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ABSTRACT Botrytis cinerea is one of the most important plant-pathogenic fungus.
Products based on microorganisms can be used in biocontrol strategies alternative to
chemical control, and mycoviruses have been explored as putative biological agents in
such approaches. Here, we have explored the mycovirome of B. cinerea isolates from
grapevine of Italy and Spain to increase the knowledge about mycoviral diversity and
evolution, and to search for new widely distributed mycoviruses that could be active
ingredients in biological products to control this hazardous fungus. A total of 248 B. cin-
erea field isolates were used for our metatranscriptomic study. Ninety-two mycoviruses
were identified: 62 new mycoviral species constituting putative novel viral genera and
families. Of these mycoviruses, 57 had a positive-sense single-stranded RNA (ssRNA) ge-
nome, 19 contained a double-stranded RNA (dsRNA) genome, 15 had a negative-sense
ssSRNA genome, and 1 contained a single-stranded DNA (ssDNA) genome. In general,
sSRNA mycoviruses were widely distributed in all sampled regions, the ssDNA mycovirus
was more frequently found in Spain, and dsRNA mycoviruses were scattered in some
pools of both countries. Some of the identified mycoviruses belong to clades that have
never been found associated with Botrytis species: Botrytis-infecting narnaviruses; alpha-
like, umbra-like, and tymo-like ssRNA+ mycoviruses; trisegmented ssRNA— mycovirus;
bisegmented and tetrasegmented dsRNA mycoviruses; and finally, an ssDNA mycovirus.
Among the results obtained in this massive mycovirus screening, the discovery of novel
bisegmented viruses, phylogenetically related to narnaviruses, is remarkable.

IMPORTANCE The results obtained here have expanded our knowledge of mycoviral
diversity, horizontal transfers, and putative cross-kingdom events. To date, this study
presents the most extensive and wide diversity collection of mycoviruses infecting
the necrotrophic fungus B. cinerea. The collection included all types of mycoviruses,
with dsRNA, ssRNA+, ssRNA-, and ssDNA genomes, most of which were discovered
here, and some of which were previously reported as infecting B. cinerea or other
plant-pathogenic fungi. Some of these mycoviruses are reported for the first time
here associated with B. cinerea, as a trisegmented ssRNA- mycovirus and as an
ssDNA mycovirus, but even more remarkablly, we also describe here four novel
bisegmented viruses (binarnaviruses) not previously described in nature. The present
findings significantly contribute to general knowledge in virology and more particu-
larly in the field of mycovirology.

KEYWORDS binarnavirus, ssDNA mycovirus, trisegmented ssRNA- virus, virus
metagenomics, virome, mycovirome, fungi, plant pathogens, Botrytis cinerea, grapevine

etagenomics has been used to detect viruses already identified or to discover
novel viruses in different environments or hosts, including fungi, showing the
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high variability of viruses present in the virosphere and increasing the knowledge
regarding their horizontal transfer between hosts (1-9). Fungi are hosts of mycoviruses
with different types of genomes, mainly of double-stranded RNA (dsRNA) and positive-
sense single-stranded RNA (ssRNA+) (10). Moreover, negative-sense single-stranded
RNA (ssRNA-) viruses have been recently found infecting different genera of fungi (4,
11, 12). However, in the last decade only two mycoviruses with single-stranded DNA
(ssDNA) genomes have been identified as infecting the plant-pathogenic fungi
Sclerotinia sclerotiorum and Fusarium graminearum (13, 14). There are examples of
mycoviruses related to families of viruses that infect other hosts. Among ssRNA+
mycoviruses, since the discovery of the first ourmia-like mycoviruses (3, 5, 15) related
to plant ourmiaviruses (16), several similar ourmia-like mycoviruses have been discov-
ered (17-19); also, some of the identified ssSRNA- mycoviruses are related to plant or
animal viruses (4, 11, 20). However, a clear example of host change is the finding of the
plant cucumber mosaic virus inside the plant-pathogenic fungus Rhizoctonia solani (6).
These and other examples revealed horizontal transfer associated with virus evolution.
Indeed, viral metagenomics studies are increasing the knowledge about mycoviral evo-
lution and contribute to the identification of new viruses infecting fungi in different
hosts. However, compared to other hosts, only a very few studies have explored the
mycovirome through metatranscriptomic characterizations (5, 8, 9, 21-28).

Botrytis cinerea Pers.:Fr. (teleomorph Botryotinia fuckeliana [de Bary] Whetzel) is con-
sidered the second most significant fungal plant pathogen and is an excellent model
for the study of the infectious process for necrotrophic fungi (29). This fungus causes
gray mold or gray rot in more than 200 crops worldwide, and it has no apparent host
specificity (30). It causes substantial economic losses in important crops (grapevine,
strawberry, tomato, eggplant, cucumber, zucchini, bean, pepper, etc.) both in plants in
the field and in fruits in postharvest. Unfortunately, B. cinerea control is difficult due to
the different forms of infection, diverse hosts acting as inoculum sources, and its ability
to survive as conidia, sterile mycelia, or resistant sclerotia for long periods of time (31).
Different strategies have been used for fungal control, including cultural practices, bio-
logical control agents, host resistance, and fungicides. The application of fungicides is
extensively used, and in many crops the large amount that should be applied leads to
a rapid development of fungal resistance to fungicides and has a negative impact in
the environment (32, 33). In addition, global climatic change is prompting to find new
strategies for fungal control that may appear as a consequence of environmental con-
ditions. In such new circumstances, alternatives to the chemical control must be man-
datory in order to apply more environmentally friendly products. To date, several
botrycide products, based on microorganisms as active ingredients, have been devel-
oped for B. cinerea biocontrol (34, 35). The discovery of new viruses infecting fungal
hosts could offer a new possibility as tools for biological control, since some of those
already characterized decrease fungal virulence. One clear example is the successful
use of hypovirulent isolates of Cryphonectria parasitica infected with mycoviruses
(Cryphonectria parasitica hypovirus 1 [CHV1]) for the biological control of chestnut
blight (36).

Interestingly, RNA mycoviruses are widespread in Botrytis species, and some of
them can attenuate virulence on their fungal hosts. To date, mycoviruses have been
researched in B. cinerea collections from various regions of the world, using different
methodologies such as dsRNA extraction and viral metagenomics, showing in some
cases a quite complex mycovirome (23, 37, 38). Most mycoviruses infecting B. cinerea
have dsRNA or ssRNA+ genomes (39), and some mycoviruses with an ssRNA-genome
have been also found infecting Botrytis isolates from different hosts (4, 12), but no
ssDNA mycoviruses have yet been identified to infect this fungus. In addition, several
mycoviruses have been already associated with hypovirulence in B. cinerea isolates
from different countries and hosts, indicating the possibility of a biocontrol strategy of
the fungus using mycoviruses. For instance, Botrytis cinerea mitovirus 1 (40), Botrytis
cinerea hypovirus 1 (41), Botrytis cinerea mymonavirus 1 (12), Botrytis cinerea CCg378
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mycovirus (42), Botrytis cinerea RNA virus 1 (43), and Botrytis cinerea partitivirus 2 (44,
45) have been shown to be associated with a reduced virulence of B. cinerea.

To date, an extensive study of Botrytis species mycovirome has never been accom-
plished. Grapevine is one of the main hosts of B. cinerea, and Italy and Spain are two of
the most important wine-producing countries in the world. The purpose of the present
study was to explore the mycovirome of B. cinerea isolates from infected vineyards in
different Italian and Spanish regions in order to discover widely disseminated novel
mycoviruses. In addition to finding novel viruses, a large collection of B. cinerea myco-
viruses has been created to evaluate its future potential use in biological control
approaches. Here, 248 B. cinerea isolates were used, most of them infected by mycovi-
ruses with different types of genomes (dsRNA, ssRNA+, ssRNA-, and ssDNA mycovi-
ruses); some of them have already been described to cause hypovirulence in Botrytis
spp., S. sclerotiorum, or other fungal genera. More than half of the discovered mycovi-
ruses in our collection were present in both Italy and Spain and may be potential
agents to use in biocontrol strategies of the fungus worldwide. Interestingly, unique
mycoviruses infecting B. cinerea have been characterized here as novel ssRNA- (mono-
segmented and a trisegmented mycoviruses), dsRNA (quadrivirus and bipartite dsRNA
mycoviruses), and ssSRNA+ (umbra-like, alpha-like, and tymo-like mycoviruses, narnavi-
ruses, and binarnaviruses) mycoviruses and as an ssDNA mycovirus. The findings pre-
sented here represent an important contribution to the knowledge of B. cinerea
mycoviruses.

RESULTS

Identification of mycoviral sequences in B. cinerea isolates. A total of 384 sam-
ples of the fungus B. cinerea infecting grapevine were collected from several vineyards
across Italy and Spain and isolated in in vitro cultures. Among them, 248 samples, 150
from Spain and 98 from lItaly, were selected for further analyses. Initially, all fungal sam-
ples were analyzed by gqPCR using as the template DNA and specific primers designed
for the detection of the species “cinerea” of the genus Botrytis, and once all of them
were confirmed as B. cinerea isolates (data not shown), the samples were distributed in
17 Spanish (B. cinerea Spain, BCS1 to BCS17) and 12 Italian (B. cinerea ltaly, BCI1 to
BCI12) pools. For the 29 pools, a total of 2,696M reads were obtained, with close to
93M reads on average per pool. After trimming and decontamination, cleaned reads of
each pool were assembled by a “de novo” mRNA transcript assembly software. Most
contigs mapped to the genome of the host B. cinerea, with some sequences mapping
to other Botrytis species (data not shown). Contigs from each pool of samples were an-
alyzed separately using BLASTx against a nonredundant protein database to identify
specific mycoviromes associated with each one, resulting in 29 lists of mycoviral
sequences (not shown), one per pool. Only contigs with a length of >1,000 bp were
considered for the analysis, but the remaining sequences under this fixed size were re-
vised to ensure that only redundant information was eliminated. In total, 1,269 mycovi-
ral sequences passed the filter size, 670 sequences from BCS pools and 599 sequences
from BCI pools. These contigs were filtered for redundancy at a 90% nucleotide identity
over 90% of the length, and representative mycoviral sequences were selected from
each pool, which were the longest assembled sequence of a group of mycoviruses that
have more than 90% of identity at the nucleotide level when comparing with all
sequences inside each pool. This selection reduced the number of identified mycoviral
sequences from 1,269 to 158 in a single list for all B. cinerea pools, that in summary cor-
responded to 92 viruses as described below. The number of sequences was reduced
from 158 to 109 unique mycoviral sequences, 79 from Spanish pools and 30 from
Italian pools, by selection of complete coding sequences with the longest nucleotide
lengths. Of the 109 unique mycoviral sequences, 19 correspond to mycoviruses already
described in the databases: 13 of them were annotated as variants of described myco-
viruses, and the remaining 6 sequences were not deposited again in the database,
and their original accession numbers were maintained. Finally, this 109 mycoviral
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sequences corresponded to 92 mycoviruses, mono- or multisegmented; 11 of these
were considered variants of three new identified mycoviruses, since the identity at
the amino acid level was >95%, and the genomic organization was identical. These
variants were named with the given name of the representative mycovirus followed
by the name of the pool. The summary list of the new mycoviruses detected is
included in Table 1. All of the raw sequencing reads were stored in the Sequence
Read Archive (SRA) database: BioProject accession no. PRINA632510, BioSample
accession numbers from SAMN14911182 to SAMN14911210, and SRA runs from
SRX8335942 to SRX8335970.

Geographical distribution of B. cinerea mycoviruses. The distribution and preva-
lence of B. cinerea mycoviruses in the different Italian and Spanish regions (see Fig. S1
in the supplemental material) were examined considering the existence of more sam-
ples and pools from Spain than from Italy. Mycovirus classification was performed by
manual inspection and allowed to elucidate different taxonomical groups. Among the
92 mycoviruses found, 19 were classified as double-stranded RNA (dsRNA) mycovi-
ruses, 15 as negative-sense single-stranded RNA (ssRNA-) mycoviruses, 57 as positive-
sense single-stranded RNA (ssRNA+) mycoviruses, and 1 as a single-stranded DNA
(ssDNA) mycovirus. For these analyses, only the sequence of the segment containing
the RNA-dependent RNA polymerase (RdRp) was used, with the exception of the
sequence of Botrytis cinerea hypovirus 1 satellite like RNA (associated with its auxiliary
mycovirus, Botrytis cinerea hypovirus 1) that was also included (see Fig. S2).
Distribution of the distinct types of mycoviruses in the different regions inside each
country was studied (see Fig. S2A) considering that there were well-represented
regions (the Spanish regions of La Rioja and Ribera del Duero and the Italian region of
Piemonte), moderately represented regions (Jerez and Penedés in Spain and Veneto
and Lombardia in Italy), and poorly represented regions (the Italian regions of
Basilicata and Sicilia) (see Fig. S1). The ssDNA mycovirus was present in the ltalian
region of Lombardia and in three of the four Spanish regions, with the exception of
the southern region of Jerez. Mycoviruses with the ssRNA+ genome, the most abun-
dant in this study, were equally distributed in both countries, with higher prevalences
in the northern Spanish region of La Rioja and lower prevalences in the southern
Italian region of Sicilia. Mycoviruses with the dsRNA or ssRNA- genome were more fre-
quently found in Spain than in Italy. dsRNA mycoviruses in Italy were more prevalent
in Veneto and not present in Lombardia; however, in Spain they were present in all
regions but with less prevalence in the southern region of Jerez. Mycoviruses with the
ssRNA- genome were not present in the southern regions of Spain and Italy, Jerez and
Sicilia, respectively, and were equally distributed in the remaining ltalian regions, and
more prevalent in La Rioja and Penedés than in Ribera del Duero. Although Basilicata
and Sicilia were the most separated regions in Italy and less represented, with three
and four samples (see Fig. S1), respectively, both had isolates of B. cinerea infected
with all types of mycoviruses, with the exception of the ssDNA mycovirus.

The presence of the different types of mycoviruses in the individual pools (repre-
sented by more than 500 reads; see Fig. S2B), most of each were represented by sam-
ples of the same site inside each region (see Fig. S1), was also explored. ssDNA mycovi-
rus is not represented in the graphic but was present in both pools from Lombardia, in
one pool from Ribera de Duero, in three pools from Penedés, and in four pools from La
Rioja (see Table S1 in the supplemental material). In Sicilia and Jerez, all pools con-
tained both types of mycoviruses, i.e., dsRNA and ssRNA+ mycoviruses. In the remain-
ing regions that contained the three types of mycoviruses, all pools had at least two
types of mycoviruses, with the most abundant ssRNA+ mycoviruses being present in
all pools (see Fig. S2B). In this graphic, the number of mycoviruses per pool is also
shown (considering only mycoviruses represented by more than 500 reads; see
Table S1). There were pools with the same number of samples, for instance, 10, con-
taining only 6 (dsRNA and ssRNA+) mycoviruses, such as BCI6, and pools containing
42 (dsRNA, ssDNA, ssRNA+, and ssRNA-) mycoviruses, such as BCS15, or pools, such as
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BSC13, with a mix of 4 B. cinerea samples and 39 mycoviruses. In addition, the distribu-
tion of all mycoviruses in both countries was analyzed. Of the 92 mycoviruses, 5
(including ssRNA+ and ssRNA- mycoviruses) were exclusively present in Italy, 32 were
found only in Spain, and 55 were common between both countries (see Fig. S2C).

Characterization of novel mycoviruses. Here, we have divided the description of
novel mycoviruses based on the type of genome: ssRNA-, ssRNA+, dsRNA, and ssDNA.
The distribution of all mycoviruses, based on the number of reads mapping to each
sequence, is shown in Table S1. The presence of each mycovirus per pool, considering
only number of reads above 500, is indicated in Fig. 1 and 2 in five different graphics
based on their genome types. The accession numbers of each mycovirus reported in
the present study are indicated and highlighted in the phylogenetic trees and in
Table 1.

Positive single-stranded RNA mycoviruses. A total of 57 mycoviruses with
ssRNA+ genomes were identified here. Of these, 35 were classified as mitoviruses (n =
11), narnaviruses (n = 5), and ourmia-like viruses (n = 19). The other 22 ssRNA+ myco-
viruses were classified as tymovirales (n = 1), umbraviruses (n = 3), fusariviruses (n = 5),
hypoviruses (n = 6), endornaviruses (n = 2), deltaflexiviruses (n = 2), mycoflexiviruses
(n = 1), flexiviruses (n = 1), and alphaviruses (n = 1).

(i) Botourmiavirus, mitovirus, and narnavirus. The majority of the ssRNA+ myco-
viruses found in our study belong to the phylum Lenarviricota that now includes the
families Leviviridae, Narnaviridae, Mitoviridae, and Botourmiaviridae (46). Fungal botour-
miaviruses are nonencapsidated monosegmented ssRNA+ viruses encoding an RdRp
(47). New botourmiaviruses characterized in this study were named Botrytis cinerea
ourmia-like viruses (BcOLVs) 1 to 17. In addition to these viruses, we identified two var-
iants of the already-described Botrytis ourmia-like virus (BOLV) (3) and Pyricularia ory-
zae ourmia like virus 2 (PoOLV2) (17) (Table 1). Both mycoviruses were annotated as
variants of the B. cinerea isolates from grapevine. BOLV-BCS15 was annotated as a vari-
ant of BOLV (MT119674, with an almost complete sequence of 2,885 nucleotides [nt] of
2,903 nt and with identities of 95 and 96% at the nucleotide and amino acid [aa] levels,
respectively), and PoOLV2-BCI16 was annotated as a variant of PoOLV2 (MT119675),
since the sequence found in this study was partial (1,320 nt of 1,671 nt, with identities
of 91 and 94% at nucleotide and amino acid levels, respectively). The 17 new botour-
miaviruses have variable lengths between 2,100 and 5,185 nt and, independent of the
size, they all encode a single protein of 515 to 954 aa containing amino acids con-
served inside the domains of the viral RdRps of ssRNA+ viruses, including the highly
conserved core domain GDD (motif VI) (see Fig. S3A and C), which indicates that these
proteins are putative mycoviral RdRps. The highest identity at the amino acid level
(90.59%) was found between BcOLV6 and BcOLV8 (see Fig. S3B; the identity at nucleo-
tide level was 89.24%). The remaining botourmiaviruses showed an identity at the
amino acid level of <84.55% (see Fig. S3B). The closest mycoviruses of the identified B.
cinerea botourmiaviruses (% identity of the RdRp sequence) are shown in Table 1. The
number of reads of botourmiaviruses is high in most of the pools where they are pres-
ent (see Table S1), even though not all of them are equally distributed. BcOLV1, -2, -3,
and -16 were very abundant in Italian and Spanish pools; however, BOLV, BcOLV4, and
BcOLV14 were present in a single pool with low numbers of reads, with the remaining
mycoviruses having different representations in at least more than two pools (Fig. 1A).

The genera Mitovirus and Narnavirus belong to the families Mitoviridae and
Narnaviridae, respectively, that contain viruses with a single molecule of nonencapsi-
dated RNA of 2.3 to 5 kb, which encodes a single RdRp (46, 48). In general, mitoviruses
were well represented in many pools, both in Spain and in Italy, whereas narnaviruses
were scattered in some pools (Fig. 1B). Eleven mitoviruses were found: four were new
mitoviruses associated with B. cinerea isolates (Botrytis cinerea mitoviruses 5 to 8
[BcMV5 to BcMV8]), whereas the other four were considered variants of the previously
described BcMV1 to -4 (23), and another two were annotated as variants of two mitovi-
ruses infecting the fungus S. sclerotiorum (SsMV3 and -4) (23, 49). Finally, the last one
was reported previously as Grapevine-associated narnavirus 1 (23), and we renamed it
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FIG 1 Distribution and abundance of Botrytis cinerea ssRNA+ mycoviruses within regions. Bubble charts based on the number of reads, with
log,, transformation, per each mycovirus inside the pools are shown. A bubble of “2,7" represents 500 reads. (A) Botourmiaviruses. (B)
Mitoviruses and narnaviruses. (C) Other ssRNA+ mycoviruses.
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FIG 2 Distribution and abundance of Botrytis cinerea ssRNA- and dsRNA mycoviruses within regions. Bubble charts based on the number of reads, with
log,, transformation, per each mycovirus inside the pools are shown. A bubble of “2,7” represents 500 reads. (A) ssRNA- mycoviruses. (B) dsRNA

mycoviruses.

here as Botrytis cinerea mitovirus 9. These mycoviruses have lengths between
2,362and 2,977 nt, and all of them code for a single protein with length ranging
between 710 and 786 aa (see Fig. S3D), with the exception of SsMV3, which encoded a
smaller protein of 607 aa (Table 1). The alignment of the protein sequences showed
that all of them have amino acid sequence domains conserved inside the RdRps of
mitoviruses (A to F) (see Fig. S3E), suggesting that these are the proteins involved in
mycoviral replication. The closest related B. cinerea mitoviruses were SsMV4, BcMV4,
BcMVS5, and BcMV?7, all of which encoded an RdRp of 731 aa with an identity ranging
between 82.22 and 90.15% (see Fig. S3F).

Until now, there have been no reported narnaviruses infecting B. cinerea. Putative
narna-like viral sequences were found in the analyzed samples with lengths between
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FIG 3 Sequence properties of Botrytis cinerea narna-like viruses. (A) Amino acid sequence alignment of narnavirus RdRp showing conserved motifs | to VIII
of Botrytis cinerea narnavirus 4 (BcNV4) and Saccharomyces 20S RNA narnavirus (SCV20; AF039063). The conserved motifs of the RdRps are shaded with
light and dark gray colors. Asterisks indicate identical amino acid residues, and colons indicate similar residues. Amino acids in parentheses show the
positions of amino acid residues that are not listed. (B) Schematic representation of Botrytis cinerea binarnavirus 1 (BcBNV1), -3, -4, and -5 RNA genomes
showing location of ORFs. (C) Percent identity matrix generated by Clustal Omega 2.1. Identities from higher to lower are labeled from dark green to dark
red, respectively. (D) Schematic representation of BCBNV2 RNA genome showing the locations of ORFs. (E) Alignment of the conserved sequences of the 5’
and 3’ ends of BcBNV2 segments 1 and 2. (F) Alignment of the hypothetical protein sequences showing conserved stretches included a GDD triplet

(EVGDDR).

2,289 nt and 2,572 nt, coding for a single protein 731 to 825 aa in size (Fig. 3B and D).
The new mycoviruses were named as Botrytis cinerea narnavirus 4 (BcNV4) and
Botrytis cinerea binarnavirus 1 (BcBNV1), -2, -3, and -5. The alignment of the sequence
of BcNV4 protein and the sequence of Saccharomyces cerevisiae narnavirus 20S RNA
RdRp (50) showed the typical conserved motifs | to VIl of the RdRp, including the core

domain GDD (Fig. 3A). The putative RdRps of BcBNV1,

-2, -3, and -5 are complete pro-

teins, but the triplet GDD, which is a component of the RdRp catalytic site present in
the conserved motif VI of the palm domain, is not conserved. Nevertheless, all of them
show high levels of conservation in different stretches of the protein (data not shown)
and have identities with the RdRp of other narnaviruses infecting other genera of fungi
(Table 1). Our suggestion is that this protein (HP) could be the RdRp of these B. cinerea
binarnaviruses. The highest identity was found between the putative RdRp of BcBNV1
and BcBNV3 (74.97%; Fig. 3C) with a very low identity values between the RdRp of
BcNV4 and the rest of the binarnaviruses (17.14 to 20.73%; Fig. 3C). One of the narna-
like virus sequences coded for a hypothetical protein (HP) with the first 230 nt showing
certain level of identity with the putative RdRp of Wilkie narna-like virus 2 (27.56%;
Table 1) (51). Surprisingly, we found that 40 nt at the 5’ and 3’ ends of this narna-like
nucleotide sequence were identical to both ends in BcBNV2 (Fig. 3E). In addition, both
viral sequences were present only in the Spanish pool BCS14, represented by a similar
number of reads, 5,470 reads for BcBNV2 and 6,921 reads for the narna-like viral
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sequence (see Table S1), suggesting that both sequences could be part of a biseg-
mented virus, BcBNV2 segment 1 (open reading frame [ORF] RdRp) and segment 2
(ORF HP). The bisegmented nature of the BcBNV2 genome was confirmed by no ampli-
fication with combined primers of segments 1 and 2 (data not shown) and by determi-
nation of the 5" and 3’ ends of both segments (Fig. 3E). Since BcBNV1, -2, -3, and -5
showed similar characteristics, we searched for the second segment in the pools con-
taining BcBNV1, -3, and -5. The corresponding segments coding for a hypothetical pro-
tein were found, all with conserved sequences at the 5" and 3’ ends with its respective
segment 1 (data not shown). The identity among them was higher for the RdRp, with
the lowest identity (38%) between BcBNV1 HP and BcBNVS5 HP and the highest identity
(71%) between BcBNV1 HP and BcBNV3 HP. The alignment of these HPs showed high
levels of conservation in different stretches and, surprisingly, one of the conserved
stretches included a GDD triplet (EVGDDR) (Fig. 3F). For all mentioned above, we con-
cluded that BcBNV1, -2, -3, and -5 are bisegmented mycoviruses.

The phylogenetic relationships of the above-described mycoviruses are shown in Fig. 4
(Mitoviridae and Botourmiaviridae) and Fig. 5 (Narnaviridae and Leviviridae). Full-length
amino acid sequences of RdRps of the new described mycoviruses and their relatives, with
members of the genera Mitovirus, Narnavirus, Levivirus, Botoulivirus, Scleroulivirus,
Magoulivirus, and Ourmiavirus (family Botourmiaviridae), were aligned to construct a
phylogenetic tree to infer the relationships among all of them. The phylogenetic
analysis showed three main clades—one including all mitoviruses, a second one
including narnaviruses and leviviruses, and a third one that includes members of the
family Botourmiaviridae. Members of the Botourmiaviridae family infecting fungi are
separated into three different genera. Nine of the detected BcOLVs were associated
with members of the genus Botoulivirus, and two identified BcOLVs were closely
related to members of the genera Scleroulivirus and Magoulivirus. However, BcOLV1,
-2, -3, and -9 are grouped in a separated strongly supported group (100% bootstrap
support), closely related to botouliviruses, for which we support the proposal of
Nerva and coworkers (21) of a new genus of botourmiaviruses named Penoulivirus. B.
cinerea mitoviruses BcMV5, BcMV7, and BcMVS8, and the variants BcMV2-BCSS,
BcMV4-BCS16, and SsMV4-Bc are included in different groups closely related to the
recognized members of the Mitovirus genus as Ophiostoma novo-ulmi mitoviruses 4,
5, and 6. BcMV6 and -9, and the variants BcMV1-BCS1, BcMV3-BCS16, and SsMV3-Bc
are placed in different groups that are phylogenetically closer to plant mitoviruses
and associated with the recognized members of the genus Mitovirus, Ophiostoma
mitovirus 3a, and Cryphonectria parasitica mitovirus 1. Figure 5 shows that BcNV4
was grouped with the recognized Saccharomyces cerevisiae 20S and 23S RNA narna-
viruses, suggesting that this may be considered a new member of the genus Narnavirus.
However, B. cinerea binarnaviruses 1, 2, 3, and 5 were grouped in a strongly supported
clade (100% bootstrap support), together with other mycoviruses, and separated from the
group including other bisegmented narnavirus (Matryoshka RNA virus and Leptomonas
seymouri narna-like virus) (52, 53) and from the group of the true narnaviruses. We pro-
pose the creation of a new genus named Binarnavirus (bisegmented naked RNA virus),
inside a new family named Binarnaviridae to include the new group of bisegmented myco-
viruses identified in the present study.

(ii) Endornavirus. The family Endornaviridae consists of two virus genera, Alpha-
endornavirus and Betaendornavirus, that include capsidless viruses with ssRNA+
genomes that range from 9.7 to 17.6 kb with a single ORF (54). Two endornaviruses
were found to infect B. cinerea samples, Botrytis cinerea endornavirus 2 (B¢cEV2) and
BcEV3, with genomes of 13,581 and 13,582 nt, respectively (Table 1; see also Fig. S4A),
and identities of 84.50 and 92.90% at the nucleotide and amino acid levels between
them. Both have a poly(C) at the 3’ end, indicating that they are complete at this end,
and encode a protein of 4,501 aa with the RdRp domain located in the C-terminal
region, with the typical motifs A to G highly conserved in comparison with the refer-
ence genome BcEV1 (see Fig. S4B) (55). This protein also contains a viral methyl

May/June 2021 Volume 12 Issue 3 e03705-20

mBio’

mbio.asm.org

14

Downloaded from https://journal s.asm.org/journal/mbio on 30 December 2021 by 77.244.183.124.


https://mbio.asm.org

Mycovirome of a Necrotrophic Fungus

Narnavirus/Levivirus

99 @ EU770623 Ourmia melon virus
100 _l:. EU770620 Epirus cherry virus Ourmiavirus
@ FJ157981 Cassavavirus C

MN605474 Botrytis cinerea ourmia-like virus 8

MN605472 Botrytis cinerea ourmia-like virus 6
MN605473 Botrytis cinerea ourmia-like virus 7

ia-like virus 1
MG887747 Penicillium citrinum ourmia-like virus 1

® KP300921 Rhizoctonia solani ourmia-like virus 1

@ LT593139 Magnaporthe oryzae ourmia-like virus

MK584838 Ci i ioi ia-like virus 1

MK584846 i inir ia-like virus 2

MK584840 Cl i ini iavirus 1
LC413503 Pyricularia oryzae ourmia like virus 3

@ KT598235 Soybean leaf-associated ourmiavirus 1

@ KT598247 Soybean leaf-associated ourmiavirus 2

O Ki ini; i ia-like virus 1
LC413502 Pyricularia oryzae ourmia like virus 2
'T119675 Pyricularia oryzae ourmialike virus 2-BCI6
MN605476 Botrytis cinerea ourmia-like virus 10

MN605471 Botrytis cinerea ourmia-like virus 5
100 | MT1196 s ourmia like v 5
@ LN827955 Botrytis ourmia like virus

s cin s 14

MK584842 Epicoccum nigrum ourmia-like virus 1

@ KF 2 ia-like virus 2

8]

LC413501 Pyricularia oryzae ourmia like virus 1

MK584844 Epicoccum nigrum ourmia-like virus 2

MK584838 Penicillium sumatrense ourmia-like virus 1

MNO035976 Mitovirus sp. isolate H2
MN625252 Botrytis cinerea mitovirus 6

LN827944 Botrytis cinerea mitovirus 1
100 MT 119677 Botrytis cinerea mitovirus 1-8CS1

100 |-N827949 Sclerotinia sclerotiorum mitovirus 3
MN954876 Sclerotinia sclerotiorum mitovirus 3-Bc

@ AJ004930 Ophiostoma mitovirus 3a
LN827946 Botrytis cinerea mitovirus 3

100 MN617166 Botrytis cinerea mitovirus 3-BCS16
100 |-N827943 Grapevine associated narnavirus-1
MT089704 Botrytis cinerea mitovirus 9

@ L31849Cr ica mitovirus 1
BK010432 Petunia exserta mitovirus 1
MF375475 Chenopodium quinoa mitovirus 1
BK010437 Cannabis sativa mitovirus 1

Mitovirus
BK010716 Beta vulgaris mitovirus 1

100 -N827945 Botrytis cinerea mitovirus 2
MNG617165 Botrytis cinerea mitovirus 2-BCS8

@ AJ132755 Ophiostoma novo-ulmi mitovirus 5
99 X401538 Sclerotinia sclerotiorum mitovirus 4
MN954877 Sclerotinia sclerotiorum mitovirus 4-Bc
100 | MN617167 Botrytis cinerea mitovirus 5
KT365895 Sclerotinia nivalis mitovirus 1
N827947 Botrytis cinerea mitovirus 4
MN954875 Botrytis cinerea mitovirus 4-BCS16
97 MNe17168 Botrytis cinerea mitovirus 7

@ AJ132754 Ophiostoma novo-ulmi mitovirus 4
MNO33004 Mitovirus sp. isolate H1

MN625253 Botrytis cinerea mitovirus 8

@ AJ132756 Ophiostoma novo-ulmi mitovirus 6

MK584843 i i ia-like virus 1

Magoulivirus

Scleroulivirus

Botoulivirus

Penoulivirus

Mitoviridae

Botourmiaviridae

FIG 4 Mitovirus and botourmiavirus phylogenetic tree. A phylogenetic tree was computed by using the
IQ-TREE stochastic algorithm to infer phylogenetic trees by maximum likelihood (model of substitution:
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FIG 5 Narnavirus and levivirus phylogenetic tree. A phylogenetic tree was computed by using the IQ-TREE stochastic algorithm
to infer phylogenetic trees by maximum likelihood (model of substitution: VT+F+I1+G4). A consensus tree was constructed from
1,000 bootstrap trees (log likelihood of consensus tree, —126059.306862). The branch of the mitoviruses and botourmiaviruses is
collapsed. All bootstrap values (%) of >65 are represented at each node of the tree. Branch lengths are proportional to the

number of amino acid substitutions and are measured by a scale bar.

transferase (MTR) domain, a DExH box (DEXDc domain), a viral helicase superfamily 1
(Hel) domain, and the typical cysteine-rich region between aa 1265 and 1336 (see
Fig. S4A). The phylogenetic analysis indicated that BcEV2 and BcEV3 grouped together
with Sclerotinia minor endornavirus 1 (56) in a strongly supported group (100% boot-

FIG 4 Legend (Continued)

VT+F+I1+G4). A consensus tree was constructed from 1,000 bootstrap trees (log likelihood of consensus
tree, -126059.306862). The branch of the narnaviruses and leviviruses is collapsed. All bootstrap values (%)
of >65 are represented at each node of the tree. Branch lengths are proportional to the number of
amino acid substitutions and are measured by a scale bar.
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strap value) inside the genus Betaendornavirus in the family Betaendornaviridae; BCEV1
was also included inside this genus but in a different group (see Fig. S4C). Both endor-
naviruses were present in the same three Italian pools. However, in Spain they were
found in different pools with a low number of reads (Fig. 1C; see also Table S1).

(iii) Hypovirus and Fusarivirus. The family Hypoviridae includes one genus of cap-
sidless viruses, Hypovirus, with ssRNA+ genomes ranging from 9.1 to 12.7 kb with one
or two ORFs (57). Four new hypoviruses, Botrytis cinerea hypovirus 2 (BcHV2) to BcHVS5,
were found to infect B. cinerea samples, together with Sclerotinia sclerotiorum hypovi-
rus 1 A (SsHV1A) (58), and BcHV1 and Botrytis cinerea hypovirus 1 satellite-like RNA
(41) (Table 1). The alignment of the RdRp regions of BcHV1 to -5 and SsHV1 revealed
some conservation in motifs | to VIIl, with SDD or GDD in the core domain (see
Fig. S5A). The new hypoviruses have genome lengths between 10,863 and 17,631 nt
with low identities between them (16.89 to 25.87%), and BcHV2 and BcHV5 have a
complete sequence at the 3’ end since both have the characteristic poly(A) tail (see
Fig. S5B and E). BcHV2, -3, and -5 encode a single protein with a sizes of 4,199, 3,042,
and 4,856 aa, respectively, and a conserved viral Hel domain, whereas BcHV3 contains
the conserved domains of UDP glycosyltransferase and Hel (see Fig. S5B). A papain-
like protease domain, involved in hypovirus polyprotein processing (57), is also
present in BcHV3 and BcHV5 proteins, whereas BcHV2 protein contains a 2A-like
protease domain (DIEQNPGP, aa 1076 to 1083). BcHV4 is the only hypovirus that enc-
odes two proteins of 1,023 and 3,345 aa, with the viral Hel domain conserved in the
large protein, which has 37% identity with Rhizoctonia solani hypovirus 1 (27), and
no conserved domains in the short one that has 58% identity with SsHV2 (59)
(Table 1). BcHV3 and -4 were widely distributed in Italian and Spanish samples and
were well represented by a high number of reads, whereas BcHV2 was only found in
Spain, and BcHV5 was more frequent in Italy (Fig. 1C; see also Table S1). BcHV1 and
SsHV1A were also broadly distributed and well represented in almost all pools from
both countries, and BcHV1 satellite-like RNA was associated with its auxiliary virus in
all pools except in two of them, one in Italy and another in Spain (Fig. 1C; see also
Table S1).

We identified in our samples five novel fusariviruses, Botrytis cinerea fusarivirus 3
(BcFV3) to BcFV7. The genome length is in a range of 6.3 to 8.3 kb, coding for a hypo-
thetical protein (ORF2), with a size between 491 and 704 aa, and identities of 15 to
73% between them, and the replicase (ORF1), containing RdRp and Helicase domains,
and a size ranging from 1,542 to 1,675 aa (see Fig. S5D). RdRp motifs are highly con-
served, with the GDD in the core domain, since it has been shown in the alignment
with Botrytis cinerea fusarivirus 1 (BcFV1) (41) and Sclerotinia sclerotiorum fusarivirus 1
(SsFV1) (60) (see Fig. S5C). The identity between these new fusariviruses at the amino
acid level of the replicase varied from 27.73% between BcFV4 and BcFV6 to 85.15%
between BcFV5 and BcFV6 (see Fig. S5E); the sequence of both was complete at the 3’
end, since they ended in a poly(A) tail like other fusariviruses. These viruses were pres-
ent in some pools, and the number of reads varied depending on the fusarivirus and
the sample (Fig. 1C; see also Table S1).

The results of an analysis of the phylogenetic relationships between hypoviruses
and fusariviruses are shown in Fig. S5F. All mycoviruses were classified inside their gen-
era, and fusariviruses grouped into three different groups was strongly supported
(100% bootstrap support). BcFV3 and -4 were placed together in a group with the
other fusariviruses found in B. cinerea, BcFV1. Hypoviruses were also distributed in
three different groups, all supported by a 99 to 100% bootstrap value, with BcHV4 and
-5 together in one group, BcHV1-BCS11 with BcHV3 in another group, and BcHV2 in a
third group.

(iv) Other ssRNA + viruses. The genus Alphavirus is monopartite, with a genome of
9.7 to 12 kb ssRNA+ (61). One novel alphavirus-like sequence, Botrytis cinerea alpha-
like virus 1 (BcAV1), was identified for the first time infecting B. cinerea in several
Spanish and Italian pools with different concentrations based in the number of reads
in each pool (Fig. 1C; see also Table S1). BcAV1 has a genome of 8.0 kb coding for a
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protein with the domain of a viral RNA helicase (superfamily 1) and an RdRp, as well as
two other hypothetical proteins of 185 and 230 aa, with no identity to any other pro-
teins in the databases (Fig. 6A). The eight (I to VIII) conserved motifs of the RdRp are
shown in the alignment with the same region of Sclerotium rolfsii alphavirus-like virus
1 (SrAV1) (25) and Morchella importuna RNA virus 1 (MiRV1) (8) (Fig. 6B). This is the first
reported alpha-like mycovirus associated with B. cinerea.

Umbra-like mycoviruses were also found in several pools from both countries,
Sclerotinia sclerotiorum umbra-like virus 2 (SsUV2) and SsUV3 (58), which were anno-
tated as variants of the B. cinerea isolates from grapevine, and Botrytis cinerea umbra-
like virus 1 (BcUV1). SsUV2 and -3 were frequently found in several pools from both
countries. The novel mycovirus BcUV1 is the first umbra-like virus reported to be asso-
ciated with B. cinerea and was found with a high number of reads only in the three
pools from southern Spain (Fig. 1C; see also Table S1), suggesting that it probably is re-
stricted to this area. BcUV1 represents a new umbra-like mycovirus based on the low
identities at the amino acid level compared to SsUV2 and SsUV3 (46.52 and 35.10%,
respectively); however, the highest identity was found with SsUV1 (5) (50.77%), which
was not present in any pool in this work (Table 1). BcUV1 has a ssRNA+ genome of
3,865 nt with two ORFs; the first one encodes a protein of 338 aa, and the second one
encodes the putative RdRp protein of 619 aa (Fig. 6C). The RdRp contains the con-
served motifs A to F, since it is shown in the alignment with SsUV1, -2, and -3; however,
in the RdRp sequences the core domain has a GDN triplet, a motif that is often found
in mononegaviruses and polymycoviruses but not in ssRNA+ viruses (Fig. 6D).

Several viral sequences related with viruses of the order Tymovirales were found in
our samples (Table 1). Among these was the already-described Sclerotinia sclerotiorum
deltaflexivirus 2 (SsDFV2) (26), which was annotated as a B. cinerea variant, and Botrytis
virus F (BVF) (23). In addition, three novel mycoviruses named Botrytis cinerea delta-
flexivirus 1 (BcDFV1), Botrytis cinerea flexivirus 1 (BcFIV1), and Botrytis cinerea mycoty-
movirus 1 (BcMTV1) (Table 1) were identified, with an identity at the amino acid level
ranging from 17.41% between BcDFV1 and BcMTV1 to 40.04% between BcDFV1 and
SsDFV2 (Fig. 6G). All of these code for putative RdRp proteins with the GDD triplet in
the core domain (Fig. 6E). The length of BcDFV1 is 4,869 nt and contains two ORFs
encoding a protein of 1,124 aa with the putative domains of a viral helicase and an
RdRp, and a hypothetical small protein of 193 aa (Fig. 6E). The genome size of BcFIV1 is
13,985 nt and encodes a long protein of 3,986 aa with a viral MTR, a viral Hel superfam-
ily 1, and the RdRp domains. Finally, BcMTV1 has a genome of 7,293 nt and one single
ORF coding for 2,347 aa with the same domains as BcFV1 (Fig. 6E). Flexiviruses and del-
taflexiviruses were present in one to three pools in both countries; however, BECMTV1
and BVF were distributed for several Spanish and Italian regions (Fig. 1C; see also
Table S1).

The phylogenetic relationships between all of the described ssSRNA+ mycoviruses
are shown in Fig. 7. BcAV1 is included in a strongly supported group (98% bootstrap
support) with other alpha-like mycoviruses and separated from the group of accepted
alphaviruses inside the family Togaviridae; this mycoviral clade should probably be
considered a new genus. This group is related to another one composed of members
of the genus Umbravirus, and a group that contains all umbra-like mycoviruses
detected in our study, including the new described BcUV1. We consider that these
umbra-like viruses should be included in a new genus named Umbramycovirus.
BcDFV1 and SsDFV2-BCS1 are included in the group of the Deltaflexiviridae family;
thus, both should be considered members of this family. BcFIV1 is placed in a group
with other mycoviruses closely related to BVF, the representative member of the genus
Mycoflexivirus inside the family Gammaflexiviridae. These mycoviruses should be con-
sidered members of the genus Mycoflexivirus or be included in a new genus of viruses,
inside the family Gammaflexiviridae, named Botryflexivirus. BEMTV1 is in a clade with
members of the genus Tymovirus, of the family Tymoviridae, but in a different group
(100% bootstrap support) with other mycoviruses, clearly separated from the plant
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tymoviruses. Consequently, these mycoviruses could be considered members of a new
genus named Mycotymovirus inside the family Tymoviridae.

Negative single-stranded RNA mycoviruses. Fifteen ssRNA- viral sequences iden-
tified in our samples can be ascribed to orders Mononegavirales and Bunyavirales,
inside the phylum Negarnaviricota, based on their RdRp amino acid sequences (46).
Twelve were new mycoviruses named Botrytis cinerea negative-stranded RNA virus 2
(BcNSRV2) to BCNSRV11, Botrytis cinerea orthobunya-like virus 1 (BcOBV1), and Botrytis
cinerea bocivirus 1 (BcBV1), and three of them were variants of BE(NSRV7 and BcOBV1
(Table 1).

(i) Mononegavirales-related mycoviruses. B(NSRV3, -4, -5, and -7 have genomes
with lengths ranging from 9.2 to 10.3 kb and four nonoverlapping ORFs. The longest
ORF2 encodes a protein of 1,934 aa to 1,953 aa, which contains the mononegaviral
RdRp domain, and also the mononegaviral mRNA-capping region V (MNC) essential for
mMRNA cap formation, indicating that probably all of these viruses are capped at the 5’
end (see Fig. S6A). The alignment with the reference genomes of Botrytis cinerea
mymonavirus 1 (BcMymV-1) (12) and Sclerotinia sclerotiorum negative-stranded RNA
virus 1 (SsNSRV-1) (11) showed high conservation of RdRp motifs “a” and “A to D" (see
Fig. S6B). BCNSRV5 and -7 ORF1, -3, and -4 code for hypothetical proteins (HPs) with
identities of 28.04, 58.27, and 60.38% between HP1, HP2, and HP3, respectively, but
with no significant sequence similarity with other proteins in the database. BCNSRV3
and -4 ORF1 codes for the protein gp6 and HP, respectively, with 27.65% identity
between them and around 30% identity with SSNSRV1 gp6. ORF3, from BcNSRV3 and
-4, encodes protein gp2, with 38.38% of identity between them, and >40% identity
with Sclerotinia sclerotiorum negative-stranded RNA virus 3 gp2 and SsNSRV1 nucleo-
protein, suggesting that this protein is probably involved in encapsidation. BCNSRV3
ORF4 codes for gp1 that showed 26% identity with the gp1 protein of SsNSRV3,
whereas BCNSRV4 ORF4 codes for a hypothetical protein HP2 showing 22.27% identity
with BCNSRV3 gp1. The identities at the amino acid level of the RdRps among the four
new mycoviruses varied from 24.47% between BcNSRV4 and -5 to 76.80% between
BcNSRV5 and -7 (see Fig. S6C). The identity between BcNSRV7 and its mycoviral var-
iants was >85% at the nucleotide level in the full genomic sequence, and it was >98%
at amino acid level of the longer protein and 88% for the remaining proteins. A vari-
able repeated sequence of 17 nt, 3'-CCUAAGUUUU(A/C)UUAAAU-5’, was found in the
intergenic regions of all of the described mycoviruses (data not shown). These highly
conserved gene junction sequences are present in the noncoding intergenic regions of
members of the Mymonaviridae family (62). The four mycoviruses were present in a
few Spanish pools, with coinfection of BENSRV3 and -5 or of BENSRV4 and -7 in one or
two pools; however, BENSRV7 was widely distributed in Italian pools (Fig. 2A; see also
Table S1).

(ii) Bunyavirales-related mycoviruses. For BcNSRV2, -6, -8, -9, -10, and -11 and
BcOBV1, only a single RNA segment was found, with a size varying between 6.5 and
10.3 kb and with an ORF coding for a putative bunya-like RdRp varying in size from
2,135 aa in BCNSRV2 to 3,408 aa in BCNSRV10 (see Fig. S6D). All of these viruses showed
similarity to the already-described BCNSRV1 (4), with the exception of BcNSRV2, which
was more similar to Coniothyrium diplodiella negative-stranded RNA virus 1 (21), and
of BcOBV1, which showed identity to Cachoeira porteira orthobunyavirus (63) (see
Fig. S6E). The identities among RdRp sequences of BcNSRVS, -9, -10, and -11 were
>64%; however, the identities among the other mycoviruses were much lower (see
Fig. S6E).

BcBV1 is the first putative trisegmented ssRNA- described that is associated with B.
cinerea (Fig. 8A). Three segments, each with a single ORF, were found associated with
the mycovirus. RNAT is 6.7 kb, with an ORF coding for a protein of 2,211 aa with a
39.58% identity to Watermelon crinkle leaf-associated virus 1 (64) and the domain of a
viral Bunya-RdRp superfamily, indicating that this protein could be involved in BcBV1
replication; RNA2 is 1.6 kb with an ORF that encodes a hypothetical protein of 470 aa
with a 51.30% identity to Laurel Lake virus (LLV) ORF1 (65) and a 30% identity to
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FIG 8 Sequence properties of Botrytis cinerea bocivirus 1. (A) Schematic representation of Botrytis cinerea bocivirus 1 (BcBV1) vcRNA (viral RNA
complementary strand) segments showing the locations of ORFs, alignment of the conserved sequences of the 5’ and 3’ ends of BcBV1 RNA1, -2, and -3,
and the panhandle structures formed by the 5’ and 3’ termini of each RNA segment. (B) Alignment of the conserved region of movement protein (MP)-like
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Phylogenetic tree of MP-associated proteins computed by IQ-TREE stochastic algorithm to infer phylogenetic trees by maximum likelihood (model of

substitution: VT+G4). A consensus tree was constructed from 1,000 bootstrap trees (log likelihood of consensus tree, —9944.852649). All bootstrap values
(%) of >65 are represented at each node of the tree. Branch lengths are proportional to the number of amino acid substitutions and are measured by a
scale bar. (D) Phylogenetic tree of nucleocapsid proteins (NCP) computed by using an IQ-TREE stochastic algorithm to infer phylogenetic trees by
maximum likelihood (model of substitution: LG+G4). A consensus tree was constructed from 1,000 bootstrap trees (log likelihood of consensus tree,

—6678.055394).

Watermelon crinkle leaf-associated virus 1 movement protein, and RNA3 is 1.2 kb with
an ORF coding for a protein of 356 aa with a 35.26% identity to Citrus virus A (66), with
the domain of the tenuivirus nucleocapsid protein (NCP), which could be involved in
BcBV1 encapsidation. These mycoviral segments showed identity to the recent discov-
ered Grapevine-associated cogu-like viruses (67). The alignment of the three proteins
showed that the RdRp had 44% identity with the RdRp of Grapevine-associated cogu-
like virus 1 (GaCLV1), the putative NCP showed 42% identity to the putative nucleocap-
sid of GaCLV1, and the hypothetical protein had 57% identity to the putative move-
ment proteins of Grapevine-associated cogu-like virus 2 (GaCLV2) and GaCLV3. A motif
search found the core domain of 30K viral movement proteins (pfam17644,
30K_MP_core) in the putative movement proteins of GaCLV2 and -3 and in ORF1 LLV.
The alignment of the core domains of these proteins with the hypothetical protein of
BcBYV1 showed a high conservation in the corresponding region (Fig. 8B). Different
failed attempts to amplify the RNA2 sequence with the RNA3 sequence, with primers
in different combinations, mimicking a possible ambisense segment as with other con-
firmed coguviruses (66, 68), suggested that RNA2 and RNA3 are indeed separated seg-
ments. The trisegmented nature of the BcBV1 genome was also confirmed by determi-
nation of the 5" and 3’ ends of the three genomic segments (Fig. 8A). BcBV1 RNAs
shared almost identical nucleotide sequences in their 5’ and 3’ termini, as expected;
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like other similar segmented ssRNA- viruses, both termini are complementary to each
other, forming a panhandle structure (66) (Fig. 8A).

The RdRp sequences of BcNSRVS, -9, -10, and -11 were aligned with the RdRp
sequence of BcNSRV1 (4) to show the six conserved motifs: premotif A and and motifs
A to E, which represent conserved regions of the RdRps of the family Bunyaviridae
(data not shown). Motif C (SDD) was also conserved in BcNSRV2 and -6, BcOBV1, and
BcBV1 RdRps, with the three basic residues (K, R, and R/K) inside the premotif A, which
are also conserved in bunyavirus RdRps (69; data not shown). BCNSRV6 was well repre-
sented in one Italian pool, and BcNSRV2 and BcBV1 were present in a single distinct
Spanish pool, with the BcBV1 RNA1 and -3 represented by almost three times as many
reads as RNA2 (Fig. 2A; see also Table S1). BCNSRVS, -9, -10, and -11 were found in sev-
eral Spanish pools with high number of reads; however, BcOBV1 and its mycoviral vari-
ant were the only ones widely distributed between Italy and Spain and not always in
the same pools (Fig. 2A; see also Table S1).

(iii) Phylogenetic relationships of negative-stranded mycoviruses. The phyloge-
netic relationships of the proteins encoded by BcBV1 RNA2 and -3 are shown in Fig. 8C
and D, respectively. The hypothetical protein of BcBV1 RNA2 is placed in a strongly
supported group with putative movement proteins of GaCLV1, -2, and -3 and ORF1 of
LLV (Fig. 8C) in the same clade with Entoleuca phenui-like virus protein. The putative
BcBV1 NCP is grouped in a clade with the NCP of GaCLV1 and the classified coguvi-
ruses (Fig. 8D), reinforcing the hypothesis that it could be involved in mycoviral
encapsidation.

The phylogenetic relationships between the discovered mycoviruses and other
ssSRNA- viruses are shown in Fig. 9. BENSRV3, -4, -5, and -7 were included in the order
Mononegavirales. BINSRV5 grouped with BcNSRV7, its two mycoviral variants, and
Sclerotinia sclerotiorum negative-stranded RNA virus 5 (58) in a strongly supported
clade (100% bootstrap value), one closely related to the new created genus
Hubramonavirus inside the family Mymonaviridae (62, 70), where they could be
included. These B. cinerea mycoviruses were clearly separated from the well-supported
group containing BcNSRV3 and -4, BcMyV1, and other members of the genus
Sclerotimonavirus, inside the family Mymonaviridae, represented by SsNSRV1. BCNSRV3
and -4 might be considered new members of the genus Sclerotimonavirus. The remain-
ing ssSRNA- mycoviruses grouped with members of the order Bunyavirales. BC(NSRVS,
-9,-10, and -11 are included in a group with BcNSRV1 inside a clade (100% bootstrap
value) that includes viruses infecting fungi and other hosts; we propose the creation of
a new family named Mybuviridae, probably including several genera. BcOBV1 and its
variant are in a separate but well-supported group, which could be considered also
inside this new proposed family. B(NSRV2 and -6 and BcBV1 were included in a clade
with other members of the family Phenuiviridae, but in different groups. BCNSRV2 and
-6 are in two different groups, highly supported, inside the family Phenuiviridae, but
probably establishing two new different genera. BcBV1 grouped with GaCLV1 and
members of the genus Coguvirus, but most probably constituting a new genus inside
the family Phenuiviridae, for which we propose the name Bocivirus.

Double-stranded RNA mycoviruses. A total of 19 mycoviruses with dsRNA
genomes were identified and classified as botybirnaviruses (n = 2), quadriviruses (n =
1), victoriviruses (n = 11), partitiviruses (n = 2), and unclassified dsRNA viruses (n = 3)
(Table 1).

Botybirnaviruses have a linear segmented genome composed of two RNAs (71). B.
cinerea samples were infected with two botybirnaviruses, the already-characterized
Botrytis porri botybirnavirus 1 (BpRV1) (72), which was annotated as a B. cinerea vari-
ant, and the newly identified Botrytis cinerea botybirnavirus 2 (BcBV2). Both mycovi-
ruses were present in one Spanish pool but not in the same one (Fig. 2B; see also
Table S1). The BcBV2 genome comprises two dsRNA segments 6 kb in length, dsRNA1
encodes a protein of 1,831 aa with the conserved motifs (I to VIII) of the RdRps, includ-
ing the highly conserved triplet GDD in motif VI, and with identity to the cap-pol fusion
protein of Botryosphaeria dothidea botybirnavirus 1 (73); dsRNA2 encodes a
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FIG 9 ssRNA- virus phylogenetic tree. A phylogenetic tree was computed by using the IQ-TREE
stochastic algorithm to infer phylogenetic trees by maximum likelihood (model of substitution:
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hypothetical protein of 1,801 aa, with identity to the hypothetical protein of Botrytis
cinerea botybirnavirus 1 (71), and with an F-box domain (E value = 5.50E-04), according
to CDD/SPARCLE results (74), present in the N-terminal half of the protein (see Fig. S7A
and B). An alignment of the nucleotide sequences of both dsRNAs shows high similar-
ity in the first 470 nt of the 5’ noncoding region and in the last 100 nt of the 3’ noncod-
ing region (data not shown), as has been shown for other botybirnaviruses (72).

Totiviridae family includes the genus Victorivirus (75). Victoriviruses have a genome
of ~6 kb with two large ORFs. An incomplete sequence of Botrytis cinerea victorivirus
1 was detected in our B. cinerea samples. In addition, two new victoriviruses were iden-
tified and named Botrytis cinerea victorivirus 2 (BcVV2) and BcVV3 with genomic
lengths of 5.2 kb with two overlapping ORFs: the first one encodes the putative coat
protein of 807 aa, and the second one encodes the putative RdRp of 838 aa, with all
motifs (I to VIII) highly conserved in comparison to Helminthosporium victoriae virus
190S (75), as a representative member of the genus Victorivirus, and other victoriviruses
infecting B. cinerea and Botryotinia fuckeliana (see Fig. S7C and E). The stop codon of
the CP ORF overlaps the start codon of the RdRp ORF in the tetranucleotide sequence
“AUGA,” as also shown for other victoriviruses (75). Eight mycoviral variants of BcVV2
and BcVV3 were identified in our study, with an identity in the RdRp sequences of
>94% compared to its reference viruses (see Fig. S7D). All victoriviruses were present
in pool BCI8, and many of them were detected in at least one Spanish pool with a dif-
ferent representation based on the number of reads (Fig. 2B; see also Table S1).

Quadriviridae family includes the genus Quadrivirus (76). Members of this genus have
four dsRNA genomic segments ranging from 3.5 to 5 kb. Botrytis cinerea mycovirus 4
(BcMyV4) has a tetrasegmented dsRNA genome (Fig. 10A and B) with dsRNA1 and dsRNA4
encoded proteins (1,592 and 1,128 aa) showing 91 and 97% identities to two hypothetical
proteins of the trisegmented Botrytis cinerea RNA virus 2; the dsRNA2 encoded protein
(1,407 aa) had 24% identity to a structural protein of Rosellinia necatrix quadrivirus 1
(RnQV1) (77), and the dsRNA3 encoded protein (1,364 aa) had 95% identity to the RdRp of
Botrytis cinerea RNA virus 2. Alignment of the putative BcMyV4 RdRp with the sequence
of RnQVV1 RdRp showed a high conservation of all motifs (Fig. 10A). This is the first puta-
tive quadrivirus associated with B. cinerea. BcMy4 was only detected in Spanish pools, and
mainly in the La Rioja region with dsRNA3 coding for the putative RdRp in higher abun-
dance (Fig. 2B; see also Table S1 and Fig. S2).

The family Partitiviridae includes dsRNA viruses with two genome segments encap-
sidated independently (78). A partitivirus named Botrytis cinerea partitivirus 3 (BcPV3)
was identified in only one Spanish pool (Fig. 2B; see also Table S1). BcPV3 dsRNA1 (1.8
kb) contains a single ORF coding for a putative RdRp (539 aa), with conservation of the
motifs A to G of other partitiviruses; and BcPV3 dsRNA2 (1.5 kb) contains a single ORF
coding for a putative coat protein (CP) (433 aa) (see Fig. S7G). BcPV3 RdRp showed an
amino acid identity of 99.64% with the partial RdRp of Sclerotinia sclerotiorum partitivi-
rus 3, and BcPV3 CP showed an amino acid identity of 92.84% with the CP of
Sclerotinia sclerotiorum partitivirus 2 (58). BcPV3 dsRNA1T and dsRNA2 showed identi-
ties of around 45% at the nucleotide level and 12% at the amino acid level with other
partitiviruses associated with B. cinerea (42, 44). The first 30 nt of both dsRNA segments
were almost identical; however, there was no such conservation at the 3’ end, suggest-
ing that the sequence of both or one of the dsRNA segments may be incomplete (data
not shown). Botryotinia fuckeliana partitivirus 1 was highly abundant in one Spanish
pool and was annotated as a mycoviral variant of B. cinerea (Table 1 and Fig. 2B; see
also Table S1).

FIG 9 Legend (Continued)

VT+F+1+G4). A consensus tree was constructed from 1,000 bootstrap trees (log likelihood of
consensus tree, -316277.482879). All bootstrap values (%) of >65 are represented at each node of
the tree. Branch lengths are proportional to the number of amino acid substitutions and are
measured by a scale bar.
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FIG 10 Sequence properties of Botrytis cinerea mycovirus 4. (A) Amino acid sequence alignment of RdRp of
Botrytis cinerea mycovirus 4 (BcMyV4) and Rosellinia necatrix quadrivirus 1 (RnQV1; AB620061). (B) Schematic

representation of the four RNA segments of BcMyV4 showing the locations of ORFs.

The bipartite virus Botrytis cinerea mycovirus 3 (BcMyV3) has a genome composed
of two dsRNAs segments (see Fig. S7G). dsRNA1 (2,024 nt) has a single ORF coding for
a protein of 607 aa with conserved motifs A to F of the RdRps; dsRNA 2 (1,780 nt) con-
tains an ORF that encodes a hypothetical protein of 307 aa. Both segments showed
similarity with Cryphonectria parasitica bipartite mycovirus 1 (KC549809) and were
present only in four Spanish pools (Fig. 2B). Botrytis cinerea mycovirus 5 (BcMyV5) has
also a bipartite genome with the longest RNA (2,184 nt) with an ORF coding for a puta-
tive RdRp of 675 aa, and the shortest RNA (1,522 nt) with an ORF coding for a hypothet-
ical protein of 316 aa (see Fig. S7G). Both segments showed similarity with Fusarium
graminearum dsRNA mycovirus 5 (79) and were poorly represented in one and four
pools from Spain and Italy, respectively (Fig. 2B and Table 1; see also Table S1). A vari-
ant of dsRNA2 of 1.4 kb was also found (Table 1). BcMyV3 and -5 and BcPV3 shared
conserved motifs (A to G), including triplets GDD in motif C and YPE in motif E (see
Fig. S7F). The identity between BcMyV3 and BcMyV5 was close to 40%; however, the
identity with BcPV3 was around 20%. Both mycoviruses showed conservation at the 5’
end of both dsRNA segments, as in the case of BcPV3, supporting the hypothesis that
they are bisegmented mycoviruses (data not shown).

Sclerotinia sclerotiorum dsRNA mycovirus L was previously found associated with B.
cinerea samples (23), and here it was also found in three pools of two different regions
of Spain with a representative number of reads (Fig. 2B; see also Table S1).

The results of an analysis of the phylogenetic relationships between all dsRNA
mycoviruses associated with the Partitiviridae family are shown in Fig. 11A. BcPV3 is
within the Gammapatrtitivirus group, inside the family Partitiviridae, and should be con-
sidered a new member of this genus. The other two bisegmented dsRNA mycoviruses,
BcMyV3 and BcMyV5, are included in two different strongly supported groups of the
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FIG 11 dsRNA virus phylogenetic tree. (A) Partitiviruses and other bisegmented dsRNA viruses. A
phylogenetic tree was computed by using the IQ-TREE stochastic algorithm to infer phylogenetic
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same clade, which is closely related to the family Partitiviridae. This clade should be
classified a new family that probably comprises two new genera, one including
BcMyV3 and a second including BcMyV5. The relationships of the other dsRNA viruses
are shown in Fig. 11B. BcMyV4 grouped in the same clade of the family Quadraviridae,
genus Quadrivirus, but in a different well-supported group, indicating that it can prob-
ably be included in a different genus inside this family. BcVV2 and -3 are grouped with
all members of the Victorivirus genus, suggesting that they should be recognized as
new victoriviruses. BcBV2 is also in a separate group related to other botybirna-like
viruses, but it is not in the same group as Botrytis porri botybirnavirus 1.
Single-stranded DNA mycoviruses. Nowadays, no ssDNA virus has been described
infecting B. cinerea. Here, we found several mycoviral sequences corresponding to a
putative circular ssDNA virus, that we named Botrytis cinerea ssDNA virus 1 (BcssDV1).
This mycovirus was found in one Italian pool from Lombardia and in eight Spanish
pools from all regions except from the south of Spain and was very abundant, based
on the read numbers, in seven of the nine pools (see Table S1). The mycoviral genome
of 1,426 nt has a single ORF encoding a protein of 380 aa with identity to the spliced
replication-associated protein of Bemisia-associated genomovirus NfO (KY230625). The
putative replication-associated protein of 380 aa contains the domains of Gemini_AL1
(Geminivirus Rep catalytic domain; The AL1 proteins encodes the replication initiator
protein [Rep] of geminiviruses) and the Gemini_AL1_M (Geminivirus rep protein cen-
tral domain) and conserves all genomovirus characteristic amino acid motifs (Fig. 12A).
Another sequence of 1,694nt was found in our samples (Table 1); this mycoviral
sequence has a single ORF coding for a protein of 321 aa that overlaps the last 321 aa
of the protein of 380 aa (data not shown). An alignment of the nucleotide sequences
showed a complete overlap except for a gap of 381 nt in the shorter sequence (see
Fig. S8; BcssDV1I [ssDV11] and BcssDV1s [ssDV1s]). We observed that BcssDV1s has a
sequence duplication at its 5" and 3’ ends (see Fig. S8, labeled in green); however,
there was no such duplication of sequences between both ends in BcssDV1l, and we
underlined the repeated sequence of BcssDV1s in the single sequence of BcssDV1l (see
Fig. S8, underlined sequences). These observations suggest that the sequence of
1,694 nt (MN625247) is the probable correct sequence of the ssDNA mycovirus. The nu-
cleotide sequence of the ssDNA mycovirus (1,694 nt) was further confirmed by Sanger
sequencing of a product amplified with specific primers of the rep protein region used
as the template viral DNA (see Table S1). In addition, the canonical donor GU and
acceptor AG splicing sites were identified in the gap borders of the sequence, suggest-
ing that this 381-nt sequence is probably an intron (see Fig. S8, labeled in pink in the
5'-3" nucleotide sequence). In fact, deletion of the putative intron of BcssDV1l gener-
ates a new ORF coding for the protein of 380 aa. The putative nonanucleotide motif in
the putative replication origin of BcssDV1 (1,694 nt) is highlighted in blue in Fig. S8,
indicating with a blue arrow the position where the endonuclease activity of viral Rep
introduces a nick in the virion-sense strand (AA_TT) (80). We have found several other
sequences in different pools, related to BcssDV1, suggesting that its genome could be
composed by more than one segment. Further analyses are in progress to determine
the full sequence of all the putative segments of BcssDV1 genome. The possible struc-
ture of the viral Rep encoding ssDNA genome is shown in Fig. 12B, with a stem-loop
structure around the conserved nonanucleotide. The phylogenetic relationships of
BcssDV1 with other ssDNA viruses are shown in Fig. 12C. Members of the families

FIG 11 Legend (Continued)

trees by maximum likelihood (model of substitution: VT+F+1+G4). A consensus tree was constructed
from 1,000 bootstrap trees (log likelihood of consensus tree, —29124.745182). All bootstrap values
(%) of >65 are represented at each node of the tree. Branch lengths are proportional to the number
of amino acid substitutions and are measured by a scale bar. (B) Botybirnavirus, totivirus, and
quadrivirus phylogenetic tree. The phylogenetic tree was computed by using the IQ-TREE stochastic
algorithm to infer phylogenetic trees by maximum likelihood (model of substitution: LG+F+1+G4).
A consensus tree was constructed from 1,000 bootstrap trees (log likelihood of consensus tree,
—83393.114516).
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FIG 12 Sequence properties of Botrytis cinerea ssDNA virus 1 (BcssDV1). (A) Conserved motifs of genomovirus replication-associated proteins
(motifs | to Ill, GRS domain, Walker A and B, and motif C) in BcssDV1. (B) Diagram showing the genome structure of BcssDV1 and stem-loop
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Geminiviridae and Genomoviridae are clearly separated in the phylogenetic tree, with
BcssDV1 inside the clade of the Genomoviridae family, closely related to gemykrogvi-
ruses, but in a different strongly supported group (100% bootstrap value) with the
recently discovered Fusarium graminearum gemytripvirus (14), suggesting that both
viruses should probably be considered members of a new genus inside the family
Genomoviridae. The mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA
virus 1 (13) and Bemisia-associated genomovirus NfO were in the same clade as
BcssDV1 but in two different groups.

Detection of mycoviruses infecting B. cinerea in vivo. B. cinerea mycoviruses
were detected by RT-gPCR (RNA viruses) or by gPCR (DNA virus) using specific primers
(see Table S2) designed based on the sequence identified by high-throughput
sequencing. The results are shown in Table 2. Forty-seven mycoviral sequences
(belonging to 36 mycoviruses) were detected by high-throughput sequencing and
gPCR in the same pools, using DNA or cDNA as the template, with the exception of
two mycoviral sequences that were not detected in one of the pools. These 36 mycovi-
ruses were selected to have a representation of mycoviruses with different genome
classes (dsRNA, ssRNA, or ssDNA), including the most relevant ones found in our analy-
ses. We included in the detection assay mycoviruses with multisesgmented genomes to
ensure that all putative associated genomic segments were inside the same pools,
therefore supporting the hypothesis that they belong to the same mycoviral genome.
The three segments of BcBV1 genome were detected in pool BCS15 by RT-qPCR and
by conventional RT-PCR with specific primers and in 9 of the 10 individual samples
included in the pool (Table 3). The two segments of BCBNV2 were also detected by RT-
qPCR in all samples included in pool BCS14 (Table 3).

The multisegmented nature of BcBNV2 and BcBV1 was confirmed by detection of
all genomic segments of both mycoviruses in single spore isolates BC93M1 and
BC118M2, respectively, after vertical transmission of BcBNV2 and BcBV1 via spores
(data not shown). The presence of BcssDV1 was also validated by conventional PCR or
by gPCR in all pools found by high-throughput sequencing and in several independent
samples of BCl and BCS15 pool (Tables 2 and 3). Also, the presence of BcssDV1 was
detected by amplifying the fungal DNA, in a rolling-circle amplification assay, and by
digestion with a specific enzyme present inside the mycovirus. Specific detection of
the mycovirus was confirmed by cloning and sequencing of the PCR product.

DISCUSSION

In the present study, viral metagenomics was applied on mixed fungal isolates using
pools from different regions of two countries to search for novel mycoviruses. The advant-
age of this method is that it allows the identification of a great variety of new mycoviruses
with different classes of genomes, including dsRNA, ssRNA+, ssRNA-, and ssDNA
genomes. Moreover, the use of pools with several isolates let us to increase the number of
samples analyzed increasing the probabilities to find a larger variety of mycoviruses. In par-
allel with this study, the virome associated with downy mildew (67, 81) and powdery mil-
dew (J. Rodriguez-Romero et al., unpublished data) of grapevine plants collected in the
spring and early summer of 2018 from the same regions has been characterized. The
results of the three studies will show the great abundance and variety of ssRNA+ viruses,
and the lower abundance, but not diversity, of dsRNA and ssRNA- viruses.

Diversity of B. cinerea mycoviruses and geographical distribution. A total of 248
B. cinerea isolates were collected from grape berries of different Italian and Spanish
regions, cultured in vitro, and used to search for novel mycoviruses. Different mono- and
multisegmented mycoviruses were identified, the majority of them with the ssRNA+ ge-

FIG 12 Legend (Continued)

structure around the conserved nonanucleotide motif. (C) Phylogenetic tree computed by using the IQ-TREE stochastic algorithm to infer
phylogenetic trees by maximum likelihood (model of substitution: VT+1+G4). A consensus tree was constructed from 1,000 bootstrap trees (log
likelihood of consensus tree, —21005.690132). All bootstrap values (%) of >65 are represented at each node of the tree. Branch lengths are
proportional to the number of amino acid substitutions and are measured by a scale bar.

May/June 2021 Volume 12 Issue 3 e03705-20 mbio.asm.org 30

Downloaded from https://journal s.asm.org/journal/mbio on 30 December 2021 by 77.244.183.124.


https://mbio.asm.org

Mycovirome of a Necrotrophic Fungus

TABLE 2 Individual mycoviruses validated in vivo in B. cinerea samples

Mycovirus? No. of pools
Botrytis cinerea mycovirus 3 RNA1 4/4
Botrytis cinerea mycovirus 3 RNA2 4/4
Botrytis cinerea botybirnarvirus 2 RNA1 171
Botrytis cinerea botybirnarvirus 2 RNA2 11
Botrytis porri botybirnavirus 1 RNA1 11
Botrytis porri botybirnavirus 1 RNA2 171
Botrytis cinerea mycovirus 5 RNA1 5/5
Botrytis cinerea mycovirus 5 RNA2 5/5
Botryotinia fuckeliana partitivirus 1 RNAT 4/4
Botryotinia fuckeliana partitivirus 1 RNA2 4/4
Botrytis cinerea mycovirus 4 RNA1 6/6
Botrytis cinerea mycovirus 4 RNA 2 6/6
Botrytis cinerea mycovirus 4 RNA 3 6/6
Botrytis cinerea mycovirus 4 RNA 4 6/6
Botrytis cinerea victorivirus 2_BCS9 2/2
Botrytis cinerea victorivirus 2_BCS14 4/4
Botrytis cinerea victorivirus 3 2/2
Botrytis cinerea alpha-like virus 1 20/20
Botrytis cinerea flexivirus 1 3/3
Botrytis cinerea deltaflexivirus 1 11
Botrytis cinerea umbra-like virus 1 3/3
Botrytis cinerea endornavirus 2 4/4
Botrytis cinerea endornavirus 3 4/4
Botrytis cinerea fusarivirus 3 11
Botrytis cinerea fusarivirus 5 5/5
Botrytis cinerea fusarivirus 7 8/8
Botrytis cinerea hypovirus 2 2/2
Botrytis cinerea hypovirus 3 11/11
Botrytis cinerea hypovirus 4 14/21
Botrytis cinerea binarnavirus 1 2/2
Botrytis cinerea binarnavirus 2 RdRp 11
Botrytis cinerea binarnavirus 2 HP il
Botrytis cinerea narnavirus 4 3/4
Botrytis cinerea binarnavirus 5 11/11
Botrytis cinerea ourmia-like virus 9 7/7
Botrytis cinerea ourmia-like virus 11 11/12
Botrytis cinerea ourmia-like virus 16 23/23
Sclerotinia sclerotiorum mitovirus 4 20/20
Botrytis cinerea mitovirus 6 8/8
Botrytis cinerea mitovirus 5 22/22
Botrytis cinerea mitovirus 9 29/29
Botrytis cinerea bocivirus-RNA1 11
Botrytis cinerea bocivirus-RNA2 11
Botrytis cinerea bocivirus-RNA3 11
Botrytis cinerea orthobunya-like virus 1 13/13
Botrytis cinerea negative-stranded RNA virus 3 4/4
Botrytis cinerea negative-stranded RNA virus 6 il
Botrytis cinerea ssDNA virus 1 9/9

aData are presented as the number of samples that tested positive/the total number of samples tested.

nome, several with dsRNA and ssRNA- genomes, and one with an ssDNA genome. The
presence of mycoviruses with different classes of genomes in both countries and in most
or all regions inside each country indicates that the geographical location has no or little
influence on the distribution of mycoviruses based in the genome class. Mycoviruses with
ssRNA and ssDNA genomes, with some exceptions, were present in both countries in sev-
eral regions; however, other than the lower variability of dsRNA mycoviruses, most of
them were found in both countries but only in one or a few pools, suggesting a restriction
of the transfer of dsRNA mycoviruses between B. cinerea isolates. Alternatively, the pres-
ence of some mycoviruses in only one country, or in a single region inside a country, could
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TABLE 3 Mycovirus pools and samples validated in vivo in B. cinerea samples

No. of
samples Total no. of
Pool Validated mycovirus/samples validated samples/pool
BcssDV1
BCI1 BCI1, BCI2, BCI3, BCl4, BCI5, BCI7 6 10
BCS15 BC108,BC110,BC119 3 10
BcBV1
BCS15 BC107,BC109,BC110,BC112, 9 10

BC113,BC114,BC116,
BC117,BC119

BcBNV2 segments 1 and 2
BCS14 BC89, BC90, BC91, BC93, BCI5, 12 12
BC96, BC97, BC98, BC101,
BC103, BC104, BC106

also indicate a recent introduction of B. cinerea isolates infected with these mycoviruses
that have limited its dispersion. There are studies on the distribution of mycoviruses infect-
ing B. cinerea isolates from different regions of the world. Some of these have shown B. cin-
erea mycoviruses with a wide dispersion and prevalence, independent of the sampling
time, host, or country. For instance, Botrytis cinerea mitovirus 1 has been found recurrently
infecting B. cinerea isolates from different hosts (oilseed rape, pepper, and grapevine) in
Spain, Italy, and China (23, 38, 82). Similarly, Botrytis virus F has been identified in surveys
of B. cinerea isolated from different hosts (strawberry, grapevine, tomato, lettuce, and
cucumber) in Spain, Italy, Israel, France, New Zealand, and Germany (23, 83-86).
Nevertheless, there are some mycoviruses with limited distribution, such as, for instance,
Botrytis cinerea mymonavirus 1, which has been found with low incidence in three distant
regions of China (12) but has not been identified in our work. Interestingly, some dsRNA
and ssRNA+ mycoviruses, previously identified as infecting other Botrytis species or other
fungal genera, such as Botrytis porri, Botryotinia fuckeliana (a teleomorph of B. cinerea), or
Sclerotinia sclerotiorum, were found in this work to infect B. cinerea, suggesting a horizontal
transfer of these mycoviruses between coinfecting fungi, since all of them can be found in
coinfections in some common plant hosts. In fact, S. sclerotiorum and B. cinerea are both
necrotrophic fungi with very wide hosts ranges, whose genomes show high sequence
identity and a similar arrangement of genes (87). This horizontal virus transfer has been
reported previously by other authors between different genera of fungi, including B. cin-
erea (12, 58, 72), and has been considered, from a broader point of view, as a central as-
pect of RNA virus evolution (7).

Unique bisegmented narna-like viruses. ssRNA+ viruses include the largest and
most diverse group of viruses infecting eukaryote (88). As expected, ssSRNA+ viruses were
the most abundant in our study; these included mitoviruses, narnaviruses, and botourmia-
viruses. Mitoviruses and botourmiaviruses have been identified previously infecting B. cin-
erea (3, 23, 82), and here we increased the collection with the identification of several clas-
sical mitoviruses, and a great number of new botourmiaviruses, some of them constituting
a new genus, that we propose to name Penoulivirus, inside the family Botourmiaviridae
(47). However, until the present work, no narnaviruses were associated with B. cinerea.
Narnaviruses are monosegmented ssRNA+ capsidless viruses that code for an RdRp in a
sense orientation, and some of them also code for a hypothetical protein of similar size in
an antisense orientation and replicate in the cytosol of host cells (89-91). Five novel narna-
like viruses were identified for the first time infecting B. cinerea in our study, all of them
coding for a single protein in a positive-sense orientation. BcNV4 was a classical narnavirus;
however, the other four mycoviruses identified, named binarnaviruses, coded for a protein
with identity to the RdRps of other narnaviruses included in the databases. However, none
of the putative RdRps of these new mycoviruses contained the Gly-Asp-Asp (GDD)
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sequence found in motif VI of the RdRp palm domain, but they were associated with
another narna-like viral sequence that coded for a hypothetical protein that contained this
GDD sequence. Recently, Lin et al. (92) identified a narnavirus infecting Magnaporthe ory-
zae that was also missing the GDD triplet, and this indicated that this motif was also
absent in the RdRp of other previously reported narnaviruses (21, 22, 93). We claim that
these four novel binarnaviruses have a bisegmented genome. The presence of biseg-
mented narna-like virus (Matryoshka RNA virus 1 and Leptomonas seymouri Narna-like vi-
rus 1) has been previously reported (52, 53), and in these viruses one of the segments
encoded a classical RdRp polymerase, and the second one encoded two small proteins.
However, BcBNV HP did not show any identity with the small proteins of these two viruses.
An interesting feature of these BcBNV HP is the conservation of the sequence “EVGDDR”
containing the conserved triplet GDD of the RdRp. This finding raises the question of
whether this GDD motif could somehow function in trans, through protein-protein interac-
tion, as part of the catalytic site of the binarnavirus RdRp. Another hypothesis could be
that the narnavirus RdRp lacking the GDD is completely functional but less efficient, as is
the case of the dsRNA birnavirus RdRp, which is also lacking the GDD triplet or has reposi-
tioned this motif to different structural regions (94, 95). Further investigation of the func-
tion of these binarnaviral hypothetical proteins will be conducted to elucidate their role in
the viral biological cycle, and the origin and evolution of these binarnaviruses will be
explored. An encapsidated levivirus-like virus was likely the ancestor of naked mitoviruses
and narnaviruses, and it has been hypothesized that a narnavirus was the ancestor of the
segment coding for the RdRp of plant ourmiaviruses (16, 96). One hypothesis about the or-
igin of these B. cinerea binarnaviruses is that they originated by the coinfection of two in-
dependently replicating narnaviruses in the same host, each of them coding for their own
RdRp. These narnaviruses could have been evolved by accumulating mutations in their
genomes but also deletions to the point that they had to combine and complement in
trans their defective RdRps to have a correct functional one. However, the position of the
RdRp motifs in both segments, at the end of segment 1 and the beginning of segment 2,
suggests that more probably was an evolutionary transition from a nonsegmented virus
to a bisegmented viral form. This genomic segmentation could have also been mediated
by replication errors and recombination events, which implies the formation of defective
RNA forms derived from the monosegmented genome. During the final review process of
the present study, other groups reported similar multisegmented narna-like viruses with
divided RdRps that infect the fungi Oidiodendron maius and Aspergillus fumigatus (97, 98),
an observation which further supports our finding of B. cinerea binarnaviruses.

Other novel positive-sense single-stranded RNA mycoviruses. New endornavi-
ruses, fusariviruses, and hypoviruses were identified infecting B. cinerea and that have
similarities to previously described mycoviruses of the same genera associated with
this fungus (41, 55). In addition, novel ssRNA+ as an alpha-like virus, an umbra-like vi-
rus, and as three novel mycoviruses related to members of the order Tymovirales were
found for the first time associated with B. cinerea. The alpha-like mycovirus BcALV1
had a unique feature different from the already-described alpha-like viruses infecting
fungi, which only encode a putative RdRp (8, 25, 27). BcALV1, in addition to encoding a
protein with the conserved RdRp motifs, codes for other two small proteins of
unknown function. BcFIV1 is the longest mycovirus in this group, with almost 14 kb
encoding a single long protein, but it is in the same size range as other discovered flex-
iviruses infecting other genera of fungi (21, 99).

Novel negative-sense single-stranded RNA mycoviruses. The first viral sequence
of ssRNA- coding for an RdRp associated with B. cinerea was Botrytis cinerea negative-
stranded RNA virus 1 (BcNSRV1) (4). Since then, only one more ssRNA- mycovirus has
been found to infect this fungus (12), indicating the low incidence of this class of
mycoviruses in B. cinerea. Surprisingly, in the present work, 15 new ssRNA- mycovi-
ruses were found, among them, six (BcNSRV3, -4, -5, and -7) were monosegmented
and contained four ORFs, with the longest one coding for a putative mononegaviral
RdRp. The phylogenetic analysis indicated that these six mycoviruses should be
included in the family Mymonaviridae (62). Other seven mycoviruses have a single
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segment that encoded a protein with Bunya-RdRp motifs. However, there was no asso-
ciation with any other viral segment that can code for proteins involved in the viral life
cycle, as either a nucleocapsid or a nonstructural protein, as was reported, for instance,
for Penicillium roseopurpureum negative-sense RNA virus 1 (9). Similar mycoviruses
with a single identified segment have been reported associated with other fungi (5).
Five of these new mycoviruses (BcNSRVS, -9, -10 and -11 and BcOBV1) were allocated
in a clade inside the group IV of negative-sense ssRNA viruses, order Bunyavirales, after
the phylogenetic analysis of the RdRp sequences. Other two monosegmented ssRNA-
mycoviruses, BCNSRV2 and BcNSRV6, also represent two novel mycoviruses infecting B.
cinerea, phylogenetically related to phlebo-like viruses or other ssRNA- viruses (21, 27).

A remarkable trisegmented ssRNA- mycovirus. The most interesting ssRNA-
mycovirus found in our study was BcBV1, a trisegmented mycovirus, each segment with a
single ORF coding for putative Bunya-RdRp, a putative nucleocapsid and a hypothetical
protein with identity to the putative movement proteins of ssRNA- cogu-like plant viruses
(67). Phylogenetic analysis using the nucleocapsid protein placed BcBV1 with GaCLV1 in
the same clade as the plant coguviruses. Alignment of the core domain of the 30K viral
movement protein with the BcBV1 hypothetical protein showed high conservation in this
region, suggesting that this hypothetical protein could be an ancient movement protein,
most probably, not functional in BcBV1. Mycoviruses do not have movement proteins
since they do not need them to survive inside their fungal hosts. However, two mycovi-
ruses, Entoleuca phenui-like virus 1 and Lentinula edodes negative-strand virus 2, have
been reported to encode hypothetical proteins with identity to plant coguvirus movement
proteins and to the hypothetical protein of the tick-infecting LLV (96, 100). Interestingly,
phylogenetic analysis showed that the RdRp of BcBV1 was grouped with GaCLV1, forming
the proposed new genus Bocivirus, inside the family Pheuniviridae. Based on the phylogeny
of the three proteins, the genomic segments of BcBV1 are apparently a mix of the three
segments of GaCLV1, -2, and -3, with the RNA1 and RNA3 being more similar to the corre-
sponding segments of GaCLV1 and the RNA2 having high identity to the GaCLV2 and -3
RNA2. Andika et al. (6) reported the discovery of a natural infection of the phytopatho-
genic fungus Rhizoctonia solani by a plant virus, cucumber mosaic virus, that was almost
100% identical to the one reported in the database, indicating that the fungus was
recently infected by the plant virus. The identity between BcBV1 and GaCLV, other plant
coguviruses, and LLV suggests a possible cross-kingdom event. Since BcBV1 still conserves
a hypothetical protein similar to a putative movement protein, the most probable scenario
could be that an ancient plant virus, coinfecting grapevine with B. cinerea, was transferred
from the grapevine plant to the fungus, and the resulting mycovirus BcBV1 is the product
of the evolution of the ancient plant virus inside the fungus.

Novel dsRNA mycoviruses. A few dsRNA mycoviruses have been reported to infect
B. cinerea (43, 44, 71). The identification of new partitiviruses, botybirnaviruses, and vic-
toriviruses here increased this collection of B. cinerea dsRNA mycoviruses. In addition,
two novel bisegmented mycoviruses were found, BcMyV3 and -5, that do not have an
ORF coding for a coat protein and therefore could be naked dsRNA mycoviruses. Both
are phylogenetically close to members of the family Partitiviridae, but in different
groups, probably representing two different genera inside a novel family of dsRNA
mycoviruses. Interestingly, we have also found a novel class of tetrasegmented dsRNA
mycovirus infecting B. cinerea, with high identity to Botrytis cinerea RNA virus 2 in
three segments and to RnQV1 in the remaining segment. Botrytis cinerea RNA virus 2,
with a trisegmented genome, was probably missing the fourth genomic segment that
was found in this study to obtain the complete genome of BcMyV4. This new B. cinerea
mycovirus, BcMyV4, represents a novel member of the family Quadriviridae.

A novel single-stranded DNA mycovirus. To date, only two ssDNA mycoviruses
have been associated with fungi (13, 14), and we have reported here the characteriza-
tion of the first ssDNA mycovirus infecting B. cinerea, BcssDV1. This new virus showed
identity to Bemisia-associated genomovirus Nfo and to the trisegmented ssDNA myco-
virus, Fusarium graminearum gemytripvirus (14). Phylogenetically, BcssDV1 was associ-
ated with Fusarium graminearum gemytripvirus, and other members of the genus
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Gemykrogvirus inside the family Genomoviridae (101), but they are clearly separated
from the genus Gemykibivirus, which includes Bemisia-associated genomovirus Nfo,
and from the genus Gemycircularvirus, which includes the other ssDNA mycovirus
infecting S. sclerotiorum (13). Sclerotinia sclerotiorum hypovirulence-associated DNA vi-
rus is a monopartite mycovirus coding for two proteins, and Fusarium graminearum
gemytripvirus is a tripartite mycovirus. In the case of BcssDV1, a single segment was
characterized encoding the replication associated protein. However, segments coding
for other proteins of variable sizes with no identity to any other protein in the database
were also found. Additional analyses are already being conducted to fully characterize
this new putative multisesgmented ssDNA virus infecting B. cinerea.

Conclusions. This study reveals the mycovirome composition of one of the most
economically important plant-pathogenic fungi, B. cinerea, through viral metagenom-
ics analysis. The results obtained here have expanded our knowledge of mycoviral di-
versity, horizontal transfers, and putative cross-kingdom events. These findings helped
us to explore the evolutionary history of mycoviruses and to increase the collection of
viruses infecting B. cinerea that could be used in biocontrol strategies.

MATERIALS AND METHODS

Sample collection of gray mold in grapevine. The 248 samples used in this study were collected
during the summer of 2018 in Italy and Spain from several varieties of grapevine plants infected with B.
cinerea. A total of 150 Spanish samples were collected in four of the main grapevine-producing areas of
Spain: Jerez in the south, Ribera de Duero in the center/northwest, La Rioja in the north, and Penedés in
the northeast (see Fig. S1A in the supplemental material). Samples were isolated from different grape-
vine cultivars as for instance Tempranillo, Palomino, or Macabeu. A total of 98 Italian samples were col-
lected mainly in the north of Italy, covering different areas, from Piedmont to Veneto. This also reflected
a wide range of grapevine varieties as Dolcetto, Barbera, Groppello, Cabernet, Merlot, Chardonnay, and
many others. A smaller proportion of the samples was also collected from center and south Italy, in
order to cover the country latitudes (see Fig. S1B). The number of sequenced pools determined by high-
throughput sequencing, the regions, the locations, the total numbers of samples, and the samples per
pool are represented in Fig. S1. After collection, the infected grapes were immediately stored at 4°C in a
moist bag until fungal isolation in potato dextrose agar (PDA). The mycelium of each fungal sample was
isolated from the infected grapes with a sterile tip and plated in a PDA plate that was incubated at 23°C
in darkness until the mycelia were completely developed. Some samples were reisolated several times
to avoid other fungal or bacterial contamination associated with field samples. Each isolate was cultured
in a plate with potato dextrose broth (PDB) for 3 days. The mycelia were collected and dried using
Miracloth paper, frozen in liquid nitrogen, and maintained at —80°C until total RNA extraction. For deter-
mination of the fungal species, specific primers (Bc3F, GCTGTAATTTCAATGTGCAGAATCC; Bc3R,
GGAGCAACAATTAATCGCATTTC) for the species “cinerea” were used in a gPCR with as the template total
fungal DNA. The total fungal DNA was obtained by scratching the surfaces of mycelium plates with a
toothpick or a 10-ul tip and boiling it in 20 ul of sterile water.

Total RNA extraction of Botrytis cinerea isolates. For total RNA extraction, 100 mg of mycelia were
resuspended in lysis buffer (Spectrum Plant Total RNA kit; Sigma-Aldrich); in the same tube, 0.5 ml of
glass beads (0.1 mm) was added, and the samples were mixed in a beat beater (Qiagen TissueLyser II) at
maximum speed for 20 to 30s and immediately placed in ice. After total RNA extraction according to
the Spectrum Plant Total RNA kit instructions (Sigma-Aldrich), the samples were measured using a UV
spectrophotometer to determine the concentration, and electrophoresis in agarose gels indicated the
quality. Only samples with a minimum of 40 ng/ml were included in pools for high-throughput sequenc-
ing (i.e, the 248 samples described above). The high-quality samples were combined in each pool,
resulting in 17 pools from Spain and 12 pools from Italy.

RNA next-generation sequencing and bioinformatics pipelines. RNA samples pools were sent to
Macrogen (Seoul, Republic of Korea) for library preparation (lllumina TrueSeq) and sequence analysis
with an lllumina NovaSeq 6000. For each library, >100 million pair-ended reads, 150 bases long, were
retrieved. To assemble and identify the viruses in silico, the pipeline was divided into four steps: (i) clean-
ing, (ii) de novo assembly, (iii) viral sequence identification, and (iv) mapping. Read cleaning was per-
formed using Bbtools (102) by removing adapters, artifacts, short reads, and ribosomal sequences. The
cleaning step output was used as input for the de novo assembly performed with Trinity software
(v2.3.2) (103). The third step used a Blast approach to identify viral sequences. First, a custom viral data-
base was queried with the assembled contigs by using an NCBI Blast toolkit (v2.8). The results were man-
ually inspected, and reliable viral sequences, based on the identity percentage, alignment length, and
query length, were selected for the following analysis steps. The candidate contigs were Blast evaluated
against NCBInr (release October 2019) using DIAMOND software (104). These second Blast results were
used to discriminate between real viruses and integrated viruses or host sequences. Selected virus
sequences were mapped with clean reads using bwa (105) transformed with SAMtools (106) and then
visualized with Tablet software (112). For ORF prediction, Expasy Translator and Open Reading Frame
Finder were used with default parameters. BLASTP was used to confirm the identity of the translated
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proteins by searching again in the database. All viral sequences with a length of >1,000 nt, close to the
size of the reference genome, and with a complete coding sequence or missing some amino acids from
the amino- or carboxy-terminal end in the coded proteins were submitted to GenBank. All assembled
contigs of each pool were Blast evaluated against the NCBI database using DIAMOND software. The
resulting “.daa” files were analyzed with MEGANG to verify the taxonomic variety of the samples and the
abundance of contigs pertaining to B. cinerea.

Detection of mycoviruses infecting B. cinerea in vivo. Total RNA from each of the 29 pools was
used as the template for cDNA synthesis with a high-capacity ¢cDNA reverse transcription kit (Applied
Biosystems). A dilution of the synthetized cDNA was used as the template in a qPCR (FastStart Universal
SYBR green Master Rox; Roche) with specific primers designed for the detection of 47 mycoviral segments
of 36 B. cinerea mycoviruses (see Table S2). Total RNA extracted from individual isolates of several pools
(BCI1, BCS14, and BCS15), and the cDNA obtained was also used as the template for the detection of three
mycoviruses. qPCR primers were used for the detection of Botrytis cinerea binarnavirus 2 segments 1 and 2
by qPCR in B. cinerea isolates of the pool BCS14. qPCR primers or new primers, specifically designed for con-
ventional PCR, were used for the detection of Botrytis cinerea bocivirus 1 RNA1, -2, and -3 in B. cinerea sam-
ples of pool BCS15 (see Table S2). To detect BcBV1 segments by conventional RT-PCR, SuperScript IV
(Thermo Fisher Scientific) was used for retrotranscription, and the PCR was performed using Tag CloneAmp
HiFi PCR (TaKaRa) for maximum efficiency. To detect Botrytis cinerea ssDNA virus 1, extracted DNA (DNeasy
plant minikit; Qiagen) from B. cinerea isolates of pools BCI1 and BCS15 was used as the template in a roll-
ing-circle amplification assay (TempliPhi amplification kit) to enrich the circular viral DNA. Dilutions of result-
ing product were used as the template in a gPCR and in a conventional PCR with specific primers (see
Table S2). The resulting amplicons of Botrytis cinerea ssDNA virus 1 and Botrytis cinerea bocivirus 1 were
subjected to Sanger sequencing to verify their detection. In addition, the BcssDV1 DNA extracted from sev-
eral samples was used as the template to amplify part of the genome by conventional PCR using
virssDNArep forward and reverse primers (see Table S2). The amplified PCR product was sequenced.

To explore the possibility of an ambisense segment in BcBV1 (RNA2/RNA3) instead two separated seg-
ments, the cDNA was also used as the template for two PCR amplification of 499- and 534-nt fragments by
combining BcBV1_RNA2_RACE_3'out Forward/BcBV1_RNA3_RACE_5'out Reverse and BcBV1_RNA3_
RACE_3’out Forward/BcBV1_RNA2_RACE_5'out Reverse, respectively (see Table S2). As a positive control,
the ¢cDNA was used as the template for the amplification of specific fragments of 303 nt of the RNA2
(BcBV1_RNA2_Fw and Rev) and of 286 nt of the RNA3 (BcBV1_RNA3_Fw and Rev) (see Table S2).

To explore the possibility of a monosegmented genome of BcBNV2 instead a bisegmented genome,
the cDNA was used as the template for two PCR amplification by combining BcBNV2_pro_Fw_rep/
BcBNV2_HP_RACE5_gs_in (1.4 kb) and BcBNV2_pro_Fw_HP/BcBNV2_rep_RACE5_gs_in (1.5 kb) (see
Table S2). As positive controls, the cDNA was used as the template for the amplification of specific frag-
ments of 1 kb for segments 1 (BcBNV2_rep_det_Fw and BcBNV2_rep_det_Rev) and 2 (BcBNV2_rep_det_Fw
and BcBNV2_rep_det_Rev) (see Table S2).

To ensure that BcBNV2 has a bisegmented genome and BcBV1 has a trisegmented genome and that
they are transmitted vertically via spores, the independent segments of both mycoviruses were detected
in single spore isolates. Field isolates BC93 (pool BCS14) and BC118 (pool BCS15) were cultured for 1 day
in PDA plates. Spores were collected in PDB, and 100 ul of dilutions of ~50 spores/ml were grown in
water agar (2%). After 2 days, single-spore colonies were isolated and cultured in PDA plates to obtain
BC93M and BC118M isolates. The total RNA was obtained from 1 g of mycelia of single-spore isolates
using TRIzol (NZYTech) according to the manufacturer’s instructions. The cDNA was synthesized from 1
g of total RNA with an NZY first-strand cDNA synthesis kit, according to the manufacturer’s instructions,
using specific primers. The cDNA was used as the template for PCR amplification with Supreme NZYTaq
Il 2x Green Master Mix. Amplification of specific fragments (~0.5 kb) of BcBNV2 segments was carried
out with the primers BcBNV2_pro_Fw_rep and BcBNV2_pro_Rev_rep to amplify segment 1 and the pri-
mers BcBNV2_pro_Fw_HP and BcBNV2_pro_Rev_HP for segment 2 (see Table S2). Amplification of spe-
cific fragments (~0.3kb) of BcBV1 segments was performed with the primers BcBV1_RNAT_Fw and
BcBV1_RNA1_Rev for segment 1, the primers BcBV1_RNA2_Fw and BcBV1_RNA2_Rev for segment 2,
and the primers BcBV1_RNA3_Fw and BcBV1_RNA3_Rev for segment 3 (see Table S2).

Determination of the 5" and 3’ of Botrytis cinerea binarnavirus 2 and Botrytis cinerea bocivirus
1 genomes. BcBNV2 segments 1 and 2 and BcBV1 RNAT, -2, and -3 ends were determined using a
SMARTerRACE 5'/3' kit (TaKaRa) for 5" ends and rapid amplification of cDNA ends (RLM-RACE kit; Thermo
Fisher) for 3’ ends, according to the manufacturer’s instructions. Briefly, for the 5’ end cDNA was synthesized
with SMARTer II A oligonucleotide (5'-AAGCAGTGGTATCAACGCAGAGTACGCGGG-3') using SMARTScribe
reverse transcriptase (TaKaRa). The cDNA was used as the template for an outer PCR with universal primer
(5'-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3') and specific viral primers (primers
“out”; see Table S2). Outer amplicons were used as the templates for an inner PCR using UPM short (5'-
CTAATACGACTCACTATAGGGC-3') and specific viral primers (primers “in”; see Table S2). For the 3’ end, RNA
was polyadenylated with PolyA polymerase (TaKaRa) and cDNA was synthesized with 3" RACE adapter (5'-
GCGAGCACAGAATTAATACGACTCACTATAGGT12VN-3'). Finally, cDNA was used as the template for an outer
PCR using amplified 3" RACE outer primer (5’-GCGAGCACAGAATTAATACGACT-3’) and specific viral primers
(primers “out”; see Table S2). Outer amplicons were used as the templates for an inner PCR using 3" RACE
inner primer (5'-CGCGGATCCGAATTAATACGACTCACTATAGG-3') and specific viral primers (primers “in”; see
Table S2). PCR products were cloned and sequenced.

Phylogenetic analyses. RNA-dependent RNA polymerase proteins from all identified viruses and
closest homologues from the National Center for Biotechnology Information (NCBI) were aligned using
the online version of Clustal Omega software with default parameters (107) or MUSCLE implemented in

May/June 2021 Volume 12 Issue 3 e03705-20

mBio’

mbio.asm.org 36

Downloaded from https://journal s.asm.org/journal/mbio on 30 December 2021 by 77.244.183.124.


https://mbio.asm.org

Mycovirome of a Necrotrophic Fungus

MEGAX (108). On the basis of the aligned amino acid sequences, the trees were computed by MEGAX
(108) or submitted to IQ-TREE software (109) to produce accurate phylogenetic trees under a maximum-
likelihood model (default parameters). The percentage of replicate trees in which the associated taxa
clustered together in a bootstrap test (1,000 replicates) were shown next to the branches (110). The tree
was drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to
infer the phylogenetic tree. The evolutionary distances were computed using the Dayhoff matrix-based
method (111) and are in the units of the number of amino acid substitutions per site. All positions with
<50% site coverage were eliminated, i.e., fewer than 50% alignment gaps, missing data, and ambiguous
bases were allowed at any position (partial deletion option). The accession numbers of the proteins and
the corresponding virus names are displayed on the trees.

Data availability. All the raw sequencing reads have been stored in SRA database: BioProject acces-
sion no. PRINA632510, BioSample accession numbers SAMN14911182 to SAMN14911210, and SRA
accession numbers SRX8335942 to SRX8335970.
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