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Abstract

The multiplicative no-linearity term is usually assumed to be globally Lipschit most results o
SPDEs. This work proves that the solutions fail to exigtéfnon-linearity term grows faster than linear
growth. The global non-existence of the solution occurs donesnon-linear conditions o@ . Some
precise conditions for existence and uniqueness of thés®uvere stated and we have established|that
the solutions grow in time at most a precise exponentialaasome time interval; and if the solutigns

satisfy some non-linear conditions then they cease tbaxi®me finite time . Our result also compares

the non-existence of global solutions for both the compedsahd non-compensated Poisson noise
equations.
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1 Introduction

Stochastic PDEs have now received much interest, se8][&ril their references; but the blow up result or
rather the non-existence of global result for the discontinapjsmp process has not been given. The study
of blow up or global non-existence of solution is as old ashkmatics itself, see [4,5]. The clarity between
blow up of a solution and non-existence of global salutiba deterministic PDEs was given by Sugitani,
see [6] and the references. Our mild solution here, is &-predlictable random field solution since it is a
class of stochastic heat equation with jump-type pso¢psisson random noise measure), see [7,8]. We
therefore show conditions where the second moment of thcsoko the compensated equation and the
first moment of the solution to the non-compensated equatioar¢dtde known as energy solutions) fail to
exist and compare the non-existence of global solutions ofwbeequations with each other. We also

considerL := —(—A)”’Z, the generator of¥ -stable processes and use some explicit bounds on its

corresponding fractional heat kernel to obtain more praeisealts. We also show that when the solutions
satisfy some non-linear growth conditions @h, the solutions cease to exist for both compensatetiamd

compensated noise terms for different conditions ofnitial function U, (X) .

Now, consider the following stochastic heat equations drivera lmpmpensated and non-compensated
Poisson noises (discontinuous processes).

[‘Z—‘tj (t, X) —Lu(t, X)]dxdt= AjRa(u(t, x),h)N (dt, dx,dh), (L.1)
[3—;1 (t,x) —Lu(t, x)]dxdt= AJ'Rda(u(t, x),n)N (dt,dx,dh), (1.2)

with initial condition u(0, X) = U, (X) . Here and throughout), : R — R, is a non-random function, and

L is the L*- generator of a Lévy proces® is a compensated Poisson random measurelatite noise
level.

We follow the method of [9] in making sense of our in&golutions.

Definition 1.1 We say that a proceqsl(t,X)} g -0 is @ mild solution of (1.1) if a.s (almost surely), the
following is satisfied

u(t, %) = | pt,x y)u,(y)dy

t ~
+A[ [ | pt=s.x y)a(u(s,y),mN ch,dy,ds), (1.3)
where p(t,.,.) is the heat kernel. If in addition to the abo{ei(t, X)} .o Satisfies the following
condition
SUPSUPE |u(t, X)’< oo, (1.4)
0<t<T xOR

forall T > 0, then we say thgtu(t, X)} 5 (-, is a random field solution to (1.1).
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Define

Y(B) = for all £>0, (1.5)

ij _a
277°R B+ 2ReW()

where W is the characteristic exponent for the Lévy processeshlt of Dalang [10] shows that equation
(1.1) has a unique solution with the requirement #§5) < oo for all 5> 0 which forcesd =1 since

N is a martingale valued Poisson measure. Fix soelR and define theupper p th-moment
Liapunov exponeny/(p) of U at X, as

y(p):= Iimsup%ln Ehu(t, Xo)| p] for all pd (0, ). (1.6)
t-o0

Definition 1.2 (random field solution)

We seek a mild solution to equation (1.2) of the form.

u(t, ) = [ 4Pt Y)up(y)dy
+AI;J‘RdIRd p(t - S! X! y)J(U(S, y)’ h) N (dh,dy,dS), (1_7)

with p(t,.,.) the heat kernel. We impose the following integrability cbadion the solution:

supsupE|u(t, x)|< .
t>0 xDRd

We now make sense of the discontinuous integrals bygttlie existence theorem (lkeda and Watanabe
[11]) characterised by a stationary Point process.

Theorem 1.3 Given a0 -finite measuren(dx) on (X,B(X)), then there exists a stationary Poisson
point process P if the random measure N (dt,dx) is of the form

E[N, (dt,dx)] = n, (dt,dx) = dtn(dx).
Proof. Ikeda and Watanabe [11].

Now applying the above theorem wit§ := R xR andB(X):=B(R?) OB(R"). We will take
n(dx,dh) := dxv (dh) . One set of the vectors will play the role of positienile the other will play the

role of “jumps”. By the above theorem, we have a Poissont processp(Ss) [] R?xRY. The Poisson
random measure is thus given by the following

N, ((0,t], AxB) :=#{s<t;sUID,;p(s)J Ax B},

where Dp is a countable subset fi§, o] .
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Let (Q,F {F.}..0,P) be a complete filtered Probability space 4R, B(R?)) be a measurable space.
Let F, be defined by

F. = a(N,([0,t], AxB,))l: AxBOB(R) xB(R)) DN,
wheret > 0 andN denotes the null set & . We can write the Poisson random measure as

N, (Ot AxB):= 3" 1g(P(9) P,(9)),

<
S]Dp,s_t

where we definep(s) := (p,(s), p,(9)) -

In this case, we hav&[N ((0,t], AxB)] =t | A|v(B). We now describe the stochastic integral with
respect to this Poisson random measure and defineatbge afl integrand precisely:

Definition 1.4 (The non-compensated | ntegral)
HL:={f(t,xh): fis{F}- predictabé and j;dedea f (s,x,h) |dsdxv (dh) < cd}.

The following integral can now be defined for dil] Ht

j; [Laf.af(sXPIN,@sdxdh)= ¥ f(sp,(9).p,(9)

s<t,s[ID
p

as the a.s sum of the following absolutely convergent sum.

Definition 1.5 (The compensated Integral) Define, similarly, for f satisfying the square-integrability
condition

. R t
H2={f(t,xh): fis{F} - predictabt and jo de deE| f (s,x,h) [? dsdxv (dh) < oo}

Then forall f OH Fz) , one defines the integral as follows

j; [Laf.af(sxPN,@scxdn) = 3 f(s.p,(9).p,(S)

sst,stp
[, f (s, xhydsdxv (dh
IOIRd-[Rd (s,xh)dsaxv (dh)
as the a.s sum of the following absolutely convergent sum.

For an example, one can define a Poisson random mehd;u?ezblé'ﬁ x..z) ON R,xR%xR*
= [ |

defined on a probability spadd€?, F,P) with intensity measureltdxv (dh) whereV is a Lévy measure

on R¢ ; that is, it satisfies the following
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de(mhz)u(dh) < oo,

According to [3], Iet(é‘j)j20 be a sequence of positive real numbers such&hat: Oasj —» o and
l=¢g,>¢ >¢, >.. Let

M ={hOR% & <lh|<g,;}, j=1and [, ={hOR";|h[>1}.
Then for any seBOB(R, XR?), define

.[erth(dt’dx’dh): z ZiI{ZiDrJ-}’ j20,

(T, X, )OB
with the following propertyE[N(BxT";)] =|B|v(I";) and
N(BxT,)=#i=1;(T,,X;,Z)0Bxl} <was.
Therefore the above integral is finite since the sumatosfinitely many terms.

For the existence and uniqueness of (1.1), we need the ifofjmondition onO . Essentially this condition

says thatO is globally Lipschitz in the first variable and bounded by heotfunction in the second
variable.

Condition 1.6 There exist a positive functiod and a finite positive constankip . such that for all
x,Y,hOR , we have

|o(0,h)ls J(h) and [o(x,h)=a(y.h)lsI(h)Lip, |x-y]. (1.8)
The functionJ is assumed to satisfy the following integrability cciwai:
jRJ(h)Zu(dh) <K, (1.9)

where K is some finite positive constant.

For the lower bound result, we will need the followingr&xondition onO .

Condition 1.7 There exist a positive functiod and a finite positive constant,, such that for all
x,hOR , we have

la(x,h) 2 L, I (h)| x| (1.10)
The functionJ is assumed to satisfy the following integrability condition:

K< jRj (h2v(dh) <K, (1.12)

where K is the constant from (1.9) arxd is another positive, finite constant.
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For the existence and uniqueness of (1.2), we make the fofj@ssumption.

Condition 1.8 There exist a positive functiod and a finite positive constankip , such that for all

x,y,hJ RY, we have

|o(0,h)lcJ(h) and |o(x,h)—-o(y,h)lsI(h)Lip, |x-Y]. (1.12)
The functionJ is assumed to satisfy the following integrability dition.

deJ(h)u(dh) <K, (1.13)
where K is some finite positive constant.
We can also give the lower bound estimate on the growitiedirst moment.

Condition 1.9 There exist a positive functiod and a finite positive constant, such that for all

x,hORY, we have

lo(x,h) =2 L,J(h)| x| (1.14)
The functionJ is assumed to satisfy the following integrability condition

K< dej (hyv@h) <K, (1.15)

where K is the constant from (1.13) and is another positive finite constant.

The outline of the paper is given below. The paper is cisegbof five sections. Statements and conditions

of main results are given in section two. In section thseme estimates on heat kernels are given, some
known results and few new propositions are also given.alde give estimates where the proofs of our

theorems lie. The proofs of our main results are giveseition four and section five contains a brief
conclusion of the research.

2 Main Results

We show that if the functio@ grows faster than linear growth, then the energy of the¢isoly that is, the
second momenE |u(t, X) [* of the solution to (1.1) and the first mome®{ u(t, x)| of the solution to
(1.2) cease to exist for all tine.

Suppose that instead of (1.10), we have the followamglition.
Condition 2.1 There exists a constagf >1 such that

lo(x.h)z L,I(h)|xP, (2.1)

where the constarit . and the function) are the same as in condition 1.7.
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We then have the following result.

Theorem 2.2 Suppose thak ;= —(—A)‘”2 and that condition 2.1 is in force. Then there does not arist
random field solution to (1.1).

If instead of (1.14), we consider the following condition:

Condition 2.3 There exists a constant > 1 such that
la(x,h) 2 L,I(h)|xV, (2.2)
where the constarit,, and the function) are the same as in condition 1.9.

We then have the following result with the initial cdah U, : RY R, , a positive function on a set of
positive measure.

Theorem 2.4 Suppose that both conditions 1.8 and 2.3 are in force. Then #rereo random field
solutions to (1.2) whenever the non-negative initial conditignis bounded below. Ldt := —(—A)"”z,

then under the same conditions, there are no random field soéuth (1.2) even if we only haug # 0.
Here, the initial functionu, is assumed to be a bounded non-negative function such that

jAuo(x)dx >0, for some AR,

That is, we definel, as any measurable functiafy : RY R, which is positive on a set of positive

1
measure. This assumption implies that the Aet{X: U,(X) > =} 0 R? has positive measure for all but
n

finite many N. Thus by ChebysheV's inequality,
j u(x)dxzj u(x)dle,u{x:u(x)>1}>0
Rd -0 e x UO(X)>%} 0 n 0 n )

where [/ is a Lebesgue measure.

2.1 Some auxiliary resultsand estimates

We present some properties pft, X) that will be used in the proof of our results, see [6].

p(t, X) = t—d/a p(l,t_llaX)
p(st,x) =t " p(s,t ™x). (2.3)

From the above relationp(t,0) =t p(1,0), is a decreasing function &f The heat kernep(t, X) is
also a decreasing function pX |, that's

| x| y| impliesthat p(t,x) < p(t, y).
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This and equation (2.3) imply that for 4I& S,

t t\ o t o

()= PIXD = (s XD = ()7 pls, ()™ 1]
> (tE)d'” p(s.| x|) (since (%)'”” [ x ] x])

= (f)‘“ B(s, X).

We now state some propositions and lemma whose proofs caarzkifo[12].

Proposition 2.5 [12]. Let p(t, X) be the transition density of a strictly -stable process. Ifp(t,0)<1
anda= 2, then

p(té(x—y))z p(t,x)p(t,y) 0 x,yOIR".

Lemma 2.6 [13,14,15,16]. Suppose thgp(t,X) denotes the heat kernel for a strictly stable process of
order @ . Then the following estimate holds.

p(t,x,y) =t [

forall t>0 and x,yOR®.
|x=y

|d+a

Now we show that the first terfiPu,)(X) of the mild solution to (1.1) and (1.2) grow or decay but only
polynomially fast with time. Recall that

(RU)(X) = [ 4 P(t X, y)Up(¥)dy.

With the assumption that the initial condititly is positive on a set of positive measure, we then Have
following.

Proposition 2.7 [12]. There exist al > 0 and a positive constar@, such that for allt >T and all
x B(O,tll"),

(RU)(9 2 G-

Proof. The proof follows by applying Lemma 2.6.
The next proposition is similar to but more general than Ritipo 2.7.

Proposition 2.8 [12]. Given the assumption on the initial functioly. Then fort; 21,7 >0 , there
existsC(t,) > O such that

[o P+, X Y)UG (Y)Y 2 S(t,) Pt +77, ).
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Next we give the following a priori result about the @omity of the second moment of the solution to
(1.2).

Proposition 2.9 [12]. Suppose that condition 1.6 holds, then for exdd R , the unique solution to (1.1) is
mean square continuous in time. That is for ead R , the functiont = E[| u(t, X) |°] is continuous.

Here also, we present the time continuity of the first morogtite solution (1.2).

Proposition 2.10 [12]. Suppose that condition 1.8 holds, then for exdh RY, the unique solution to (1.2)
is mean continuous in time. That is for eaxh] R , the functiont — E[| u(t, X) [] is continuous.

We now give the following proposition which establishes thetfat under the local Lipschitz continuity as
stated in condition 2.1, there exists a unique solutiotowpfixed timeT .

Proposition 2.11 [12]. Suppose that condition 2.1 holds. Then there exisEs>a0 such that (1.1) has a
unique random field solution up to tinle.

Proof. We begin by defining

o(x,h) if x<N

on(xh) :{J(N,h) it x> N.

o, (x,h) therefore satisfies (1.8) but with a different constahe flesult follows by the proof of existence
and uniqueness of the solution and its time continuity above.

We will also need the following proposition which estsliiis the fact that under the local Lipschitz
continuity as stated in condition 2.2, there exists a ursquetion up to a fixed timd .

Proposition 2.12 [12]. Suppose that condition 2.2 holds. Then there exisEs>a0 such that (1.2) has a
unique random field solution up to tinle.

Here follows Jensen’s inequality which shall be used in tbeffmf the blow-up result.

Lemma 2.13 [12] Given that p(dX) is a probability measure oRY and suppose that the functidhis
non-negative. Then for all convex functidn the following holds,

[Lo @O PEX) 2 ([ u(x)p(e)).
3 Proof of Main Results

In this section, we give the proofs of our main results.

Proof of Theorem 2.2Ne use Ito’'s isometry to write

Elut, ) P=I(Ru)()F +4[ [ [ I pt=5x-y)F Elau(s,y),h)F v(dh)dyds.
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We use the assumption tha'g(x) > C, for some positive constai@; and condition 2.1 to come up with
Elu(t,x) = c2 +K,12Lf,j;jR p2(t—s,x—y)E |u(s, y) [ dyds
> +KFPL2 [ (inf E|u(s y) )’ p(2(t -5),0ds
yOR
Upon setting
F(t) =inf Elut,x)f,
xOR
The above inequality reduces to
F(t) 2 G2 +kFL2 j; P2t - 9),0F*(s)ds
We now use Lemma 2.6 to find lower bounds on the heat kernedgpg in the above display.
F(t) 2 ¢ +kFL2c, j;(t —9) Y FA(s)ds
>c +kFLic, _[;t IEA (s)ds.
Hence, multiplying through by’
L t
F)te =it + il Lic, [ F(s)ds
la B
— Clztl/a +K/]2L§C2J. (31 F(S)) ds.

Let Y (t) = F(t)tY", then for allt = 0

Y(t) = 2t + kL2, jo Y ﬂ,(f) ds

> kA’Lic LY (S)d

pla
22, YOO - - _
and solving the ODE:Y(t) = kA°L3c, —5, With the initial condition Y(0)=0 , that is,
davit) _ KA LZC,t ™7t with Y(0) = 0 gives
Y2 (1)

212
v(t) = {{A % o-prayins
a-p

10
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and Y (t) ceases to exist in finite time for gff such thatl< S <a

We now prove the finite time blow up for the non-compensatezkrerjuation.

Proof of Theorem 2.4Ne begin with the first part of the theorem. Now write
t
Elu(t, ) 1=I(Ru)0) [ +A[ [ 4] 41 pt=sx=y)| E]o(u(s,y),h) |v(dh)dyds

We use the assumption tha'g(x) > C, for some positive constai@; and condition 2.3 to come up with

Elu(t B+ oL, [ [, pt-s x-Y)E|u(s y) " dyds

> ¢+ kAL, [ (inf E|u(s,y) ]’ ds

yOR

Upon setting

F(O = inf, EJu(t )l

xOR

the above inequality reduces to
t
F(t)2c +&AL, [ F/(s)ds

We now solve the following differential inequalitfs (t) = kAL, F”(t) with F(0)=c, or simply the

ordinary differential equationf (t) = KAL,F”(t) with the initial condition F(0)=cC , where the
solution is given by

(I-y)

FO ==L+ P = (L 2 P

which fails to converge in a finite time for gt >1 .

Next, we consider when the initial function, is positive but not necessarily bounded below and
L =—(-A)". Lett, >0 be fixed, then

u(t+1,%) = [ 4 P(t+ o, x = Y)U(0, y)dy
+AJ.;+IOIRdIRd p(t+t, —s,x—y)o(u(s,y),h)N(dh,dy,ds).

Taking first moment of both sides, then by Propositi@&w have

11
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Efu(t +t, ) P [ 4 p(t+t5, x= y)u(0, y)dy
T+t
+/1j0 OIRded p(t +t, —s,x— y)E| a(u(s, y), h) |v(dh)dyds
2 C(ty) p(t +77, )
T+t
+ALUKLO OJ‘Rd p(t+t,—s,x—y)E|u(s,y) | dyds.

We perform a change of variable, by lettingr S — 1, d7 = ds and therefore
Elu(t+1t5,X) 2 c(to) p(t +77,X)
t
+ALJKj0de p(t =7, x—=y)E|u(r +t,,y) | dydr.

Let V(t, X) ;= u(t +1t,, X) ; then to show thakE |u(t +1,, X) | fails to exist in some finite time suffices to
show the same foE | v(t, X)| and therefore

EIV(E ) B Clto) PUt+7,3) + ALk [ [ Pt =7, x= Y)(EIV(z, y) )by,
Multiplying through by p(t, X) , and integrating irdx , we obtain
deE|v(t, x)| p(t, x)dx = c(to)jRd p(t +77,%) p(t, x)dx
AL k[ dr[ Ay BV, y)I) [ Pt =7,x-y) p(t, X)dx
= o(ty) p(2t +7,0)+ AL,k [dz [ Gy (EIM(z, V) I) P2t -1, Y).

The last line follows by Kolmogorov property. Moreover, gogperties of p(t, X) , Jensen’s inequality and
Lemma 2.13, we get

.[RdE [v(t,x)| p(t, x)dx

2(ty) PILO)@ +7) © + KLk [Ar[ Ay )7 pT E VTV

T

5= (e EIVEY) | P y)dy)”

_d
>c,(2t+) @ +AL0KJ;dT(

SetF(t) = IRdElv(t,x)l p(t, X)dx then

T

d
aF(1)dr
2t—r) (1)

F)2 2+) 7 + ALK

_d d
>c,(2t+n) +/1LUKE(§)”F(T)Vdr.

12
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d
Multiply through byt , therefore

d

d ‘
g t ae ALKt (T7F (D)
PO 2 )"+ 50 [ = dr.

d
Let Y(t) = F(t)t* and assume further thae d for all d =0, then

dr

AL,k ¢t Y(1)” AL,k ¢t Y(1)”
J.a d(y-1) dr 2 oda J.a d(y-1)
T ¢ T a

5 da
Y(t)2C0(25+/7) + oda

and the result follows by similar argument as the abovef fooall ) such thatl< y <1+a/d
4 Conclusion

In conclusion, we see that both (1.1) and (1.2) fail to have lgbathations when the initial conditiot, is

bounded below for the operathr - the L2 generator of a Lévy process; and for the fractional d@ah
L = (-A)",a 0(1,2] the solution to (1.2) fails to exist globally when theiatifunction U, is a positive
function on a set of positive measure.
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