trade-offs are not restricted to rigour
and pragmatism either.

2.7 discussion

Seen from the present vantage point, MDE’s role — de facto if not de jure — has
been to provide the building blocks fromwhencemodel-drivenmethodologies
can be constructed, to the precise specifications of its practitioners. And, in
this regard, it has been very successful. In our opinion, the main downsideMDE as a supplier of

building blocks of the Pragmatism Principle — and thus, of the approach as a whole — is
that it places a great deal of responsibility on the practitioner to make the correct
trade-offs, therefore requiring a high-level of mastery of a large and complex
cannon.7

At this juncture we can now sketch out our understanding of the discipline,
which is as follows:

6 The term pragmatism was chosen as an allusion to one of Stachowiak’s fundamental model
properties (cf. Section 3.1) because we see MDE as a model too. Alas, a detailed discussion of the
topic would take us too far afield, befitting the philosophy of modeling in software development.

7 Take the decision to usemodeling in the first place. Whilst the enumeration of choices presented in
Section 3.7 appears to convey simplicity, experience says otherwise. In order to make an informed
decision, one must first master both the theory of MDE as well as the thorny practical aspects of its
application, and these only reveal themselves when applied to a sufficiently large project during
sufficiently long timescales — as we ourselves discovered.

2.7 discussion 13

• MDE is an informal body of knowledge centred on the employment of
modeling as the principal driver of software engineering activities.

• MDE promotes the pragmatic application of a family of related approaches
to the development of software systems, with the intent of generating
automatically a part or the totality of a software product, from one or
more formal models and associated transformations (cf. Section 3). Discipline

characterisation

• MDE is best understood as a vision rather than a concrete destination. A
vision guides the general direction of the approach, but does not dictate
the solution, nor does it outline the series of steps required to reach it.8

• It is the responsibility of the MDE practitioner to select the appropriate
tools and techniques from theMDE body of knowledge, in order to apply
it adequately to a specific instance of the software development process.
By doing so, the practitioner will create — implicitly or explicitly — an
MDE variant.

Now that we have a basic understanding of MDE’s reach, we can turn our
attention towards its core concepts.

8 This vision is articulated clearly by France and Rumpe:

In the MDE vision, domain architects will be able to produce domain specific ap-
plication development environments (DSAEs) using what we will refer to as MDE
technology frameworks. Software developers will use DSAEs to produce and evolve
members of an application family. A DSAE consists of tools to create, evolve, ana-
lyze, and transform models to forms from which implementation, deployment and
runtime artifacts can be generated. Models are stored in a repository that tracks
relationships across modeled concepts andmaintains metadata on the manipulations
that are performed on models. [FR07]

3
MODELS AND TRANSFORMAT IONS

Accordingly, all of cognition is cognition in models or by means of
models, and in general, any human encounter with the world needs
”model” as the mediator […].

— Herbert Stachowiak [Pod17]

At the core of MDE sit two key concepts: that of models and of transforma-
tions. These notions are so central to MDE that Brambilia et al. distilled

the entire discipline into the following equation [BCW12] (p. 8):

𝑀𝑜𝑑𝑒𝑙𝑠 + 𝑇𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑆𝑜𝑓 𝑡𝑤𝑎𝑟𝑒 (3.1)

This chapter provides an overview of both of these concepts. It is organised
as follows. It starts by determining the need for models in the first instance
(Section 3.1), and then elaborates more precisely what is meant by the term
model in this context (Section 3.2). Next, we analyse the relationship between Chapter

overviewmodels and metamodels (Section 3.3) as well as their hierarchical nature
(Section 3.4). Following this, we provide a context for modeling languages,
first by looking at their purpose (Section 3.6) and then by contrasting and
comparing them with the better known programming languages (Section 3.8).
The chapter ends with a brief analysis on how to approach modeling.

Let us begin then by considering the role of models in the general case.

3.1 why model?

Unlike the difficulties faced in definingMDE’s boundaries (cf. Section 2.5), the
literature presents a far more consensual picture on the reasons for modeling.
Predictably, it emanates mainly from without, given the importance of models Sources
in most scientific and engineering contexts. Due to this, we have limited our
excursion to two often cited sources in the early MDE literature: Rothenberg
and Stachowiak.

In ”General Model Theory” [Sta73], Stachowiak proposes a model-based
concept of cognition and identifies three principal features of models:

• Mapping: Models map individuals, original or artificial, to a category of
all such individuals sharing similar properties. The object of themapping
could itself be a model, thus allowing for complex composition.

15

16 models and transformations

• Reduction: Models focus only on a subset of the individual’s properties,
ignoring aspects that are deemed irrelevant.

• Pragmatism: Models have a purpose as defined by its creators, whichModel properties
guides the modeling process. Stachowiak states (emphasis ours): ”[mod-
els] are not only models of something. They are also models for some-
body, a human or an artificial model user. They perform therefore their
functions in time, within a time interval. And they are finally models for a
definite purpose.”1

Much of the expressive power of models arises from these three fundamental
properties.

For his part, Rothenberg’s contribution [Rot+89] also gives a deep insight
into the nature of models and the modeling process2 and, in particular, his
statements on substitutability are of keen interest when uncovering the reasons
for modeling (emphasis his):

Modeling, in the broadest sense, is the cost-effective use of something
in place of something else for some cognitive purpose. It allows us to
use something that is simpler, safer or cheaper than reality instead
of reality for some purpose. A model represents reality for theSubstitutability
given purpose; the model is an abstraction of reality in the sense
that it cannot represent all aspects of reality. This allows us to deal
with the world in a simplified manner, avoiding the complexity,
danger and irreversibility of reality.

Taken together, the properties identified by Rothenberg and Stachowiak make
it clear that software engineering is inevitably deeply connected to models and
modeling, as is any other human endeavour that involves cognition. However,
this implicit understanding only scratches the surface of possibilities. In orderModels and software
to extract all of the potential of the modeling activity, explicit introspection is
necessary. Evans eloquently explains why it must be so (emphasis ours):

To create software that is valuably involved in users’ activities, a
development team must bring to bear a body of knowledge related to
those activities. The breadth of knowledge required can be daunting.Advantages of models
The volume and complexity of information can be overwhelming.
Models are tools for grapplingwith this overhead. Amodel is a selectively
simplified and consciously structured form of knowledge. An appropriate
model makes sense of information and focuses it on a problem.
[Eva04] (p. 3)

1 The quote was sourced from Podnieks [Pod17] (p. 19). As we could not locate an English
translation of ”General Model Theory” [Sta73], we were forced to rely on secondary sources,
including Podnieks, to access fragments of Stachowiak’s work. Podnieks’ paper is of great
interest with regards to the philosophical aspects of modeling, but lays beyond the scope of our
dissertation.

2 The paper is recommended reading to anyone with interest in the philosophical aspects of
modeling and its relation to computer science. Readers are also directed to Czarenecki [Cza+00],
Chapter 2 ”Conceptual Modeling” and to Bézivin [Béz05b], Section 3.1. ”On the meaning of
models”. Incidentally, it was Bézivin’s paper that guided us towards Rothenberg’s work.

3.2 what kind of model? 17

Therefore, it is important to model consciously; with a purpose. In order to
do so, one must first start with a better understanding of what is meant by
”model” in the context of the target domain.

3.2 what kind of model?

The termmodel is used informally by software engineers as a shorthand for any
kind of abstract representation of a system’s function, behaviour or structure.3
Ever critical in matters of rigour, Jörges et al. [Jör13] (p. 13) remind us that
”[the] existence of MD* approaches and numerous corresponding tools […]
indicates that there seems to be at least a common intuition of what a model
actually is. However, there is still no generally accepted definition of the term Formal Model
’model’.” In typical pragmatic form, Bézivin [Béz05a] provides what he calls
an ”operational engineering definition of a ’model’” (emphasis ours): ”[…]
a graph-based structure representing some aspects of a given system and
conforming to the definition of another graph called a metamodel.” Stahl et al. call
this a formal model [SVC06] (p. 58).

The crux here is to address ambiguity. A formal model is one which is ex-
pressed using a formal language, called the modeling language, and designed
specifically for the purpose of modeling well-defined aspects of a problem
domain. A modeling language needs to be a formal language because it must Modeling Language
have well-defined syntax and semantics, required in order to determine if its
instances are well-formed or not. The next sections provide an overview of
these two topics; since the literature was found to be largely consensual, the
focus is solely on their exposition. We then join these two notions as we revisit
the concept of metamodel.

3.2.1 Syntax

Syntax concerns itself with form, defining the basic building blocks of the
language and the set of rules that determine their valid combinations. This is
done in two distinct dimensions:

• Concrete Syntax: Specifies a physical representation of the language,
textually or graphically. It can be thought of its external representation
or notation, of which there can be one or more. Syntax types

• Abstract Syntax: Specifies the language’s underlying structure, inde-
pendent of its concrete syntax. It can be thought of as its internal repre-
sentation.

3 An idea which is, in itself, a model taken from software design [AF16].

18 models and transformations

3.2.2 Semantics

Validation is not complete at the syntactic level, however, because a statement’s
validity may be dependent on context and therefore requiring an understand-
ing of its semantics. Semantics deals with meaning and, as with syntax, it is
also split across two distinct dimensions:

• Static Semantics: Concerns itself with contextual aspects that can be
inferred from the abstract syntax representation of the model. In the case
of a typed general purpose programming language, static semantics are
comprised of a set of rules that determine if an expression is well-formed
given the types involved. For modeling languages, the exact role of staticSemantics types
semantics varies but is commonly concerned with placing constraints
on types.

• Dynamic Semantics: These are only relevant to modeling languages
whose instances can be executed and are thus also known as execution
semantics. They define the execution behaviour of the various language
constructs.

3.3 models and metamodels

Given these concepts, we can now elaborate further on Bezivin’s definition
above, and connect them from a modeling point of view. Formal models
are instances of a modeling language, which provides the modeler with the
vocabulary to describe entities from a domain. Together, the abstract syntaxMetamodel
and the static semantics of the modeling language make up its metamodel, and
instance models — by definition — must conform to it.

Employing terminology from Kottemann and Konsynsk [KK84], the meta-
model can be said to capture the deep structure that connects all of its instance
models, and the instance models are expressed in the abstract syntax of the
modeling language — its surface structure. Within this construct, we now haveStructure
a very clear separation between the entities being modeled, the model and the
model’s metamodel as they exist at different layers of abstraction.4 However,
the layering process does not end at the metamodel.

3.4 metamodelling hierarchy

Since all formal models are instances of a metamodel, the metamodel itself is
no exception: it too must conform to a metametamodel. The metametamodel

4 It is worth noticing that the use of metamodels in the context of OO languages has a long history
in computer science. Henderson-Sellers et al. [HS+13], in their interesting and thought provoking
work, report of their emergence within this context: ”The use of metamodels for OO modelling
languages was first promoted in 1994 […] and consequently realized in Henderson-Sellers and
Bulthuis [HSB12] in their creation of metamodels for 14 out of a list of 22 identified (then extant)
modelling languages (at that time often mis-called methodologies).” These retro-fitting steps were
key to the modern understanding of the role of metamodels in modeling languages.

3.4 metamodelling hierarchy 19

provides a generalised way to talk about metamodels and exists at a layer Metametamodel
above that of the metamodel. Though in theory infinite, the layering process
is typically curtailed at the metametamodel layer, since it is possible to create
a metametamodel that conforms to itself.5,6

Figure 3.1: OMG four-layer metamodel architecture. Source: Author’s drawing based
on a diagram by Bézivin [Béz04].

Following on from the above-mentioned work of Kottemann and Konsynski
[KK84], and that of many others, the Object Management Group (OMG) stan-
dardised these notions of an abstraction hierarchy into a four-layer metamodel
architecture that describes higher-order modeling. Bézivin [Béz05b] referred to
it as the 3+1 architecture, and summarised it as follows: ”[at] the bottom level,
the M0 layer is the real system. A model represents this system at level M1. Four-layer metamodel

architectureThis model conforms to its metamodel defined at level M2 and the metamodel
itself conforms to the metametamodel at level M3.” Figure 3.1 illustrates the
idea. Its worthwhile pointing out that the four-layer architecture is a typical
example of the constant cross-pollination within MDE, as it was originally
created in the context of what eventually became the Model Driven Archi-
tecture (MDA) but nowadays is seen as part of the core MDE cannon itself
[BCW12].7

As the literature traditionally explains the four layer model by means of an
example [Béz05b; BCW12; HSB12], we shall use a trivial model of cars to Example
do so. It is illustrated in Figure 3.2. Here, at M0, we have two cars with
licence plates ”123-ABC” and ”456-DEG”. At M1, the two cars are abstracted

5 Seidewitz calls this a reflexive metametamodel [Sei03] whereas Álvarez et al. [ÁES01] favour the
term meta-circular, but both are used with equivalent meaning.

6 Jörges et al. refer to these meta-layers as metalevels [Jör13] (p. 17).
7 The historical context in which the four-layer metamodeling hierarchy emerged is quite inter-

esting and illuminating with regards to its spirit. Henderson-Sellers et al. [HS+13] chronicle
it quite vividly: ”Around 1997, the OMG first publicized their strict metamodelling hierarchy
[…] apparently based on theoretical suggestions of Colin Atkinson, not published until a little
later […]. The need for a multiple level hierarchy […], thus extending the two level type-instance
model, was seen as necessary in order to 1) provide a clear means by which elements in the
(then emergent) modelling language of UML could be themselves defined i.e an M3 level and 2)
acknowledge the existence at the M0 level of individual (instances) of the classes designed at the
M1 level — although for the OMG/UML world these were seen as less important because such
instances only exist as ’data’ within the computer program and, in general, do not appear within
the modelling process.”

20 models and transformations

to the class Car, with a single attribute of type String: LicencePlate. At M2,
these concepts are further abstracted to the notions of a Class and Attribute.
Car is an instance of a Class, and its property LicencePlate is an instance of
Attribute. Finally, at M3, we introduce Class; M2’s Class and Attribute are
both instances of M3’s Class, as is M3’s Class itself.

Figure 3.2: Example of the four-layermetamodel architecture. Source: Author’s drawing
based on a diagram by Brambilla et al. [BCW12] (p. 16)

The four-layer metamodel architecture has important properties. For exam-
ple, whilst terms ”model” and ”meta” are often used in a relative (and even
subjective) manner, within the architecture they now become concise — i.e.,Unambiguous terms
metametamodel is an unambiguous term within this framework. In addition, it
was designed as a strict metamodeling framework. Atkinson and Kühne explain
concisely the intent (emphasis theirs):

Strict metamodeling is based on the tenet that if a model A is an
instance of another model B then every element of A is an instance-
of some element in B. In other words, it interprets the instance-of
relationship at the granularity of individual model elements. The
doctrine of strict metamodeling thus holds that the instance-ofStrict metamodeling
relationship, and only the instance-of relationship, crosses meta-
level boundaries, and that every instance-of relationshipmust cross
exactly one meta-level boundary to an immediately adjacent level.
[AK02]

Strict metamodeling is not the only possible approach — Atkinson and Kühne
go on to describe loose metamodeling on the same paper — nor is the four-layer
metamodel hierarchy itself free of criticism. On this regard, we’d like to single
out the thoroughwork done byHenderson-Sellers et al. [HS+13], who scouredHierarchy limitations
the literature to identify themain problemswith the architecture, and surveyed
proposed ”fixes”, which ranged from small evolutionary changes to ”paradigm
shifting” modifications. Their work notwithstanding, our opinion is that,
though the four-layer metamodel has limitations, it forms a reasonably well-
understood abstraction which suffices for the purposes of our own research.

3.5 models and their transformations 21

An additional point of interest— and one that perhapsmay not be immediately
obvious from the above diagrams — is that MDE encourages the creation of
”multiple metamodels”, each designed for a specific purpose, though ideally Metamodel diversity
all conforming to the same metametamodel. As a result of this metamodel
diversity — as well as due to other scenarios described on the next section
— operations performed on models have become key to the modeling ap-
proach.

3.5 models and their transformations

The second most significant component of MDE, after models, areModel Trans-
formation (MT) or just transforms. MT are functions defined over metamodels Source and

target modelsand applied to their instance models. MT receive one or more arguments,
called the source models, and typically produce one or more models, called the
target models. Source and target models must be formal models, and they may
all conform to the same or to different metamodels.

Figure 3.3: Basic model transformation concepts. Source: Author’s drawing based on
diagrams by Brambilla et al. [BCW12] (p. 18) and Czarnecki and Helsen
[CH06].

The literature has long considered MT themselves as models [Béz05b], thus
formalisable by a metamodel and giving rise to the notion of Model Transfor-
mation (MT) languages; that is, modeling languages whose domain is model
transformations. MT languages are an important pillar of the MDE vision MT languages
because they enable the automated translation of models at different levels
of abstraction. Figure 3.3 provides an example of how MT languages work,
when transforming one type of model to another. However, these are not the
only type of MT found in the literature.

3.5.1 Taxonomy

The taxonomy of MT has been investigated in great detail in the literature, par-
ticularly by Mens and Van Gorp [MVG06] as well as by Czarnecki and Helsen
[CH06]. For the purposes of our dissertation we are primarily concerned
with what Czarnecki and Helsen identified as the top-level categories of MT:

22 models and transformations

Model-to-Model (M2M) and Model-to-Text (M2T). These they describe as
follows:

The distinction between the two categories is that, while amodel-to-
model transformation creates its target as an instance of the targetM2M, M2T
metamodel, the target of a model-to-text transformation is just
strings. […] Model-to-text approaches are useful for generating
both code and non-code artifacts such as documents.

For completeness, there are also Text-to-Text (T2T) transforms, which merely
convert one textual representation into another. Transforms of these three
types are typically orchestrated into graphs — often called transform chains
or MT chains8 — with M2T typically being the ultimate destination. TheseMT chains
relationships are illustrated in Figure 3.4, which portraits MT in the wider
MDE domain, including models and metamodels.

Figure 3.4: Relationships between MT, metamodels and models. Source: Author’s
drawing based on Stahl et al.’s diagram [Völ+13] (p. 60).

The importance of MT in MDE stems largely from their broad range of appli-
cations — as discussed in the next section.

3.5.2 Applications

The use of MT within MDE is pervasive, as demonstrated by Czarnecki and
Helsen’s non-exhaustive list of intended applications [CH06]:

• Synchronisation: The mapping and synchronisation of models, either at
the same level of abstraction or at different levels, to ensure that updates
are correctly propagated;

• Querying: Using queries to generate views over a system;Intended applications

• Evolution: Tasks related to the evolution and management of models
such as refactoring, and metamodel updating;

• Reverse-Engineering: The generation of high-level models from either
source code or lower-level models.

8 Wagelaar’s analysis of particular interest in this regard: ”Composition of model transformations
allows for the creation of smaller, maintainable and reusable model transformation definitions
that can scale up to a larger model transformation.” [Wag08]

3.6 modeling languages and their purposes 23

• Code Generation: The refinement of high-level models into lower-level
models and ultimately to source code — for some, a defining character-
istic of the MDE approach.9

Given this large number of applications, it is unsurprising that a correspond-
ingly large number of MT languages have emerged over time, including Query
/ View/ Transformation (QVT) [Kur07], Atlas Transformation Language
(ATL) [Jou+08], Epsilon [KPP08], Kermeta [JBF09] and many others. Whilst
it is undoubtedly a positive development that many different avenues are
being actively explored, there are clearly downsides to this proliferation of Paradox of choice
solutions: the onus is now on the practitioner to choose the appropriate MT
language, and often a deep knowledge of both MDE and the MT languages in
question is required to make an informed decision. This apparent paradox of
choice, at all levels, is one of the biggest challenges faced by MDE, as evidenced
by adoption research.

A related problem is that, whilstMT languages havemany diverse applications,
they are ultimately still computer languages and thus prone to suffer from Technical debt,

refactoring, reuse
difficulties

the very same malaises already diagnosed in traditional software engineering.
As their use grows, issues such as technical debt [Lan+18], refactoring and
difficulties around reuse [Bru+18] will become increasingly pressing. Indeed,
these and other similar issues are not specific to MT languages, but shared by
all modeling languages. It is therefore crucial to understand the purpose of mod-
eling languages and clarify their relationship with traditional programming
languages.

3.6 modeling languages and their purposes

The literature commonly distinguishes between two classes of modeling lan-
guages, according to their purpose [BCW12] (p. 13):

• General Purpose Modeling Languages (GPMLs): These are languages
that are designed to target the modeling activity in the general case, and
as such can be used to model any problem domain; the domain of these
languages is the domain of modeling itself. The UML [OMG17] is one Modeling language

typessuch language.10

• Domain Specific Languages (DSLs): These are languages which are
designed for a specific purpose, and thus target a well-defined problem do-
main. They may have broad use or be confined to a small user base such
as a company or a single application. As an example, the authors report
in [Cra21] on the experiences and challenges of a financial company
creating their own modeling DSL.

9 In Jörges words [Jör13] (p. 19): ”Code generation is thus an enabling factor for allowing real
model-driven software development which treats models as primary development artifacts, as
opposed to the approach termed model-based software development […].”

10 A simplification; technically, UML is a modeling language suite rather than a modeling language
because it is comprised of a number of modeling languages designed to be used together. Note
also that not all UML models are formal models but UML models can be made formal through
the use of UML Profiles and a formal definition of static semantics.

24 models and transformations

Figure 3.5 captures how modeling languages relate to the terminology intro-
duced thus far.

Figure 3.5: Fundamental MDE terminology. Source: Author’s drawing based on Stahl
et al.’s image [Völ+13] (p. 56)

As with most MDE terminology, this classification is not universally accepted.
For instance, Stahl et al. [Völ+13] (p.58) take the view that (emphasis theirs)
”[often] the termmodeling language is used synonymously with DSL. We prefer
the term DSL because it emphasizes that we always operate within the contextModeling languages

as synonyms to DSL of a specific domain.” Somewhat unexpectedly, Jörges et al. [Jör13] (p. 15)
agree with this stance. We are instead of the opinion that conflating DSL with
modeling languages hinders precision unnecessarily and thus is not a useful
development. For the remainder of this work, we shall use the three terms
(modeling language, General Purpose Modeling Language (GPML) and DSL)
with specifically the above meanings.11 The crux of the problem is, then, in
deciding how a given modeling problem is to be tackled.

3.7 determining the modeling approach

One of the first decisions faced by practitioners when when modeling a prob-
lem is the choice between using GPMLs or DSLs. Mohagheghi and Aagedal’s
analysis highlights the kinds of trade-offs that must be considered [MA07]:

A metamodel’s conceptual complexity should lead to greater ex-
pressive power, and thus smaller models in size. For example,
modeling languages developed for a specific domain [e.g. DSLs]Trade-offs
have more expressive power and are closer to the experts’ knowl-
edge of the domain than general-purpose modeling languages
[GPMLs], but may be more complex to learn for a novice.

If opting for DSLs, their creation can be achieved either via extensibility mecha-
nisms available in most GPMLs — such as the before-mentioned UML profiles

11 In Stahl et al.’s defence, most GPML require a degree of extensibility in order to support formal
models — e.g., in the case of UML, the creation of profiles are typically required, and thus
considered a DSL. In this sense, plain GPMLs appear to be of a limited use in a MDE context.
Nonetheless, our point is that, even without further customisation, GPMLs provide a sufficient
basis for simpler automation use cases. Therefore, in our opinion, it is incorrect to think of GPMLs
as ”merely” tools for some form of Model Based Engineering (MBE).

3.8 modeling languages and programming languages 25

— or by in-house language design. Regardless of the approach, the use of DSL creation
DSLs is strongly encouraged within MDE since, as Stahl et al. tell us (p. 58),
”[a] DSL serves the purpose of making the key aspects of a domain — but
not all of its conceivable contents — formally expressable and modelable.”
[Völ+13]

A vital component of language design is choosing a notation and implementing
its parsing. A simple alternative — ideal for basic requirements —is to use an
existing markup language such as XML or JSON, in order to take advantage XMLware,

JSONWareof their strong tooling ecosystem. In the XML case, an XML schema can be
defined using XSD, so as to constrain XMLs concrete syntax. The abstract
syntaxwill be dependent on how the XMLprocessing is performed— i.e. using
Document Object Model (DOM), Simple API for XML (SAX) or any other
XML Application Programming Interface (API). The approach is commonly
referred to asXMLware [Arc+11], but is not without its detractors [Neu16].12

Yet another alternative, attractive for text-based notations, is to define a formal
grammar for the concrete syntax (cf. Section 3.2.1) using a parser generating
tool such as YACC [Joh+75] or Bison [DS92], and then code-generate a parser
for the grammar in a general purpose programming language. The parser is
responsible for processing documents written in the concrete syntax and, if Grammarware
valid, instantiating an abstract syntax tree: a tree representation of the abstract
syntax. This approach is called grammarware in the literature [KLV05; PKP12],
and has historically been used to define programming languages, but it is
equally valid for modeling textual DSLs.13

Finally, the more modern take on this problem is called modelware because it
relies on model-driven principles and tooling. It is implemented using tools
such as XText [EB10], which generate not just the parser but also customisable
abstract syntax, as well as providing IDE support for the newly-designed Modelware
language. Modelware is the preferred approach within the MDE community
because it embodies many of the core principles described in this chapter, and,
in addition, some modelware stacks offer integrated support for graphical
notations.14

Nonetheless, regardless of the specifics of the approach, there are clear simi-
larities between traditional programming languages and modeling languages,
as we shall see next.

3.8 modeling languages and programming languages

There are obvious advantages in clarifying the relationship between program-
ming languages and modeling languages, because the latter can benefit from
the long experience of the former. Predictably, the literature has ample ma-

12 An XMLWare-based stack was the solution used by a financial company, whose experiences are
narrated in [Cra21].

13 Several programming languages also offer modern parser libraries, such as C++’s Boost Spirit
[Boo18] or Java’s ANTLR [Par13]. These are more appealing to typical software developers (as
opposed to compiler writers) because they provide a better fit to their workflows.

14 Seehusen and Stølen ’s evaluation report of Graphical Modeling Framework (GMF) serves as a
typical example [SS11]. GMF is part of the vast Eclipse Modeling Framework (EMF) modelware
stack; those specifically interested in EMF are directed instead to Steinberg et al. [Ste+09].

26 models and transformations

terial on this regard. Whilst discoursing on the unification power of models,
Bézivin spoke of ”programs as models” [Béz05b]; France and Rumpe tell us
that ”[source] code can be considered to be a model of how a system willSource code

as a model behave when executed.” [FR07] Indeed, from all that has been stated thus far,
it follows that all general purpose programming languages such as C++ and
Java can rightfully be considered modeling languages too and their programs
can be thought of as models implemented atop a grammarware stack.

Here we are rescued by Stahl et al., who help preserve the distinction between
programming languages and modeling languages by reminding us that they
have different responsibilities (emphasis ours): ”The means of expression used
by models is geared toward the respective domain’s problem space, thus enablingLanguages and

abstraction abstraction from the programming language level and allowing the corre-
sponding compactness.” [Völ+13] (p. 15) That is, programming languages
are abstractions of the machine whereas modeling languages are abstractions
of higher-level problem domains — a very useful and concise separation.15
With this, we arrive at the taxonomy proposed by Figure 3.6.

Figure 3.6: Taxonomy of computer languages within MDE.

A related viewpoint from which to look at the relationship between model-
ing languages and programming languages is on how information can be
propagated between the two via MTs (cf. Section 3.5). The simplest formForward engineering
is via forward engineering, whereby a model in a modeling language is trans-
formed into a programming language representation, but changes made at
the programming language level are not propagated back to the modeling
language.

The converse happens when using reverse engineering: a model in a model-
ing language is generated by analysing and transforming source code in aReverse and

roundtrip
engineering

programming language. Clearly, there are difficulties in any such an endeav-
our due to the mismatch in abstraction levels, as explained above. Finally,
the most difficult of all scenarios is Round-Trip Engineering (RTE), in which
both modeling and programming language representations are continually
kept synchronised, and changes are possible in either direction. Figure 3.7
illustrates these three concepts.

As briefly alluded to in Section 3.5, these and other related topics fall under the
umbrella of model synchronisation within MDE literature. They are addressed

15 These camps are not quite as distinct as they may appear, and many are working to shorten the
differences. On one hand, there are those like Madsen and Møller-Pedersen who propose a more
direct integration of modeling concepts with programming languages themselves [MMP10]. On
the other hand, there are also those like Badreddin and Lethbridge, proponents of Model Oriented
Programming (MOP), who defend making modeling languages more like programming lan-
guages [BL13]. Both approaches show a great deal of promise but, given their limited application
at present, we declined to investigate them further.

3.8 modeling languages and programming languages 27

Figure 3.7: Propagating information between modeling languages and programming
languages. Source: Author’s drawing based on an image from Stahl et al.
[Völ+13] (p. 74).

in the next Chapter (cf. Chapter 4), which starts to delve in more detail into
MDE’s aspirations of matching modeling languages to different abstraction
levels.

4
FROM PROBLEM SPACE TO SOLUT ION SPACE

In particular, current research in the area of model driven engineering
(MDE) is primarily concerned with reducing the gap between problem
and software implementation domains through the use of technologies
that support systematic transformation of problem-level abstractions to
software implementations.

— France and Rumpe [FR07]

Software engineering typically distinguishes between problem space (or
problem domain) and solution space.1 The present chapter’s objective is

to clarify these two very important concepts, and to relate them to the practice
of model-driven approaches.

The chapter is organised as follows. Section 4.1 connects abstraction levels to
these two different spaces. The chapter finishes by interrogating in more detail Chapter

overviewthe composition of the solution space (Section 4.2), with a particular emphasis
on the concepts of platforms (Section 4.2.1) and Technical Spaces (TSs) (Section
4.2.2).

4.1 spaces and levels of abstraction

The problem space concerns itself with a business area or any other field of
expertise a software system needs to be developed for, whereas the solution
space is made up of a set of technological choices with which a software system Problem space,

Solution spacecan be designed and implemented, and atop of which it will execute.2 As
we move from problem space towards solution space, the abstraction level
is progressively lowered until the machine is ultimately reached. Figure 4.1
illustrates this idea.

One of the core objectives of MDE is to enable a smoother transition between
abstraction levels, easing the gap between them. France and Rumpe lay out
the motivation (emphasis ours):

A problem-implementation gap exists when a developer implements
software solutions to problems using abstractions that are at a Problem-

implementation gaplower level than those used to express the problem. In the case of

1 For a treatment of the subject in a system’s engineering context, see Chapter 14 of Wasson [Was15]
(p. 135).

2 In the words of Groher and Völter’s: ”The problem space is concerned with end-user understand-
able concepts representing the business domain of the product line. The solution space deals with
the elements necessary for implementing the solution, typically IT relevant artifacts.” [GV09].

29

30 from problem space to solution space

Figure 4.1: Phases of the software development lifecycle, abstraction levels and lan-
guage types. Source: Author’s drawing based on Berg et al.’s [BBM05]
image.

complex problems, bridging the gap using methods that rely al-
most exclusively on human effort will introduce significant accidental
complexities [FR07].3

Hence, MDE promotes the use of modeling languages (cf. Section 3.6) at
the appropriate level of abstraction for the task at hand; its ultimate goal is
to allow software engineers to create a cascading set of abstractions of an
arbitrary depth that closely matches software engineering activities over theCascading,

Refinement various phases of the software development lifecycle, with each abstraction
described by an adequate modeling language — all the way to the general
purpose programming language. This process is referred to as model cascading,
and it is implemented by means of model refinement (cf. Section 3.5.2).

Whilst conceptually straightforward, model cascading poses awkward practi-
cal challenges because the existence of multiple models, possibly conforming
to multiple metamodels, and representing disparate viewpoints leads to a
need to keep all views integrated, synchronised and consistent4 — a task of in-Synchronisation and

integration challenges creasing difficulty, as MDEmoves away from the simpler unidirectional model
of transformations towards more complex topologies.5 As we’ve already seen
(cf. Section 3.6), similar synchronisation and integration challenges are also
present in the relationship between models and source code — the traditional
destination of the model refining process.6

3 Whittle et al. define accidental complexity as (emphasis ours): ”[…] where the tools introduce
complexity unnecessarily [Whi+17].” What is meant by unnecessarily, of course, is left as an
exercise to the reader.

4 Much has been written in the MDE literature about model synchronisation and integration, but
it lays beyond the scope of the present study. The interested reader is directed to Giese et al.
[GHN10] for an introductory overview of model integration and model synchronisation (Section
2, State of the Art), and to Hettel et al. [HLR08] for an analysis of RTE in the context of MDA, but
largely applicable to MDE in general. Czarnecki and Helsen’s MT Feature Model is also relevant
(Section ”Source-Target Relationship” [CH06]

5 Diskin et al. see beyond simple cascading and speak instead of networks of models (emphasis
ours): ”A pipeline of unidirectional model transformations is a well-understood architecture
for model driven engineering tasks such as model compilation or view extraction. However,
modern applications require a shift towards networks of models related in various ways, whose
synchronization often needs to be incremental and bidirectional.” [Dis+14]

6 The alternative to code generation is model-based execution, either via an interpreter or compila-
tion. It is, however, outside the remit of the present work. For a treatment of the subject in the
context of UML, see Mellor et al. [MBFBJ02]

4.2 the structure of the solution space 31

Difficulties in synchronising source code with models can be avoided if full
code generation is targeted, a task considered feasible by some — such as Jörges
et al. [Jör13] (p. 33) — and unfeasible by others, such as Greifenberg et al.
[Gre+15b], who state: ”The prevailing conjecture, however, is that deriving Full and partial

code generationa non-trivial, complete implementation from models alone is not feasible.”
From experience, we lean more towards Greifenberg et al. in this regard. The
alternative is to use partial code generation, but then there is a requirement for
one or more integration strategies to allow handcrafted and generated code
to coexist. Here, Greifenberg et al.’s survey of integration mechanisms is
extremely helpful [Gre+15b; Gre+15a].

In our personal opinion, largely borne out of practical experience, model
synchronisation remains a complex subject with thorny problems — both en- Recommended

approachgineering and theory-wise — and one which is particularly difficult to address
at a large, industrial scale. For these reasons, the present work recommends
relying mainly on the simpler forward-only topology, with minimal use of
cascading, and resorting to well defined integration strategies; and to adopt
more complex approaches solely when well-defined use cases emerge.

Complexity notwithstanding, we have thus far only scratched the surface of
the solution space. The next section identifies its key components and their
properties.

4.2 the structure of the solution space

There are a few nuances to add to the simplified picture described in the
previous section because the underlying process is of a fractal nature.7 That
is, by looking in more detail at each step on our abstraction descend, we will
likely find inside it yet another abstraction ladder. Consider the solution space. Solution space

componentsWithin it, the literature typically defines two key concepts: Technical Space (TS)
and Platforms. Figure 4.2 illustrates how they relate to each other and to the
problem and solution spaces. These two concepts are of vital importance to
us, so the next two sections will analyse them in detail, including a discussion
of the challenges they present.

4.2.1 Technical Spaces

Kurtev et al. proposed TSs in their seminal paper [KBA02], defining them
as follows: ”A technological space is a working context with a set of associ-
ated concepts, body of knowledge, tools, required skills, and possibilities.”
Mens and Van Gorp subsequently updated the language and tightened the Definition
notion by connecting it to metametamodels: ”A technical space is determined
by the metametamodel that is used (M3-level).” [MVG06] (cf, Section 3.4)
Examples of TSs include MDE itself, XML, Java and other such programming
languages.

7 This is to be expected, given that abstractions can be composed of other abstractions by means of
Stachowiak’s mapping feature (cf. Section 3.1). In particular (emphasis his): ”[models] are models
of something, namely, [they are] reflections, representations of natural and artificial originals, that
can themselves be models again.” [Sta73]

32 from problem space to solution space

Figure 4.2: Problem space, solution space, TSs and platforms. Author’s drawing based
on Brambilla et al.’s image [BCW12] (p. 13)

In [Béz+03], Bézivin et al. outlines their motivation: ”The notion of TS allows
us to deal more efficiently with the ever-increasing complexity of evolving
technologies. There is no uniformly superior technology and each one has
its strong and weak points.” The idea is then to engineer bridges betweenMotivation
technical spaces, allowing the importing and exporting of artefacts across
them. These bridges take the form of adaptors called ”projectors”, as Bézivin
explains (emphasis ours):

The responsibility to build projectors lies in one space. The rationale
to define them is quite simple: when one facility is available in
another space and that building it in a given space is economicallyProjectors,

injectors,
extractors

too costly, then the decision may be taken to build a projector in
that given space. There are two kinds of projectors according to
the direction: injectors and extractors. Very often we need a couple
of injector/extractor to solve a given problem. [Béz05a]

TSs are a useful — if somewhat imprecise8 — conceptual device and bridging
across them has been demonstrated to work in practice [Béz+03]. However,Challenges
our position is that to fully fulfil their promise, an extraordinary engineering
effort is required to model all significant features from existing TSs, to expose
them to modeling languages and to keep those models updated. As we shall
see in the next section, much of the same challenges apply to platforms.

8 In the words of Bézivin et al. [Béz+03] (emphasis ours): ”Although it is difficult to give a precise
definition of a Technological Space, some of them can be easily identified, for example: programming
languages concrete and abstract syntax (Syntax TS), Ontology engineering (Ontology TS), XML-
based languages and tools (XML TS), Data Base Management Systems (DBMS TS), Model-
Driven Architecture (MDA TS) as defined by the OMG as a replacement of the previous Object
Management Architecture (OMA) framework.”

4.2 the structure of the solution space 33

4.2.2 Platforms

The term platform is employed within the software engineering profession in a
broad a variety of contexts, from hardware to operative systems, compilers,
IDEs like the Eclipse Platform9, virtual machines providing programming Colloquial term
environments such as the Java Virtual Machine (JVM) and the Common
Language Runtime (CLR), and in numerous other cases. It is also a core term
within MDE, and a foundation upon which many other concepts build, so it is
important to arrive at a clear understanding of its meaning.

The literature often uses the MDA definition as a starting point, stated as
follows:

A platform is the set of resources on which a system is realized.
This set of resources is used to implement or support the system. In
the context of a technology implementation, the platform supports MDA Definition
the execution of the application. Together the application and the
platform constitute the system. [Gro14] (p. 9)

From a software engineering standpoint, a platform is often seen asmechanism
for reuse and abstraction, but MDE goes further and considers as particularly
useful those that are ”semantically rich” and ”domain-specific”, made up of Versus MDE
”prefabricated, reusable components and frameworks [because they] offer
a much more powerful basis than a ’naked’ programming language or a
technical platform like Java Platform Enterprise Edition (J2EE).” [Völ+13] (p.
15)

Figures 4.2 and 4.3 explore these ideas by depicting the relationship between
platforms and TSs. From this perspective, TSs provide the raw building ma- Versus TS
terials and platform developers leverage their technical expertise to, in the
words of Brambilla et al., ”combine them into a coherent platform” [BCW12]
(p. 13). By sitting atop a platform, software engineers can abstract themselves
from lower-level implementation details and focus on the problem at hand.

Figure 4.3: Platforms and associated concepts. Source: Author’s drawing based on
Stahl et al.’s image [Völ+13] (p. 59)

In the presence of code generation, a tempting alternative may appear to be to
bind the building blocks directly against a modeling language. Experience has

9 https://projects.eclipse.org/projects/eclipse.platform

https://projects.eclipse.org/projects/eclipse.platform

34 from problem space to solution space

however demonstrated the pitfalls of this approach, and here we are oncemore
faced with the familiar theme of a need to raise the abstraction level. In practice,
the building blocks found in TSs are at too low a level tomake them suitable forVersus problem-

implementation gap direct integration with a modeling approach because, as already discussed (cf.
Section 4.2), bridging the abstraction gap becomes increasingly difficult as the gap
widens. Stahl et al. agree, but focus instead on the converse, stating that ”[the]
platform has the task of supporting the realization of the domain, that is, the
transformation of formal models should be as simple as possible. […] Clearly,
the easier the transformations are to build, the more powerful is the platform.”
[Völ+13] (p. 61) France and Rumpe follow the same line of reasoning, positing
that abstractions such as platforms are key, because ”[the] introduction of
technologies that effectively raise the implementation abstraction level can
significantly improve productivity and quality with respect to the types of
software targeted by the technologies.” [FR07]

Unfortunately, not all is positive. On the same paper, France and Rumpe
leave a decidedly stark warning about the challenges created by the very same
process: ”[the] growing complexity of newer generations of software systems
can eventually overwhelm the available implementation abstractions, resultingChallenges posed by

constant evolution in a widening of the problem-implementation gap.” In other words, modeling
languages close to a platform can only remain relevant if they are continually
kept up to date with the constant changes to the platforms they depend on, or
else risk becoming obsolete. This is a very difficult problem to tackle.

An obvious way to mitigate issues that arise from the constant platform churn
is to decouple platform-dependent concepts from those that are independent
of a target platform. This partitioning — originally popularised within MDA
but now rightfully considered a part of mainstream MDE — does not directly
address the underlying causes but does have the advantage of reducing the
overall impact surface. As a result, by classifying models with regards to theirPIM, PSM
dependence on a platform, we arrive at the notion of Platform Independent
Models (PIMs) and Platform Specific Models (PSMs). In [Völ+13] (p. 20),
Stahl et al. explain that ”[…] concepts are more stable than technologies
[…]. The PIM abstracts from technological details, whereas the PSM uses
the concepts of a platform to describe a system.” A secondary advantage
of this approach is that a single PIMs can be mapped to multiple PSMs, as
demonstrated by Figure 4.4.

Figure 4.4: Mapping between a PIM and three PSM. Source: Author’s drawing based
on Stahl et al.’s image [Völ+13] (p. 20)

However, when one looks at these elegant solutions in more detail, the litera-
ture enters once more difficult terrain. First and most significantly, there are
still looming challenges in establishing just what exactly a platform is. Bézivin
explains the matter rather eloquently (emphasis ours):

4.2 the structure of the solution space 35

There is a considerable work to be done to characterize a platform.
How is this related to a virtual machine (e.g. JVM) or to a specific
language (e.g. Java)? How is this related to a general implemen-
tation framework (e.g. DotNet or EJB) or even to a class library?
How to capture the notion of abstraction between two platforms, one Characterisation

challengesbuilt on top of the other one? The notion of a platform is relative
because, for example, to the platform builder, the platform will
look like a business model. One may also consider that there are
different degrees of platform independence, but here again no precise
characterization of this may be seriously established before we
have an initial definition of the concept of platform. [Béz05b]

Secondly, there is the question of how the mappings are to be achieved. In
the same paper, Bézivin suggested employing Platform Description Models
(PDMs) as a way to bridge this gap — that is, the use of models to describe
the capabilities of platforms. This and several other ideas informed research, Transformation and

mapping challengeswhich became very active and produced a number of localised solutions, for
example in the context of MDA [WJ05] and XML [Neu16]. Nonetheless, a
general approach to the problem remains illusive, as Anjorin et al. explain
(emphasis theirs):

Although there exist numerous strategies and mature tools for cer-
tain isolated subtasks or specific applications, a general framework
for designing and structuring model-to-platform transformations, Lack of a framework
which consolidates different technologies in a flexible manner,
is still missing, especially when bidirectionality is a requirement.
[Anj+12]

Their work provides an informed summary of the state of the art on this regard,
as well as proposing a promising direction for such a generalised framework;
nevertheless, substantial research and engineering work remains, in order to
address all of the issues highlighted above.

Thirdly, there are those who question the need to make PSMs explicitly visible,
asking whether they are not best seen as a conceptual device and a (hidden)
implementation detail. Stahl et al. report that ”[p]ractical project experience
has hitherto proved that this simplification [of foregoing explicitly visible Hidden PSM
PSMs] is usually more useful than the additional degrees of freedom gained
with PSMs.” [Völ+13] (p. 24)According to them, such a simplification permits
more efficient development and reduces the thorny issues around model
synchronisation, particularly from lower to higher levels of abstraction — i.e.,
the propagation of changes from PSMs to PIMs (cf. Section 4.2).10

In light of all of these difficulties, and even taking into account the Pragma-
tism Principle, one is nevertheless forced to conclude that Bézivin’s words of Platform

uncertaintieswarning still to loom large over the field: ”Answering the question of what is
a platform may be difficult, but until a precise answer is given to this question,
the notion of platform dependence and independence (PSMs and PIMs) may
stand more in the marketing than in the technical and scientific vocabulary.”
[Béz05b]

10 These are, in effect, merely a variation of the RTE problem described in Section 3.8.

36 from problem space to solution space

These stimulating words complete our sketch of the solution space and its
challenges. Our attention shall now turn ”upwards” once more, towards the
bigger picture, as we investigate the interaction between MDE and the various
methodologies and processes used for the development of software systems.

4.2 the structure of the solution space 37

Part II

INTEGRAT IONS

5
MDE AND THE SOFTWARE DEVELOPMENT PROCESS

One of the more controversial concepts in Agile Modeling is that agile
models and agile documents are sufficient for the task at hand, or as I
like to say they are ”just barely good enough”. For some reason people
think that just barely good enough implies that the artifact isn’t very
good, when in fact nothing could be further from the truth. When you
stop and think about it, if an artifact is just barely good enough then by
definition it is at the most effective point that it could possibly be at.

— Ambler [Amb07]

Model Driven Engineering is deeply intertwined with the software devel-
opment lifecycle; and the shape of the software development lifecycle is

a function of the prevailing Software Development Methodology (SDM).1 The
present chapter provides and overview of this complex relationship, point-
ing out implications of this interleaving. SDMs and related processes have
themselves been treated extensively in the software engineering literature, Motivation
including numerous comparative studies and surveys [Des14; Awa05; SVI12;
DBC88; Est+07]. In the interest of maintaining focus, the objective of the
present section is not to perform an exhaustive review across this vast field
but to: a) supply a set of conceptual building blocks to be used within this
dissertation; and b) to investigate the relationship between MDE and SDMs,
including a characterisation of the general challenges posed by MDE to the
development process and vice-versa.

The chapter is organised as follows. It begins by defining more precisely what
is meant by an SDM (Section 5.1). We then attempt to determine if MDE Chapter

overviewhas a ”preference” towards certain types of SDM’s on Section 5.2. The chap-
ter concludes by looking at two-track development (Section 5.3), an approach
commonly used in the presence of MDE.

1 A distinction has been preserved in this dissertation between the ”software development lifecycle”
and ”Software Development Lifecycle (SDLC)”. The Software Development Lifecycle (SDLC)
is considered a SDM by many authors such as Elliot [Ell04] (p. 86-87), who calls it the ”oldest
formalised methodology for building information systems”. He states (emphasis his):

The traditional approach to information systems development was known as the
waterfall approach or systems development life cycle approach — the SDLC approach.
[…] This methodology pursues the development of information systems in a very
deliberate, structured and methodical way, requiring each stage of the life cycle,
from inception of the idea to the delivery of the final system, to be carried out
rigidly and sequentially.”

Conversely, this document employs ”software development lifecycle” in a more informal manner,
meaning any lifecycle model — often a property of the underlying SDM. For those interested in a
more rigorous approach, Estefan et al. [Est+07] provide a detailed discussion on the subject, defin-
ing these and other related terms. In particular, see Section 2 — ”Differentiating Methodologies
from Processes, Methods, and Lifecycle Models”.

41

42 mde and the software development process

5.1 software development methodologies

SDMs have had a important role to play in the development of software
systems from as early as the 1960’s [Ell04] (p. 86). According to Ramsin
and Paige, ”[a] SDM is a framework for applying software engineering prac-
tices with the specific aim of providing the necessary means for developing
software-intensive systems.” [RP08] For their part, Avison and Fitzgerald seeDefinition
it as ”a recommended collection of phases, procedures, rules, techniques, tools,
documentation, management, and training used to develop a system.” [AF03]
Based on their analysis of earlier work, including that of OMG [OMG17], as
well as Avison and Fitzgerald themselves [AF03], Ramsin and Paige decom-
posed SDMs into three main parts:

• Philosophy: a set of assumptions and beliefs made by the authors of the
methodology, as part of its motivation or with the intent of supporting
and rationalising it.

• Modeling conventions: a set of modeling conventions designed to work
together as a modeling language. Within this dissertation, we choose toComponents
interpret modeling language in the sense defined by Chapter 3 — though
perhaps Ramsin and Paige’s intention is to use the term in a less formal
manner.

• Processes: a set of processes that provide guidance as to the activities
to take place, their order, the role played by different actors in those
activities and ways in which to monitor and evaluate the results of
performing them.

Within this framework, the modeling language contains the vocabulary with
which to model aspects of the development of the system, the processes cater
for the temporal characteristics of how entities interact — i.e. who performs
what activities when — and the philosophy supplies a overarching narrativeComponent

interactions that harmonises and justifies both. These three components come together
as a methodology, providing a unified perspective from which to accomplish
prescribed objectives.2 Therefore, an SDM can be thought of as an abstraction
that orchestrates activities related to the development of software systems;
and does so with the objective of making them easier to understand for all
involved.

It is difficult to overestimate the importance of SDMs in modern software
development. Ramsin and Paige [RP08] go as far as considering them an
enabler of the software engineering discipline itself (emphasis ours):

Software development methodologies are therefore considered an
integral part of the software engineering discipline, since method-Relationship with

software engineering ologies provide the means for timely and orderly execution of the

2 There are those like as Brinkkemper [Bri96] who vehemently disagree with how software engi-
neers employ the terms method and methodology. Though the points presented by Brinkkemper
and others are valid, we have decided to remain aligned with the traditional software engineering
usage, given that the meaning is now widely understood amongst practitioners. See also Estefan
et al. [Est+07] for a thorough discussion of these and related terms.

5.2 iterative or structured? 43

various finer-grained techniques and methods of software engi-
neering.

Whilst SDM’s exact importance may be argued, what should nonetheless be
clear from this exposition is that their organisational properties are simultane-
ously orthogonal and complementary to the characteristics of MDE described MDE is not

an SDMthus far. It is for this reason that we sided earlier on with those that argue that
MDE by itself cannot be considered a methodology, but methodologies can be
developed with model-driven characteristics for particular purposes. Asadi
and Ramsin [AR08] tackled this subject in an MDA context, but presented
an argument which, in our opinion, is directly applicable to MDE (emphasis
ours):

[…] MDA is not a methodology, but rather an approach to software
development. This fact forces organizations willing to adopt the
MDA to either transform their software development methodolo-
gies into Model-Driven Development (MDD) methodologies, or
use new methodologies that utilize MDA principles and tools to-
wards the realization of MDA standards.

It is for this reason that one finds numerous examples of model-drivenmethod-
ologies in the literature, with differing characteristics [Mat11; Amb08; Amb07;
GSD09; Est+07]. However, rather than delve into the specifics of each of these,
themore pertinent question— at least for the purposes of this dissertation— is
to determine whetherMDE demands a particular type of software development
methodology, or has no sensitivity to it.

5.2 iterative or structured?

The literature reveals a range of viewswith regards to the relationship between
MDE and SDMs. Ambler appears to suggest MDE is more amenable to a
structured environment, declaring that (emphasis ours) ”MDD is an approach Structured

versus iterativeto software development where extensive models are created before source
code is written. With traditional MDD a serial approach to development is
often taken where comprehensive models are created early in the lifecycle.”
[Amb08] Stahl et al. are instead of the view that MDE requires, by its very
nature, an iterative process:

The iterative, dual-track process of MDSD […], in which the in-
frastructure is developed in parallel to the application(s), must be
clearly distinguished from traditional waterfall methods that are
based on a ’big design up-front’ philosophy. [Völ+13] (p. 375)

Unfortunately, the disagreement may stem, at least in part, from imprecise
definitions rather than due to profound ideological differences.

A third view, and one which we align ourselves with, is that of Brambilia et
al., who declare MDE to be process-agnostic, claiming ”it neither provides nor
enforces any specific development process but it can be integrated in any of
them.” [BCW12] (p. 53) To be clear, Brambilia et al. are not suggesting that MDE is agnostic

to process

44 mde and the software development process

MDE does not have a significant impact on a project’s software development
methodology and vice-versa. Instead, their argument is that the principles
in the MDE body of knowledge are compatible with all SDMs — ”traditional
development processes” in their parlance — and the onus is therefore on the
MDE practitioner to unify them into a whole, for any particular application.

These integration efforts are not insignificant, so the literature has been active
in developing specific strategies — especially for iterative methodologies
[Mat11; Amb08; Amb07; GSD09]. It is also important to understand that this
stance does not have any implications with regards to the merits (or demerits)
of structured versus iterative development methodologies, as these can beModeling

versus coding analysed independently ofMDE.However, sincemodels ”are considered equal
to code” [Völ+13] and, somewhat more arguably, since ”programming is a
modeling activity” [MMP10], it is not surprising that many of the engineering
practices that foster the development of high-quality code are equally desirable
when the engineering is driven by modeling.

It is then for these reasons that iterative methodologies should be preferred to
structured methodologies, rather than due to any intrinsic property or require-
ment of MDE. The idea can be neatly summarised with the following dictum:
”what is good for code is (generally) also good for models”. Nonetheless,
regardless of whether the approach is iterative or structured, there are specific
factors related to model-driven software engineering that must be catered for,
as the next section will explain.

5.3 two-track development

One of the most striking differences between traditional software development
and the model-driven approach is the additional work required to develop the
modeling infrastructure — that which Stahl et al. call the domain architecture
[Völ+13] (p. 253); i.e. the set of modeling languages and their associated MTs,Domain

architecture as well as the platforms upon which they depend on, in order to translate a set
of instance models into a software system. The development of the domain
architecture poses a challenge which straddles theory and application because
there is a circular dependency between exploring problem and solution spaces
and creating the vocabulary with which to perform that exploration.

Stahl et al. tackled the issue by proposing a two-track development process,
composed of the following threads:3,4

• DomainArchitectureDevelopment Thread: Responsible for developing
all of the modeling infrastructure that makes up the domain architecture.
Abstracts and generalises the requirements produced by the application
thread into infrastructure that can be reused for a number of similar
applications.Development threads

3 Interestingly, Stahl et al. first introduce the approach in the context of Architecture-Centric MDSD
(AC-MDSD) [Völ+13] (p. 21) but later on generalise it to make it widely applicable to Model
Driven Software Development (MDSD) [Völ+13] (Chapter 13, p. 253).

4 For simplicity, we are not making the customary Domain Engineering separation between analysis
and development (cf. Section 6.1). We do so partially because we take the iterative approach —

5.3 two-track development 45

• Application Development Thread: Concerned with producing a con-
crete product to satisfy the requirements of end users. Provides exem-
plars of needed functionality to the domain architecture development
thread to help shape its direction and consumes the tooling it produces
to implement the product.

Figure 5.1: Two-track development. Source: Author’s drawing based on Stahl et al.’s
image [Völ+13] (p. 262).

The relationship between these two threads is illustrated in Figure 5.1. Two-
track development is very useful as an idealised model because the approach
evokes a clear separation of concerns. Nonetheless, our own personal experi- Challenges
ence has taught us that matters are not quite as clear cut in practice. On one
hand, the basic principles are very easy to convey to experienced engineering
teams — even where MDE knowledge is lacking. On the other hand, many
dangers lie in wait of a naïve application:

• the before-mentioned circular nature of the problem is extremely chal-
lenging — and never more so than during the initial stages of develop-
ment;

• the development of the domain architecture ultimately demands a mul-
tidisciplinary skill-set, entailing both good software engineering skills as
well as a mastery of the MDE cannon;

• there is great difficulty in demonstrating to management the need for
continued investment in domain architecture development and main-
tenance as the project reaches maturity, and the lack of investment has
severe consequences for the long term;

• there is a great difficulty in avoiding a disconnect between domain and
architecture development teams, and there are far-reaching repercus-
sions when such a disconnect occurs.

fusing development and analysis together — but also because we believe the same argument
applies to analysis and development.

46 mde and the software development process

The last factor is of great importance because it may lead to a phenomena we
named problem domain decoupling, and which happens as the disconnect grows
in size. In our opinion, this problem manifests itself more evidently with theDomain

decoupling application of AC-MDSD, but we do not believe it is solely limited to this use
case. Figure 5.2 illustrates the issue by looking at four hypothetical scenarios
covering the application of MDE to infrastructural code, which we shall now
enunciate.

Figure 5.2: Problem domain decoupling.

Scenario 1 typically happens at the first brush with MDE, where developers
create a solution hard-wired to the core problem domain they are exploring,
and is closely related to our own personal experiences [Cra21]. From Scenario
2 to Scenario 4 there is a quest for generalisation, accompanied by a correspond-
ing growth in scope of the infrastructure problem domain. Scenario 2 represents
a small decoupling of the infrastructure domain to make it useful to moreScenario

analysis than one product, though still fairly hard-wired. With Scenario 3 we are now
looking at providing infrastructure for a larger grouping of software products
and their diverse needs, with a resulting ballooning in infrastructural scope.
Finally, with Scenario 4, the infrastructure domain becomes a product on its
own right, much larger than any one core problem domain; at this stage we are
now considering products supplied by external vendors rather than in-house
development.

The quantitative change in the size of the infrastructure problem domain pro-
duces qualitative changes that may not be readily apparent to engineers, as they
develop a system with a dual-track approach. This phase transition is partic-
ularly problematic as one transitions from Scenario 1 through to Scenario 3.
Let us perform a comparison between these two scenarios at the SDM level toScenario 1

versus
Scenario 3

better understand the problem. Figure 5.3 illustrates the state of the world for
Scenario 1 via a two-track approach; the bold arched arrows represent the un-
derstanding of the problem as it materialises onto the domain and application
development tracks and the dashed line represents the synchronisation points
between the two tracks. Though not obvious, the most noteworthy aspect of
this diagram is the natural alignment between the two tracks and the problem
domain.

This property ismade clearer by performing a similar exercise for Scenario 3, as
does Figure 5.4. Even without a detailed analysis, it should be noticeable that
the picture becomes considerably more complex; the previous natural alignment

5.3 two-track development 47

Figure 5.3: Typical MDE application.

now gives way to a far more intricate set of relationships — many of which
bidirectional. The figure depicts the separation between the infrastructure
problem domain and the core problem domain, and the effect each of these
have on each other as the exploration of both domains takes place. In hindsight, Tight product

interlockingthe increase in complexity should not be surprising because, as the scope of the
infrastructural domain grows, it becomes a software product in its own right.
Thus, there is an attempt to simultaneously engineer two tightly interlocked
software products, each already a non-trivial entity to start off with.

Figure 5.4: MDE application with AC-MDSD.

At this juncture one may consider the ideal solution to be the use of vendor
products as a way to insulate the problem domains. Unfortunately, experi-
mental evidence emphatically says otherwise, revealing that isolation may be Over-generalisation
necessary but only up to a point, beyond which it starts to become detrimental.
We name this problem over-generalisation. In our opinion, what is lacking is
the deep synchronisation needed between the two development tracks — an
ingredient that Stahl et al. had already identified as being crucial to the success Under-generalisation
of the entire endeavour. On the other hand, adoption literature shows that this
close collaboration can be found in abundance within in-house development,
but there we suffer from the opposite problem of under-generalisation. That is,
solutions are too specific, catering only for internal use cases.

What is called for is a highly cooperative relationship between infrastructure
developers and end-users, in order to foster feature suitability— a relationship
which is not directly aligned with traditional customer-supplier roles; but one
which must also maintain a clear separation of roles and responsibilities —
not the strong point of relationships between internal teams within a single Barely general enough
organisation, striving towards a fixed goal. Any proposed approach must
therefore aim to establish an adequate level of generalisation by mediating
between these actors and their diverse and often conflicting agendas. We

48 mde and the software development process

named this generalisation sweet-spot barely general enough, following on from
Ambler’s footsteps [Amb07]5, and created Figure 5.5 to place the dilemma in
diagrammatic form.

Figure 5.5: Different approaches to infrastructure development.

And now that the need for the generalisation has been made clear, we must
change our focus towards the machinery needed to implement it. And, at this
juncture, the management of variability takes centre stage.

5 Ambler states that (emphasis ours) ”[…] if an artifact is just barely good enough then by definition it
is at the most effective point that it could possibly be at.” [Amb07]

5.3 two-track development 49

6
MDE AND VAR IAB IL I TY MODEL ING

Despite their crucial importance, features are rarelymodularized and there
is only little support for incremental variation of feature functionality.

— Groher and Völter [GV07]

The employment ofmodel-driven techniques for the engineering of software
systems is often accompanied by a shift in focus from individual software

products to groups of products with similar characteristics. This may happen
tacitly — because the modeling process reveals these commonalities as ab- Motivation
stractions (cf. Section 3.1) and good software engineering practices such as
modularity and reuse create the conditions for their sharing across products
— or by explicit design.

Whichever its origins, this type of engineering presents challenges of a different
kind, as Stahl et al. note:

[…] MDSD often takes place not only as part of developing an
entire application, but in the context of creating entire product
lines and software system families. These possess very specific
architectural requirements of their own that the architects must
address. [Völ+13] (p. 5)

Thus, much stands to be gained by making the approach systematic, an aim
often achieved in the literature by recourse to software diversity techniques
such as variability modeling.1

The chapter is organised as follows. Section 6.1 introduces the notion of product
lines and connects it to domain engineering. Variability proper is then tackled Chapter

overview(Section 6.2), followed by a brief introduction on feature modeling (Section
6.3). The chapter then concludes with Section 6.4, where feature modeling is
then integrated with MDE.

6.1 software product line engineering

The idea of abstracting commonalities between sets of programs has had a
long history within computer science, starting as early as the 1970s with Dijk-

1 For a comprehensive analysis on the state of the art in software diversity, see Schaefer et al.
[Sch+12]. There, they defined software diversity as follows: ”In today’s software systems,
typically different system variants are developed simultaneously to address a wide range of
application contexts or customer requirements. This variation is referred to as software diversity.”

51

52 mde and variability modeling

stra’s notion of program families.2 A modern and systematised embodiment of
Dijkstra’s original insights can be found in Software Product Line EngineeringHistorical

context (SPLE) [PBDL05; CN02], which is of particular significance to the present
work because its principles and techniques are often employed in an MDE
context [GV07; RR15; GV09].

Pohl et al. define SPLE as ”a paradigm to develop software applications
(software-intensive systems and software products) using platforms and
mass customization.” [PBDL05] Roth and Rumpe add that ”SPLE focuses on
identifying commonalities and variability (the ability to change or customizeDefinition
a system in a predefined way) to create components that are used to develop
software products for an area of application.” [RR15]

The mechanics of SPLE bring to mind Stahl et al.’s dual track process (Section
5.3), in that Domain Engineering is used to create a set of core assets and Applica-
tion Engineering is applied to those core assets in order to develop a family of
related products, called a product line or a system family.3 In this light, DomainDomain Engineering,

product line Engineering defines the variation space available to all products within the
product line, opening up possibilities in terms of variability, whereas the role
of Application Engineering is to create specific configurations or variants for
each product, reducing or eliminating variability. Figure 6.1 illustrates this
idea.

The importance of managing variability within SPLE cannot be overstated,
nor can the challenges of its management, as Groher and Völter make clear
(emphasis ours): ”The effectiveness of a software product line approach directly
depends on how well feature variability within the portfolio is managed from early
analysis to implementation and through maintenance and evolution.” [GV07]
The central question is then how to integrate a model-driven approach with
the management of variability.

6.2 variability management and variability models

Like the program families described in the previous section, variation itself has
long been a going concern in software development; but, traditionally, it has
been handled by programmatic means via techniques such as configuration

2 In [Dij70], Dijkstra states: ”If a program has to exist in two different versions, I would rather not
regard (the text of) the one program as a modification of (the text of) the other. It would be much
more attractive if the two different programs could, in some sense or another, be viewed as, say,
different children from a common ancestor, where the ancestor represents a more or less abstract
program, embodying what the two versions have in common.”

3 In Czarnecki’s words (emphasis his) [Cza02]:

Domain engineering (DE) is the systematic process of collecting, organizing, and
storing past experience in building systems in a particular domain. This experience
is captured in the form of reusable assets (i.e., reusable work products), such as doc-
uments, patterns, reusable models, components, generators, and domain-specific
languages. An additional goal of DE is to provide an infrastructure for reusing
these assets (e.g., retrieval, qualification, dissemination, adaptation, and assembly)
during application engineering, i.e., the process of building new systems. […]
Similar to the traditional single-system software engineering, DE also encompasses
the three main process components of analysis, design, and implementation. In
this context, however, they are referred to as domain analysis, domain design, and
domain implementation.”

6.2 variability management and variability models 53

Figure 6.1: Variability management in time. Source: Author’s drawing based on Bosch
et al.’s image [Bos+01]

files, design patterns, frameworks and polymorphism — that is, at a low-level
of abstraction — and scattered across engineering artefacts.4 SPLE promotes Motivation
instead explicit variability management, which Groher and Völter define as ”the
activity concerned with identifying, designing, implementing, and tracing
flexibility in software product lines (SPLs).” [GV07] The idea is to promote
variability to a first-class citizen within the engineering process.

A variability management approach that resonates particularly with MDE is
variability modeling — that is, the use of DSLs designed for expressing vari-
ability — for much the same reasons MDE promotes model use in general (cf.
Section 3.1). Stoiber puts variability modeling in context:

SPLE allowsmaximizing the reuse of commonality (i.e., by develop-
ing all products on a common product platform) and of variability
(i.e., by a more modular development of variable functionality
that can be added to or removed from the product more easily). Variability modeling
This requires a variability model, though, to support an efficient
specification and development of both the software product line
as a whole and of individual application products. [Sto12]

The benefits alluded to by Stoiber are more clearly identified by Czarnecki,
who, in [Cza98] (p. 68), sees threemain advantages resulting from the explicit
modeling of variability:

• Variability Abstraction: By having a model of variability across the
system — ”a more abstract representation”, in Czarnecki’s words — it
is now possible to reason about it independently of implementation
mechanisms, which facilitates the work of Domain Engineering.

• Variability Documentation: From the perspective of Application En- Advantages of
variability modeling

4 Czarnecki denounced this historically ”inadequate modeling of variability”, stating that ”[the]
only kind of variability modeled in current OOA/D is intra-application variability, e.g. variability
of certain objects over time and the use of different variants of an object at different locations
within an application.”

54 mde and variability modeling

gineering, the variability space is made explicit and concise, therefore
simplifying decisions around use and reuse.

• Variability Traceability: Engineers can also have a better understanding
of the inclusion or exclusion of functionality because the variability
model can answer those questions independently of the implementation.

These benefits help explain the abundance of variability modeling languages
and notations in the literature, including AND/OR Tables [Mut+04], Decision
Modeling [SRG11], Orthogonal Variability Modeling (OVM) [PBDL05], theVariability

literature Common Variability Language (CVL) [HWC13] and many others. A survey
of all of these approaches lies beyond the scope of our work, given our needs—
which only makes use of a set of high-level concepts in the variability domain
— so we shall focus instead on only one approach: feature modeling.5

6.3 feature modeling

Feature modeling was originally introduced by Kang et al.’s work on Feature-
Oriented Domain Analysis (FODA) [Kan+90] and subsequently extended
by Czarnecki and Eisenecker [Cza+00], amongst many others.6 As the name
indicates, the concept central to their approach is the feature, which Groher
and Völter define in the following manner: ”[products] usually differ by the
set of features they include in order to fulfill (sic.) customer requirements. AFeatures, relationship

with product lines feature is defined as an increment in functionality provided by one or more
members of a product line.” [GV09] Features are thus are associated with
product lines — each feature a cohesive unit of functionality with distinguish-
able characteristics relevant to a stakeholder7 — and the interplay between
features then becomes itself a major source of variability, as Groher and Völter
go on to explain: ”Variability of features often has widespread impact on
multiple artifacts in multiple lifecycle stages, making it a pre-dominant (sic.)
engineering challenge in software product line engineering.”

Features and their relationships are captured by feature diagrams and feature
models, as Czarnecki et al. tell us [CHE05a]: ”A feature diagram is a tree of
features with the root representing a concept (e.g., a software system). Feature
models are feature diagrams plus additional information such as feature
descriptions, binding times, priorities, stakeholders, etc.” Feature diagramsFeature diagrams,

feature models have found widespread use in the literature since their introduction, resulting

5 The interested reader is directed to Chen et al.’s [CABA09] systematic literature review of 34
approaches to variability management, which also provides a chronological background. In
addition, Sinnema and Deelstra [SD07] authored a broad overview of the field, including sur-
veys of DSLs and tooling, as well as performing a detailed analysis of six variability modeling
approaches.

6 Feature orientation attracted interest even outside the traditional modeling community, giving
rise to approaches such as Feature-Oriented Programming (FOP), which is ”[…] the study of
feature modularity and programming models that support feature modularity.” [Bat03]

7 Note that we use the term stakeholder rather than customer or end user, taking the same view as
Czarnecki et al. [CHE05a] (emphasis ours): ”[…] we allow features with respect to any stakeholder,
including customers, analysts, architects, developers, system administrators, etc. Consequently, a
feature may denote any functional or non-functional characteristic at the requirements, architec-
tural, component, platform, or any other level.”

6.3 feature modeling 55

Figure 6.2: Symbols used in cardinality-based feature modeling. Source: Author’s
drawing, based on Czarnecki and Helsen [CH06]

on the emergence of several different extensions and variations.8 For the
purposes of the present chapter we shall make use of cardinality-based feature
models, as described by Czarnecki et al. in [CHE05a] and whose notation
Figure 6.2 summarises.

The notation is perhaps made clearer by means of an example (Figure 6.3),
which builds on from Figure 3.2 from Chapter 3. The top-most node of the fea-
ture diagram (i.e. Car) is called the root feature. Nodes Body, Engine, Gear and
Licence Plate describe mandatory features whereas node Keyless Entry Example
describes an optional feature. Engine contains a set of grouped features that
are part of a xor-group, whereas Gear contains a set of features in a or-group.
Or-groups differ from xor-groups in that they require that at least one feature
from the group needs to be selected whereas xor-groups allow one and only
one feature to be selected.

Figure 6.3: Sample feature model. Source: Author’s drawing, modified from a Czar-
necki and Wasowski diagram [CW07].

8 An in-depth analysis of these variants would take too far afield with regards to the scope of
the present work. The interested reader is directed to Czarnecki et al. [CHE05b], Section 2.2
(Summary of Existing Extensions), where a conceptual analysis of the main variants is provided.

56 mde and variability modeling

Feature diagrams have the significant property of being trivially convertible
into Boolean logic formulas or to a Conjunctive Normal Form (CNF) repre-Solving
sentation, making them amenable to solving using established solvers such as
Binary Decision Diagram (BDD) [CW07] and SAT [Bat05].

Importantly, feature modeling also has known shortcomings, and these were
considered during our review of the literature. Most significant were those
identified by Pohl et al. [PBDL05], namely that feature models mix the model-
ing of features with the modeling of variability and do not provide a way to
segment features by intended destinatary— i.e. it is not possible to distinguish
between features meant for internal purposes from those meant for end-users.Limitations
With OVM, Pohl et al. propose instead a decomposition of responsibilities.
Clearly, there is validity to their concerns, as demonstrated by the fact that
concepts that OVM brought into attention such as variation points — ”delayed
design decision[s]” [Bos+01] that ”[…] allow us to provide alternative imple-
mentations of functional or non-functional features” as well as documentation
— are now commonly used in the literature, even in the context of feature
modeling. Nonetheless, since features provide an adequate level of granularity
for our needs, we need not concern ourselves with Pohl et al.’s criticism. We
do, however, require a clearer pictured of the relationship between feature
models and the kinds of models that are typically found within MDE.

6.4 integrating feature modeling with mde

The crux of the problem is then on how to integrateMDESmodeling techniques
with variability management — or, more specifically for our purposes, with
feature modeling. Clearly, having a feature model simply as a stand-alone
artefact, entirely disconnected from the remaining engineering activities isMotivation
just a form of MBE, as Czarnecki and Antkiewicz explain (emphasis ours):
”Although a feature model can represent commonalities and variabilities in
a very concise taxonomic form, features in a feature model are merely symbols.
Mapping features to other models, such as behavioral or data specifications,
gives them semantics.” [CA05]

Therefore, the availability of concise and interlinked representations of vari-
ability across models is a prerequisite to attain this semantically rich view of
features. For their part, Groher and Völter argue that integrating variability
directly within models has important advantages: ”[…] due to the fact thatDirect integration
models are more abstract and hence less detailed than code, variability on
model level is inherently less scattered and therefore simpler to manage.”
[GV08] (cf. Figure 6.4).

Whilst delving into the conceptual machinery of this integration, Groher and
Völter [GV07; GV09] analysed the types of variability found in models and
proposed dividing it into two kinds, structural and non-structural, defined as
follows: ”Structural variability is described using creative construction DSLs,
whereas non-structural variability can be described using configuration lan-Input variability
guages.” We name these two kinds input variability since they reflect variation
within the input models. In their view, the feature model becomes a meta-

6.4 integrating feature modeling with mde 57

Figure 6.4: Mapping abstract models to detailed representations. Source: Author’s
drawing from Groher and Völter’s image [GV08]

model for the product line9, and their instances are the configuration models
for products, with the final aim being to ”[…] use a configuration model to
define variants of a structural model.” According to them, these variants can
be generated in two ways:

• Positive Variability: The assembly of the variant starts with a small core,
and additional parts are added depending on the presence or absence
of features in the configuration model. The core contains parts of the
model that are used by all products in the product line. Generational

variability

• Negative Variability: The assembly process starts by first manually
building the ”overall” model with all features selected. Features are then
removed based on their absence from the configuration model.

Since these two types of variability are related to generation, we classify them
as generational variability. Figure 6.5 illustrates these two techniques, applied
to sample features A, B and C.

Figure 6.5: Positive and negative variability techniques. Source: Author’s drawing
based on images from Groher and Völter [GV09]

Given the cross-cutting nature of feature related concerns, Groher and Völter
proposed using Aspect Oriented Programming (AOP) [Fil+04] techniques to
implement positive and negative variability, to which they gave the perhaps
overly-descriptive name of Aspect-OrientedModel Driven PLE (AO-MD-PLE).
AO-MD-PLE has the advantage of considering all stages of software engineer- AO-MD-PLE
ing, from problem space to solution space, including models, transformations
(both M2M and M2T) and manually crafted code. In our opinion, its main
downside is complexity, not only due to challenges inherent to AOP itself

9 A view that aligns well with Czarnecki et al.’s idea of a feature model as the description of the set
of all possible valid configurations within a system family [CHE05a].

58 mde and variability modeling

[CSS04; Ste06], but also because it uses several different tools to implement
the described functionality and, understandably, requires changes at all levels
of the stack.

Undertakings of a less ambitious nature are also present in the literature.
The simplest approach is arguably to integrate variability modeling directly
with UML via a UML Profile, as suggested by Clauß’s early work [Cla01],
which focused on concepts such as variation points and variants. Ziadi et al.
[ZHJ03] build on from this idea, expanding the focus to product line concepts.UML Profiles
More recently, in [Pos+10; Pos+11], Thibaut et al. created a UML Profile
for feature modeling concepts. Extending UML is advantageous due to its
universal nature, but alas, it also inherits all of the challenges associated with
the modeling suite.

Others have looked elsewhere. In [CA05], Czarnecki and Antkiewicz pro-
pose a template-based approach to map feature models to different kinds of
models. There, they outline a technique of superimposed variants, in which a
model template is associated with a feature model to form a model family. The
model template is written in the DSL of the target model, and can be thoughtSuperimposed

variants of as a superset of all possible models, containing model elements that are
associated with features by means of presence conditions. Model templates can
be instantiated given a feature configuration: ”The instantiation process is a
model-to-model transformation with both the input and output expressed
in the target notation.” The approach is reminiscent of Groher and Völter’s
positive variability, in that the template provides the overall model and MTs
are then responsible for pruning unwanted model elements on the basis of
the evaluation of presence conditions.

An interesting feature of superimposed variants are Implicit Presence Condi-
tionss (IPCs):

When an element has not been explicitly assigned a PC by the user,
an implicit PC (IPC) is assumed. In general, assuming a PC of true
is a simple choice which is mostly adequate in practice; however,
sometimes a more useful IPC for an element of a given type canIPCs
be provided based on the presence conditions of other elements
and the syntax and semantics of the target notation.

IPCs facilitate the job of the modeler because they infer relationships between
features andmodel elements based on a deep understanding of the underlying
modeling language. For example, if two UML model elements are linked by
an association and each element has a presence condition, a possible IPCIPCs example,

limitations is to remove both modeling elements if either of their presence conditions
evaluates to false. Overall, Czarnecki and Antkiewicz’s approach is extremely
promising, as demonstrated by their prototype implementation, but in our
opinion it hinges largely on the availability of good tooling. Asking individual
MDE practitioners to extend their tools to support superimposed variants is
not feasible due to the engineering effort required.

As part of our review of the literature we also investigated the application
of variability management techniques to code generators. In [RR15], Roth
and Rumpe motivate the need for the application of product line engineering
techniques to code generation. Their paper provides a set of conceptual mech-Requirements for

SPLE code generators

6.4 integrating feature modeling with mde 59

anisms to facilitate the product-lining of code generators, and outlines a useful
set of requirements: ”The main requirements for a code generator product
line infrastructure are support for incremental code generation, specification
of code generator component interfaces, support for validation of generated
code, and support for individual semantics of a composition operator.”

For their part, Greifenberg et al. [Gre+16] reflected on the role of code genera-
tors within SPLE — particularly those that are implemented as product lines
themselves: ”[…] a code generator product is a SPL on its own, since it gener- Code generators as

product linesates a variety of software products that are similar, and thus shares generator
components potentially in different variants”. Their work also introduces the
concept of variability regions:

Variability regions (VRs) provide a template language indepen-
dent approach to apply concepts of FOP [Feature-Oriented Pro-
gramming (FOP)] to code generators. A VR represents an ex- Variability regions
plicitly designated region in an artifact that has to be uniquely
addressable by an appropriate signature.

Variability regions are accompanied by two DSLs: Layer Definition Language
(LDL) and Product Configuration Language (PCL). The LDL is used to define
relationships between variability regions, whereas the PCL defines individual
configurations to instantiate variants. Variability regions and their modeling is LDL, PCL
certainly an interesting idea, but it is somewhat unfortunate that Greifenberg
et al. did not link them back to feature models or to higher-level modeling in
general.

Finally, Jörges’ [Jör13] take on code generation, modeling and product lines is
arguably the most comprehensive of all those analysed, given he advocates the
development of code generators that take into account variant management
and product lines as one of its core requirements [Jör13] (p. 8). Genesys, the Genesys
approach put forward by Jörges in his dissertation, hinges on a service-oriented
approach to the construction and evolution of code generators, anchored on
the basis of models: ”Both models and services are reusable and thus form a
growing repository for the fast creation and evolution of code generators.”

Unfortunately, there were several disadvantages with his approach with re-
gards to own purposes; namely, the reliance on a graphical notation for the
design of code generators and, more significantly, the tool-specific nature of
Genesys which cannot be considered outside of jABC.10 Aswe have seen, these
are in direct conflict with our own views on fitting with existing developer
workflows rather than imposing new ones . Nonetheless, Jörges’ work was Genesys limitations
very influential to our own, and we’ve carried across several features of his
argument such as a clear outline of a set of requirements in order to guide the
model-driven solution.

At this juncture, we have now introduced all of MDE’s basic building blocks
required for the present work. In the next chapter we will turn our attention to
our personal experiences with MDE, prior to learning about the discipline.

10 As per Jörges’ [Jör13] (p. 43): ”jABC is a highly customizable Java-based framework that realizes
the tenets of XMDD [Extreme Model-Driven Development] […] jABC provides a tool that allows
users to graphically develop systems in a behavior-oriented manner by means of models called
Service Logic Graphs (SLGs).”

60 mde and variability modeling

Part III

OUTLOOK

7
CONCLUS ION

These studies highlight that the fundamentals of modeling – how design-
ers ‘do’ abstraction, how engineers reason about a system in abstract
terms, how organizations work with abstract concepts – are not well
reflected in current modeling approaches. Indeed, the vast majority of
modeling approaches – both industrial and academic – are developed
without an appreciation for how people and organizations work.

— Whittle et al. [WHR14]

This manuscript provided a high-level overview of core topics related to
MDE theory which are of particular significance to our doctoral disser-

tation. Even taking into account only the presented material, it should be
patently clear that MDE’s achievements are immense from a theoretical stand- MDE’s achievements
point. A large body of knowledge has been built and a great deal of light has
been shed onto the fundamental nature of modeling in software systems, aptly
summarised by Mussbacher et al. [Mus+14] (Section 2.1, ”Major Areas of
Advancement”).

Nevertheless, the examination also highlighted a number of difficulties faced
by the discipline. In our opinion, these can be summarised into two classes of
contrasting but significant challenges. On one hand, too much of a reliance on
empiricism and pragmatism puts the theoretical foundations into question.
This was perhaps more of a danger in the early days of MDE, but it is one MDE’s challenges
we should keep in mind. A second type challenge comes from the opposite
direction: there is a danger that, over time, MDE’s theory is becoming un-
moored from its empirical and engineering roots and diffused across a vast
body of knowledge. This is a problem faced by more mature disciplines, so it
is perhaps instructive to listen to Von Neumann’s words of warning (emphasis
his):1

As a mathematical discipline travels far from its empirical source,
or still more, if it is a second and third generation only indirectly
inspired by ideas coming from ”reality” it is beset with very grave
dangers. It becomes more and more purely aestheticizing, more
and more purely I’art pour I’art. This need not be bad, if the field is
surrounded by correlated subjects, which still have closer empirical Von Neumann’s

Warningconnections, or if the discipline is under the influence of men
(sic.) with an exceptionally well-developed taste. But there is a
grave danger that the subject will develop along the line of least
resistance, that the stream, so far from its source, will separate
into a multitude of insignificant branches, and that the discipline

1 Though he was talking specifically about mathematics, we believe his words also carry important
lessons for fields such as MDE.

63

64 conclusion

will become a disorganized mass of details and complexities. In
other words, at a great distance from its empirical source, or after
much ”abstract” inbreeding, a mathematical subject is in danger of
degeneration. At the inception the style is usually classical; when
it shows signs of becoming baroque, then the danger signal is up.
[…]

In any event, whenever this stage is reached, the only remedy
seems to me to be the rejuvenating return to the source: the re-
injection of more or less directly empirical ideas. I am convinced
that this was a necessary condition to conserve the freshness and
the vitality of the subject and that this will remain equally true in
the future. [VN04]

Clearly, this very fine balancing act can only be attained via a careful marrying
of theory with application. In this spirit, we are led to conclude that any
application of MDE must ensure it takes into account practical experience on
the field, rather than just theoretical analysis.

conclusion 65

Part IV

ANNEX

A
CONCEPT MAP

Figure A.1: Concept map for the Dogen domain

69

B IBL IOGRAPHY

[ÁES01] José M Álvarez, Andy Evans, and Paul Sammut. “Mapping be-
tween levels in themetamodel architecture”. In: International Con-
ference on the UnifiedModeling Language. Springer. 2001, pp. 34–46
(cit. on p. 19).

[AF03] David E Avison and Guy Fitzgerald. “Where now for devel-
opment methodologies?” In: Communications of the ACM 46.1
(2003), pp. 78–82 (cit. on p. 42).

[AF16] Sabah Al-Fedaghi. “Function-behavior-structure model of de-
sign: an alternative approach”. In: Int. J. Adv. Comput. Sci. Appl
7.7 (2016), pp. 133–139 (cit. on p. 17).

[AK02] Colin Atkinson and Thomas Kühne. “Profiles in a strict meta-
modeling framework”. In: Science of Computer Programming 44.1
(2002), pp. 5–22 (cit. on p. 20).

[AR08] MohsenAsadi and Raman Ramsin. “MDA-basedmethodologies:
an analytical survey”. In: European Conference on Model Driven
Architecture-Foundations and Applications. Springer. 2008, pp. 419–
431 (cit. on pp. 8, 43).

[Abr+04] Alain Abran et al. “Software engineering body of knowledge”.
In: IEEE Computer Society, Angela Burgess (2004) (cit. on p. 9).

[Amb07] Scott W Ambler. “Agile Model driven development (AMDD)”.
In: XOOTIC MAGAZINE, February (2007) (cit. on pp. 41, 43, 44,
48).

[Amb08] Scott W Ambler. “Agile software development at scale”. In: Bal-
ancing agility and formalism in software engineering. Springer, 2008,
pp. 1–12 (cit. on pp. 43, 44).

[Ame] David Ameller. “SAD: Systematic Architecture Design”. PhD
thesis. Universitat Politècnica de Catalunya (cit. on p. 9).

[Anj+12] Anthony Anjorin et al. “A framework for bidirectional model-to-
platform transformations”. In: International Conference on Software
Language Engineering. Springer. 2012, pp. 124–143 (cit. on p. 35).

[Arc+11] Paolo Arcaini et al. “A model-driven process for engineering a
toolset for a formal method”. In: Software: Practice and Experience
41.2 (2011), pp. 155–166 (cit. on p. 25).

[Awa05] MA Awad. “A comparison between agile and traditional soft-
ware development methodologies”. In:University of Western Aus-
tralia (2005) (cit. on p. 41).

[BBM05] Kathrin Berg, Judith Bishop, and DirkMuthig. “Tracing software
product line variability: from problem to solution space”. In: Pro-
ceedings of the 2005 annual research conference of the South African
institute of computer scientists and information technologists on IT
research in developing countries. South African Institute for Com-
puter Scientists and Information Technologists. 2005, pp. 182–
191 (cit. on p. 30).

71

72 bibliography

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-
driven software engineering in practice. Vol. 1. 1. Morgan&Claypool
Publishers, 2012, pp. 1–182 (cit. on pp. 3, 8–11, 15, 19–21, 23, 32,
33, 43).

[BF+14] Pierre Bourque, Richard E Fairley, et al. Guide to the software
engineering body of knowledge (SWEBOK (R)): Version 3.0. IEEE
Computer Society Press, 2014 (cit. on p. 9).

[BL13] Omar Badreddin and Timothy C Lethbridge. “Model oriented
programming: bridging the code-model divide”. In: Proceedings
of the 5th International Workshop on Modeling in Software Engineer-
ing. IEEE Press. 2013, pp. 69–75 (cit. on pp. 10, 26).

[Bat03] Don Batory. “A tutorial on feature oriented programming and
product-lines”. In: Software Engineering, 2003. Proceedings. 25th
International Conference on. IEEE. 2003, pp. 753–754 (cit. on p. 54).

[Bat05] Don Batory. “Feature models, grammars, and propositional for-
mulas”. In: International Conference on Software Product Lines.
Springer. 2005, pp. 7–20 (cit. on p. 56).

[Béz+03] Jean Bézivin et al. “First experiments with the ATL model trans-
formation language: Transforming XSLT into XQuery”. In: 2nd
OOPSLA Workshop on Generative Techniques in the context of Model
Driven Architecture. Vol. 37. 2003 (cit. on p. 32).

[Béz04] Jean Bézivin. “In search of a basic principle for model driven
engineering”. In:Novatica Journal, Special Issue 5.2 (2004), pp. 21–
24 (cit. on p. 19).

[Béz05a] Jean Bézivin. “Model driven engineering: An emerging tech-
nical space”. In: International Summer School on Generative and
Transformational Techniques in Software Engineering. Springer. 2005,
pp. 36–64 (cit. on pp. 8, 11, 17, 32).

[Béz05b] Jean Bézivin. “On the unification power of models”. In: Software
& Systems Modeling 4.2 (2005), pp. 171–188 (cit. on pp. 16, 19, 21,
26, 35).

[Boo18] Boost. Boost Spirit. 2018. url: https://www.boost.org/doc/
libs/1_68_0/libs/spirit/doc/html/index.html (visited on
11/06/2018) (cit. on p. 25).

[Bos+01] Jan Bosch et al. “Variability issues in software product lines”.
In: International Workshop on Software Product-Family Engineering.
Springer. 2001, pp. 13–21 (cit. on pp. 53, 56).

[Bri96] Sjaak Brinkkemper. “Method engineering: engineering of infor-
mation systems developmentmethods and tools”. In: Information
and software technology 38.4 (1996), pp. 275–280 (cit. on p. 42).

[Bru+18] Jean-Michel Bruel et al. “Model Transformation Reuse Across
Metamodels”. In: International Conference on Theory and Practice of
Model Transformations. Springer. 2018, pp. 92–109 (cit. on p. 23).

[CA05] Krzysztof Czarnecki andMichał Antkiewicz. “Mapping features
to models: A template approach based on superimposed vari-
ants”. In: International conference on generative programming and
component engineering. Springer. 2005, pp. 422–437 (cit. on pp. 56,
58).

https://www.boost.org/doc/libs/1_68_0/libs/spirit/doc/html/index.html
https://www.boost.org/doc/libs/1_68_0/libs/spirit/doc/html/index.html

bibliography 73

[CABA09] Lianping Chen, Muhammad Ali Babar, and Nour Ali. “Variabil-
ity management in software product lines: a systematic review”.
In: Proceedings of the 13th International Software Product Line Confer-
ence. Carnegie Mellon University. 2009, pp. 81–90 (cit. on p. 54).

[CH06] Krzysztof Czarnecki and Simon Helsen. “Feature-based survey
of model transformation approaches”. In: IBM Systems Journal
45.3 (2006), pp. 621–645 (cit. on pp. 21, 22, 30, 55).

[CHE05a] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. “For-
malizing cardinality-based feature models and their specializa-
tion”. In: Software process: Improvement and practice 10.1 (2005),
pp. 7–29 (cit. on pp. 54, 55, 57).

[CHE05b] Krzysztof Czarnecki, SimonHelsen, andUlrich Eisenecker. “Staged
configuration through specialization and multilevel configura-
tion of feature models”. In: Software Process: Improvement and
Practice 10.2 (2005), pp. 143–169 (cit. on p. 55).

[CN02] Paul Clements and Linda Northrop. Software product lines: prac-
tices and patterns. Vol. 3. Addison-Wesley Reading, 2002 (cit. on
p. 52).

[CSS04] Constantinos Constantinides, Therapon Skotiniotis, and Max-
imilian Stoerzer. “AOP considered harmful”. In: 1st European
Interactive Workshop on Aspect Systems (EIWAS). 2004 (cit. on
p. 58).

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. “Feature diagrams
and logics: There and back again”. In: Software Product Line Con-
ference, 2007. SPLC 2007. 11th International. IEEE. 2007, pp. 23–34
(cit. on pp. 55, 56).

[Cla01] Matthias Clauß. “Generic modeling using UML extensions for
variability”. In: Workshop on Domain Specific Visual Languages at
OOPSLA. Vol. 2001. 2001 (cit. on p. 58).

[Cra21] Marco Craveiro. “Experience Report of Industrial Adoption of
Model Driven Development in the Financial Sector”. In: (2021).
doi: 10.5281/zenodo.5767247 (cit. on pp. 23, 25, 46).

[Cue16] César Cuevas Cuesta. “Metaherramientas MDE para el diseño
de entornos de desarrollo de sistemas distribuidos de tiempo
real”. PhD thesis. Universidad de Cantabria, 2016 (cit. on p. 7).

[Cza+00] Krzysztof Czarnecki et al. “Generative programming and active
libraries”. In: Generic Programming. Springer, 2000, pp. 25–39
(cit. on pp. 16, 54).

[Cza02] Krzysztof Czarnecki. “Domain engineering”. In: Encyclopedia of
Software Engineering (2002) (cit. on p. 52).

[Cza98] Krzysztof Czarnecki. Generative programming: Principles and tech-
niques of software engineering based on automated configuration and
fragment-based component models. Computer Science Department,
Technical University of Ilmenau, 1998 (cit. on pp. 11, 53).

[DBC88] Alan M. Davis, Edward H. Bersoff, and Edward R. Comer. “A
strategy for comparing alternative software development life
cycle models”. In: IEEE Transactions on software Engineering 14.10
(1988), pp. 1453–1461 (cit. on p. 41).

https://doi.org/10.5281/zenodo.5767247

74 bibliography

[DS92] Charles Donnelly and Richard M Stallman. Bison 1.20: the YACC-
compatible parser generator. Free Software Foundation, 1992 (cit.
on p. 25).

[Des14] Mihai Liviu Despa. “Comparative study on software develop-
ment methodologies”. In: Database Systems Journal 5.3 (2014),
pp. 37–56 (cit. on p. 41).

[Dij70] Edsger Wybe Dijkstra. Notes on structured programming. 1970 (cit.
on p. 52).

[Dis+14] Zinovy Diskin et al. “Towards a rational taxonomy for increas-
ingly symmetric model synchronization”. In: International Con-
ference on Theory and Practice of Model Transformations. Springer.
2014, pp. 57–73 (cit. on p. 30).

[EB10] Moritz Eysholdt and Heiko Behrens. “Xtext: implement your
language faster than the quick and dirty way”. In: Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion. ACM.
2010, pp. 307–309 (cit. on p. 25).

[Ell04] Geoffrey Elliott. Global business information technology: an inte-
grated systems approach. Pearson Education, 2004 (cit. on pp. 41,
42).

[Est+07] Jeff A Estefan et al. “Survey of model-based systems engineer-
ing (MBSE) methodologies”. In: Incose MBSE Focus Group 25.8
(2007), pp. 1–12 (cit. on pp. 10, 41–43).

[Eva04] Eric Evans.Domain-driven design : tackling complexity in the heart of
software. Addison-Wesley, 2004. isbn: 0321125215 9780321125217
(cit. on p. 16).

[FR07] Robert France and Bernhard Rumpe. “Model-driven develop-
ment of complex software: A research roadmap”. In: 2007 Future
of Software Engineering. IEEE Computer Society. 2007, pp. 37–54
(cit. on pp. 12, 13, 26, 29, 30, 34).

[Fav04] Jean-Marie Favre. “Towards a basic theory tomodelmodel driven
engineering”. In: 3rd workshop in software model engineering, wisme.
Citeseer. 2004, pp. 262–271 (cit. on pp. 7, 8).

[Fil+04] Robert Filman et al.Aspect-oriented software development. Addison-
Wesley Professional, 2004 (cit. on p. 57).

[Fow04] Martin Fowler. UML distilled: a brief guide to the standard object
modeling language. Addison-Wesley Professional, 2004 (cit. on
p. 11).

[GHN10] HolgerGiese, StephanHildebrandt, and StefanNeumann. “Model
synchronization at work: keeping SysML andAUTOSARmodels
consistent”. In:Graph transformations and model-driven engineering.
Springer, 2010, pp. 555–579 (cit. on pp. 8, 30).

[GSD09] GáborGuta,Wolfgang Schreiner, andDirkDraheim. “A lightweight
mdsd process applied in small projects”. In: Software Engineering
and Advanced Applications, 2009. SEAA’09. 35th Euromicro Confer-
ence on. IEEE. 2009, pp. 255–258 (cit. on pp. 43, 44).

[GV07] Iris Groher and Markus Voelter. “Expressing feature-based vari-
ability in structural models”. In: In Workshop on Managing Vari-
ability for Software Product Lines. Citeseer. 2007 (cit. on pp. 51–53,
56).

bibliography 75

[GV08] Iris Groher and Markus Voelter. “Using Aspects to Model Prod-
uct Line Variability.” In: SPLC (2). 2008, pp. 89–95 (cit. on pp. 56,
57).

[GV09] Iris Groher and Markus Voelter. “Aspect-oriented model-driven
software product line engineering”. In: Transactions on aspect-
oriented software development VI. Springer, 2009, pp. 111–152 (cit.
on pp. 29, 52, 54, 56, 57).

[Gre+15a] Timo Greifenberg et al. “A comparison of mechanisms for inte-
grating handwritten and generated code for object-oriented pro-
gramming languages”. In:Model-Driven Engineering and Software
Development (MODELSWARD), 2015 3rd International Conference
on. IEEE. 2015, pp. 74–85 (cit. on p. 31).

[Gre+15b] Timo Greifenberg et al. “Integration of handwritten and gen-
erated object-oriented code”. In: International Conference onModel-
Driven Engineering and SoftwareDevelopment. Springer. 2015, pp. 112–
132 (cit. on p. 31).

[Gre+16] Timo Greifenberg et al. “Modeling variability in template-based
code generators for product line engineering”. In: arXiv preprint
arXiv:1606.02903 (2016) (cit. on p. 59).

[Gro14] Object Management Group.MDA Guide Version 2.0. 2014 (cit. on
p. 33).

[HLR08] Thomas Hettel, Michael Lawley, and Kerry Raymond. “Model
synchronisation: Definitions for round-trip engineering”. In: In-
ternational Conference on Theory and Practice of Model Transforma-
tions. Springer. 2008, pp. 31–45 (cit. on p. 30).

[HS+13] Brian Henderson-Sellers et al. “Ptolemaic Metamodelling?: The
Need for a Paradigm Shift”. In: Progressions and Innovations in
Model-Driven Software Engineering. IGI Global, 2013, pp. 90–146
(cit. on pp. 18–20).

[HSB12] BrianHenderson-Sellers andArjan Bulthuis.Object-orientedmetameth-
ods. Springer Science & Business Media, 2012 (cit. on pp. 18, 19).

[HWC13] Øystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki.
“CVL: common variability language.” In: SPLC. 2013, p. 277 (cit.
on p. 54).

[Har17] Robert Harper.What, if anything, is a programming paradigm? 2017
(cit. on p. 8).

[Hut+11] John Hutchinson et al. “Empirical assessment of MDE in in-
dustry”. In: Software Engineering (ICSE), 2011 33rd International
Conference on. IEEE. 2011, pp. 471–480 (cit. on p. 10).

[JBF09] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. “Model
driven language engineering with kermeta”. In: International
Summer School on Generative and Transformational Techniques in
Software Engineering. Springer. 2009, pp. 201–221 (cit. on p. 23).

[Joh+75] StephenC Johnson et al.Yacc: Yet another compiler-compiler. Vol. 32.
Bell Laboratories Murray Hill, NJ, 1975 (cit. on p. 25).

[Jör13] Sven Jörges. Construction and evolution of code generators: A model-
driven and service-oriented approach. Vol. 7747. Springer, 2013 (cit.
on pp. 11, 17, 19, 23, 24, 31, 59).

76 bibliography

[Jou+08] Frédéric Jouault et al. “ATL: A model transformation tool”. In:
Science of computer programming 72.1-2 (2008), pp. 31–39 (cit. on
p. 23).

[KBA02] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. “Technological
spaces: An initial appraisal”. In: CoopIS, DOA 2002 (2002) (cit.
on p. 31).

[KK84] Jeffrey E Kottemann and Benn R Konsynski. “Dynamic Meta-
systems for Information Systems Development.” In: ICIS. 1984,
p. 14 (cit. on pp. 18, 19).

[KLV05] Paul Klint, Ralf Lämmel, and Chris Verhoef. “Toward an en-
gineering discipline for grammarware”. In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 14.3 (2005),
pp. 331–380 (cit. on p. 25).

[KPP08] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. “The
epsilon transformation language”. In: International Conference
on Theory and Practice of Model Transformations. Springer. 2008,
pp. 46–60 (cit. on p. 23).

[Kan+90] Kyo C Kang et al. Feature-oriented domain analysis (FODA) fea-
sibility study. Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa
Software Engineering Inst, 1990 (cit. on p. 54).

[Kur07] Ivan Kurtev. “State of the art of QVT: A model transformation
language standard”. In: International Symposium on Applications
of Graph Transformations with Industrial Relevance. Springer. 2007,
pp. 377–393 (cit. on p. 23).

[Lan+18] Kevin Lano et al. “Technical Debt in Model Transformation Spec-
ifications”. In: International Conference on Theory and Practice of
Model Transformations. Springer. 2018, pp. 127–141 (cit. on p. 23).

[MA07] Parastoo Mohagheghi and Jan Aagedal. “Evaluating quality in
model-driven engineering”. In: Modeling in Software Engineering,
2007. MISE’07: ICSE Workshop 2007. International Workshop on.
IEEE. 2007, pp. 6–6 (cit. on p. 24).

[MBFBJ02] Stephen J Mellor, Marc Balcer, and Ivar Foreword By-Jacoboson.
ExecutableUML:A foundation formodel-driven architectures. Addison-
Wesley Longman Publishing Co., Inc., 2002 (cit. on p. 30).

[MMP10] Ole Lehrmann Madsen and Birger Møller-Pedersen. “A uni-
fied approach to modeling and programming”. In: International
Conference on Model Driven Engineering Languages and Systems.
Springer. 2010, pp. 1–15 (cit. on pp. 26, 44).

[MVG06] Tom Mens and Pieter Van Gorp. “A taxonomy of model transfor-
mation”. In: Electronic Notes in Theoretical Computer Science 152
(2006), pp. 125–142 (cit. on pp. 21, 31).

[Mat11] Reza Matinnejad. “Agile model driven development: An intelli-
gent compromise”. In: Software Engineering Research, Management
andApplications (SERA), 2011 9th International Conference on. IEEE.
2011, pp. 197–202 (cit. on pp. 8, 11, 43, 44).

[Mey88] Bertrand Meyer. Object-oriented software construction. Vol. 2. Pren-
tice hall New York, 1988 (cit. on p. 10).

bibliography 77

[Mus+14] Gunter Mussbacher et al. “The relevance of model-driven engi-
neering thirty years from now”. In: International Conference on
Model Driven Engineering Languages and Systems. Springer. 2014,
pp. 183–200 (cit. on pp. 8, 12, 63).

[Mut+04] Dirk Muthig et al. “GoPhone-a software product line in the
mobile phone domain”. In: IESE-Report No 25 (2004), pp. 1–104
(cit. on p. 54).

[Neu16] Patrick Neubauer. “Towards Model-Driven Software Language
Modernization.” In: STAF Doctoral Symposium/Showcase. 2016,
pp. 11–20 (cit. on pp. 25, 35).

[OMG17] Object Management Group OMG. “Unified Modeling Language
(UML) 2.5.1 Specification”. In: Final Adopted Specification (Decem-
ber 2017) (2017) (cit. on pp. 23, 42).

[PBDL05] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Soft-
ware product line engineering: foundations, principles and techniques.
Springer Science & Business Media, 2005 (cit. on pp. 11, 52, 54,
56).

[PKP12] Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack.
“Metamodelling for grammarware researchers”. In: International
Conference on Software Language Engineering. Springer. 2012, pp. 64–
82 (cit. on p. 25).

[Par13] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Book-
shelf, 2013 (cit. on p. 25).

[Pod17] Karlis Podnieks. “Philosophy ofModeling: SomeNeglected Pages
of History”. In: (2017) (cit. on pp. 15, 16).

[Poo01] John D Poole. “Model-driven architecture: Vision, standards
and emerging technologies”. In: Workshop on Metamodeling and
Adaptive Object Models, ECOOP. Vol. 50. Citeseer. 2001 (cit. on
p. 10).

[Pos+10] Thibaut Possompès et al. “A UML Profile for Feature Diagrams:
Initiating a Model Driven Engineering Approach for Software
Product Lines”. In: Journée Lignes de Produits. 2010, pp. 59–70
(cit. on p. 58).

[Pos+11] Thibaut Possompès et al. “Design of a UML profile for feature di-
agrams and its tooling implementation”. In: Software Engineering
& Knowledge Engineering. 2011, pp. 693–698 (cit. on p. 58).

[RP08] Raman Ramsin and Richard F Paige. “Process-centered review
of object oriented software development methodologies”. In:
ACM Computing Surveys (CSUR) 40.1 (2008), p. 3 (cit. on p. 42).

[RR15] Alexander Roth and Bernhard Rumpe. “Towards product lining
model-driven development code generators”. In: Model-Driven
Engineering and Software Development (MODELSWARD), 2015
3rd International Conference on. IEEE. 2015, pp. 539–545 (cit. on
pp. 52, 58).

[Rot+89] Jeff Rothenberg et al. “The nature of modeling”. In: in Artificial
Intelligence, Simulation and Modeling (1989) (cit. on p. 16).

[SD07] Marco Sinnema and Sybren Deelstra. “Classifying variability
modeling techniques”. In: Information and Software Technology
49.7 (2007), pp. 717–739 (cit. on p. 54).

78 bibliography

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. “A compari-
son of decision modeling approaches in product lines”. In: Pro-
ceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems. ACM. 2011, pp. 119–126 (cit. on p. 54).

[SS11] Fredrik Seehusen and Ketil Stølen. “An evaluation of the graphi-
cal modeling framework (gmf) based on the development of the
coras tool”. In: International Conference on Theory and Practice of
Model Transformations. Springer. 2011, pp. 152–166 (cit. on p. 25).

[SVC06] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki. Model-
Driven Software Development: Technology, Engineering,Management.
John Wiley & Sons, 2006. isbn: 0470025700 (cit. on pp. 10, 17).

[SVI12] IM SVITS. “A Comparative Analysis of Different types of Models
in Software Development Life Cycle”. In: International Journal 2.5
(2012) (cit. on p. 41).

[Sch+12] Ina Schaefer et al. Software diversity: state of the art and perspectives.
2012 (cit. on p. 51).

[Sei03] Edwin Seidewitz. “What models mean”. In: IEEE software 20.5
(2003), pp. 26–32 (cit. on p. 19).

[Spr04] Jonathan Sprinkle. “Model-integrated computing”. In: IEEE po-
tentials 23.1 (2004), pp. 28–30 (cit. on p. 10).

[Sta73] Herbert Stachowiak. “General model theory”. In: Springer (1973)
(cit. on pp. 15, 16, 31).

[Ste06] Friedrich Steimann. “The paradoxical success of aspect-oriented
programming”. In: ACM Sigplan Notices. Vol. 41. 10. ACM. 2006,
pp. 481–497 (cit. on p. 58).

[Ste+09] David Steinberg et al. EMF: Eclipse Modeling Framework 2.0. 2nd.
Addison-Wesley Professional, 2009 (cit. on p. 25).

[Sto12] Reinhard Stoiber. “A new approach to product line engineering
in model-based requirements engineering”. PhD thesis. Ph. D.
thesis, University of Zurich, 2012 (cit. on p. 53).

[VN04] John Von Neumann. “The mathematician”. In: Musings of the
Masters: An Anthology of Mathematical Reflections (2004), p. 169
(cit. on p. 64).

[Völ09] Markus Völter. “MD* Best Practices”. In: Journal of Object Tech-
nology 8 (2009), pp. 79–102 (cit. on p. 10).

[Völ+13] Markus Völter et al. Model-driven software development: technology,
engineering, management. John Wiley & Sons, 2013 (cit. on pp. 3,
8, 10, 22, 24–27, 33–35, 43–45, 51).

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. “The state
of practice in model-driven engineering”. In: IEEE software 31.3
(2014), pp. 79–85 (cit. on pp. 9, 63).

[WJ05] Dennis Wagelaar and Viviane Jonckers. “Explicit platform mod-
els for MDA”. In: International Conference on Model Driven Engi-
neering Languages and Systems. Springer. 2005, pp. 367–381 (cit.
on p. 35).

[Wag08] DennisWagelaar. “Composition techniques for rule-basedmodel
transformation languages”. In: International Conference on Theory
and Practice of Model Transformations. Springer. 2008, pp. 152–167
(cit. on p. 22).

bibliography 79

[Was15] Charles S Wasson. System engineering analysis, design, and develop-
ment: Concepts, principles, and practices. John Wiley & Sons, 2015
(cit. on p. 29).

[Whi+17] Jon Whittle et al. “A taxonomy of tool-related issues affecting the
adoption of model-driven engineering”. In: Software & Systems
Modeling 16.2 (2017), pp. 313–331 (cit. on p. 30).

[ZHJ03] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. “Towards a
UML profile for software product lines”. In: International Work-
shop on Software Product-Family Engineering. Springer. 2003, pp. 129–
139 (cit. on p. 58).

	Colophon
	Dedication
	Abstract

	Fundamentals
	Introduction
	Towards a definition of MDE
	What, if anything, is MDE?
	MDE as a "body of knowledge"
	A Hierarchy of Modeling Approaches
	The Model-Driven Jungle
	Conditions at the Boundaries
	Pragmatism in a Fuzzy Discipline
	Discussion

	Models and Transformations
	Why Model?
	What Kind of Model?
	Syntax
	Semantics

	Models and Metamodels
	Metamodelling Hierarchy
	Models and Their Transformations
	Taxonomy
	Applications

	Modeling Languages and Their Purposes
	Determining the Modeling Approach
	Modeling Languages and Programming Languages

	From Problem Space to Solution Space
	Spaces and Levels of Abstraction
	The Structure of the Solution Space
	Technical Spaces
	Platforms

	Integrations
	MDE and the Software Development Process
	Software Development Methodologies
	Iterative or Structured?
	Two-Track Development

	MDE and Variability Modeling
	Software Product Line Engineering
	Variability Management and Variability Models
	Feature Modeling
	Integrating Feature Modeling with MDE

	Outlook
	Conclusion

	Annex
	Concept Map

