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Abstract

Phylogenetic trees constructed from molecular sequence data rely on largely arbitrary as-

sumptions about the substitution model, the distribution of substitution rates across sites, the

version of the molecular clock, and, in the case of Bayesian inference, the prior distribution.

Those assumptions affect results reported in the form of clade probabilities and error bars on

divergence times and substitution rates. Overlooking the uncertainty in the assumptions leads

to overly confident conclusions in the form of inflated clade probabilities and short confidence

intervals or credible intervals.

This paper demonstrates how to propagate that uncertainty by combining the models con-

sidered along with all of their assumptions, including their prior distributions. The combined

models incorporate much more of the uncertainty than Bayesian model averages since the latter

tend to settle on a single model due to the higher-level assumption that one of the models is

true. Nucleotide sequence data illustrates the proposed model combination method.
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1 Introduction

A state of crisis has been declared in many fields of science. To an alarming degree, results

once considered established have failed to replicate when studies in psychology, neuroscience, and

biomedicine were repeated. A major cause of that replication crisis is the practice of analyzing the

same data using multiple statistical models and then settling on a model that achieves a p-value

less than 0.05. The finding is then published as statistically significant without mentioning the

process of model selection that in many cases ensured that result (Bausell, 2021).

An increasingly popular solution is to register the methods of analysis before data are collected,

but that solution is problematic for observational studies as opposed to controlled experiments such

as clinical trials (Simmons et al., 2021). In the case of inferring phylogenetic trees and divergence

times, the fossil and molecular data are typically available before methods of estimation are applied.

For that reason, estimated phylogenetic trees and divergence times are only hypotheses or possi-

bility explanations that are as tentative as the results from other historical sciences (Bromham,

2019). Indeed, the fact that geological and evolutionary history cannot be repeated means that,

unlike psychology (Hantula, 2019) and other experimental fields, evolutionary biology will not have

the benefit of a replication crisis as a symptom that the certainty of many reported findings is

exaggerated due to the flexibility in method choice.

The ability of researchers to select arbitrary data analysis methods in order to make results

appear more certain is already a recognized problem in evolutionary biology (Nakagawa et al., 2021;

Sun and Zhang, 2021). The problem occurs in molecular phylogenetics whenever biologists select

Bayesian methods because they make phylogenies appear more certain; that practice is widespread

according to Bromham (2016, p. 431). But even after deciding whether or not to use a Bayesian

method or a frequentist method, the many largely arbitrary choices of substitution models, clock

models, and distributions of rates across sites leave plenty of flexibility for reporting narrower

confidence intervals or higher probabilities to make a story more interesting and a paper more

publishable.

It would be more objective to make those choices using the Akaike information criterion (AIC),

Bayesian information criterion (BIC), or another a mathematical method of model selection. How-

ever, reporting phylogenetic trees or confidence intervals of divergence times only on the basis of the

best (e.g., lowest-AIC) model, as if that model were known to be true, also suppress uncertainty.

The traditional Bayesian alternative to selecting a single model is to average models with respect

to their posterior probabilities (Li and Drummond, 2012; Wu et al., 2013; Bouckaert and Drummond,
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2017). In this approach, the term model is used broadly enough to include all possible data-

generating processes and a joint prior distribution over those processes. By decision theory, Bayesian

model averaging would be ideal if the set of models to be averaged contained the true, data-

generating model and if the prior probabilities of the models were known. But since neither is the

case, Bayesian model averaging leads, given enough data, to misleadingly assigning practically 100%

of the posterior probability to a single model as if it were known to be true (e.g., Cerquides and

de Mántaras, 2005; Le and Clarke, 2017; Yao et al., 2018). That gives the same result as selecting

the single model, again suppressing uncertainty about the model (Kittler et al., 1998).

That is exactly what is seen in molecular phylogenetics. For example, Barido-Sottani et al.

(2018) explain that since the Bayes factor comparing two clock models is e8.8 for hepatitis B virus

data, there is “overwhelming support” favoring a relaxed clock model over a strict clock model. In

fact, the posterior probability for the strict clock model would only be

1

1 + e8.8
≈ 1

1 + 6700
≈ 1.5× 10−4

by Bayes’s theorem, conditional on the truth of one of those models and assuming they have

equal prior probabilities. With a probability that close to zero, any credible interval and posterior

probabilities computed from Bayesian model averaging would be the same as those from the relaxed

clock alone. Since, under, general conditions (e.g., Claeskens and Hjort, 2008), a difference between

the BIC scores of two models is approximately the difference in their marginal likelihoods (MLs)

and since the Bayes factor between two models is approximately edifference in MLs (Barido-Sottani

et al., 2018), the near-100% concentration of posterior probability in one model is seen whenever

BIC scores or MLs differ between the best-performing model and other models by more than 5 or

so (cf. Kass and Raftery, 1995). That is more the rule than the exception (e.g., Baele et al., 2012,

Tables 1-2, Figures 1, 3; Duchêne et al., 2020, Fig. 2). Since Bayesian model averaging tends to give

the same results as Bayesian model selection, it fails to combine the strengths of the phylogenetic

models considered, as noted above for other domains.

Section 2 addresses the problem by providing methods that combine the results of prior distribu-

tions and other model assumptions made in molecular evolution studies. The methods are applied

in Section 3 to bacterial sequence data in order to address uncertainty in whether to use Bayesian

methods of estimating clade probabilities and in order to combine credible intervals across models.
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2 Theory: Proposed methods

2.1 Combining probabilities about clades or divergence times

How can the uncertainty about model assumptions be propagated to a probability about an aspect

of a phylogenetic tree? For example, if a maximum likelihood model says the probability of a

clade is 87% and a Bayesian model says it is 100%, how can the uncertainty about the model by

propagated to the probability of the clade?

Fortunately, there are a number of methods of doing that by model combination, called ensemble

learning in the machine learning literature and opinion pooling in the statistics and decision making

literature. Some of the simplest methods involve taking the arithmetic mean or the geometric mean

(normalized to give 100% as the total probability) of the distributions to be combined (Genest and

Zidek, 1986; Kittler et al., 1998). Given m models, the proposed methods are based on combining

posterior probabilities p1, p2, . . . , pm by their weighted arithmetic mean:

p = w1 p1 +w2 p2 + · · ·+ wm pm ,

where w1,w2, . . . ,wm are positive weights that add up to 1. If the models are weighted equally,

the combined probability is the usual average:

p =
1

m
p1 +

1

m
p2 + · · ·+

1

m
pm

=
p1 + p2 + · · ·+ pm

m
.

Similarly, the normalized weighted geometric mean is

p ∝ pw1
1 × pw2

2 × · · · × pwm
m ,

reducing in the case of equal weights to

p ∝ (p1× p2× · · · × pm)
1
m ,

with the constant of proportionality set to ensure that the normalized weighted geometric means

add up to 1.

But why favor the arithmetic mean over the normalized geometric mean and the wealth of

other ways to combine probability distributions? An important reason is that the arithmetic mean
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t < 100 MYA t = 150± 50 MYA t < 200 MYA Total probability
Model 1 1% 50% 49% 100%
Model 2 49% 50% 1% 100%

Arithmetic mean 25% 50% 25% 100%
Geometric mean 7% 50% 7% 64%

Normalized geometric mean 11% 78% 11% 100%

Table 1: Posterior probabilities of divergence times, highlighting an advantage of the arithmetic
mean as the method of combining probabilities from different models. The probabilities in boldface
are problematic since probabilities should add up to 100% and should agree with those of the models
when the models agree on a probability assignment.

ensures that the combined probability is the same as that assigned by each of the models whenever

all models agree on that probability (Stone, 1961; Cooke, 1991, p. 173).

For example, consider these three hypotheses about a divergence time: it is less than 100 MYA,

it is between 100 MYA and 200 MYA, and it is greater than 100 MYA. Two models agreeing that

the probability of the second hypothesis is 50% should yield a combined probability of 50%, but

that is not necessarily the case unless the arithmetic mean is used. That is seen in Table 1: whereas

the geometric mean would also give a combined probability of 50%, its total probability is only

64% (bolded as in the table). That is remedied by normalization to 100%, but then the combined

probability that the divergence time is 150 ± 50 MYA is 78% even though the models agree that

it is only 50%.

The same considerations apply to bootstrap proportions since they may be interpreted as con-

servative estimates of posterior probabilities in spite of their non-Bayesian origins (Bickel, 2022).

Thus, bootstrap proportions from different models may be combined using the weighted arithmetic

mean. More generally, bootstrap proportions from maximum likelihood models may be combined

with posterior probabilities from Bayesian models, as will be illustrated in Section 3.1.

2.2 Combining models by mixtures of their posterior distributions

Another advantage of combining probabilities using the arithmetic mean is its compatibility with

mixtures of probability distributions. Mathematically, any weighted arithmetic mean of proba-

bilities is equal to the probability derived from this mixture probability density with the same

weights:

f = w1 f 1 +w2 f 2 + · · ·+ wm f m ,

where f 1, f 2, . . . , f m are the probability densities from the m models. That property will be ex-

ploited when combining confidence intervals or their Bayesian counterparts, called credible intervals.
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2.3 Combining confidence intervals and credible intervals

A 95% credible interval by definition has a 95% posterior probability of containing the divergence

time or another quantity of interest according to some posterior probability distribution. That

means 95% credible intervals from different models may be combined in two steps:

1. Combine the posterior probability distributions of the models into a mixture distribution

(Section 2.2).

2. Derive the 95% credible interval from the that mixture distribution, possibly in the same way

as the original 95% credible intervals were derived.

For example, if the models’ credible intervals are highest-density intervals of divergence times, then

the combined 95% credible interval could be the interval of 95% posterior probability that has the

divergence times of highest posterior densities according to the mixture distribution.

Under broad conditions, posterior distributions approximate normal distributions given enough

data (Bickel and Doksum, 2000, §5.5). In that case, this algorithm combines the credible intervals

from m different models:

1. For each of the m credible intervals to be combined, the corresponding normal distribution is

determined by these steps:

(a) The mean of the distribution is the midpoint between the lower and upper limits of the

credible interval [L,U ]:

µ =
L+U

2
.

(b) The standard deviation is the number that makes U −µ, the difference between the

upper limit and the mean, equal to the number of standard deviations needed to achieve

the same probability as the level of the credible interval. For a 95% credible interval,

that difference is 1.96 standard deviations, implying that the standard deviation is

σ =
U −µ
1.96

.

2. Define the combined posterior distribution as the mixture of those m normal distributions

(Section 2.2).

3. Define the combined credible interval as the interval with the same amount of posterior

probability, according to the combined distribution, as each of the credible intervals according
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to their posterior distributions. The simplest way is to do so such that there is equal combined

posterior probability below the lower limit and above the upper limit of the combined interval.

For example, when combining 95% credible intervals, the combined interval will have 2.5%

posterior probability below the combined lower limit and 2.5% posterior probability above

the combined upper limit according to the mixture distribution.

That method of combining credible intervals may be easily applied to the output of phylogenetics

software using the web app available at https://davidbickel.shinyapps.io/MixtureUncertainty/

for the case of equal weights.

Just as bootstrap proportions estimate posterior probabilities, 95% confidence intervals esti-

mate 95% credible intervals (Bickel, 2022). For that reason, the methods used to combine credible

intervals also may be used to combine confidence intervals. They also apply to combining confi-

dence intervals with credible intervals when there is uncertainty about whether to rely on Bayesian

methods.

3 Results: Applications to nucleotide sequence data

3.1 Clade probabilities under uncertainty about Bayesian and frequen-

tist models

Section 2.1’s method of propagating model uncertainty to clade probabilities is illustrated in Table

2. Its clade probability conservatively estimated by the bootstrap proportion using maximum

likelihood is lower than the probabilities estimated by the Bayesian methods, as is often the case

(Bromham, 2016, p. 431). Averaging over the Bayesian models before averaging with the maximum

likelihood model (Table 2) is equivalent to the weighted mean with 1/2 of the weight on the bootstrap

proportion and 1/6 of the weight on each of the three posterior probabilities from the Bayesian

methods.

3.2 Divergence times under uncertainty about clock models

Section 2.3’s method of propagating model uncertainty to estimated divergence times is illustrated

in Figure 1. The results displayed are from the software of Figure 2.
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Clade probability Intermediate average Combined probability to report
bootstrap 87% 87%

1 = 87%

SC 100% 87%+100%
2 = 94%

RCE 100% 100%+100%+100%
3 = 100%

RCLN 100% (over the Bayesian models) (over all four models)

Table 2: Estimated probability that there is a clade consisting only of Serratia grimesii and Serratia
marcescens, assuming the substitution model of Hasegawa et al. (1985). Whereas the “bootstrap”
row gives the bootstrap proportion using maximum likelihood estimation, the other three rows give
posterior probabilities from Bayesian methods assuming different clock models: strict clock (SC),
relaxed clock exponential (RCE), and relaxed clock lognormal (RCLN).

Figure 1: Bayesian 95% credible intervals from the strict clock (SC) model, the relaxed clock
exponential (RCE) model, the relaxed clock lognormal (RCLN) model, and the combination of the
three models using equal weights for the total tree height of the 40 bacterial DNA sequences of the
alignment. The divergence times are not calibrated but are in units relative to a single substitution
per site (see Bagley, 2011).
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Figure 2: A screenshot from the web app at https://davidbickel.shinyapps.io/
MixtureUncertainty/ (accessed 22 December 2021). Each number in a box is a limit of a 95%
credible interval from one of the three models of Figure 1. The “RESULT” gives the combined 95%
credible interval of Figure 1.
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3.3 Data analysis details

The data analyzed in this section are in the MEGA (Stecher et al., 2020) bacterial DNA sequence

alignment file “ebgC.meg” from the Hall (2018) resources at https://learninglink.oup.com/

access/hall-5e-student-resources (accessed 29 October 2021).

Except as specified above, the bootstrap results were found using the default settings of MEGA

10.2.6 (Stecher et al., 2020).

The Bayesian posterior probabilities and credible intervals were found using BEAST 2.6.6

(Bouckaert et al., 2014), with 10% burnin, 0 posterior probability limit, maximum clade credi-

bility tree, and common ancestor heights in TreeAnnotator 2.6.6, and with other settings at their

defaults, except that the clock models were varied as specified above.
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