
Higher-Order Threshold Implementation
of the AES S-box

Thomas De Cnudde1, Begül Bilgin1, Oscar Reparaz1, Ventzislav Nikov2, and
Svetla Nikova1

1 KU Leuven, ESAT-COSIC and iMinds, Belgium
{name.surname}@esat.kuleuven.be

2 NXP Semiconductors, Belgium venci.nikov@gmail.com

Abstract In this paper we present a threshold implementation of the
Advanced Encryption Standard’s S-box which is secure against first- and
second-order power analysis attacks. This security guarantee holds even
in the presence of glitches, and includes resistance against bivariate at-
tacks. The design requires an area of 7849 Gate Equivalents and 126 bits
of randomness per S-box execution. The implementation is tested on an
FPGA platform and its security claim is supported by practical leakage
detection tests.

Keywords: Higher-Order, Threshold Implementations, AES, S-box, Mask-
ing

1 Introduction

Side-Channel Analysis (SCA) and more specifically Differential Power Analysis
(DPA) [14] are considered to be powerful methods which can be used to extract
secrets, e.g. keys or passwords, from cryptographic implementations running on
embedded devices. The wide usage of these devices demands strong yet practical
methods to mitigate this problem. A sound and popular such method is mask-
ing [8,13]. Masking works by splitting every intermediate variable that depends
on the secret into several shares such that knowledge of any share does not pro-
vide any information about the intermediate variable. This splitting breaks the
dependency between the average instantaneous power consumption and the sen-
sitive intermediates handled by the implementation, and thus thwarts first-order
DPA attacks.

In theory, however, a masked implementation can always be broken by a
higher-order attack. Higher-order attacks consider information from several shares
simultaneously and are increasingly difficult to mount as the order increases,
both in terms of number of traces [8] and computational complexity. Nonethe-
less, second-order attacks have been shown to be practical to mount [17, 23,
24, 28, 31, 32] and hence its protection is of importance. Higher-order masking
schemes provide security guarantees against higher-order DPA attacks under
specific assumptions, and up to a certain order.

2 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

When implemented in hardware, masking can lead to insecure designs due
to glitches. Standard CMOS gates can glitch, and these glitches can cause the
power consumption to depend on unmasked variables. This behavior degrades
the security claims. For instance, Mangard et al. [16] present first-order attacks
against masked implementations in hardware exploiting this idea.

Threshold Implementation (TI) [21, 22] is a specific masking approach that
provides security even in the presence of glitches in the hardware. First-order
TIs of the Advanced Encryption Standard (AES) [2] have been shown to being
practically feasible as well as being secure [4,6,20]. The theory of TI has recently
been extended to provide higher-order security by Bilgin et al. [5].

Prouff and Roche’s Higher-Order Glitches Free Implementation (HOGFI) [25]
provides an alternative approach to TI. A first-order secure HOGFI of the AES
S-box has been presented [18]. However, a higher-order extension has not yet
been put into practice for AES. To our knowledge, the only higher-order imple-
mentation of this method is applied to present [11].

Contribution. We provide the first higher-order threshold implementation of the
AES S-box. Our design shows up to second-order security (including bivariate
attacks) in the presence of glitches. This paper is, to our knowledge, the first
one to show this security in practice within the context of TI. Additionally, we
discuss several trade-offs between randomness and area that can be considered.

Organization. Section 2 introduces our notation, the necessary background in-
formation regarding higher-order TI and Canright’s decomposition of the AES
S-box on which we base our implementation. In Section 3, we present our hard-
ware design of which the implementation costs are given in Section 4. Discussions
of these results by comparing them with other glitch resistant implementations
of the AES S-box and by investigating trade-offs in area and randomness through
different design decisions are also given in the same section. We detail our mea-
surement setup and the results of the side-channel analysis in Section 5. Finally,
the conclusion is drawn in Section 6.

2 Preliminaries

In this section, we first introduce our notation, then provide a brief descrip-
tion of the threshold implementation technique to produce higher-order masked
hardware implementations, and finally we end with the description of a compact
(unmasked) implementation of the AES S-box that will serve as a basis of our
masked implementation.

2.1 Notation

We use lower-case characters to denote elements in GF(2n). A function f is
defined from GF(2n) to GF(2m) and can be considered as an m-tuple of Boolean
functions (f1(x), . . . , fm(x)), where x ∈ GF(2n). Similarly, x ∈ GF(2n) can

Higher-Order Threshold Implementation of the AES S-box 3

be denoted as (x1, . . . , xn), where xi ∈ GF(2). We use ⊕ for XOR and ⊗ for
multiplication in a given field. If the multiplication is bit-wise, we drop ⊗.

In order to perform a masked computation, a secret variable x should be split
into sx shares xi. In this paper, we consider Boolean masking for this initial split
which is described as follows: without loss of generality, the shares x1, ..., xsx−1
are drawn from independent and uniform random distributions and the share xsx

is calculated s.t. x =
⊕

i xi holds. A shared vector (sharing) (e.g. (x1, . . . , xsx))
is denoted by bold characters (e.g. x). A sharing is a uniform masking if for
each value x, the corresponding vectors with masked values occur with the same
probability.

In order to perform operations in the masked domain, the function f is also
split in shares fi which are called component functions. The sharing of f is
denoted by f.

2.2 Threshold Implementations

Threshold implementation (TI) is a masking method which provides security
against higher-order DPA (hence the name higher-order TI). It diverges from
many other masking schemes since it can provide security when non-ideal, glitchy
cells are used given the following property:

dth−order non-completeness. Any combination of up to d component func-
tions fi of f must be independent of at least one input share xi.

This property enforces the combination of leakages from the calculation of d
component functions to be independent of the sensitive variable x given a uni-
form sharing x. We refer the reader to [5] for details. In addition, it has been
shown that there always exists a dth-order non-complete sharing of a degree t
function f with sin ≥ td + 1 input shares [5]. This naturally implies that the
required number of shares for a given security increases together with the degree
of the function.

In [5], a method for generating the component functions with sin = td + 1
input and sout =

(
sin
t

)
is provided. Hereon, we refer f with sin input and sout

output shares as (sin, sout) sharing.

Uniform sharings vs. refreshing. As stated in Section 2.2, the computation of a
sharing f requires the input x to be uniform. However, the fact that x is uniform
does not automatically ensure that y is uniform. The lack of uniformity of y
poses a problem if this variable is plugged into another sharing g(y), since the
input y should also be uniform for g to be secure. By careful selection of the
shared function f, it is possible to guarantee the uniformity of y given a uniform
input x. We refer to such a sharing f as a uniform sharing. This uniformity allows
an elegant composition mechanism: uniform sharings can be composed freely3

without using further randomization, and still provide first-order security for the

3 We mean strict composition as g ◦ f . If g sees the concatenation of two functions
f1, f2, one should make sure that the input to g stays uniform. This does not
automatically happen even if f1 and f2 are independently uniform [6].

4 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

whole circuit [22]. If one cannot find uniform sharings, it is always possible to
resort to refreshing the sharing y prior to applying g. This refreshing produces
a uniform output at the cost of additional randomness.

The situation in higher-order threshold implementations is more subtle. It has
been shown in [27] that the composition of uniform sharings without refreshing
is not necessarily higher-order secure; the composition can be made higher-order
secure by introducing a refreshing block. Thus, in our design, we refresh the
output of each non-linear function to provide higher-order security.

2.3 Canright’s Very Compact AES S-box

The AES S-box is an 8-bit permutation composed of a multiplicative inversion
in GF(28) followed by a GF(2)-affine transformation [10]. Side-channel resistant
implementations of this S-box are commonly based on subfield arithmetic as
proposed by Rijmen [29] and explored by Canright [7]. This approach typically
produces low-area circuits. It takes its name from the recursive decomposition
of the S-box into computations in smaller fields. Namely, the GF(28) inversion is
first decomposed into arithmetic operations in GF(24); and in turn the nonlinear
operations are performed in the subfield GF(22). The resulting computation is
composed of a GF(2)-linear (LM) and inverse GF(2)-linear map (ILM), several
GF(22) multiplications, bitwise XORs and multiple instantiations of linear op-
erations in GF(22) (li). For a detailed description of the individual operations,
we refer to the original work [7].

3 Hardware Implementation

This section gives an overview of the choices we made during the design of the
second-order threshold implementations of the AES S-box.

3.1 Redefining the S-box decomposition

Converting the Canright S-box to a threshold implementation can be achieved
on several levels. Each individual block can be composed with the neighbouring
blocks or decomposed into smaller sub-blocks to attain different trade-offs be-
tween area, speed and randomness. We acknowledge the fact that randomness
requirements also (indirectly) affect the area requirements. Hence, we strive for
a compact, low-area implementation, and at the same time we try to keep the
randomness requirements as low as possible.

For the discussion of our shared AES S-box, we rely on Figure 1. We choose
to implement the square scale and multiplication operations in GF(24) as done
by Bilgin et al. [4]. This adaptation requires less randomness and clock cycles
than sharing their subfield functions in GF(22) since some of the refreshing and
registering that must follow the nonlinear operation is avoided. The inversion in
GF(24) is of algebraic degree three. Since no small second-order non-complete

Higher-Order Threshold Implementation of the AES S-box 5

sharing of such a function has been yet proposed, we share its subfield decom-
position, which is contained of a linear operation and three multiplications in
GF(22). Although, this increases the number of clock cycles by one, it keeps the
area and randomness contained.

LM

GF(24) inv.

ILM

8-bit
4-bit
1-bit

GF(24)
mult.

l1

l3

GF(24)
mult.

GF(24)
sq.sc.

l1

l2

l2

l2

l2

l2

GF(24)
mult.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 1. Unmasked S-box based on Canright

We decompose the calculation of the S-box into 6 pipeline stages. All stages
are separated by registers, indicated by the vertical blue lines in Figure 1, in order
to satisfy the non-completeness property within pipeline stages as explained in
Section 2.2. Note that the register after the linear map and the register preceding
the inverse linear map can be merged with the AES state or key registers.

3.2 Sharing the Nonlinear Operations

The GF(24) and GF(22) multipliers are the only nonlinear operations of our
S-box. For the second-order threshold implementation we need a sharing with
second-order non-completeness. There are two known sharings with sin ≥ td+ 1
input shares and fulfilling the non-completeness condition for a function of the
form f(x, y) = xy, with x, y ∈ GF(2) [3, 5]. One uses sin = 5 input shares and
results in sout = 10 output shares, the other one accepts sin = 6 input shares
and outputs sout = 7 shares. We choose the (6, 7)-sharing for the multiplications
with the following observations in mind:

– To achieve higher-order security, all nonlinear sharings need refreshing of all
their output shares as noted in Section 2.2. Hence, we remask the outputs of
all the multiplications. The details of how this refreshing is done is described
in Section 3.4. The lower sout, the lower the consumed randomness is. By
using only 7 output shares, the required randomness can be decreased by
30% in comparison to using 10 output shares.

– The (5,10)-sharing requires 20 XOR gates, 25 AND gates and 10 output
registers per bit. For one bit of the (6,7)-sharing, 29 XOR and 36 AND gates
are needed while 7 output registers suffice. Taking 5.66 Gate Equivalents

6 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

(GE) per register bit, 1.33 GE per AND gate and 2 GE per XOR gate, this
boils down to 12% increase when using 6 instead of 5 input shares. These
GE numbers are obtained from the NanGate 45nm Open Cell Library [1].

With our choice of the (6, 7)-sharing over the (5, 10)-sharing we pay a slightly
larger area for a substantial reduction of the required randomness.

We use the following (6,7)-sharing for all the bit-wise multiplications a =
f(x, y) = xy that occur in the Boolean function description of the field multipli-
ers.

a1 = x2y2 ⊕ x1y2 ⊕ x2y1 ⊕ x1y3 ⊕ x3y1 ⊕ x3y2 ⊕ x2y3

a2 = x3y3 ⊕ x3y4 ⊕ x4y3 ⊕ x3y5 ⊕ x5y3

a3 = x4y4 ⊕ x2y4 ⊕ x4y2 ⊕ x2y6 ⊕ x6y2

a4 = x5y5 ⊕ x1y4 ⊕ x4y1 ⊕ x1y5 ⊕ x5y1

a5 = x2y5 ⊕ x5y2 ⊕ x4y5 ⊕ x5y4

a6 = x6y6 ⊕ x3y6 ⊕ x6y3 ⊕ x4y6 ⊕ x6y4

a7 = x1y1 ⊕ x1y6 ⊕ x6y1 ⊕ x5y6 ⊕ x6y5

For convenience, we provide the Boolean functions descriptions of the field
multipliers for which we denote each element with its most significant bit on the
left-hand side. GF(24) multiplication (a1, a2, a3, a4) = (x1, x2, x3, x4)⊗(y1, y2, y3, y4):

a1 = x1y1 ⊕ x3y1 ⊕ x4y1 ⊕ x2y2 ⊕ x3y2 ⊕ x1y3 ⊕ x2y3 ⊕ x3y3 ⊕ x4y3 ⊕ x1y4 ⊕ x3y4

a2 = x2y1 ⊕ x3y1 ⊕ x1y2 ⊕ x2y2 ⊕ x4y2 ⊕ x1y3 ⊕ x3y3 ⊕ x2y4 ⊕ x4y4

a3 = x1y1 ⊕ x2y1 ⊕ x3y1 ⊕ x4y1 ⊕ x1y2 ⊕ x3y2 ⊕ x1y3 ⊕ x2y3 ⊕ x3y3 ⊕ x1y4 ⊕ x4y4

a4 = x1y1 ⊕ x3y1 ⊕ x2y2 ⊕ x4y2 ⊕ x1y3 ⊕ x4y3 ⊕ x2y4 ⊕ x3y4 ⊕ x4y4

GF(22) multiplication (a1, a2) = (x1, x2)⊗ (y1, y2):

a1 = (x1 ⊕ x2)(y1 ⊕ y2)⊕ x1y1

a2 = (x1 ⊕ x2)(y1 ⊕ y2)⊕ x2y2

3.3 Sharing the Linear Operations

Linear operations are well-known to be easy to mask. The linear computation is
performed on each share independently. This works for the following functions:

– Square scale in GF(24)
– l1 and l3 in GF(22)
– Linear map and inverse linear map

Higher-Order Threshold Implementation of the AES S-box 7

In our implementation, we chose to instantiate sin = 6 copies for each of these
functions.

The affine operations are performed in parallel with the multiplication in
Stages 2 and 3. The output of the affine operation is added to the output of the
multiplication; the novelty here is that we can add them before storing them in
the register, and thus only store the result of the addition. In this way we use less
registers and hence a lower area. This addition has to be performed carefully. We
have to ensure that the output of the addition still satisfies non-completeness.
For instance one wire can carry the value a1 ⊕ A(x2, y2) instead of a1, where
A symbolizes an affine operation. This process can be alternatively seen as the
sharing of a single function f ′ = x⊗ y ⊕A(x, y).

3.4 Mask Refreshing and Compression

Apart from the initial sharing, extra randomness is required in the refreshing
blocks to attain second-order security. We use a ring structure for this refreshing
as proposed in [27]. An advantage of this method is that the sum of the fresh
masks does not need to be saved in an extra register. Since we operate on six
input shares in each stage, we need to compress the seven preceding output shares
into six shares. Figure 2 shows how the mask refreshing and the compression are
performed over register boundaries after each nonlinear operation. The points
where these refreshing and compression layers occur are depicted in Figure 1 by
red circles.

s1

s2

s3

s4

s5

s6

s7

m2

m1

m3

m4

m5

m6

m7

m7

Figure 2. Ring refreshing and compression

4 Implementation Cost and Trade-Offs

In this section, we elaborate on the implementation cost of our design and the
impact of possible trade-offs. We use Xilinx ISE version 12.2 to verify the func-

8 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

tionality of our design and Synopsys 2010.03 with the NanGate 45nm Open Cell
Library [1] when providing area estimations.

4.1 Implementation Cost

Table 1 shows the summary of the implementation cost for our S-box design.
This is compared to previous first-order secure TIs of the AES S-box. We now
briefly discuss these figures.

Table 1. Implementation cost of different TIs of the AES S-box

S-box Area [GE]* Randomness [bit] Clock Cyles Security

[20] -/4244 48 5 1st-order
[4] 3708/3003 44 3 1st-order
[6] 2835/2224 32 3 1st-order

This Paper 11174/7849 126 6 2nd-order

*: Using compile / compile ultra synthesis option

Area Requirements. From Table 1 we can see that our design uses ×1.84 more
area when compared to the first-order TI from [20], or ×3.53 more area when
compared to the more compact first-order secure design of [6]. Both figures for
the synthesis options “compile” and “compile ultra” are provided4. This is the
price we pay in area to go from first-order security to second-order security.

Table 2 lists the contribution in area of the several components from a single
S-box. Note that the l3 operation, which is the inversion in GF(22), is merely
a swapping of wires and has therefore no contribution to the area. Also listed
are the numbers for the second-order TI of the full AES based on [20]. As in [6],
we use d + 1 shares in the key and state array. The registers that hold the
randomness are not included in the figures. Note that the full AES was not
tested in practice. In addition, Table 2 also lists the results of the synthesis for
a Virtex 5 FPGA. We provide these figures for future comparison, following the
HOGFI design from [18]. Currently, it is hard to discuss the impact of scaling
from first-order to second-order security for HOGFI. An extrapolation factor of
×1.667 could be used5, but may be too optimistic, e.g. for the present S-box,
the factor of area increase was shown to be ×2.3 in [11]. Furthermore, the area
of the second-order present S-box implementation amounts to 8338 GE, which
is larger than our second-order design.

4 Special attention is paid so that these options optimize within, but not across, block
boundaries. Otherwise, the non-completeness property could be destroyed by the
synthesis tool.

5 This is because the size of a HOGFI circuit grows, very roughly, with the number of
shares 2d + 1.

Higher-Order Threshold Implementation of the AES S-box 9

Table 2. Area of different functions of the masked S-box

Area [GE]
Compile Compile

Ultra

Linear Map 22.3 22.3
Inverse Linear Map 17.6 17.6
GF(24) Square Scale 11.2 11.2
GF(22) l1 4.8 4.8
GF(22) l3 0 0
GF(24) Multiplier 2189.0 1117.7
GF(22) Multiplier 408.8 248.6
Registers 1937.77 1937.77
Control S-box 799.6 797.2
Total S-box 11173.57 7849.27

AES Key & State Array 7204.8 6807.75
AES Control 223.2 215.2
Total AES 18601.57 14872.22

Virtex 5 FPGA

Total S-box [FFs] 691
Total S-box [LUTs] 3696
Total S-box [Slices] 1925

*: These numbers are for the full, untested AES

Randomness Requirements. Our design requires four ring refreshing on seven
shares. Two on 4 bit shares, one on 2 bit shares and one on 8 bit shares. This
results in 126 bits of randomness per S-box execution. For a full AES execution
we require 3.814 kB, this includes the initial sharing and the randomness needed
to increase the three shares of the state and key arrays to the six input shares
of the S-box.

When compared to other TIs that provide first-order security, our implemen-
tation requires ×2.6 more randomness than [20] or ×3.9 more than [6].

For the first-order HOGFI implementation [18], 432 bits are consumed per
S-box execution. This increases to 1440 bits for the second-order HOGFI of the
AES S-box 6. Thus, our implementation consumes ×11.4 less randomness than
a second-order HOGFI S-box.

Clock Cycle Requirements. Our S-box currently evaluates in six clock cycles.
This is one more than [20] and three clock cycles more than the fastest TI [6]. In
Section 4.2, we show that our S-box can easily be modified to achieve an evalu-
ation speed of only four clock cycles. For the S-box implemented with HOGFI,
132 clock cycles are required for the first-order implementation. This scales to
220 cycles for the second-order implementation. This is substantially larger than
our design.

6 This number is obtained by applying the HOGFI theory [25].

10 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

4.2 Directions for Optimizations

We now list several trade-offs we can make to reduce the area and their effect
on the randomness.

– We can reduce the area by changing the number of instances of the linear
functions to d + 1 = 3. This was done in the nimble version of [6]. The
required randomness is not changed by this modification.

– The registers for the output of the linear map and the input of the inverse
linear map can be bypassed. This was shown in [4, 6, 20]. This bypass will
not lead to a reduction in the randomness cost. The execution speed will
however be improved by two clock cycles, making a whole AES encryption
with this S-box as fast as the implementation of [20]. Note that in a full
AES implementation, these two Stages do not add an area overhead, as
these registers can be merged with the State and Key Arrays.

– As previously mentioned, the (5,10)-sharing of [5] can be used to save area,
but this will increase the required randomness to 180 bits.

5 Side-Channel Analysis Evaluation

For the purpose of evaluating the security claims of our approach, we imple-
mented the design on a Virtex-II xc2vp7-fg456-5 FPGA on a SASEBO-G board.
We generate the required randomness prior to the S-box execution on the control
FPGA on board. We silence all activity on the board except the S-box lookup
during the lookup itself. The design is clocked at 3.072 MHz and the instanta-
neous power consumption is acquired with a Tektronix DPO 7254C oscilloscope
at 500 MS/s. The platform is very low noise.

Methodology. We pursue the following steps to test that the soundness of our
setup and masking. First, we switch off the randomness source. This effectively
disables the masking countermeasure, thus the design is expected to be vulner-
able. Nevertheless, the analysis is first performed in this setting to show that
the setup is sound. Then, we repeat the analysis with the randomness source
switched on. Any gain in resistance shown in the analysis is then exclusively due
to masking.

Security claims. We claim security against first- and second-order power analysis
attacks. That is, the adversary is bounded in the statistical order that he can
use in the attacks. Note that since higher statistical moments are increasingly
more difficult to estimate in the presence of noise, higher-order attacks beyond
our security claims requires considerably more traces to work on and thus are
deemed more impractical.

There is an orthogonal classification dividing attacks into uni- or multi-
variate ones according to the number of different time samples considered jointly
in the analysis. This distinction is relevant in practice since multi-variate attacks
can be more cumbersome to mount. Here, our second-order claims also include
the bi-variate case as the variables considered can be evaluated in different times.

Higher-Order Threshold Implementation of the AES S-box 11

Leakage detection. We use leakage detection to test our security claims [9,12,30].
A basic leakage detection to test the univariate first-order security claim is as
follows. Two sets of measurements are acquired corresponding to a lookup of
either a fixed value or a random value. A statistical test is applied to test the
null hypothesis “the means of the two trace distributions are the same”. We
use Student’s t-statistic and compare it against a threshold of ±5 corresponding
to a confidence level > 99.999%. If the statistic surpasses the threshold, there
is a statistically significant difference in the means, and thus the means carry
some information on the handled value. The test is failed in this case and passed
otherwise.7

Higher statistical orders are tested in a similar fashion by first pre-processing
the traces with an appropriate function. In our case, we use the centered product
[8]. If no observable leakage is detected, classical key-recovery attacks will not
succeed.

5.1 Univariate analyses

Masks off. In Figure 3, we plot the t-statistic when the masks are switched off.
We used 500 000 traces to produce plots with clear leakage which was more than
the required amount of traces for detecting leakage. We can see clear excursions
of the statistic beyond the specified threshold of ±5. The same behavior can be
observed for the second and third moment. Hence, all three tests fail. This is
expected and means that the measurement setup is sound.

Masks on. When the randomness is switched on, the implementation passes the
leakage detection tests for first and second order using up to 100 million traces.
This supports the claim of univariate first- and second-order univariate security
of the implementation.

5.2 Bivariate analysis

The previous analysis can be straightforwardly generalized for multivariate statis-
tics. Each time sample is centered before combined with all other timesamples.
The combination function is centered product. To alleviate the computational
effort, we sample at 200 MS/s to get ×2.5 shorter traces.

Masks off. Figure 4 shows the result of the bivariate second-order test when
the masks are off using 100 000 traces. Clear excursions above ±5 are seen,
both in the diagonal (squaring) and off the diagonal (centered product of two
different time samples). This serves as confirmation that our approach is sound,
in particular, the change in the sampling rate did not have a significant effect
on the magnitude of the t-statistic.

7 Usual precautions should be taken when mounting the test. For instance, in order to
assure that no environmental factor creates an undesired balance between the sets,
we interleave the lookups from each set in a random manner.

12 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

time [samples]
200 400 600 800 1000 1200

t v
al

ue

0

100

200

300

400

time [samples]
200 400 600 800 1000 1200

t v
al

ue

-20

0

20

40

60

80

100

120

time [samples]
200 400 600 800 1000 1200

t v
al

ue

0

50

100

150

200

time [samples]
200 400 600 800 1000 1200

t v
al

ue

-6

-4

-2

0

2

4

6

time [samples]
200 400 600 800 1000 1200

t v
al

ue

-6

-4

-2

0

2

4

6

time [samples]
200 400 600 800 1000 1200

t v
al

ue

-6

-4

-2

0

2

4

6

time [samples]

m
ea

n
cu

rv
e

200 400 600 800 1000 1200

Figure 3. Univariate analysis. Top Figure: power trace of one S-box execution, Lower
Figure: top to bottom, left to right. a) first-order analysis, masks off b) second-order
analysis, masks off c) third-order analysis masks off d) first-order analysis, masks on
e) second-order analysis, masks on f) third-order analysis, masks on. Note that al-
though the S-box evaluates in 6 cycles, we raise the trigger 1 cycle before the actual
computation.

Higher-Order Threshold Implementation of the AES S-box 13

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

10

20

30

40

50

60

70

80

90

100

Student Version of MATLAB

Figure 4. Bivariate analysis with a) masks off in lower left corner, and b) masks on in
upper right corner. Best viewed in color. We plot the absolute value of the t-statistic.

Masks on. We repeated the same test when the randomness is switched on. The
implementation shows resistance when using up to 70 million measurements. No
excursion beyond the threshold were detected, and thus the test is passed.

6 Conclusion

In this work, we presented the first higher-order threshold implementation of
AES S-box with second-order univariate and bivariate security in the presence
of glitches. We directed our attention to the S-box specifically as it is the hardest
part to secure due to its nonlinearity. Our design was implemented on an FPGA
and was shown to achieve our claimed security by resisting leakage detection
tests with 70 million traces.

A total area of 7849 Gate Equivalents is covered by our design. One S-box
execution consumes 126 bits of randomness, which is largely required to achieve
the bivariate security. We discussed the scaling of area, speed and randomness
when increasing the order of security. Exactly how these costs scale for TI is our
first direction for future research, while optimizing the randomness cost provides
a second direction.

Acknowledgements

This work was supported in part by the Research Council KU Leuven: GOA
TENSE (GOA/11/007). In addition, this work was partially supported by the

14 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

Research Fund KU Leuven, OT/13/071, and by European Unions Horizon 2020
research and innovation programme under grant agreement No 644052 HEC-
TOR. Begül Bilgin was partially supported by the FWO project G0B4213N.
Oscar Reparaz is funded by a PhD fellowship of the Fund for Scientific Research
- Flanders (FWO).

References

1. NanGate Open Cell Library. http://www.nangate.com/
2. Federal Information Processing Standards Publication (FIPS 197). Advanced En-

cryption Standard (AES) (2001)
3. Bilgin, B.: Threshold Implementations, As Countermeasure Against Higher-Order

Differential Power Analysis. Ph.D. thesis, Univ. of Twente, Enschede (May 2015)
4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A More Efficient AES

Threshold Implementation. In: Pointcheval, D., Vergnaud, D. (eds.) Progress in
Cryptology - AFRICACRYPT 2014 - 7th International Conference on Cryptology
in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8469, pp. 267–284. Springer (2014), http://dx.doi.org/
10.1007/978-3-319-06734-6_17

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-Order Threshold
Implementations. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-
11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8874, pp.
326–343. Springer (2014), http://dx.doi.org/10.1007/978-3-662-45608-8_18

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-Offs for Threshold
Implementations Illustrated on AES. IEEE Trans. on CAD of Integrated Circuits
and Systems 34(7), 1188–1200 (2015), http://dx.doi.org/10.1109/TCAD.2015.
2419623

7. Canright, D.: A Very Compact S-Box for AES. In: Rao and Sunar [26], pp. 441–455,
http://dx.doi.org/10.1007/11545262_32

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO. Lecture
Notes in Computer Science, vol. 1666, pp. 398–412. Springer (1999), http://dblp.
uni-trier.de/db/conf/crypto/crypto99.html#ChariJRR99

9. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test
Vector Leakage Assessment (TVLA) Methodology in Practice. International Cryp-
tographic Module Conference (2013), http://icmc-2013.org/wp/wp-content/

uploads/2013/09/goodwillkenworthtestvector.pdf

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002), http://dx.
doi.org/10.1007/978-3-662-04722-4

11. De Cnudde, T., Bilgin, B., Reparaz, O., Nikova, S.: Higher-order Glitch Resistant
Implementation of the PRESENT S-Box. In: Ors, B., Preneel, B. (eds.) Balkan-
CryptSec. Lecture Notes in Computer Science, vol. 9024. Springer-Verlag (2014)

12. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A Testing Methodol-
ogy for Side-Channel Resistance Validation. NIST non-invasive at-
tack testing workshop (2011), http://csrc.nist.gov/news_events/

non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

Higher-Order Threshold Implementation of the AES S-box 15

13. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The ”Duplication”
Method). In: Ko, .K., Paar, C. (eds.) CHES. Lecture Notes in Computer Sci-
ence, vol. 1717, pp. 158–172. Springer (1999), http://dblp.uni-trier.de/db/

conf/ches/ches1999.html#GoubinP99

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology.
pp. 388–397. CRYPTO ’99, Springer-Verlag, London, UK, UK (1999), http://dl.
acm.org/citation.cfm?id=646764.703989

15. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA. Lecture Notes in Computer Science, vol.
3376, pp. 351–365. Springer (2005), http://dblp.uni-trier.de/db/conf/ctrsa/
ctrsa2005.html#MangardPG05

16. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES. Lecture Notes
in Computer Science, vol. 3659, pp. 157–171. Springer (2005), http://dblp.

uni-trier.de/db/conf/ches/ches2005.html#MangardPO05

17. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Ko, .K., Paar, C. (eds.) CHES. Lecture Notes in Computer Sci-
ence, vol. 1965, pp. 238–251. Springer (2000), http://dblp.uni-trier.de/db/

conf/ches/ches2000.html#Messerges00

18. Moradi, A., Mischke, O.: On the Simplicity of Converting Leakages from Multi-
variate to Univariate - (Case Study of a Glitch-Resistant Masking Scheme). In:
Bertoni, G., Coron, J. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2013 - 15th International Workshop, Santa Barbara, CA, USA, August 20-
23, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8086, pp. 1–20.
Springer (2013), http://dx.doi.org/10.1007/978-3-642-40349-1_1

19. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis
collision attack. In: Mangard, S., Standaert, F. (eds.) Cryptographic Hardware
and Embedded Systems, CHES 2010, 12th International Workshop, Santa Bar-
bara, CA, USA, August 17-20, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6225, pp. 125–139. Springer (2010), http://dx.doi.org/10.1007/

978-3-642-15031-9_9

20. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Tallinn, Esto-
nia, May 15-19, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6632,
pp. 69–88. Springer (2011), http://dx.doi.org/10.1007/978-3-642-20465-4_6

21. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information and
Communications Security, 8th International Conference, ICICS 2006, Raleigh, NC,
USA, December 4-7, 2006, Proceedings. Lecture Notes in Computer Science, vol.
4307, pp. 529–545. Springer (2006), http://dx.doi.org/10.1007/11935308_38

22. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011),
http://dx.doi.org/10.1007/s00145-010-9085-7

23. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-Order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: in RSA Con-
ference Cryptographers Track, ser. LNCS. pp. 192–207. Springer (2006)

16 T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov and S. Nikova

24. Peeters, E., Standaert, F., Donckers, N., Quisquater, J.: Improved Higher-Order
Side-Channel Attacks with FPGA Experiments. In: Rao and Sunar [26], pp. 309–
323, http://dx.doi.org/10.1007/11545262_23

25. Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES
Using Secure Multi-party Computation Protocols. In: Preneel, B., Takagi, T. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th International
Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings. Lecture
Notes in Computer Science, vol. 6917, pp. 63–78. Springer (2011), http://dx.

doi.org/10.1007/978-3-642-23951-9_5

26. Rao, J.R., Sunar, B. (eds.): Cryptographic Hardware and Embedded Systems -
CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - Septem-
ber 1, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3659. Springer
(2005)

27. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
Masking Schemes. In: CRYPTO, LNCS, vol. 9215, pp. 1–20. Springer (2015)

28. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting Time Samples for Multivari-
ate DPA Attacks. In: CHES, LNCS, vol. 7428, pp. 155–174. Springer (2012)

29. Rijmen, V.: Efficient Implementation of the Rijndael S-box, http:

//www.researchgate.net/profile/Vincent_Rijmen/publication/

2621085_Efficient_Implementation_of_the_Rijndael_S-box/links/

0912f50f7a7be367d7000000?origin=publication_detail

30. Schneider, T., Moradi, A.: Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9293, pp. 495–513. Springer (2015), http://dx.doi.org/10.

1007/978-3-662-48324-4_25

31. Standaert, F., Peeters, E., Quisquater, J.: On the Masking Countermeasure and
Higher-Order Power Analysis Attacks. In: International Symposium on Information
Technology: Coding and Computing (ITCC 2005), Volume 1, 4-6 April 2005, Las
Vegas, Nevada, USA. pp. 562–567. IEEE Computer Society (2005), http://dx.
doi.org/10.1109/ITCC.2005.213

32. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.J. (eds.) CHES. Lecture Notes in Computer Science, vol. 3156,
pp. 1–15. Springer (2004), http://dblp.uni-trier.de/db/conf/ches/ches2004.
html#WaddleW04

