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Predicting Slump Values of Concrete Made by 
Pozzolans and Manufactured Sand using ANN 
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Abstract: Large amounts of natural fine aggregate (NFA) and 
cement are used in building, which has major environmental 
consequences. This view of industrial waste can be used in part 
as an alternative to cement and part of the sand produced by the 
crusher as fine aggregate, similar to slag sand (GGBFS), fly ash, 
metacaolin, and silica fume. Many times, there are issues with 
the fresh characteristics of concrete when using alternative 
materials. The ANN tool is used in this paper to develop a Matlab 
software model that collapses concrete made with pozzolanic 
material and partially replaces natural fine aggregate (NFA) with 
manufactured sand (MS). Predict. The slump test was carried out 
in reference with I.S11991959, and the findings were used to 
create the artificial neural network (ANN) model. To mimic the 
formation, a total of 131 outcome values are employed, with 20% 
being used for model testing and 80% being used for model 
training. 25 enter the material properties to determine the 
concrete slump achieved by partially substituting pozzolan for 
cement and artificial sand (MS) for natural fine aggregate 
(NFA). According to studies, the workability of concrete is 
critically harmed as the amount of artificial sand replacing 
natural sand grows. The ANN model's results are extremely 
accurate, and they can forecast the slump of concrete prepared  
by partly substituting natural fine aggregate (NFA) and artificial 
sand (MS) with pozzolan. 

Keywords:  Volcanic Ash Material, Artificial Sand, Slump, 
Artificial Neural Network. XRD 

I. INTRODUCTION 

As the number of construction projects grows, natural 

sand springs are being used. This haphazard mining of 
riverbeds for natural sand has caused certain environmental 
issues. As a result, the usage of synthetic sand has become 
critical in order to preserve the environment and maintain a 
reasonable equilibrium.  
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[1] The manufacture of massive amounts of cement 
necessitates a lot of energy, emits CO2, and generates a slew 
of other issues. As a result, researchers are working hard to 
identify the best cement substitutes, such as fly ash (FA), 
metakaolin, silica fume, and risk trays, which provide 
stronger products with superior cement qualities. [2] The 
manufactured sand, pozzolanic materials and sand are 
widely employed in a variety of large-scale applications. 
The ANN model is designed to produce accurate and rapid 
findings in order to reduce the time and expenses associated 
with experimental effort. [3] When compared to other 
typical regression processes, the ANN model is a well-
constructed soft process that produces good results. [4]B. 
Boukhatem et al. found the use of Neural Networks (NN) 
and principal component analysis (PCA) in conjunction to 
forecast concrete qualities. According to the findings, PCA 
performs more accurately than NN. [5] Vinay Chandwaniet 
has researched the slump of ready-mix concrete and created 
an ANN model for slump prediction. According to the 
findings, the model can accurately predict RMC slump[6]. 
The neural network model was created by Ahmet O. et al. to 
estimate the sump and compressive strength of HSC. That 
neural network model capable of predicting the slump and 
compressive strength of HSC[7] is really well done. I-Cheng 
Yeh created two models to predict slump and found that the 
neural network model is more efficient than the second 
order regression model in predicting concrete slump[8]. The 
workability qualities of concrete produced with flies and 
metakolin were examined by Bai J. et al. The ANN model is 
effective in predicting the slump and veebe time of concrete 
containing fly ash and metakaolin, according to a study[9]. 
Ilker B. et al. investigated the experimental and prediction of 
ACC aggregate concrete characteristics. Using experimental 
and anticipated concrete properties, it was established that 
they are similar[10]. Bekir et al. investigated the 
characteristics of concrete manufactured from rubber waste. 
An artificial neural network (ANN) and a fuzzy logic model 
were created. The experimental and anticipated values are 
remarkably similar, according to the study[11]. Hosein N et 
al. have worked on predicting the strength of recycled 
aggregate concrete. The ANN model produces accurate 
findings, according to a study[12]. Marek S. investigated the 
properties of HPCs using three different models. Finely 
compares and assesses the viability of three models[13]. 
Keshavarz Z. investigated the prediction of concrete 
compressive strength using the ANFIS and ANN models, 
and came to the conclusion that the adaptive neuro fuzzy 
inference system (ANFIS) is more efficient than the ANN 
model in predicting concrete compressive strength[14].  
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The ability of concrete to work with a hint of slump is a 
highly important quality. Slump is directly related to the 
pumpability, consistency, flowability, and harshness of 
concrete. As a result, accurate slump prediction is required. 
ANN was used to determine the distracted workability 
metric, i.e. concrete slump, based on the findings of the 
previous study. The purpose of this study is to apply an 
artificial neural network method to forecast the slump of 
concrete prepared with various pozzolans and partially 
replaced natural fine aggregate (NFA) with manufactured 
sand (MS). 

II.ARTIFICIAL NEURAL NETWORKS (ANN) 

        The evolution of an Artificial Neural Network (ANN) 
have three levels: one or more hidden layers ,an input layer 
and one output layer. Weights, biases, and the transfer 
function are used to link every hidden layer to the other 

layers. Observing the intended output values and entry 
values determines the inaccuracy. By observing the error 
function, the biases and weight are fine-tuned by an internal 
process called training to reduce the error. The model is 
skilled until it achieves the preferred accuracy. And the 
output values are confirmed using the trained model. [10] 

III. DATA 

         M30 grade concrete was prepared by partially 
substituting cement with metakaolin, fly ash, silica fume, 
GGBFS, and natural fine aggregate (NFA) with 
manufactured sand (MS) in a range of 0 to 100% with a 
10% gap, 0.45 water cement ratio, and 0.1 percent 
superplasticizer. Slump testing was performed in accordance 
with IS 1199-1959 recommendations. Figure 1 depicts 
[15,16].

 

 

Fig.  1 Slump test 

Cement (C), manufactured sand (MS), coarse aggregate (C.A), natural fine aggregate (N.F.A), metakaolin (meta. ), Fly ash 
(F.A), Silica fume (S.F.), GGBFS are the input parameters for the mix design. In all networks, the weights of input 
parameters were set to the same value; the range of these values is indicated in table 1. Fresh experimentation yielded a total 
of 131 values. [17,18] 

Table1 Parameters for input and output 

 
To forecast flexural strength, input data was 

communicated in a feed forward process with no cycle 
creation in three layers, and the model was trained until it 
had a very low error rate. The number of neurons in hidden 
layers was fixed using the trial and error method. The 
Levernberg-Marquaedt approach was utilised for training. 
And the values were kept between 0 and 1. Eighty percent 
of the values were trained, and the remaining twenty percent 
were validated. [9.10,] Instead of using a single experiment 
for each material combination, the neural network was 
trained using different (5 types) of combinations at a time as 
input data values, resulting in 25 input layer models as 

shown in Figure 3. The maximum number of hidden layers 
is set to 30, out of which the neural network consumes as 
needed, with a maximum of 10 hidden layers employed 
during the experiment. The collection of goal values, which 
represent genuine intended results in terms of practical 
experimentation values, must be accomplished in a 
maximum of 10,000 iterations, with a 1e-25 convergence 
target. The learning rate is 0.01 with step 0.01 as the 
network's and values, respectively. The network's whole 
configuration is set and may be 
understood from table 2. [8] 

 

http://www.ijrte.org/


International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-10 Issue-5, January 2022 

68 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.D66161110421 
DOI: 10.35940/ijrte.D6616.0110522 
Journal Website: www.ijrte.org  
 

Table2 Parameters for configuring neural networks 

 

 
Fig. 2 Block diagram  

 
                                   Fig. 3 Neural network  
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Table 3 Values of overall experimental and anticipated slump (mm) 

 

 

Fig. 4 Variation in experimental and anticipated slump when no pozzolans in cement. 

 

Fig. 5 Variation in experimental and anticipated slump when fly ash is used to partially replace cement. 
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Fig.6  Variation in experimental and anticipated slump when silica fume  is used to partially replace cement. 

 

Fig.7 Variation in experimental and anticipated slump when GGBFS is used to partially replace cement. 

 

Fig.8 Variation in experimental and anticipated slump when metakaolin is used to partially replace cement. 

IV.X-RAY DIFRACTION (XRD) ANALYSIS  

X-ray difraction is a nondestructive technique for 
identifying different phases in hardened concrete. The 
difraction angle was set to 2. Figure 9 shows the comparable 
X-ray difraction pattern. The difraction peak intensity of the 
reference concrete specimen constructed with 60% 
manufactured sand and no pozzolanic ingredients was found 
to be higher. In comparison to reference concrete, difraction 
peak intensity is clearly lower for 60 percent replacement of 
natural sand by synthetic sand and partly cement 
replacement by silica fume [22]. According to a structural 

investigation, the peak intensity drops from reference 
concrete to concrete constructed with manufactured sand 
replacing 60 percent of natural sand and cement partially 
replaced with silica fume. Due to the peak of 27° (JCPDS), 
it was obvious that the predominant component in the 
sample is silica content, and all of the samples are 
crystalline in form [23]. 
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V.RESULTS AND DISCUSSION  

   Table 3 shows the workability obtained from slump testing 
with various percentages of natural fine aggregate (NFA) 
replaced by manufactured sand (MS) and 20 percent cement 
replaced by various pozzolanic materials, as well as the 
variation in slump degree illustrated in figures 4 to 8. 
Following the test results, the fraction of natural fine 
aggregate (NFA) replaced by manufactured sand (MS) was 
increased, resulting in a fall in slum value. The angular 
shape and rough surfaces of produced sand particles cause a 
reduction in workability by imparting increased inner 
friction and so lowering the flow properties of concrete 

 

Fig. 9 Comparative X Ray diffraction pattern 

As a result, it's reasonable to argue that workability 
suffers as the amount of natural sand replaced by synthetic 
sand rises. [16] Table 3 shows the experimental and 
anticipated slump values for NFA (natural fine aggregate) 
replacement with MS (manufactured sand) and partly 
cement substitution with GGBFS, silica fume, fly ash, and 
metakaolin in concrete. Figures 4,5,6,7, and 8 exhibit a 
graphical representation of experimental and projected 
slump values. The slump values generated from the model 
and the experimental values are found to be fairly similar. 
For this model, the percentage variance did not exceed 3.19 
percent for a combination without pozzolans. 0.92 percent 
for cement that has been partially replaced by fly ash. There 
is an allowable variance of 0.92 percent for cement partly 
replaced with silica fume, 2.91 percent for cement partly 
replaced with GGBFS, and 0.98 percent for cement partly 
replaced with metakaolin. It's also worth noting that the 
coefficient of correlation values range from +1 to -1. A +1 
corresponds to the right positive correlation, whereas a -1 
corresponds to the fit's negative correlation. [19,20]. In table 
3, the R values are shown.The R square for no replacement 
is 0.932, 0.953 for cement partly replaced with fly ash, 
0.967 for cement partly replaced with silica fume, 0.891 for 
cement partly replaced with GGBFS, and 0.959 for cement 
partly replaced with metakaolin, all of which are acceptable. 
The R2 number indicates that the obtained values from the 
model and the experimental values have a close relationship. 
When it comes to R values, the model performs well in all 
of the figures. The results of constructing an artificial neural 
network show that the target and output values are in good 
agreement. As a result, the slump of concrete may be 
predicted reliably and easily using an ANN model. [21]. 

 
 
 

VI. CONCLUSIONS  

• Workability decreases as the percentage of NFA 
(natural fine aggregate) replaced by MS (manufactured 
sand) increases. 

• The model is successful in forecasting the slump of 
concrete. The model's maximum percentage of error is 
acceptable when tested using input parameters. 

• The developed ANN model predicts quick workability 
of pozzolans and manufactured sand concrete in terms 
of slump in a very short period. 

• As a result, the ANN model is capable of predicting a 
slump. 

• The ANN model was created with the goal of being 
able to forecast concrete slump values. 
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