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Abstract 
 

The multiplicative non-linearity term is usually assumed to be globally Lipschitz in most results on 
SPDEs. This work proves that the solutions fail to exist if the non-linearity term grows faster than linear 
growth. The global non-existence of the solution occurs for some non-linear conditions on σ . Some 
precise conditions for existence and uniqueness of the solutions were stated and we have established that 
the solutions grow in time at most a precise exponential rate at some time interval; and if the solutions 
satisfy some non-linear conditions then they cease to exist at some finite time t . Our result also compares 
the non-existence of global solutions for both the compensated and non-compensated Poisson noise 
equations.  
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AMS 2010 subject classification: Primary: 35R60, 60H15; Secondary: 82B44. 
 
 

Original Research Article 



 
 
 

Omaba et al.; ARJOM, 4(2): 1-14, 2017; Article no.ARJOM.33317 
 
 
 

2 
 
 

1 Introduction 
 
Stochastic PDEs have now received much interest, see [1,2,3] and their references; but the blow up result or 
rather the non-existence of global result for the discontinuous or jump process has not been given. The study 
of blow up or global non-existence of solution is as old as Mathematics itself, see [4,5]. The clarity between 
blow up of a solution and non-existence of global solution of a deterministic PDEs was given by Sugitani, 
see [6] and the references. Our mild solution here, is a weak-predictable random field solution since it is a 
class of stochastic heat equation with jump-type process (poisson random noise measure), see  [7,8]. We 
therefore show conditions where the second moment of the solution to the compensated equation and the 
first moment of the solution to the non-compensated equation (otherwise known as energy solutions) fail to 
exist and compare the non-existence of global solutions of the two equations with each other. We also 

consider /2)(=: α∆−−L , the generator of α -stable processes and use some explicit bounds on its 
corresponding fractional heat kernel to obtain more precise results. We also show that when the solutions 
satisfy some non-linear growth conditions on σ , the solutions cease to exist for both compensated and non-

compensated noise terms for different conditions on the initial function )(0 xu . 

 
Now, consider the following stochastic heat equations driven by a compensated and non-compensated 
Poisson noises (discontinuous processes).  
 

),d,d,d(
~

)),,((=dd)],(),([ hxtNhxtutxxtuxt
t

u σλ∫−
∂
∂

R
L                                       (1.1) 

 

),d,d,d()),,((=dd)],(),([ hxtNhxtutxxtuxt
t

u
dσλ∫−

∂
∂

R
L                                       (1.2) 

 

with initial condition )(=)(0, 0 xuxu . Here and throughout, +→ RR:0u  is a non-random function, and 

L  is the 2L - generator of a Lévy process; N
~

 is a compensated Poisson random measure and λ  the noise 
level. 
 
We follow the method of [9] in making sense of our integral solutions.  
 

Definition 1.1 We say that a process 0>,)},({ txxtu R∈  is a mild solution of (1.1) if a.s (almost surely), the 

following is satisfied  
 

yyuyxtpxtu d)(),,(=),( 0∫R  

),d,d,d(
~

)),,((),,(
0

syhNhysuyxstp
t

σλ −+ ∫∫∫ RR
                                      (1.3) 

 

where ,.,.)(tp  is the heat kernel. If in addition to the above, 0>,)},({ txxtu R∈  satisfies the following 

condition  
 

,<|),(|Esupsup 2

0

∞
∈≤≤

xtu
xTt R

                                                                                                          (1.4) 

 

 for all 0>T , then we say that 0>,)},({ txxtu R∈  is a random field solution to (1.1).  
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 Define 
 

,0>  allfor   
)(e2

d

2

1
:=)( β

ξβ
ξ

π
β

Ψ+
ϒ ∫ RR

                                                    (1.5) 

 
where Ψ  is the characteristic exponent for the Lévy process. A result of Dalang [10] shows that equation 
(1.1) has a unique solution with the requirement that ∞ϒ <)(β  for all 0>β  which forces 1=d  since 

N
~

 is a martingale valued Poisson measure. Fix some R∈0x  and define the upper p  th-moment 

Liapunov exponent )( pγ  of u  at 0x  as  

 

[ ] .),(0pallfor),(Eln
1

limsup:=)( 0 ∞∈
∞→

p

t

xtu
t

pγ                                                     (1.6) 

 
Definition 1.2 ( random field solution)  
 
We seek a mild solution to equation (1.2) of the form.  
 

      yyuyxtpxtu d d)(),,(=),( 0∫R  

     ),d,d,d()),,((),,(
0

syhNhysuyxstpdd

t
σλ −+ ∫∫∫ RR

                                                    (1.7) 

 
 with ,.,.)(tp  the heat kernel. We impose the following integrability condition on the solution: 

 

             .|<),(|Esupsup
0>

∞
∈

xtu
dxt R

 

 
We now make sense of the discontinuous integrals by stating the existence theorem (Ikeda and Watanabe 
[11]) characterised by a stationary Point process.  
 
Theorem 1.3 Given a σ -finite measure )d( xn  on ))(,( XX B , then there exists a stationary Poisson 

point process p  if the random measure )d,d( xtNp  is of the form 

)d(d=)d,d(=)]d,d([E xntxtnxtN pp .  

  
Proof.  Ikeda and Watanabe [11].  
 

 Now applying the above theorem with ddX RR ×:=  and )()(:=)( ddX RR BBB ⊗ . We will take 

)d(d:=)d,d( hxhxn ν . One set of the vectors will play the role of position while the other will play the 

role of “jumps”. By the above theorem, we have a Poisson point process ddsp RR ×∈)( . The Poisson 
random  measure  is thus given by the following  
 

},)(;;{:=#)],((0, BAspDstsBAtN pp ×∈∈≤×
 

 

 where pD  is a countable subset of ][0,∞ . 
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Let )P,}{,,( 0≥Ω ttFF  be a complete filtered Probability space and ))(,( dd RR B  be a measurable space. 

Let tF  be defined by  
 

,))()(:),],([0,(:= NBBF ∨×∈×⋅× dd
pt BABAtN RRσ

 
 

where 0>t  and N  denotes the null set of F . We can write the Poisson random measure as  
 

)),(),((:=)],((0,
,

spspIBAtN hxBA
tspDs

p ×
≤∈

∑×
 

 

where we define ))(),((:=)( spspsp hx . 

 

In this case, we have )(||=)]],((0,[E BAtBAtNp ν× . We now describe the stochastic integral with 

respect to this Poisson random measure and define the class of integrand precisely: 
 

Definition 1.4 (The non-compensated Integral)  
 

}.<)d(dd|),,(|E}{:),,({:=
0

1 ∞− ∫∫∫ hxshxsfandepredictablisfhxtfH dd

t

tp ν
RR

F  

  

The following integral can now be defined for all 1
pHf ∈  

 

))(),(,(=)d,d,d(,.),,(
,

0
spspsfhxsNhxsf hx

pDsts
pdd

t

∑∫∫∫
∈≤

RR
 

 
as the a.s sum of the following absolutely convergent sum. 
 
Definition 1.5 (The compensated Integral) Define, similarly, for f  satisfying the square-integrability 

condition  
 

}.<)d(dd|),,(|E}{:),,({= 2

0

2 ∞− ∫∫∫ hxshxsfandepredictablisfhxtfH dd

t

tp ν
RR

F  

  

 Then for all 2
pHf ∈ , one defines the integral as follows 

 

))(),(,(=)d,d,d(
~

),,(
,

0
spspsfhxsNhxsf hx

pDsts
pdd

t

∑∫∫∫
∈≤

RR
 

                                           )d(dd),,(
0

hxshxsfdd

t
ν∫∫∫−

RR  
 
 as the a.s sum of the following absolutely convergent sum. 
 

For an example, one can define a Poisson random measure ),,(1
=

iZiXiTi
N δ∑ ≥

 on dd RRR ××+  

defined on a probability space ),,( PFΩ  with intensity measure )d(dd hxt ν  where ν  is a Lévy measure 

on dR ; that is, it satisfies the following  
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.<)d()(1 2 ∞∧∫ hhd ν
R  

 

According to [3], let 0)( ≥jjε  be a sequence of positive real numbers such that 0→jε  as ∞→j  and 

....>>>=1 210 εεε  Let  
 

1}.|>|;{=1},|<<|;{= 01 hhandjhh d
jj

d
j RR ∈Γ≥∈Γ −εε

 
 

Then for any set )( dB RR ×∈ +B , define  
 

0,,=)d,d,d( }{
),(

≥Γ∈
∈

Γ× ∑∫ jIZhxthN
jiZi

BiXiTjB

 
 

with the following property: )(|=|)]([E jj BBN ΓΓ× ν  and  

 

..<}),,(1;{=#)( saBZXTiBN jiiij ∞Γ×∈≥Γ×
 

 
Therefore the above integral is finite since the sum contains finitely many terms. 
 
For the existence and uniqueness of (1.1), we need the following condition on σ . Essentially this condition 
says that σ  is globally Lipschitz in the first variable and bounded by another function in the second 
variable. 
 

Condition 1.6 There exist a positive function J  and a finite positive constant, σLip  such that for all 

R∈hyx ,, , we have  

 

.||Lip)(|),(),(|and)(|)(0,| yxhJhyhxhJh −≤−≤ σσσσ                         (1.8) 

 
 The function J  is assumed to satisfy the following integrability condition:  
 

,K)d()( 2 ≤∫ hhJ ν
R

                                                                                                                    (1.9) 

 

 where K  is some finite positive constant.  
 
 For the lower bound  result, we will need the following extra condition on σ .  
 

Condition 1.7 There exist a positive function J  and a finite positive constant, σL  such that for all 

R∈hx, , we have  
 

||)(|),(| xhJLhx σσ ≥                                                                                                             (1.10) 
 

 The function J is assumed to satisfy the following integrability condition: 
 

,K)d()( 2 ≤≤ ∫ hhJ νκ
R

                                                                                                          (1.11) 

 
where K  is the constant from (1.9) and κ  is another positive, finite constant.  
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For the existence and uniqueness of (1.2), we make the following assumption.  
 

Condition 1.8 There exist a positive function J  and a finite positive constant, σLip  such that for all 
dhyx R∈,, , we have  

 

.||Lip)(|),(),(|and)(|)(0,| yxhJhyhxhJh −≤−≤ σσσσ                       (1.12) 

 
The function J  is assumed to satisfy the following integrability condition.  
 

,K)d()( ≤∫ hhJd ν
R

                                                                                                                  (1.13) 

 
where K  is some finite positive constant.  
 
We can also give the lower bound estimate on the growth of the first moment. 
 

Condition 1.9  There exist a positive function J  and a finite positive constant, σL  such that for all 
dhx R∈, , we have  

 

||)(|),(| xhJLhx σσ ≥                                                                                                             (1.14) 

 

 The function J  is assumed to satisfy the following integrability condition.  
 

,)d()( KhhJd ≤≤ ∫ νκ
R

                                                                                                          (1.15) 

 
 where K  is the constant from (1.13) and κ  is another positive finite constant.  
 
The outline of the paper is given below. The paper is comprised of five sections. Statements and conditions 
of main results are given in section two. In section three, some estimates on heat kernels are given, some 
known results and few new propositions are also given. We also give estimates where the proofs of our 
theorems lie. The proofs of our main results are given in section four and section five contains a brief 
conclusion of the research.  

 
2 Main Results 
 
 We show that if the function σ  grows faster than linear growth, then the energy of the solutions, that is, the 

second moment 2|),(|E xtu  of the solution to (1.1) and the first moment |),(|E xtu  of the solution to 

(1.2) cease to exist for all time t . 
 
Suppose that  instead of  (1.10), we have the following condition.  
 
Condition 2.1 There exists a constant 1>β  such that 
 

,||)(|),(| β
σσ xhJLhx ≥                                                                                                           (2.1) 

 

 where the constant σL  and the function J  are the same as in condition 1.7.  
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 We then have the following result. 
 

Theorem 2.2 Suppose that /2)(:= α∆−−L  and that condition 2.1 is in force. Then there does not exist any 

random field solution to (1.1).  
 
If instead of (1.14), we consider the following condition: 
 

Condition 2.3 There exists a constant 1>γ  such that 
 

,||)(|),(| γ
σσ xhJLhx ≥                                                                                                            (2.2) 

 

 where the constant σL  and the function J  are the same as in condition 1.9.  
 

We then have the following result with the initial condition +→ RRdu :0 , a positive function on a set of 

positive measure.  
 
Theorem 2.4 Suppose that both conditions 1.8 and 2.3 are in force. Then there are no random field 

solutions to (1.2) whenever the non-negative initial condition 0u  is bounded below. Let /2)(:= α∆−−L , 

then under the same conditions, there are no random field solutions to (1.2) even if we only have 0.0 ≠u   
  
Here, the initial function 0u  is assumed to be a bounded non-negative function such that  
 

.somefor0,>d)(0
d

A
Axxu R⊂∫  

 

That is, we define 0u  as any measurable function +→ RRdu :0  which is positive on a set of positive 

measure. This assumption implies that the set 
d

n
xuxA R⊂}

1
>)(:{= 0  has positive measure for all but 

finite many n . Thus by Chebyshev’s inequality,  
 

0,>}
1

>)(:{
1

d)(d)( 00}
1

>)(0:{0 n
xux

n
xxuxxu

n
xuxd µ≥≥ ∫∫R

 
 

where µ  is a Lebesgue measure. 
 

2.1 Some auxiliary results and estimates 
 
We present some properties of ),( xtp  that will be used in the proof of our results, see [6].  
 

)(1,=),( 1// xtptxtp d αα −−  

).,(=),( 1// xtsptxstp d αα −−                                                                                                 (2.3) 

 

From the above relation, (1,0)=,0)( / pttp d α− , is a decreasing function of t . The heat kernel ),( xtp  is 

also a decreasing function of || x , that’s  
 

).,(),(|||| ytpxtpthatimpliesyx ≤≥  
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This and equation (2.3) imply that for all st ≥ ,  
 

|)|)(,()(=|)|,.(=|)|,(=),( 1// x
s

t
sp

s

t
x

s

t
spxtpxtp d αα −−  

              |)|||)((|)|,()( 1// xx
s

t
sincexsp

t

s d ≤≥ − αα  

              ).,()(= / xsp
t

s d α

 
 

We now state some propositions and lemma whose proofs can be found in [12].  
 
Proposition 2.5 [12]. Let ),( xtp  be the transition density of a strictly α -stable process. If 1,0)( ≤tp  

and 2≥a , then  
 

.,),(),())(
1

,( dyxytpxtpyx
a

tp R∈∀≥−  

  
Lemma 2.6 [13,14,15,16]. Suppose that ),( xtp  denotes the heat kernel for a strictly stable process of 

order α .  Then the following estimate holds.  
 

.,and0>allfor
||

),,( / d
d

d yxt
yx

t
tyxtp R∈

−
∧≈ +

−
α

α  

  

Now we show that the first term ))(( 0 xuPt  of the mild solution to (1.1) and (1.2) grow or decay but only 

polynomially fast with time. Recall that 
 

.d)(),,(:=))(( 00 yyuyxtpxuP dt ∫R  
 

With the assumption that the initial condition 0u  is positive on a set of positive measure, we then have the 

following.  
 

Proposition 2.7 [12]. There exist a 0>T  and a positive constant 1c  such that for all Tt >  and all 

)(0, 1/αtBx∈ ,  
 

.))((
/
1

0 αdt t

c
xuP ≥  

  
Proof. The proof follows by applying Lemma 2.6.  
 
The next proposition is similar to but more general than Proposition 2.7.  
 

Proposition 2.8 [12]. Given the assumption on the initial function 0u . Then for 0>1,0 η≥t  , there 

exists 0>)( 0tc  such that  

 

).,()(d)(),,( 000 xtptcyyuyxttpd η+≥+∫R  
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Next we give the following a priori result about the continuity of the second moment of the solution to         
(1.1).  
 
Proposition 2.9 [12]. Suppose that condition 1.6 holds, then for each R∈x , the unique solution to (1.1) is 

mean square continuous in time. That is for each R∈x , the function ]|),([|E 2xtut a  is continuous.  

  
Here also, we present the time continuity of the first moment of the solution (1.2).  
 

Proposition 2.10 [12]. Suppose that condition 1.8 holds, then for each dx R∈ , the unique solution to (1.2) 

is mean continuous in time. That is for each dx R∈ , the function |]),([|E xtut a  is continuous.  

 
We now give the following proposition which establishes the fact that under the local Lipschitz continuity as 
stated in condition 2.1, there exists a unique solution up to a fixed time T . 
 
Proposition 2.11 [12]. Suppose that condition 2.1 holds. Then there exists a 0>T  such that (1.1) has a 

unique random field solution up to time T .  
  
Proof. We begin by defining 
 



 ≤

.>if),(

if),(
=),(

NxhN

Nxhx
hxN σ

σ
σ

 
 

),( hxNσ  therefore satisfies (1.8) but with a different constant. The result follows by the proof of existence 

and uniqueness of the solution and its time continuity above.  
 
We will also need the following proposition which establishes the fact that under the local Lipschitz 
continuity as stated in condition 2.2, there exists a unique solution up to a fixed time T .  
 
Proposition 2.12 [12]. Suppose that condition 2.2 holds. Then there exists a 0>T  such that (1.2) has a 

unique random field solution up to time T .  
 
Here follows Jensen’s inequality which shall be used in the proof of the blow-up result.  
 

Lemma 2.13 [12] Given that )d( xp  is a probability measure on dR  and suppose that the function u  is 

non-negative. Then for all convex function f  the following holds,  

 

)).d()(()d())(( xpxufxpxuf dd ∫∫ ≥
RR

 

 

3 Proof of Main Results 
 
In this section, we give the proofs of our main results.  
 
Proof of Theorem 2.2. We use Ito’s isometry to write  
 

.dd)d(|)),,((|E|),(||))((=||),(|E 22

0

22
0

2 syhhysuyxstpxuPxtu
t

t νσλ −−+ ∫∫∫ RR  
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We use the assumption that 10 >)( cxu  for some positive constant 1c  and condition 2.1 to come up with  

 

syysuyxstpLcxtu
t

dd|),(|E),(|),(|E 22

0

222
1

2 β
σκλ −−+≥ ∫∫ R

 

                     .d),0)(2()|),(|Einf( 2

0

222
1 sstpysuLc

y

t
−+≥

∈∫
β

σκλ
R

 

 
Upon setting  
 

,|),(|Einf=)( 2xtutF
x R∈  

 
The above inequality reduces to 
 

.d)(),0)(2()(
0

222
1 ssFstpLctF

t β
σκλ −+≥ ∫  

 
We now use Lemma 2.6 to find lower bounds on the heat kernel appearing in the above display.  
 

ssFstcLctF
t

d)()()( 1/

02
222

1
βα

σκλ −−+≥ ∫  

          .d)(1/

02
222

1 ssFtcLc
t βα

σκλ −
∫+≥

 
 

 Hence, multiplying through by α1/t   
 

ssFcLtcttF
t

d)()(
02

221/2
1

1
β

σ
αα κλ ∫+≥  

              .d
))((

=
/

1/

02
221/2

1 s
s

sFs
cLtc

t

αβ

βα

σ
α κλ ∫+

 
 

 Let α1/)(=)( ttFtY , then for all 0≥t   

 

s
s

sY
cLtctY

t
d

)(
)(

/02
221/2

1 αβ

β

σ
α κλ ∫+≥  

         ,d
)(

/02
22 s

s

sY
cL

t

αβ

β

σκλ ∫≥  

 

and solving the ODE: αβ

β

σκλ
/2

22 )(
=)(

t

tY
cLtY&  with the initial condition 0=(0)Y , that is, 

ttcL
tY

tY
d=

)(

)(d /
2

22 αβ
σβ κλ −  with 0=(0)Y  gives  

 

 βαβασ

βα
ακλ −−

−
1/1)/(2

22

}{=)( t
cL

tY
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and )(tY  ceases to exist in finite time for all β  such that αβ <<1   

 
We now prove the finite time blow up for the non-compensated noise equation.  
 
Proof of Theorem 2.4. We begin with the first part of the theorem. Now write  

 

.dd)d(|)),,((|E|),(||))((|=|),(|E
00 syhhysuyxstpxuPxtu dd

t

t νσλ −−+ ∫∫∫ RR  
 

We use the assumption that 10 >)( cxu  for some positive constant 1c  and condition 2.3 to come up with  

 

syysuyxstpLcxtu d

t
dd|),(|E),(|),(|E

01
γ

σκλ −−+≥ ∫∫ R
 

                   .d|)),(|Einf(
01 sysuLc

dy

t γ
σκλ

R∈
∫+≥  

 
Upon setting  
 

|,),(|Einf=)( xtutF
dx R∈  

 
 the above inequality reduces to 
 

.d)()(
01 ssFLctF
t γ

σκλ ∫+≥
 

 

We now solve the following differential inequality: )()( tFLtF γ
σκλ≥&  with 1(0) cF ≥  or simply the 

ordinary differential equation: )(=)( tFLtF γ
σκλ&  with the initial condition 1=(0) cF , where the 

solution is given by  
 

γ
γ

σ
γγγ

σ γ
κλγκλγ −

−
−−−

−
+−+− 1/1

)(1
1)1/(11/1)(1

1 }
1

{)(1=}){(1=)(
c

tLctLtF
 

 
which fails to converge in a finite time for all 1>γ  . 

 

Next, we consider when the initial function 0u  is positive but not necessarily bounded below and 
/2)(= α∆−−L .  Let 0>0t  be fixed, then  

 

yyuyxttpxttu d d)(0,),(=),( 00 −++ ∫R  

       ).d,d,d()),,((),( 0
0

0
syhNhysuyxsttpdd

tt
σλ −−++ ∫∫∫

+

RR  
 

 Taking first moment of both sides, then by Proposition 2.8 we have  
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 yyuyxttpxttu d d)(0,),(|),(|E 00 −+≥+ ∫R  

syhhysuyxsttpdd

tt
dd)d(|)),,((|E),( 0

0

0
νσλ −−++ ∫∫∫

+

RR
 

),()( 0 xtptc η+≥  

.dd|),(|E),( 0
0

0

syysuyxsttpL d

tt

t

γ
σκλ −−++ ∫∫

+

R
 

 

 We perform a change of variable, by letting sts d=d,= 0 ττ −  and therefore  

 

),()(|),(|E 00 xtptcxttu η+≥+  

              .dd|),(|E),( 00
τττκλ γ

σ yytuyxtpL d

t
+−−+ ∫∫ R  

 

Let ),(:=),( 0 xttuxtv + ; then to show that |),(|E 0 xttu +  fails to exist in some finite time suffices to 

show the same for |),(|E xtv  and  therefore  

 

.dd|)),(|E)(,(),()(|),(|E
00 τττκλη γ

σ yyvyxtpLxtptcxtv d

t
−−++≥ ∫∫ R  

 
Multiplying through by ),( xtp , and integrating in xd , we obtain  
 

xxtpxtptcxxtpxtv dd d),(),()(d),(|),(|E 0 η+≥ ∫∫ RR
 

               xxtpyxtpyvyL dd

t
d),(),(|)),(|E(dd

0
−−+ ∫∫∫ τττκλ γ

σ RR
 

                              ).,(2|)),(|E(dd,0)(2)(=
00 ytpyvyLtptc d

t
τττκλη γ

σ −++ ∫∫ R
 

 
The last line follows by Kolmogorov property. Moreover, by properties of ),( xtp , Jensen’s inequality and 

Lemma 2.13, we get  
 

xxtpxtvd d),(|),(|E∫R  

γα
σ

α ττ
τ

ττκκη |)),(|E)(,()
2

(dd)(1,0)(2)(
00 yvyp

t
yLtptc

d

d

t
d

−
++≥ ∫∫

−

R
 

.)d),(|),(|E(()
2

(d)(2
00

γα
σ

α ττ
τ

ττκλη yypyv
t

Ltc d

d
t

d

∫∫ −
++≥

−

R
 

  

Set xxtpxtvtF d d),(|),(|E=)( ∫R  then  

ττ
τ

τκλη γα
σ

α d)()
2

()(2)(
00 F

t
LtctF

d
t

d

−
++≥ ∫

−
 

          .d)()
2

()(2
00 τττκλη γα

σ
α F

t
Ltc

d
t

d

∫++≥
−
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 Multiply through by α
d

t , therefore  
 

.d
))((

2
)

2
()( 1)(0/

/
0 τ

τ

ττκλ
η α

γ

γα

α
σαα

−∫+
+

≥
d

d

t

d
d

d FL

t

t
cttF

 
 

 Let α
d

ttFtY )(=)(  and assume further that δ≥t  for all 0,≥δ  then  
 

τ
τ

τκλτ
τ

τκλ
ηδ

δ

α
γ

γ

δα
σ

α
γ

γ

δα
σα d

)(

2
d

)(

2
)

2
()( 1)(/1)(/

/
0 −− ∫∫ ≥+

+
≥

d

t

dd

t

d
d YLYL

ctY

 
 
and the result follows by similar argument as the above proof for all γ  such that d/1<<1 αγ +   
  

4 Conclusion 
 
In conclusion, we see that both (1.1) and (1.2) fail to have global solutions when the initial condition 0u  is 

bounded below for the operator L  - the 2L  generator of a Lévy process; and for the fractional Laplacian 

(1,2],)(= /2 ∈∆− ααL  the solution to (1.2) fails to exist globally when the initial function 0u  is a positive 

function on a set of positive measure. 
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