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We encounter variables with little variation often in educational data mining (EDM) due to the demo-
graphics of higher education and the questions we ask. Yet, little work has examined how to analyze such
data. Therefore, we conducted a simulation study using logistic regression, penalized regression, and
random forest. We systematically varied the fraction of positive outcomes, feature imbalances, and odds
ratios. We find the algorithms treat features with the same odds ratios differently based on the features’
imbalance and the outcome imbalance. While none of the algorithms fully solved how to handle imbal-
anced data, penalized approaches such as Firth and Log-F reduced the difference between the built-in
odds ratio and value determined by the algorithm. Our results suggest that EDM studies might contain
false negatives when determining which variables are related to an outcome. We then apply our findings
to a graduate admissions dataset. We end by proposing recommendations that researchers should con-
sider penalized regression for datasets on the order of hundreds of cases and should include more context
about their data in publications such as the outcome and feature imbalances.
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1. INTRODUCTION

When working with educational data, we often encounter imbalanced binary input and outcome
features, by which we mean the variable is not equally split into its two categories. For example,
demographics in science, technology, engineering, and mathematics (STEM) are often imbal-
anced due to historical and ongoing injustices. While data mining with imbalanced data has
been studied extensively (Chawla, 2009), less attention has been paid to the types of imbalanced
data that appear in educational data mining (EDM) studies.

Educational datasets might consist of a single course on the order of a hundred students
(and hence a hundred data points) from a university or even multiple universities, resulting in
hundreds of thousands of data points. Furthermore, educational data often includes continuous,
categorical, and binary variables. As a result, an educational dataset might contain many features
with different imbalances as well as an imbalanced outcome. For specific examples of these
occurring in EDM studies, we refer the reader to the following papers (Arreola and Wilson,
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2020; Chiu, 2020; Kruzicevic et al., 2012; Manduca et al., 2017; Marquez-Vera et al., 2013;
Pelaez et al., 2019; Rovira et al., 2017; Sax et al., 2016; Spoon et al., 2016; Tai et al., 2017;
Young et al., 2019).

In the context of logistic regression, which is a popular EDM technique (Pefia-Ayala, 2014)
and was a common technique used in the previously cited studies, much work has focused
around outcome imbalance and how to work with such data. When the outcome is imbalanced,
the regression coefficients and the probabilities generated from the logistic regression model
are biased (King and Zeng, 2001). To correct for these biases, various techniques such as Rare
Events Logistic Regression (King and Zeng, 2001), Firth penalized regression (Firth, 1993), and
introducing a log-F distributed penalty (Greenland and Mansournia, 2015) have been proposed,
which we explain in depth in Section 2.

More recently, machine learning techniques have become popular in educational research.
One example is random forest (Pefia-Ayala, 2014; Breiman, 2001a). Just as logistic regression
has biases that might be relevant to EDM data, random forest is also known to have such biases.
In particular, random forest ranks categorical features with many levels (Strobl et al., 2007) and
continuous features higher than categorical features with fewer levels (Nicodemus, 2011) when
determining which features are most predictive of an outcome.

Most interesting for the context of this paper is a study by Boulesteix et al. (2012) build-
ing on the work of Nicodemus (2011). In their paper, they systematically varied the amount of
predictive information that each binary feature contained as well as the feature imbalance and
then used random forest as well as a variant better suited for categorical features, conditional
inference forest (Strobl et al., 2007), to compare how well the algorithms could detect the in-
formative features from the noise. Their key finding was that features with higher imbalances
were ranked lower than features with lower imbalances even when they had the same “built-in”
amount of predictive information. A later study extended the work by including continuous fea-
tures as well as binary features but only examined the case when none of the features contained
predictive information (Nembrini et al., 2018). These studies suggest that when modeling data,
our results might be measuring spurious properties of the features, i.e., their imbalance, rather
than their predictive information.

In this study, we seek to extend this line of work by considering the data typical of EDM
studies. That is, data that includes a mix of continuous, categorical, and binary features with
varying degrees of predictive or explanatory ability, and a binary outcome feature that might
be imbalanced. In addition, new techniques for ranking random forest features have been de-
veloped, such as the AUC-permutation importance (Janitza et al., 2013), which are designed
for imbalanced datasets and hence, might prove fruitful for EDM research. Finally, we wish to
extend the work to regression techniques commonly used for educational data and explore how
these biases might manifest in these techniques.

Specifically, we ask three research questions:

1. How might known random forest feature selection biases change when the outcome is im-
balanced as is often the case in EDM studies, and does the AUC-permutation importance
affect those biases?

2. How might known machine learning biases manifest in traditional explanatory techniques
such as logistic regression?

3. How might penalized regression techniques successfully applied in other disciplines be
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used in EDM to combat any discovered biases?

For the purposes of this paper and our research questions, we will define imbalance as the
degree to which a binary feature deviates from the case of being split equally between categories
and bias as a systematic preference by a model toward one feature over another given both
features have the same level of association with the outcome — or toward one feature over
another given the first feature has a smaller association with the outcome compared to the second
feature. Our interest in this paper is then when imbalance in a feature results in a bias in the
model and hence, would be problematic for a researcher or practitioner.

As an example, suppose 95% of students identify as a majoritized race while only 5% of
students identify as a minoritized race in some course, and majoritized students pass the course
at a higher rate than minoritized students. A model predicting whether a student passes could
in theory perform better by treating the minoritized students as random variations in the data
rather than a source of informative variation. Such a result would communicate an inaccurate
depiction of the situation and that is what we are interested in understanding this paper.

This concern is also expressed in the concluding remarks of Boulesteix et al. (2012), where
they note that a bias caused by imbalance may be viewed as a serious problem if one assumes
the features ranked highly by an importance measure have the strongest association with the
outcome rather than category frequencies that provide the highest value to an importance mea-
sure. We adopt this view in this paper. As Ding (2019) notes, we make certain commitments to
our analysis when we decide on a particular approach to quantification and our questions. Our
commitments might disagree if we have different approaches or questions.

For this paper, it should also be noted that our overarching goal is to compare existing ap-
proaches to analyzing data typically found in EDM research and not to introduce our own new
promising method for analyzing such data.

The rest of the paper proceeds as follows. In Section 2, we provide an overview of the
algorithms and approaches we mentioned in the introduction and that we use in the rest of
the paper. In Section 3, we explain how we constructed our simulation data and carried out
our neutral comparison simulation study (Boulesteix et al., 2013). In Section 4, we provide
the results of our simulation study. In Section 5, we apply what we learned in the simulation
study to a graduate admissions dataset from United States universities. In Section 6, we provide
answers to our research questions, compare our findings with similar studies, and consider how
our choices might have influenced the results. In Section 7, we propose future directions for this
work, both in terms of the data and algorithms. Finally, in Section 8, we provide the conclusions
from our study and outline a set of recommendations.

2. BACKGROUND

Here, we introduce the two paradigms of statistical modeling and then provide an overview of
the algorithms we used in our study.

2.1. PARADIGMS OF STATISTICAL MODELING

When discussing modeling data, there are two prominent paradigms and goals, both of which are
used in EDM: prediction and explanation/information (Breiman, 2001b; Romero and Ventura,
2020; Aiken et al., 2021). Shmueli (2010) provides an overview of these approaches and we
summarize the key points here.

33 Journal of Educational Data Mining, Volume 13, No 4, 2021



Explanatory modeling or explanation is focused on the causal effect of some set of inputs X
on some outcome Y. That is, given some data set, explanation is concerned with which inputs
produce a statistically significant effect when modeling the outcome. Traditional logistic or lin-
ear regression are examples of explanatory models. Under this approach, models are evaluated
based on how well they fit the data using some statistic. In the case of logistic regression or
linear regression, common statistics are Pseudo-R? and R?.

In contrast, prediction is focused on generating a model for analyzing new data and deter-
mining the outcome and not necessarily the causal effect. Under this paradigm, having two sets
of data, one to train the model and one to test the predictive capabilities of the model, is essential
to provide an estimate of the model’s predictive ability.

Because prediction is not focused on the causal effects, statistical significance has no role
in assessing features in predictive models. Instead, features are assessed based on whether they
improve predictions of the model. While a feature with a small effect might be statistically
significant, it might not have predictive power because a predictive model might perform just as
well without the feature as with it (Shmueli, 2010; Greenberg and Parks, 1997).

As a corollary to this, we should not expect a model with high explanatory power to neces-
sarily have high predictive power or vice versa, and hence, features with high explanatory power
might not have high predictive power. Shmueli (2010) includes an example where the model
with the highest explanatory power does not have the highest predictive power and conditions
under which that may occur.

While our motivation and research questions start with predictive modeling and then move
to explanatory modeling, we will introduce explanatory methods first because the logistic re-
gression background is needed for the penalized regression section of the predictive methods.

2.2. METHODS WE USE AS EXPLANATORY
2.2.1. Traditional Logistic Regression

When the outcome, Y, is binary, logistic regression is the standard technique for explanatory
modeling. Under this approach, the probability, p, of finding the outcome of Y = 1 is given by

log,, = Bo + Bix1 + oy + ... + Bpay, (1)

p
L=p
when xq, zs, .., x,, are the input features and the (3 are the coefficients. Under this formula,
logistic regression has a similar form as linear regression.

We can rearrange the equation to solve for the odds which becomes

odds(zy,xe, ..., x,) = T P _ p(BotBror+Bozat..+Bnin) 2)
—-Pp
where b is traditionally the natural base, e.
Under this formulation, it makes sense to talk about the odds ratio (OR) or the change in
odds as a result of increasing an input feature x; by 1 unit. More formally,

OR, — odds(xq, xa,..x; + 1, .., x,) _ 5 3)
7 odds(xy1, Ta, ...Tj, .., Tp)

which means that the exponentials of the coefficients correspond to the odds ratio for each
feature. Notice that the odds ratio is independent of the value of z;.
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Because a § of 0 means no effect, an odds ratio of 1 is equivalent to no effect (Theobald
etal., 2019). Likewise, an odds ratio greater than 1 means an increase in the odds while an odds
ratio less than 1 means a decrease in the odds.

An important caveat to this is what a unit increase is and what the odds ratio is in reference
to. Often, continuous features are normalized so that the mean is O and the variance is 1 or
scaled so that an increase of a unit has a tangible meaning. For example, SAT scores are only
reported in multiples of 10 so scoring one point higher on the SAT is meaningless. Instead, the
researcher would want to adjust the scale of the scores so that an increase of 1 unit corresponded
to 10 points better on the test (or another meaningful increment).

For continuous features, what the odds ratio is in reference to is answered by the scale choice.
For categorical features, especially unordered categorical features, the answer is nontrivial. An
increase of 1 unit might not be meaningful or even possible (e.g., what would an increase of 1
unit of race mean?). In that case, it is customary to use one-hot encoding and create separate,
binary features for each label. For example, for race, we could create 6 features: white, Asian,
Black, Latinx, Native, Multi-racial. Under this approach with binary features, an increase of a
unit corresponds to changing categories, such as Black students compared to non-Black students,
which depends on the arbitrary choice of which label is assigned x; = 1 and which is assigned
x; = 0. As Theobald et al. (2019) noted, it is often preferable to invert the odds ratios which
are less than 1 to easily compare all odds ratios, which is equivalent to swapping our label for
z; =0and z; = 1.

2.2.2. Penalized Regression

When the data contains issues that might make modeling difficult (i.e., small sample size, cor-
relations, and more features than data points), adding a penalty to logistic regression might be
beneficial. This idea is based on the bias-variance trade-off in which we can increase the bias of
the coefficient to reduce its variability or vice versa (Hastie et al., 2009). As a result, penalized
regression can be useful for feature selection, which is often an important first step in EDM
(Pena-Ayala, 2014).

For typical least squares regression with m features and n cases, we are trying to solve the
expression

argmin, (|Y — X" 5P )

where Y is a n x 1 vector of the outputs, (3 is a vector of the m x 1 vector coefficients, and
X is am X n matrix of the input data.

When we use penalized regression instead, we add a penalty, P, that might depend on the
coefficients or data.

argming( ||Y — X7 B|* + P(83, X)) 5)

In this study, we consider two types of penalization for explanatory methods, Firth and Log-
F penalization, although many more exist. See Ensoy et al. (2015) for an overview of methods
often used in cases of separation, where an input feature perfectly predicts the outcome or rare
events.

Under Firth penalization, we try to combat the asymptotic bias of the coefficient estimates,
which inversely depend on the sample size to some power. Specifically, the Firth method adds a
penalty that removes the asymptotic bias to order O(n '), making it especially useful for small
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Table 1: Log-F data augmentation example for a two feature and m=1 example. The last four
rows are the augmented data.

Outcome Feature 1 Feature 2 Intercept Weight

1 0.748 0.10 1 1

1 1 0 0 172
0 1 0 0 172
1 0 1 0 172
0 0 1 0 172

data sets (Firth, 1993). It does so by penalizing the Jeffreys invariant prior (Jeffreys, 1946),
which is inversely related to the amount of information in the data. That is, the penalty is larger
the less the data allows us to determine the coefficients. For a simple one-feature model, the
penalty is equivalent to adding 0.5 to each cell of the 2x2 contingency table of the feature and
the outcome (Heinze and Schemper, 2002), making this penalization especially useful in the
case of separation. In theory, this penalization should then shrink the confidence intervals of the
features with more imbalance because more uncertainty would have resulted in a higher penalty.

The Jeffreys invariant prior is not without issues, such as being dependent on the data, which
are summarized in Greenland and Mansournia (2015). To overcome these, Greenland and Man-
sournia proposed a log-F(m,m) distributed penalty. The penalty has a tuning parameter, m,
that controls the amount of penalization with a higher m providing more accurate estimates of
smaller 3 but less accurate estimates of larger 5. When little is known about the data, Greenland
and Mansournia recommend taking m = 1 to allow for a wider range of possible values. For
a single parameter model, the choice m = 1 makes the Log-F penalty equivalent to the Firth
penalty.

In addition to overcoming issues with the Jeffreys prior, the log-F penalty can be imple-
mented via data augmentation (Greenland et al., 2016), meaning that any software capable of
performing logistic regression can also do Log-F penalization. For a chosen m, the researcher
adds m pairs of rows to their data for each feature, where one row has outcome Y = 1 and the
other has outcome Y = 0. In the pair of rows, the researcher then selects one feature to have
value 1 and all of the other features to have values of 0, with the choice of feature unique to each
pair of rows. The weights for each row are set to be m /2 and any intercept feature should be
set to 0 in these added rows. An example of this for a 2-feature model with m = 1 is shown in
Table 1.

It should be noted that despite the similarity in name, log-F penalized regression has no
relation to the recently proposed LogCF framework (Chen and Cui, 2020).

2.3. METHODS WE USE AS PREDICTIVE

2.3.1. Penalized Regression

In addition to using penalized logistic regression as an explanatory method, there are also penal-
ties designed for using regression as a predictive tool. Two of the most common are ridge and
lasso, which are described in detail in Hastie et al. (2009).

Ridge penalization adds a penalty to the regression equation proportional to the square of
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the fs.

argming ( [|Y — X7 B|* + A||8][*) (6)

Equivalently, it requires the sum of the squared /3 coefficients to be less than some value.

argmin ( [[Y — X" 5|P) )
subject to Z ng <t (8)
j=1

Here, A, or equivalently ¢, controls the degree of penalization, with a higher value associated
with a stronger penalty.

Ridge penalization is often used in cases of multi-collinearity because it reduces the vari-
ability of the coefficients. That is, for two correlated features without penalization, one could
be extremely positive and the other extremely negative to offset each other. With the squaring
of the coefficients under ridge penalization, the coefficients can no longer offset each other and
hence, must shrink. Mathematically, ridge penalization is equivalent to scaling each 3 by 14%)\

Instead of penalizing based on the squared 3, we can penalize based on the absolute value
of the [3; this is the premise of lasso penalization. Mathematically, lasso penalization seeks to
solve

argming( ||Y — X7B[|* + A[8]) )

Equivalently, it requires the sum of the absolute value of the /3 coefficients to be less than
some value.

argming( [|Y — X7 3|[*) (10)

subject to » " |3 <t (11)
7=1

Again, A controls the amount of penalization. Here though, the lasso penalty is designed for
feature selection because it shrinks some (3 to zero while shifting the values of the others.

Lasso is not designed for correlated features, and hence, it can encounter issues in those
cases. For example, if two features are correlated, either could be shrunk to zero without reduc-
ing the accuracy of the model. Therefore, lasso can exhibit variability concerns under correla-
tion.

One way around this is to combine the penalties into a single penalty, which is the idea
between elastic net (Zou and Hastie, 2005). Mathematically, the elastic net penalty is

argming( |[Y" — X7B* + Aal|8]* + (1 — o) 8]) (12)

where A\ controls the overall penalization and « controls the amount of mixing of the lasso
and ridge penalties, with the special case @ = 0 reducing to lasso penalization and o = 1
reducing to ridge regression.
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While these algorithms are typically used for prediction, various methods for using these
algorithms in an explanatory manner have been developed along with corresponding p-values
or other feature selection techniques (Cule et al., 2011; Hofner et al., 2015; Meinshausen and
Biihlmann, 2010; Lee et al., 2016; Lockhart et al., 2014). We will only use these algorithms as
predictive tools, but we include references to these approaches here for completeness.

2.3.2. Forest Methods

Random forest is an ensemble method of decision trees based on the Classification and Regres-
sion Trees (CART) framework (Breiman, 2001a). For each decision tree, a subset of features,
often noted mtry, is randomly selected and used to predict the outcome. To grow the tree, fea-
tures are split into two groups with the specifics of the splits determined by which ones minimize
the Gini Index, a measure of variance, the most. After all trees have been grown, the algorithm
uses some method of aggregating results, such as a majority vote of the trees, to determine what
the overall prediction is. Because the features are split, categorical features do not need to be
one-hot encoded like they would in logistic regression.

To determine which features are relevant to the prediction, the features are often assessed
by the mean decrease in the Gini Index across all trees, with a larger value meaning the feature
is more predictive of the outcome. However, Strobl et al. (2007) showed that the Gini Index
is biased toward continuous features and features with many categories. That is, because con-
tinuous and features with many categories have many possible split points, it is more likely the
algorithm can find an ideal split than the algorithm could for a binary feature that has only 1
split point. Therefore, these features will be viewed as more important because they appear to
better separate the classes.

As aresult, alternative measures such as accuracy permutation importance have become pop-
ular. To use accuracy permutation importance, each feature is randomly permuted one at a time
and the change in predictive accuracy is recorded. The idea is that when a feature that is more
predictive of the outcome is permuted, the predictive accuracy will decrease more than when
a feature with less predictive information is permuted. As a result, the changes in predictive
accuracy can be used to rank the features in the model qualitatively. More recently, an alter-
native based on the AUC, which is the probability that the positive case ranks higher than the
negative case over all possible pairs of positive and negative cases, has been proposed by Janitza
et al. (2013). This AUC-permutation importance is claimed to perform better than the accuracy
permutation importance measure when the outcome is imbalanced. It is important to note that
both these importances only make sense in the context of the model and relative to each other.

Because the Gini Index is also used to create feature splits, the entire algorithm can be biased
when the data contains binary, categorical, and continuous features (as is often the case in EDM).
To correct this problem, Strobl et al. (2007) proposed conditional inference forests, which are
based on the conditional inference framework (Hothorn et al., 2006). Rather than minimize
the Gini Index to find ideal splits, conditional inference forests use the conditional inference
independence test to determine which feature to split and how to split it. Simulation studies by
Strobl et al. (2007) have found that using conditional inference forests with subsampling without
replacement does in fact, correct the biases shown by traditional random forests.

For more details about these algorithms, see the supplemental material of Young et al. (2019).
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3. METHODOLOGY

In this section, we describe how we conducted our simulation study, including creating the syn-
thetic data and modeling the data. For the simulation study, we seek to understand how different
variants of random forest and random forest importance measures rank features with identical
odds ratios but different imbalances. We also seek to understand how accurately different vari-
ants of logistic regression can determine the built-in odds ratio, whether the features with built-in
odds ratios different from 1 are determined to be statistically significant, and how those answers
vary with feature and outcome imbalance. Based on studies described in the introduction and
background, we expect that features with higher imbalance should rank lower than features with
lower imbalance for a given odds ratio for random forest algorithms. We also expect that logis-
tic regression algorithms should be more accurate in determining the underlying odds ratio for
features with lower imbalance than features with higher imbalance for a given odds ratio.

To do so, we apply four random forest and importance measure pairs and six traditional and
penalized logistic regression algorithms to fifteen data sets, representing three sample sizes and
five levels of outcome imbalance. We created these data sets to be representative of data that an
EDM researcher might encounter or have been described in the literature.

Readers interested in learning more about the advantages and disadvantages of the algo-
rithms we used based on the literature and the results of this study are encouraged to look ahead
to Table 7.

3.1. DATA CREATION

To conduct our simulation study, we first needed to generate our simulated data. To create binary
features with varying degrees of imbalance and information, we considered a 2x2 contingency
table, Table 2. We used labeling conventions similar to those of Olivier and Bell (2013) for the
reader’s convenience because we reference their formulas here.

For some binary feature x;, let the fraction of cases with z; = 0 be 7, and the fraction of
cases with z; = 1 be m;. Likewise, for the binary outcome feature Y, let the fraction of cases
with Y = 0 be 7, and the fraction of cases with Y = 1 be 7. Then the feature imbalance is
represented by the ratio 7 : m4; and the outcome imbalance is represented by w4 : m14.. We
pick z; = 1 and Y = 1 to be the minority classes, though the choice is arbitrary.

To quantify the amount of information contained in a feature for predicting or explaining the
outcome, we will use the odds ratio which is OR = :‘;g;?ﬁ = Z?g;;i using the notation in Table
2, where an odds ratio further from 1 signifies more information.

By specifying the feature imbalance (in the form of 7 1), the outcome imbalance (in the form
of 1), and the odds ratio, we can uniquely express the values in the 2x2 table. Furthermore,
any one of the three can be changed while the remaining two can be held constant, allowing us
to manipulate the feature imbalance, the outcome imbalance, and the odds ratio systematically.

Table 2: 2x2 contingency table of fractions for a generic binary feature.

;=0 x; =1 Total

Y=0 mo o1 o+
Y =1 10 11 T4
TOtal T+0 T41 10
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Table 3: Examples of changing only one of the feature imbalance, outcome imbalance, or odds
ratio.

(a) Reference table (b) Changing only the feature imbalance
l’j =0 [Ej =1 Total C(Zj =0 Ij =1 Total
Y =0 .30 .20 .50 Y =0 40 .10 .50
Y=1 .30 .20 .50 Y =1 40 .10 .50
Total .60 40 1 Total .80 .20 1
(c) Changing only the outcome imbalance (d) Changing only the odds ratio
I‘j =0 I‘j =1 Total l’j =0 .I'j =1 Total
Y=0 45 .30 75 Y=0 .36 .14 .50
Y =1 15 .10 25 Y =1 24 .26 .50
Total .60 40 1 Total .60 40 1

An example with fractions for a hypothetical data set is shown in Table 3, where (b) changes the
feature imbalance from .4 to .2, resulting in a more imbalanced feature, (c) changes the outcome
imbalance from .5 to .25 resulting in a more imbalance outcome, and (d) changes the odds ratio
from 1 to 2.79, resulting in a feature with more information about the outcome.

To determine the values in the 2x2 table, we can rearrange the formula for the odds ratio in
terms of 7,1, w1, and 71; found in the literature to solve for 71, (Olivier and Bell, 2013). Doing
so, we find that

14+ (1 +my)(OR—-1) - Q
2(Q 1)

T =

(13)

where

Q=1+ (my+741)(OR—1))2 +40R(1 — OR)my 714 (14)

In the case that OR = 1, that is the feature contains no predictive or explanatory information
for the outcome, the expression for 7y; is indeterminate. In that case, the feature and outcome
are independent, SO 11 = T 1M1y

Once we know 717, we can use Table 2 to compute the remaining values. That is

Mo = T14+ — 711 (15)
To1r = 741 — 711 (16)
7T00:1+7711—7T1++7T+1 (17)

To model continuous features, we assumed the features were normally distributed with a
separate distribution for each outcome class. For Y = 0, we modeled the feature as A/(0, 1) and
for Y = 1, we modeled the features as N (u,0) where p was a parameter we controlled. By
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Figure 1: Distribution of binary features in the simulated 7, = 0.5, N = 1,000 model.

increasing u, the distributions would have less overlap, and hence, the value of a specific point
would provide more information about the outcome.

For our study, we choose the same feature imbalances and odds ratio as found in Boulesteix
et al. (2012), which correspond to 71 = {0.5,0.4,0.25,0.1,0.05} and OR = {3,1.5,1}, cre-
ating 15 binary features. Unlike Boulesteix et al. (2012), we chose to have a single feature with
an odds ratio of 1 for each 7, rather than the 48 they use. We do so to keep the total number
of features on the order of 10 rather than 100. We then created five continuous features with
w={0.75,0.50,0, 0,0}, for a total of 20 features. We discuss our choice in the limitations.

We then generated these features for five outcome imbalances, 71, = {0.5,0.4,0.3,0.2,0.1},
and three sample sizes, N = {100, 1,000, 10,000} for a total of 15 simulated data sets. A vi-
sual depiction of the binary features in the 7, = 0.5 and NV = 1, 000 case is shown in Figure 1
and a visual depiction of the continuous features in that same case is shown in Figure 2.

3.2. PROCEDURES
3.2.1. Forest Algorithms

To analyze our dataset using forest algorithms, we first randomly selected 70% of the cases for
the training set and kept the remaining 30% of the dataset for the testing set. Our prior work
with random forest suggests that the size of the train/test split did not qualitatively affect the
conclusions around variable importance and selected features (Young et al., 2019). We then used
the randomForest function from the randomForest package (Liaw and Wiener, 2002) to
create random forest models and the cforest function from the party package (Hothorn
et al., 2006; Strobl et al., 2007; Strobl et al., 2008) to create conditional inference forests in R
(R Core Team, 2018).

For both models, we set the number of trees to 500 as that is the default in the cforest
algorithm, and simulation studies of random forests have found that errors rates level off on the
order of a few hundred trees (Svetnik et al., 2003). For the number of features per tree, we
picked ,/p where p is the number of features, which is also aligned with the recommendations
of Svetnik et al. (2003). We have called this m previously to distinguish from probability in the
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Figure 2: Distribution of continuous features in the simulated 7 = 0.5, N = 1,000 model.

logistic model but use p here because it is the common symbol in the random forest literature.

For the random forest algorithm, we then computed the Gini importance. For the accuracy
permutation importance and the conditional inference algorithm, we computed the AUC permu-
tation importance and accuracy permutation importance. We repeated this procedure of splitting
the data, running the model, and calculating the importances 30 times so that the resulting distri-
bution of the importances would be approximately normal according to the central limit theorem
(Heyde, 2014).

Next, we determined the rank of each feature based on its average value over the 30 runs,
where the feature with the largest importance value would have rank 1. This type of approach is
often used in screening studies to determine relevant features, which is what we are doing here
(Hooker et al., 2021).

To evaluate bias in the Boulesteix et al. (2012) paper, they approached bias as the difference
from the expected value of zero in the null case and argued that bias when the features have odds
ratios different 1 was not well defined. Because we are interested in selecting features, we can
create a definition of bias based on the rank of the feature. If a forest algorithm is biased, we
would expect to see that features with higher imbalance should have a larger rank (i.e. be farther
from 1) than features with identical odds ratios but smaller imbalances.

Using these ranks, we can also define bias in terms of the features detected by the algo-
rithm. Assuming no bias, features with identical odds ratios should be detected at the same rate,
regardless of their imbalance.

To determine if a feature was detected, we adopt the convention that detected means different
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from noise. We define detected as being ranked above the first noise feature, which has OR =
1 or p = 0. We picked this convention so that it is somewhat analogous to the definition
statistically significant, which for explanatory models, is that the probability of obtaining a result
at least as extreme as the result observed under the assumption of the null hypothesis is less than
some threshold, typically 0.05.

3.2.2. Regression Algorithms

To use logistic regression in an explanatory manner, we did not use a train/test split as that ap-
proach is characteristic of a predictive approach and instead, used all of the data as is customary
for explanatory modeling. To create a logistic regression model, we used the g1lm function that
is part of base R with the option family="binomial’ to use logistic instead of linear re-
gression. Because log-F is based on data augmentation, we also used glm for that approach.
Prior work suggests that a choice of m = 1 performed better than a choice of m = 2, and m =1
is a good starting choice when nothing is known about the size of the odds ratios (Rahman and
Sultana, 2017; Greenland and Mansournia, 2015). Even though we “know” the true values of
the odds ratios because we built them in, we want to approach the problem as if it were real data
and we do not have any prior information about the features. We then used the default weights
of m /2 for the log-F model.

To run the Firth penalization, we used the brglm function from the brglm package (Kos-
midis, 2020; Kosmidis and Firth, 2020). Per the function’s documentation, the choice of p1 is
irrelevant for logistic regression so we left it at its default value.

For all three approaches, we used the confint function to compute the confidence inter-
vals. For the Firth penalization, we picked ci.method to be "mean’ as the brglm docu-
mentation suggests it is a less conservative approach. We then say that a feature was detected
or statistically significant if zero is not in the confidence interval or in the case of odds ratios
instead of the raw coefficients, one (du Prel et al., 2009).

To get a sense of how the odds ratio varied based on the data, we also ran a bootstrapped sim-
ulation. That is, we randomly selected 80% of the cases and ran the standard logistic regression,
Firth penalization, and log-F penalization models on that data. We did this 10,000 times.

To create the lasso, ridge, and elastic net models, we again used a train/test split because these
algorithms are designed for prediction rather than explanation. To align with the bootstrapping
procedure, we used 80% of the cases for the training data and 20% for the testing data. Because
lasso and ridge have a single tuning parameter, A that controls the amount of penalization, we
used the cv.glmnet function to find the optimal value of A\. We then used the glmnet
function to train the lasso and ridge models with their respective best value of A (Friedman
et al., 2010). We again repeated this process 10,000 times.

Finally, we used the t rain function from the caret package to find the best values of «
and A for elastic net and create the model (Kuhn, 2020). We again did this 10,000 times with
80% of the data used as training cases.

To analyze the bootstrapped results and generate confidence intervals for the values of the
odds ratios, we used the percentile bootstraps (Efron, 1982). Under this approach, all of the
bootstrap estimates are sorted from smallest to largest. For a given «, the bootstrap confidence
interval is interval lying between the 100 x § and 100 x (1 — §) percentiles. We chose a = 0.05
to form a 95% bootstrapped confidence interval.
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3.3. NEUTRAL COMPARISON STUDY RATIONALE

Following the call of Boulesteix et al. (2013) for neutral comparison studies in the computational
sciences, we address their three criteria and why we believe we have met these criteria.

A. The main focus of the article is the comparison itself. It implies that the primary goal
of the article is not to introduce a new promising method. As stated in the introduction, we are
not introducing a method that we have developed and the focus of our paper is on comparing
different methods rather than showing the usefulness of a certain method.

B. The authors should be reasonably neutral. We have not developed any of the algorithms
or techniques used in this study and hence, we have no stake in which method might perform
best. We also have experience using predictive and explanatory methods and have used these
techniques in our previous work.

C. The evaluation criteria, methods, and datasets should be chosen in a rational way, Our
methods and simulated data are based on a previously published simulated study, so we believe
they are rational. We believe our evaluation criteria for detecting is rational because it is intuitive,
objective, and based on prior approaches. We acknowledge that other approaches do exist and
we address those in the discussion.

4. SIMULATION RESULTS

4.1. FOREST ALGORITHM RESULTS

When looking at a subset of the results in Figure 3, we see similar results to Boulesteix et al.
(2012). That is, for the Gini importance, represented by plot A, continuous features are ranked
higher than binary features regardless of whether they are noise features or not. For the permu-
tation importances, we see that more balanced features tend to have larger importances than less
balanced features even when they have the same odds ratios. For example, when looking at Fig-
ure 3D, we see that the features OR=3, 60/40 and OR=3, 50/50 have much higher importances
than the OR=3, 90/10 and OR=3, 95/5 features. Similar trends are shown in plots B and C.

To compare across outcome imbalances, we aggregated all 3 sample sizes and 5 outcome
imbalances into a single plot for each importance method. The results are shown in Figure 4.

Again, the Gini importance, Figure 4A, shows a preference toward continuous features and
against binary features for all sample sizes and outcome imbalances. More specifically, there
was not a single sample size or outcome imbalance in which any of the categorical features were
detected.

For the permutation algorithms, the results are similar regardless of whether the accuracy-
based or AUC-based permutation method is used. Regardless of outcome imbalance and sample
size, more balanced features with smaller imbalances tend to rank higher than less balanced
features with identical odds ratios. This result is reflected in the plots by the decreasing dot size
from top to bottom in any of the rectangles formed by the dotted lines. In cases of high outcome
imbalance, moderately imbalanced features might rank higher than the balanced feature (e.g.
the Binary OR=3 features for the N=10,000 90/10 case in Figure 4D), but the most imbalanced
features never rank higher than the balanced feature with the odds ratio. In fact, the OR=1.5
50/50 feature ranks higher than the OR=3, 95/5 feature for some of the models.

When looking at sections of columns of the plots in Figure 4, we notice that most informative
features cannot be detected for N = 100, regardless of which algorithm is used. In fact, only
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Figure 3: Importance values for a subset of the random forest models. Feature names shown
in black were constructed to be informative while feature names in grey were constructed to
be noise. Plot A shows the N=1,000 70/30 outcome imbalance case with the standard random
forest algorithm and Gini importance, plot B shows the N=1,000 50/50 outcome imbalance
case with the standard random forest algorithm and accuracy permutation importance, plot C
shows the N=100, 50/50 outcome imbalance case with the conditional inference forest and AUC-
permutation importance, and plot D shows the N=10,000 60/40 outcome imbalance case with
conditional inference forest and accuracy-permutation importance. For all of the permutation
importances, features with less imbalance tend to have larger importances than more imbalanced
features for identical odds ratios.
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Figure 4: The ranks of the informative features for the four importance measures, grouped by
the sample size and outcome imbalance. Any feature ranked below a noise feature was assigned
arank of 0 and hence, results in no circle appearing in the corresponding location. Here, a larger
circle reflects a higher rank, meaning the feature was more predictive of the outcome. Over-
all, features with lower imbalance rank higher than features with higher imbalance for a given
odds ratio, and the result is not affected by the outcome imbalance or the specific permutation
importance or forest algorithm used.
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the less imbalanced OR=3 features and the more predictive continuous feature can be detected,
and even then, that depends on the level of outcome imbalance.

For the N = 1,000 case, most of the OR=3 features can be detected. However, only the less
imbalanced OR=1.5 features are detected in most cases. Across the three permutation-based
importances, there does not appear to be a consistent pattern for which OR=1.5 features are
detected based on the outcome imbalance.

For the N = 10,000 case, nearly all of the features can be detected, with the exception
being the highly imbalanced OR=1.5 95/5 feature. Again, there is not a consistent pattern as
to when this feature will not be detected based on the outcome imbalance. While the OR=1.5,
95/5 feature is never detected in the 50/50 outcome imbalance, it is sometimes detected in the
70/30 and 90/10 outcome imbalance cases, making a pattern difficult to generalize based on the
outcome imbalance.

4.2. LOGISTIC REGRESSION RESULTS

In addition to detecting features, logistic regression provides an estimate of the odds ratio, which
can give us an idea of how accurately algorithms are modeling the built-in odds ratios. Because
the odds ratios and confidence intervals determine detection, we present those first. The odds
ratio results are shown in Figure 5.

From the N = 100 case, plot A, we see that the 95% confidence intervals for most features
span at least an order of magnitude regardless of the feature imbalance or outcome imbalance.
However, the width of the confidence interval tends to increase with both increasing feature
imbalance and increasing outcome imbalance. For example, for the OR=3 90/10 and OR=3
95/5 features with a 90/10 outcome imbalance, the confidence intervals are too wide to fit on a
plot that spans 6 orders of magnitude. In some cases, the width of the confidence interval for a
balanced feature with a highly imbalanced outcome can be comparable to a highly imbalanced
feature with a balanced outcome such as OR=1.5 60/40 with a 90/10 outcome imbalance and
OR=3; 95/5 with a 50/50 outcome balance.

Given the width of the confidence intervals, our built-in value of the odds ratio is always
contained in the confidence intervals. However, when looking at the actual estimate of the odds
ratio, we see varying degrees of accuracy. For some features, like OR=1.5; 50/50, the 80/20
outcome imbalance was the most accurate estimate while for OR=3; 60/40, the 60/40 outcome
imbalance was the most accurate imbalance. In general, there was no specific trend where the
discrepancy between the estimated value and the built-in value varied with increasing feature or
outcome imbalance. In addition, there was no consistent trend where the estimated odds ratio
over- or under-estimated the built-in value.

For the N = 1,000 and N = 10,000 cases, we notice that the confidence intervals have
considerably shrunk and now span on the order of a single magnitude. This is true even for
most imbalanced features with the most imbalanced outcome. Nevertheless, the widths of the
confidence intervals still tend to increase with both increasing feature imbalance and outcome
imbalance.

As with the N = 100 case, the built-in values are included in the confidence intervals and
there is no consistent trend as to whether the estimated odds ratio over- or under-estimates the
built-in value. We note that there is an exception to this for cont; noise2 and 50/50 outcome
imbalance on the N = 10,000 plot where the noise feature is found to have an odds ratio less
than 1.
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Figure 5: Values of the odds ratios and 95% confidence intervals found by logistic regression
models compared by outcome imbalance. Our built-in value is represented by the circled plus.
Plot A is a sample size of N = 100, plot B is a sample size of NV = 1,000 and plot C is a sample
size of N = 10,000. Confidence intervals without an end cap signify the error bar extends
beyond the scale. Note the log scale on the horizontal axis and the different scale on (A) to show
the error bars. In general, the confidence interval width increases with increasing feature and
outcome imbalance and decreases with increasing sample size.
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Figure 6: Analog of Figure 4 but using logistic regression as the algorithm and statistical sig-
nificance as the criteria for detection, o« = 0.05. Plot A uses the Holm-Bonferroni correction to
control for multiple tests while plot B uses the uncorrected p-values. Similar to Figure 4, fea-
tures with lower imbalance are more likely to be found as statistically significant than features
with higher imbalance for a given odds ratio.

Next, we can conduct an analysis similar to what we did with the forest algorithms and
determine which features are detected by logistic regression. Here, because we are using logis-
tic regression in an explanatory manner, we use the p-value to determine whether a feature is
detected, with statistical significance meaning less than a chosen cutoff, a. Because we are con-
ducting multiple tests of statistical significance, we should control for false positives. Therefore,
we present the results with and without a Holm-Bonferroni correction (Holm, 1979), which is
less conservative than the traditional Bonferroni correction. The correction is applied within
each dataset because for a study with real data, we would only have one dataset. The results are
shown in Figure 6

For N = 100, when we apply the Holm-Bonferroni correction, the continuous feature with
the largest 1 is the only one to be detected and even then, only for minor outcome imbalances. If
instead, we do not apply any corrections, logistic regression is able to detect a few of the OR=3
features however these tend to be the ones with lower imbalances. That is, even with a generous
definition of statistical significance, logistic regression is unable to detect features with moderate
odds ratios or features with large odds ratios but higher imbalances.

For N = 1,000, logistic regression is able to detect both continuous features and most of
the OR=3 features regardless of whether we applied a correction to the p-values or not. Unlike
the V = 100 case, we are able to detect some of the OR=1.5 features though only features with
lower imbalances and this depends on whether we apply a correction or not. When we apply
the correction, we were only able to detect two of the OR=1.5 features across any of the five
outcome imbalances, while if we did not apply the correction, we could detect ten.

Finally, for N = 10,000, we were able to detect all of the informative features, regard-
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less of whether we applied a correction or not. However, one of the continuous noise features
was marked as statistically significant in the 50/50 outcome imbalance and the 70/30 outcome
imbalance cases (not shown in plots). One of these disappeared when we applied the p-value
correction while one did not, suggesting that with enough data, random variations in the data
might appear as signals.

4.3. PENALIZED REGRESSION RESULTS

Given the result from Section 4.2 that most features are detected for N = 10, 000 even without
correction, we chose to focus on the N = 100 and N = 1,000 cases as areas where penalized
regression might offer a benefit. To get a representative picture of how penalized regression
might help, we then applied the algorithms to the 50/50, 70/30, 90/10 imbalanced outcome
datasets, representing no imbalance, medium imbalance, and high imbalance.

4.3.1. Confidence interval approach

Because Firth and Log-F penalized regression are designed for explanatory approaches, we can
use them to generate confidence intervals. The results for the N = 100 datasets are shown in
Figure 7, and the results for the N = 1, 000 datasets are shown in Figure 10 in Appendix A. Here,
we only present the uncorrected 95% confidence intervals because if we do not find a benefit on
the uncorrected confidence intervals, we would not find one on the corrected versions.

For the V = 100 case, we notice that the Firth and Log-F penalizations tend to have smaller
confidence intervals, and in many cases, are closer to the built-in odds ratio than traditional
logistic regression is.

For the 50/50 case, all three algorithms produce similar confidence intervals for more bal-
anced features such as OR=3; 50/50. For the highly skewed features such as OR=3; 95/5, Firth
and Log-F penalizations do shrink the confidence interval compared to the traditional method
with Log-F appearing to offer a greater benefit. However, none of the shrinking makes a differ-
ence as to whether the feature would be statistically significant or not compared to traditional
logistic regression.

When we instead look at the moderately imbalanced 70/30 case, we see similar results. That
is, the Firth and Log-F penalizations appear to provide a greater benefit in terms of shrinking the
confidence interval for features with greater imbalance, though again, the benefit is not enough
to change whether a feature would be detected.

For the highly imbalanced 90/10 case, both penalizations reduce the confidence intervals
regardless of the feature’s imbalance. The benefits are most clear however for the most imbal-
anced features. For example, for OR=3; 90/10, Log-F penalization reduces the width of the
confidence interval by nearly 3 orders of magnitude compared to the traditional logistic regres-
sion. As in the 50/50 and 70/30 cases, the penalizations do not affect whether a feature would
be statistically significant, but the penalizations still do produce more accurate estimates of the
built-in odds ratios than traditional logistic regression does.

Looking at the N = 1, 000 results in Figure 10 in Appendix A, we notice that the confidence
intervals of the penalized regression methods are similar in length to those of traditional logistic
regression. This result is true regardless of the feature imbalance or the outcome imbalance.

When it comes to estimating our built-in odds ratio, the penalized methods do not offer much
of an improvement over traditional logistic regression. Indeed, for lower imbalanced features,
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Figure 7: 95% confidence intervals for Firth penalized, traditional, and Log-F penalized logistic
regression for the N = 100 datasets. Plot A shows the 50/50 outcome imbalance, plot B shows
the 70/30 outcome imbalance, and plot C shows the 90/10 outcome imbalance. Confidence

intervals that span beyond the scale

are removed from the plot. For higher outcome imbalance,

Firth and Log-F penalizations can considerably shrink the confidence intervals.

all three methods tend to provide similar estimates, while for higher imbalanced features, there
is no clear trend as to which method will provide an estimate closest to that of the built-in value.

4.3.2. Bootstrap approach

In addition to only considering whether the algorithm detects a feature, we can also get a sense of

what range the estimated odds ratio

o1

will fall in using the five different penalization approaches.
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Figure 8: 95% percentile bootstraps of the odds ratio for elastic net, Firth, lasso, Log-F, no, and
ridge penalizations on the N = 100 data. Dots represent the median value. Plot A shows the
50/50 outcome imbalance, plot B shows the 70/30 outcome imbalance, and plot C shows the
90/10 outcome imbalance. Confidence intervals without an end cap signify the error bar extends
beyond the scale. In general, traditional logistic regression has the widest confidence intervals

The results from the /N = 100 datasets are shown in Figure 8 and the results from the N = 1, 000
datasets are shown in Figure 11 in Appendix A.

From the N = 100 plot, we see that spread of the estimated values varies between the differ-
ent methods. For higher feature imbalances, traditional logistic regression and Firth penalized
regression often have the widest distributions. Because lasso shrinks the coefficients to zero (or
equivalently, odds ratios to 1) and ridge reduces the variance of the estimate, these two methods
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often have the most compact distributions.

Likewise, in terms of the median estimate of the odds ratio, we see variation between the
methods. Because lasso shrinks estimates and ridge scales estimates, these two underestimate
the built-in odds ratio. We also find this behavior with elastic net, which is a middle group
between the two. However, elastic net often includes the built-in odds ratio within its interval
even when lasso and ridge do not. This result is especially true for higher feature and outcome
imbalances.

Log-F penalization on the other hand often takes a middle ground on both estimates and
distribution width. Regardless of the feature or outcome imbalance, Log-F does not consistently
over- or under-estimate the built-in odds ratio and does not have the widest distribution of the
estimates.

From the N = 1, 000 results shown in Figure 11 in Appendix A, we see that the six methods
tend to produce similar results for more balanced features, even at higher outcome imbalances.
The exception is the Firth penalization for higher imbalance features (e.g. OR=3; 90/10). For
these higher imbalance features, the Firth penalization estimates can be nearly an order of mag-
nitude larger than the estimates produced by other methods.

As in the N = 100 case, we find that lasso and ridge tend to underestimate the built-in odds
ratio for the NV = 1, 000 case. Unlike the N = 100 case, however, the built-in value is included
in the bootstrapped confidence interval.

In most cases, elastic net, Log-F, and logistic regression tend to have similar distribution
widths and have the built-in odds ratios within their intervals. While elastic net under-predicts
the built-in value, Log-F penalized and traditional logistic regression do not show a consistent
pattern as to whether they over- or under-predict the built-in value.

5. APPLICATION TO REAL DATA

In this section, we apply the results of our simulation study to a graduate admissions dataset.
Our dataset comes from the application records of over 5,000 applicants to the physics grad-
uate program at 6 Big Ten or Midwestern universities over two years. The data includes the
applicant’s GRE scores, undergraduate GPA, undergraduate university, demographics such as
binary gender, race, domestic status, whether the applicant made the shortlist, and whether the
applicant was admitted to the program. Details about these features can be found in Posselt et al.
(2019).

We can then treat each of the six physics graduate programs as a separate case study, which
is an approach we have used in our previous work (Young and Caballero, 2020). Doing so
allows us to vary the sample size and the outcome imbalance. For the six graduate programs in
the dataset, the smallest program had N = 140 applicants over the two years while the largest
had N = 1228. When considering whether the applicant made the shortlist or was admitted, the
outcome imbalance ranged from 53 /47 to 83/17, which means that the sample size and outcome
imbalances are on the same scale as the data we used in our simulation study.

We then selected a subset of the programs that represent a small and medium dataset with
a more balanced and less balanced outcome. Specifically, we modeled school 1’s admission
(N=140, 59/41), school 2’s shortlist (N=431, 78/22), and school 3’s shortlist and admission
(N=1228, 60/40 and 78/22) respectively. In the initial paper using this data, Posselt et al. (2019)
analyzed shortlist and admissions separately, and hence, we do so here.
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Table 4: Feature and outcome imbalances for the binary features from actual graduate school
admission data. Numbers in the table refer to the percent of cases in each category of the binary
feature.

Feature School

School 1 School2 School3 School 3
Admit Admit Shortlist Admit

Outcome 59/41 83/17 59/41 76/24
Gender 79/21 81/19 85/15 85/15
Domestic NA 71/29 50/50 50/50
Year 57/43 55/45 51/49 51/49
Race=Asian 87/13 64/36 52/48 52/48
Race=Black 96/4 99/1 99/1 99/1
Race=Latinx 81/19 91/9 99/1 99/1
Race=Multi 96/4 97/3 93/7 93/7

BinaryNoisel  60/40 60/40 60/40 60/40
BinaryNoise2  75/25 75125 75125 75125
BinaryNoise3 ~ 90/10 90/10 90/10 90/10
BinaryNoise4  95/5 95/5 95/5 95/5

N 140 431 1228 1228

51. METHODS

To analyze the real data, we used five approaches. First, we use logistic regression and random
forest with the Gini importance as they are the “default” methods. Based on the results of the
simulation study, we then chose to use Log-F, as it performed either better or no worse than Firth,
elastic net, as it performed better than lasso or ridge and retains the benefits of both, and con-
ditional inference forest with the AUC importance, as all of the permutation-based importance
measures performed similarly.

To mimic the simulation study and know which features were certainly noise, we added four
binary noise features (imbalances of 60/40, 75/25, 90/10, and 95/5, which we refer to as Bi-
naryNoisel, BinaryNoise2, BinaryNoise3, BinaryNoise4) and three continuous noise features.
The binary features and their imbalances for the four datasets are shown in Table 4.

To run the models, we used the same R packages as in the simulation study. However, for
real data, we should be interested in how well the model fits and hence, need to include some
measure of that. For the logistic regression-based methods, we used the standard McFadden
pseudo-R? implemented in the DescTools package via the PseudoR2 function (Signorell,
2020), where a good value is between 0.2 and 0.4 (McFadden, 1977). While other choices of
pseudo-R? exist, Menard (2000) suggests that there is little reason to prefer one over another,
but McFadden’s might be preferable because it is intuitive.

To connect the forest methods with the logistic regression methods, we also computed the
AUC for each model, which follows the recommendation of Aiken et al. (2021). To do so, we
used the AUC function from the ModelMetrics package (Hunt, 2020). We interpreted an
AUC of at least 0.7 as a good model (Araujo et al., 2005).
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Table 5: McFadden Pseudo R? values for the explanatory models

School 1 School 2 School 3 shortlist School 3 admit
Logistic Regression  0.256 0.215 0.199 0.203
Log-F 0.252 0.215 0.199 0.203

Table 6: AUC values for the various models on the four datasets

School 1 School 2 School 3 shortlist School 3 admit

Logistic Regression 0.826 0.806 0.790 0.799
Log-F 0.825 0.805 0.790 0.799
Elastic (Train) 0.830 0.807 0.785 0.799
Elastic (Test) 0.690 0.734 0.771 0.779
Random Forest (Train) 0.547 0.529 0.688 0.613
Random Forest (Test) 0.564 0.521 0.686 0.616
Conditional Inference Forest (Train) 0.749 0.517 0.793 0.674
Conditional Inference Forest (Test)  0.594 0.500 0.681 0.597

For the predictive methods, elastic net, random forest, and conditional inference forest, we
used the same procedure as in the simulation study except now used an 80/20 train/test split for
all methods and calculated the AUC on both the training and testing datasets.

5.2. RESULTS

First, we present the metrics used to assess our model, which are shown in Table 5 and Table 6.
We notice that except for school 3 shortlist, all of the pseudo R? are within the accepted range
(> 0.2). When looking at the AUC values, we notice that the regression models outperform the
forest models, and in most cases, the forest models do not produce an AUC in the acceptable
range. As our goal is not to make the best model but rather to extract features, we did not do any
parameter tuning for the forests. We discuss these metrics more in the discussion.

Because the conclusions from the four datasets are similar, we share only the results of
school 1 and provide plots for the other datasets in Appendix A for completeness. The results
of algorithms applied to the school 1 dataset are shown in Figure 9. When looking at plot A,
we notice that Log-F noticeably shrinks the confidence interval for highly skewed features like
RaceBlack. In exchange though, the estimate of the odds ratio is shrunk closer to OR = 1 for
nearly all the features. Even though elastic net is showing the percentile bootstrapped confi-
dence interval instead of the statistical confidence interval, the results tend to be aligned with
the other methods. That is, the median value is on the same order of magnitude as the other es-
timates and the endpoints of the confidence interval are also on the same order of magnitude as
the other estimates. When comparing the different methods, we see that none of the three algo-
rithms would have led to different conclusions about which features are statistically significant
or not. From plot A, the statistically significant features would be VGRE, UGPA, RaceMulti,
RaceLatinx, RaceBlack, and BinaryNoisel. In the case of BinaryNoisel, which is supposed to
be a noise feature, we note that due to the random nature of generating the feature, the odds ratio
was smaller than 1, and hence, the algorithms appear to have detected that small difference.
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When we move to plot B, we note that the continuous features are all ranked above the
binary features as expected. As a result, all features except for one rank lower than the first
noise feature.

Finally, when we move to plot C, we notice that only four features are detected, which is
smaller than the regression approaches. Because prediction and explanation have different goals,
we would not expect them to identify the same features. Yet, multiple approaches identifying
the same features suggest that these features are in fact, distinct from noise.

One interesting point to note is that we see some ranking issues based on imbalance. For
example, using a 2x2 contingency table to calculate the theoretical odds ratios, RaceMulti should
have an odds ratio of 2.96 while RaceLatinx should have an odds ratio of 2.25. However, because
RaceLatinx has an imbalance of 80/20 while RaceMulti has an imbalance of 96/4, RaceLatinx is
detected by the AUC-permutation importance while RaceMulti is not.

6. DISCUSSION

Here we address our research questions and consider how our choices and approaches might
have impacted the conclusions we can draw from this study. We include a summary of the
advantages and disadvantages of each algorithm based on our study and prior work in Table 7.

6.1. RESEARCH QUESTIONS

How might known random forest feature selection biases change when the outcome is imbal-
anced as is often the case in EDM studies, and does the AUC-permutation importance affect
those biases? When we vary the outcome imbalance as well as the feature imbalance, we still
observe the same general trend as seen in Boulesteix et al. (2012). That is, features with higher
imbalance are less likely to be detected compared to features with lower imbalances but the
same odds ratio. In fact, the bias might become worse for high outcome imbalances because it
is harder to train a “good” model when most of the cases have the same outcome.

In opposition to the claims of Janitza et al. (2013), we do not find the AUC permutation
importance to outperform the accuracy permutation importance. In fact, we find that the AUC
permutation importance and the accuracy permutation importance perform similarly, regardless
of the outcome imbalance. Further, we did not find any consistent differences in terms of the
features detected by either random forest or conditional inference forest even though conditional
inference forest is supposed to be better suited for categorical data (Strobl et al., 2007).

We also see this preference for features with smaller imbalances in the real data. For exam-
ple, for school 1, we saw that the more balanced RaceLatinx was detected over the less balanced
RaceBlack and RaceMulti even though the theoretical odds ratio of RaceLatinx was smaller than
that of the other two features.

Across the real data and simulated data, we see the expected bias with the Gini importance in
which the continuous features are ranked higher than any of the categorical features. This result
is most noticeable in Figure 4 plot A where only continuous features are detected and Figure 9
plot B where all of the continuous noise features outrank all but one feature.

How might known machine learning biases manifest in traditionally explanatory techniques
such as logistic regression? We see similar biases in logistic regression as we see in the random
forest for feature selection. For a sample size of N = 100 with a multiple comparison cor-
rection, we are unable to detect most features, and even without correction, we can only detect
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low imbalance OR=3 features. The uncorrected results are similar to those of the permutation
importances for the forest algorithms.

For N = 1,000, we can detect most OR=3 features and without correction, low imbalance
OR=1.5 features. Again, the uncorrected logistic regression results resemble those of the forest
algorithms but seem to be more aligned with the conditional inference forest results than the
random forest results.

Once we get to a large sample size, N = 10, 000, we can detect nearly all features, just as
we can for the forest algorithms. However, for logistic regression, we also get an occasional
false positive. Given the size of the data, it is not unreasonable that the logistic regression model
might be picking up on minor differences in the noise features which it treats as a signal.

With explanatory techniques like logistic regression, we could also investigate how well they
estimated the built-in odds ratio. We found that while the built-in value is almost always in the
confidence interval, this has more to do with the width of the intervals than the ability of the
algorithms. In general, confidence interval width increases with feature and outcome imbalance
and decreases with sample size. The decrease in width as the sample size increases corresponds
to what we would expect based on the conclusions of Nemes et al. (2009).

We also observed the same general trend for the real data. Features with higher imbalances
tend to have the widest confidence intervals, which can span several orders of magnitude.

How might penalized regression techniques successfully applied in other disciplines be used
in EDM to combat any discovered biases?

While none of the five techniques we tried, Firth penalization, Log-F penalization, lasso,
ridge, or elastic net, corrected the bias, they did show promise for use in future EDM studies.

For explanatory methods, Firth and Log-F were found to shrink the confidence intervals,
especially for highly imbalanced features and highly imbalanced outcomes. While Firth can
still show wide confidence intervals, the Firth confidence intervals were found to be smaller
than those of traditional logistic regression. On the other hand, Log-F provided at worst similar
performance to Firth penalization and for higher imbalances, seemed to shrink the width of the
confidence interval more than Firth penalization did. We found that both of these methods were
most useful for smaller datasets, N = 100, while for the medium and larger datasets, their
performance was similar.

When it came to the distributions of the estimated odds ratios, Log-F often showed a smaller
distribution. While the results were comparable for the small datasets, for medium datasets
and features with high imbalance, Firth penalization overestimated the odds ratio and had more
variability. Conversely, Log-F produced more accurate and less variable distributions.

For predictive methods, lasso, ridge, and elastic net were only used in a bootstrap, so we can-
not discuss the confidence interval width. We can however discuss the distribution of estimated
odds ratios.

For lasso and small datasets, we find that many of the features are shrunk to zero, especially
for higher imbalances. For example, even for a small, balanced sample, many of the OR=1.5
features were shrunk to zero while the other methods did not treat them as consistent with noise.
Elastic showed similar results although the effect was not as severe.

For ridge and small datasets, the distribution of the estimated odds ratio was often the small-
est for a given dataset. Given that ridge is designed to shrink the variability of the estimates, this
finding is not surprising.

For medium datasets, lasso, ridge, and elastic net performed similarly to the other methods
in terms of the distribution of estimated odds ratios.
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While our results generally agree with other studies, a true comparison is difficult because
each study used its own subset of the algorithms, including ones we used in our study as well
as ones we did not. Therefore, which algorithm performed best and under what circumstances
depends just as much on the algorithms it was compared to as the algorithm itself.

In general, other studies have tended to find that Firth penalization does outperform logistic
regression in the case of outcome imbalance (Heinze and Schemper, 2002; van Smeden et al.,
2016; Kim et al., 2014; Doerken et al., 2019) and Log-F penalization shows promise when work-
ing with imbalanced data and can outperform Firth-penalization (Ogundimu, 2019; Rahman and
Sultana, 2017).

Likewise, studies like Pavlou et al. (2016) have found that ridge penalization works well
except when there are many noise features while lasso performs better when there are many
noise features but limited correlations, which is consistent with our results. Their study also
found that elastic seemed to perform well in all cases, which generally matches what we found.

In terms of our finding that none of the methods fixed the issues around feature or outcome
imbalance, Van Calster et al. (2020) reported a similar finding for shrinkage techniques. Specif-
ically, they found that despite working well on average, shrinkage techniques often did not work
well on individual datasets, even in cases where the techniques could have provided the most
benefit such as in small sample size or low events per variable cases. Even though the techniques
did not solve any of the issues in our study, they still showed promise for reducing the scale of
the confidence intervals and warrant greater adoption by the EDM communities.

6.2. LIMITATIONS AND RESEARCHER CHOICES

In this section, we shift our focus from the results of the research questions and instead consider
how our choices around constructing the simulated data, tuning or not tuning our models, defin-
ing “detected features,” and assessing the models might have impacted the conclusions we can
draw from this study.

6.2.1. Our datasets

For our simulation study, we used the same levels of information as in the Boulesteix et al. (2012)
study which we wished to extend. We followed their convention that OR = 3 corresponded to
a large effect while OR = 1.5 corresponded to a moderate effect. However, Olivier and Bell
(2013) noted that what constitutes a large, medium, or small odds ratio depends on the feature
imbalance, outcome imbalance, and correlations. Therefore, even though we are using the same
odds ratios for the different imbalances, they might not necessarily contain the same amount of
predictive or explanatory power in a “large”, “medium”, or “small” sense.

One noticeable difference between our study and the Boulesteix et al. (2012) study was
the number of features. In EDM studies, the number of features can vary from the order of
10 features (Mu et al., 2020; Li and Paquette, 2020; Zhao et al., 2020; Nguyen et al., 2020;
Bulathwela et al., 2020) to the order of 100 features (Sanyal et al., 2020; Aulck et al., 2020;
Hur et al., 2020; Bosch et al., 2020; Korosi et al., 2018) to over 1,000 features e.g. (Sanyal
et al., 2020). Furthermore, a recent review of 62 student performance prediction papers found
that around a third of the papers had 3 or fewer features while over half had at least 4 features,
with a maximum number of 254 features (Namoun and Alshanqiti, 2021). As our prior work has
tended to have the number of features on the order of 10, a recent EDM simulation study also
studied this number of features (Autenrieth et al., 2021) and the Boulesteix study focused on
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data with the order of a hundred features, we chose to study data where the number of features
is on the order of ten although other ranges are equally valid to study and should be investigated
in future studies.

Even at the order of 10 features, however, one could argue that we still had too many features
based on our sample size. For example, a rule of thumb is that there should be at least 10 cases
of the minority outcome for each feature in the model, referred to as the events per variable
(Peduzzi et al., 1996; Austin and Steyerberg, 2017). In that case, we would have needed at least
a sample size of 400 for the 50/50 outcome imbalance and a sample size of 2,000 for the 90/10
outcome imbalance case.

However, recent work has called into question whether this rule of thumb is supported by
evidence (van Smeden et al., 2016). van Smeden et al. (2019) found that events per variable
did not have a strong relation to the model’s predictive performance and instead, recommended
that a combination of the number of predictors, the total sample size, and the events fraction
be used to assess sample size criteria. Likewise, Courvoisier et al. (2011) found that logistic
regression can encounter problems even if the events per variable were greater than 10 and
concluded that there is no single rule for guaranteeing an accurate estimate of parameters for
logistic regression. Even if the rule of thumb were true for logistic regression, Pavlou et al.
(2015) claim that penalized regression is effective when the events per variable is less than 10.

6.2.2. Hyperparameter tuning

For our simulation study, we did not do extensive hyperparameter tuning for the forest algo-
rithms. We did this because 1) Probst et al. (2019) found that random forest is robust against
hyperparameter specification, its performance depends less on the hyperparameters than other
machine learning methods, and its default choice of hyperparameters is often good enough and
2) Couronné et al. (2018) states that for a method to become a standard tool (as random forest
is in EDM)), it needs to be easy to use by researchers without computational backgrounds and
cannot involve complex human interaction, which is not true of hyperparameter tuning.

In addition, we only do hyperparameter tuning for lasso, ridge, and elastic because testing
multiple values for ) is built into the glmnet algorithm that we used to run the models. Even
then, recent work suggests that optimizing A for small or sparse datasets results in substantial
variability of the coefficients, and the found A might be negatively correlated with the optimal
values, meaning that hyperparameter tuning might not have been advisable for our data in the
first place (Sinkovec et al., 2021).

However, for completeness and to minimize computation time needed, we did experiment
with multiple choices for the number of trees in the forest, n4..., and the number of features
used for each tree, mtry. For the conditional inference forests with the AUC importance, a
sample size of N = 1,000 and outcome imbalances of 50/50, 60/40, 70/30, 80/20, and 90/10,
we tried 1y = {50, 100,500, 1000,5000} and mtry = {1,p/3,\/p,p/2,p} where p is the
total number of features in the model. We did not find any meaningful differences in which
features were selected and no set of the hyperparameters consistently performed better than the
default (n4.. = 500, mtry = /p). Therefore, we used the default choices throughout the study.

6.2.3. Determining Detected Features

For the forest algorithms, we chose to use the simple and intuitive method of whether the feature
ranked above the first noise feature to determine which features were detected. We were able to
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do this because we knew which features were noise and in the case of the real data, we added
features we created to be noise. We could have, however, used a variety of other methods to
detect features though each has its own limitations in the context of our study. See Hapfelmeier
and Ulm (2013) for an overview of different approaches, some comparisons, and their novel
method.

In general, the techniques for feature selection in forest algorithms fall into two broad cat-
egories. First, there are elimination techniques that pull out a subset of the features based on
criteria. For example, Diaz-Uriarte and Alvarez de Andrés (2006) used a recursive backward
elimination technique that removes a certain fraction of features until only 2 remain. The tech-
nique then selects the model with the fewest features that performs within 1 standard error of
the best model using whatever metric the researcher chooses. These types of methods are not
appropriate for this study because they can restrict the features too much. That is, by having
some cutoff or elimination procedure, features that contain only a small amount of predictive
information could be eliminated even though they are predictive.

The second common approach is to use some type of permutation test to generate a p-value.
Under this approach, either the outcome or each individual feature is permuted and then run
through the model to produce some metric. This is then done a large number of times to get a
distribution of the metric. Then the unpermuted data is run through the model to get the actual
value of the metric. The p-value is then the fraction of cases where the permuted metric is as
extreme as the actual value of the metric (Ojala and Garriga, 2010). This approach has been used
in various random forest studies (Chen et al., 2007; Wang et al., 2010) and has been extended
into the PIMP heuristic for correcting the Gini importance bias (Altmann et al., 2010). While
these methods provide an analogous method for comparing with explanatory methods, they can
be computationally intensive as they require the distributions to be conducted from scratch for
each model.

As a way to reduce the computational complexity, Janitza et al. (2016) proposed that the
negative importances, which are assumed to be noise features because they are making the pre-
dictions worse, could be used to construct a null distribution. Under this approach, the distribu-
tion of the negative importances is reflected across the axis to create the distribution for positive
values. The same procedure as above can then be used to calculate the p-values. While this pro-
cedure is computationally feasible, it may be of little use when the number of features is small
and there are a limited number of features that could have negative importances.

6.2.4. Assessing Our Models

For our real data, we noticed that many of the models did not produce out-of-sample AUCs in
the acceptable range of at least 0.7. Here we try to address that.

First, we acknowledge that one type of model should not always perform better than another;
this is the basis of the “no free lunch theorems” for optimization (Wolpert and Macready, 1997).
Various studies comparing logistic regression and random forest find a similar result where
which algorithm performs best depends on the dataset (Couronné et al., 2018; Kirasich, 2018;
Walinder, 2014). Therefore, the fact that logistic regression models perform better than the
forest models is not necessarily a problem. In fact, by comparing multiple models and finding
that some work better than others, we can have greater confidence that our results are detecting
a signal in the data and not just modeling the random variations in the data.

Second, we need to acknowledge that overfitting is happening with the elastic net and con-
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ditional inference forests. This overfitting can be detected by looking for differences in the
training and testing set AUCs, where a higher training AUC is characteristic of overfitting. The
amount of overfitting seems worse for the smaller datasets as shown in Table 6. This result is not
unexpected because, with smaller datasets, there are fewer cases to learn from. The noise in the
model might then be seen as a signal and treated as though it contains predictive information.

If we look at the other models and their results in Table 6, we notice that the forest models
and elastic net perform best on the school 3 datasets, which correspond to the medium-sized
datasets in the simulation study and the largest of the real datasets. For the forest algorithms
specifically, they perform best on the school 3 shortlist dataset, which happens to have a smaller
outcome imbalance than school 3 admit. This result suggests that to effectively use the predictive
approach, the dataset should not be too imbalanced, and based on the results for school 1 and
school 2, the amount of data should be on the order of 1,000 cases.

Additionally, the higher AUC for logistic regression and Log-F might be thought of as their
own type of overfitting. Due to the train/test procedure of the predictive paradigm, these two
methods are working with the full dataset rather than just 80% of the cases, corresponding to a
25% increase in data to work with and hence, learn from. With the “extra” data, these models
might be better able to detect trends in the data and separate them from noise.

While there do exist techniques for detecting overfitting in logistic regression, many of them
use some type of testing or validation dataset. For example, the Copas test of overfitting recom-
mends splitting the data in half, using one half of the data to develop the regression model, using
that model with the other half of the data to make predictions of the outcome, and then perform-
ing a linear regression with the predictions and actual values, testing whether the coefficient is
different from 1 (Copas, 1983). If it were, that would provide evidence of overfitting. However,
this approach is nearly equivalent to using logistic regression in a predictive manner rather than
in an explanatory manner.

For a technique that aligns with the explanatory nature of logistic regression, we can examine
the residual plots. Because logistic regression produces discrete residuals, using binned residual
plots instead might be helpful (Gelman and Hill, 2006). Under this approach, cases are divided
into bins and the average value in each bin is plotted against the average residual in that bin.
This approach allows the otherwise binary residual to take on any value of the form nb’n where
N 18 the number of cases in the binand {i € Z : —np;n, < @ < ngin }-

When implemented via the arm package (Gelman and Su, 2020), 95% confidence intervals
are generated and we can get an idea of how good the model is by examining what fraction of the
binned residuals fall within the intervals. When we do so, we find that the fraction of residuals
falling outside of the confidence intervals are between 0.20 for School 3 shortlist and 0.34 for
School 3 admit, suggesting the models might in fact, not fit well. There does not appear to be
a pattern based on the sample size or outcome imbalance. The plots are shown in Figure 15 in
Appendix A.

7. FUTURE WORK

While we considered six approaches to logistic regression, two machine learning algorithms,
and three importance measures, these are not the only approaches we could have used. Indeed,
these are not even the only logistic regression or random forest techniques we could have used
but chose these algorithms as a starting point. Future work could then consider how other
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modifications of logistic regression or random forest might improve upon the problems we have
identified here.

For example, for logistic regression algorithms, Puhr et al. (2017) proposed two modifica-
tions to Firth penalization, a post hoc adjustment of the intercept and iterative data augmenta-
tion, that showed promise in their simulation study. Based on their results, they recommend
using their methods or penalization by Cauchy Priors (Gelman et al., 2008), which we did not
include in this study, as better options than Log-F when confidence intervals were of interest.
Furthermore, a later study comparing logistic regression, Firth penalization, and the modifica-
tions to Firth penalization found that the modifications to Firth’s method worked best in terms
of parameter estimation bias for rare events and small sample cases (Olmus et al., 2019).

In terms of forest algorithms, several variants might be useful for the data we encounter in
EDM studies. For example, Balanced Random Forest and Weighted Random Forest have been
developed for working with imbalanced outcomes (Chen et al., 2004) and Oblique Random
Forests have been developed to allow for diagonal cuts in the feature space rather than the hori-
zontal or vertical cuts allowed under traditional random forest algorithms (Menze et al., 2011).
In their study, Menze et al. (2011) found that Oblique Random Forests outperform traditional
random forest when the data is numerical rather than discrete, which might show promise for
our data depending on the ratio of numerical features to categorical or binary features.

Alternatively, there are non-CART-based approaches to random forest (Breiman et al., 1984).
Loh and Zhou (2021) conducted a simulation study of various approaches to random forest and
variable importance, finding that forests grown using the GUIDE algorithm, which is imple-
mented for both classification (Loh, 2009) and regression (Loh, 2002), was unbiased while the
random forest and conditional inference forest approaches we used here were not. In their study,
a method was unbiased if the expected values of its scores are equal when all variables are inde-
pendent of the response variable, which would correspond to a case in our study where the odds
ratios were 1 for all features. Nevertheless, such an approach might still be worth looking into.

There are also newer importance measures that show promise. In a simulation study, Nem-
brini et al. (2018) proposed a modification of the Gini importance, which they claim removed
its bias toward features with more categories and the biases observed here regarding feature im-
balance. However, their simulated studies with feature importance only considered null cases in
which none of the features were predictive of an outcome. Nevertheless, further study of this
approach might be fruitful.

In contrast to the algorithms used to analyze the data, future work should also explore how
changes to the data itself might affect algorithm performance. For example, we could use the
risk ratio to encode the level of information in a feature instead of the odds ratio. In theory, risk
ratio provides a more intuitive way to quantify the amount of information in a feature because it
is based on the ratio of probabilities rather than a ratio of odds. Zhang and Yu (1998) proposed a
method to convert the odds ratio to a risk ratio, though more recent work has called this approach
into question and suggests alternatives (McNutt et al., 2003; Karp, 2014). Because these two
measures are related but not the same, there might be additional insights related to which features
are detected based on how we define the amount of predictiveness they have.

To better replicate real EDM data, future work could also explore how the amount of corre-
lation between the features affects the results. In the case of correlated features, new issues with
permutations emerge, including the model needing to extrapolate to regions where the model
was not trained to calculate feature importance (Hooker et al., 2021). Various approaches have
been developed for correlated data with forest algorithms (Strobl et al., 2008; Hooker et al.,
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2021; Molnar et al., 2020), which warrant future study, especially for the type of data we see in
EDM studies.

Additionally, future work can extend the data beyond binary features and include categorical
features. While logistic regression often requires categorical features to be binarized, binariz-
ing categorical features into a single new feature can cause a loss of information. For example,
treating exam responses as correct or incorrect hides information about the specific incorrect
answer the student chose and possible patterns (Springuel et al., 2019), and combining demo-
graphics into a single “underrepresented” category can hide the struggles of students of different
races and ethnicities (Shafer et al., 2021). As random forest implementations can often handle
categorical features directly and logistic regression can handle categorical features through one-
hot encoding, future work can consider how the biases explored in this study might manifest in
categorical data and how aggregating or segregating features might introduce their own biases.
Ordinal categorical data should be of special interest given that one-hot encoding results in the
loss of the ordinal information.

Finally, future work can consider how both the data and algorithms affect how features are
detected. Recently, Pangastuti et al. (2021) found that a combination of bagging, boosting,
and SMOTE improved random forest’s classification ability on a large, imbalanced educational
dataset. We need to be careful with such approaches, however, because our data is not just data
but represents actual students. Therefore, we need to be certain that our conclusions are based
on the student data and not simulated students created to make the data easier to analyze.

8. CONCLUSION AND RECOMMENDATIONS

Our work suggests that for both predictive and explanatory models, feature and outcome im-
balances can cause algorithms to detect different features despite the same built-in amount of
information. We found this to be true for random forest, conditional inference forest, logistic
regression, as well as in various penalized regression algorithms. On a practical level, this means
that if we are using these algorithms for determining which features might be related to some
outcome of interest, we might be introducing false negatives into our results, potentially missing
factors that are related to the outcome.

Based on the results of this study, we propose three recommendations for EDM researchers.
First, for smaller datasets with highly imbalanced features, we recommend using a penalized
version of logistic regression such as Log-F. Even though Firth penalization was often compa-
rable to Log-F, Firth penalization is not implemented in all statistical software. Log-F however
can be used with any statistical software that can perform logistic regression because it is based
on data augmentation. If the outcome is also imbalanced, it is even more essential to consider
penalized approaches.

Second, for medium or large datasets (N > 1, 000), traditional logistic regression and ran-
dom forest or conditional inference forest with permutation importance perform similarly, so ei-
ther approach works. While the algorithms still do not perform perfectly, none of them provided
a consistent advantage over another. We recommend that researchers first consider whether the
research questions are best answered using predictive or explanatory techniques and then which
affordances of the algorithms are most relevant to the study.

Finally, we call on researchers to include information about their features in their publica-
tions, including the features themselves, their distributions, and in the case of categorical or
binary features, their class frequencies as others outside the EDM communities have done in
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the past (Greenland et al., 2016). A simple example of how this might be done is shown in
Table 4. In addition, we recommend that researchers include dataset characteristics or so-called
“meta-features” as well. Some examples include sample size, the number of features, the num-
ber of numerical features, the number of categorical features, and the percentage of observation
of the majority class or outcome balance (Couronné et al., 2018). Just as there have been calls
for increased reporting of demographics in the EDM community and outside of it to understand
how results might depend on the sample population or generalize (Paquette et al., 2020; Kanim
and Cid, 2020), we are calling for the same with the explanatory and predictive models we cre-
ate, partially addressing some of the questions raised by Knaub et al. (2019) in their analysis
of physics education research quantitative work. By doing so, we hope for greater acknowledg-
ment of possible sources of bias or false negatives in feature selection as a result of the data or
algorithms used in EDM studies.
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APPENDIX

A. ADDITIONAL PLOTS

Here we provide the plots for the confidence intervals and percentile bootstraps for the N =
1,000 dataset and the additional three datasets from Section 5 for completeness. The plots show
the same general results as discussed in the main manuscript. We also include the residual plots
from the discussion.
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Figure 10: 95% confidence intervals for Firth penalized, traditional, and Log-F penalized logistic
regression for the NV = 1, 000 datasets. Plot A shows the 50/50 outcome imbalance, plot B shows
the 70/30 outcome imbalance, and plot C shows the 90/10 outcome imbalance. Confidence
intervals that span beyond the scale are removed from the plot. For higher outcome imbalance,
Firth and Log-F penalizations can shrink the confidence intervals.
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Figure 11: 95% percentile bootstraps of the odds ratio for elastic net, Firth, lasso, Log-F, no,
and ridge penalizations on the N = 1,000 data. Dots represent the median value. Plot A shows
the 50/50 outcome imbalance, plot B shows the 70/30 outcome imbalance, and plot C shows the
90/10 outcome imbalance. Confidence intervals without an end cap signify the error bar extends
beyond the scale. Most methods perform similarly except for Firth penalization at high feature
imbalance.
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Figure 12: Comparison of the odds ratio, Gini importance, and AUC-permutation importance
for the features in the school 2 admit dataset.
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Figure 13: Comparison of the odds ratio, Gini importance, and AUC-permutation importance
for the features in the school 3 shortlist dataset.
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Figure 14: Comparison of the odds ratio, Gini importance, and AUC-permutation importance
for the features in the school 3 admit dataset.
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Figure 15: Plots of the Log-odds vs the average residual in each bin for the four schools. Across
all plots, between 20% and 34% of the points fall outside of the confidence intervals, suggesting
the logistic regression models might not be fitting the data especially well.
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B. CODE

In this section, we provide the R code for running the algorithms used in this paper.

library (caret)

library (party) #cforest function

library (randomForest)

library (ROCR) #gives prediction and performance functions

library (brglm) #Firth penalized logistic regression for extreme

unbalance
library (glmnet) # LI, L2, elastic net LR
library (ModelMetrics) #get auc
library (data. table) #setDT function

# grow a single cforest with both acc and auc importances

grow _cforest<—function (data , target , factors , tfrac , ntree , seed,

verbose=FALSE, ntry=FALSE) {
set.seed(seed)
selected=sort (sample (nrow(data) ,nrow(data)=tfrac))
train <—data[selected ,]
test <— data[—selected ,]
formula=reformulate (factors , target)

# if ntry is not given, use the default
if(!ntry){

ntry=floor (sqrt(length(factors)))
}

crf _comp <— party ::: cforest( formula,
data=train ,

controls=cforest_control(teststat = “quad”,
testtype = "Univ”,
mincriterion = 0,

savesplitstats = FALSE,

ntree = ntree, mtry = ntry, replace

FALSE,
fraction = 0.632,trace=FALSE))
# print(’ Statistics on Training Set’)

pred _class=predict(crf _comp,newdata=test ,O0B=TRUE, type="
response’ ) #predict the classes of bc_test for confusion

matrix
if (verbose){

print (confusionMatrix (unlist (pred _class) ,unlist(test |

target]) ,positive="1"))
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acc<—as .data.frame(confusionMatrix (unlist (pred_class),
unlist(test[target]),positive="1")[3])[1,] #3 refers to
the stats & I is acc

#variable importance

comp _imp _AUC=—varimpAUC (crf _comp) # need negative now to
get a postive change for important variables

comp_imp=party ::: varimp (crf _comp)

#AUC

pred _probs=predict(crf _comp, train , OOB=TRUE, type="prob’) #
get probabilities of each class for AUC

pred _probs=unlist (pred _probs)

poslist=pred _probs[c(FALSE,TRUE) ] #take every other element
starting with the second

cbc_perf=prediction (as.data.frame(poslist) ,as.data.frame((
train[target])) #set the performance function

cbc_roc=performance (cbc _perf,  tpr’, fpr’)

auc=performance (cbc_perf, auc’ )@y. values [[1]]

return(list (acc,auc,comp_imp_AUC, comp_imp))

}

# grow a single regular RF using randomForest
grow _reg _forest<—function (data, target , factors , tfrac , ntree , seed,

ntry=FALSE) {

# set up the training and testing data

set.seed(seed)

selected=sort (sample (nrow(data) ,nrow(data)=tfrac))

train <-data[selected ,]

test <— data[—selected ,]

# if ntry is not given, use the default
if(!ntry){

ntry=floor (sqrt(length (factors)))
¥

# make the model
model<—randomForest(target”™.,data=train , ntree=ntree , mtry=
ntry ,importance = TRUE)

# make the predictions and get the accuracy

predictions<—predict (model, test ,type="class’) # predict the
classes of the testing set

accuracy<—mean( predictions==test [[ "target’]]) # calculate
the mean

# get the AUC
prob_predictions=as.vector (model$votes[,2])
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pred=prediction (prob_predictions ,train [[ target’]]) # get
the prediction probs

perf _AUC=performance (pred,”auc”

AUC=perf AUC@y. values [[1]] # Calculate the AUC

acc _imps<— importance (model, scale=FALSE, type=1) # unscaled
acc—permutation importance

gini _imps<— importance (model, scale=FALSE, type=2) # gini
importance

return(list (accuracy ,AUC, acc _imps, gini _imps) )

}

# make a IR model given the data. Compute the OR and 95%
Confidence interval
# using exp(OR)xexp(2xstd _error)
# also return the training AUC and McFadden’s pseudo R"2
log _reg _fun<— function (data, title){
# make sure this is a classification problem
data[[ "target’ ]J]<—as.factor (data[[ target’]])

features<—colnames (data)[—1] #use all features but exclude
target variable

LR_form=reformulate (features , target’)

logit <— glm(LR_form, data = data, family = “binomial”) #
run log model

# get coefficients
LR _sum=summary(logit)
LR_res=LR_sum$ coefficients

# use Holm—Bonferri to commpute the adjusted p—values

LR _res2=cbind (LR _res[order (LR _res [, Pr(>|z|)’]) ,1,0.05/¢(
length (features)+1):1)

colnames (LR _res2)[5]<—"HB_pvalue’

# see if the coefficients are statistically significant

LR _res2=cbind (LR _res2 ,LR_res2 [, Pr(>|z|)’] < LR_res2[, HB_
pvalue’] )

colnames (LR _res2)[6]<—"significant’

# compute OR

LR _res2=cbind (LR_res2 ,exp(LR_res2 [,  Estimate’]))
colnames (LR_res2)[7]<—"OR’
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# compute 95% confidence intervals

upper=LR _res2 [ ,7]xexp(2=%LR_res2[,2])

lower=LR _res2[,7]/exp(2=LR_res2[,2])

LR _res2=cbind (LR _res2 ,lower ,upper)

colnames (LR _res2)[8:9]<—c( Lower_95CI’,  Upper _95CI’)

# reorder columns to appear nicer
LR_res2=ILR_res2[,¢c(1,2,7,8,9,3,4,5,6)]

# calculate the McFadden pseudo—R"2
r2<—PseudoR2 (logit , which="McFadden )

# calculate AUC on full data since using LR as an
explanatory method

predpr <— predict(logit ,type=c(”’response”)) # make
predictions

auc=suppressMessages (auc(as.numeric(data[[  target’]]) ,as.
numeric (predpr))) # auc

return(list (LR_res2 ,auc,r2))

# Lasso, Ridge, Elastic Net
glmnnet LR<—function (data ,formula, target ,sfrac ,input_alpha=1){

82

# take a subsample of the data
selected=sort (sample (nrow(data) ,nrow(data)=sfrac))
selected _data <—data[selected ,]

x<—model . matrix (formula, selected _data)[,—1]

y<—selected _data[[ target ]]

# find the best lambda

cv.lasso <— cv.glmnet(x, y, alpha = input_alpha, family =
binomial™)

2

# Fit the final model on the training data
model <— glmnet(x, y, alpha = input_alpha, family =
binomial”,
lambda = cv.lasso$lambda.min)

2

# Display regression coefficients
coefs<—coef (model)

OR=exp (coefs)
return (OR)
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}

# Log—f penalization
glm_logf<—function (data, features ,m){

&3

# define the weights to use
weights <— c(rep(l,nrow(data)), rep(m/2,ncol(data)=2))

# create a diagonal dataframe. Then make two instances of
each row (the rep part).

# Subtract 1 since the outcome is included in this data

pseudo _data<—diag(ncol(data)—1)[rep(1:ncol(data)—1,each=2)
. ]

# create the target feature (should be a 0 and 1 for each
feature)

pseudo _data<—as.data.frame(cbind (rep(c(0,1) ,times=(ncol(
data)—1)) ,pseudo _data))

# give the pseduo data the same column names as the actual
data
names ( pseudo _data )<—names(data)

# combine the data and pseudo data
combined _data<-—rbind (data , pseudo _data)

# add the constant

combined _data[’constant’]= c(rep(l,nrow(data)) ,rep(0,(ncol(
data) —1)%2))

# add the weights to the pseudo data

# add the constant

combined _data[’ myweight’|= c(rep(1,nrow(data)) ,rep(m/2,(
ncol (data) —1)%2))

# select variables of interest (voi)
voi<—c(’constant’,features)

# do the LR; the zero removes the intercept

results<—glm(reformulate(c(voi,0),’ target’), family =
binomial ’ ,data=combined _data , weights = myweight)

pseudo R<—PseudoR2(results , which="McFadden’)

print (pseudo _R)

print (summary(results))

return (list (results ,pseudo_R))

b
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# Comparing traditional , Firth, and Logf

84

compare _LRs<—function (data , features ,m){

nrow _data<—nrow(data)

# get the traditional LR results

LR_results<—glm(formula=myformula , family="binomial ’ ,data=
data)

LR_coef<—coef (LR_results)

LR_ci<—confint(LR_results)

LR_auc <—auc(LR_results)

# get the firth results

Firth _results<—brglm (formula=myformula , family="binomial ’,
data=data)

Firth _coef<—coef(Firth _results)

Firth _profile<—profile (Firth _results)

Firth _ci<—confint ( Firth _results , ci.method = ’mean’) #mean
seems to have smaller Cls

Firth _auc <—auc(Firth _results)

# get the Logf results

logf _data<—prep _logf(data, features ,m)

logf _formula<-reformulate(c(’constant’, features ,0),’ target’
) #add the intercept only for real data and then ingore
built in intercept

logf _results<—glm(formula=logf _formula ,h data=1logf_data,
family="binomial’ ,weights=myweight)

logf_coef<—coef(logf_results)

logf _ci<—confint(logf_results)

# get the logf auc. Need to only use the actual data
preds<—predict(logf _results ,type="response’ ) #get the
predicted outcomes for each case
logf _auc <— auc(data[[ ' target’]],preds[]l:nrow_data]) #
match the actual data to the predicts of actual data
# combine the results
nfeatures<—length (features)+1 #add the intercept
dfl<—cbind . data .frame (LR_coef ,LR_ci , Firth _coef , Firth _ci,
logf_coef ,logf_ci)
colnames (dfl )<-rep(c(’V1”,’V2’,°V3’) ,3) # col names need to
be the same
setDT (dfl , keep.rownames = FALSE) [] #remove the row names
df2<—rbind . data . frame (df1[,1:3], dfl1[,4:6], dfl1[,7:9])
results _df<—cbhind .data.frame(rep(c(’constant’, features) ,3),
c(rep(’LR’ ,nfeatures) ,rep(’
Firth’ ,nfeatures) ,rep(’ Logf’
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,nfeatures)),
c(rep(2,nfeatures) ,rep(1,
nfeatures) ,rep(3,nfeatures))
, # plotting order
df2
)
colnames(results _df)<—c(’features’, Method’,’  plot_rank’,
coef’,’Cl_lower’, CI_upper’)

b

# compute the difference between expected and required

y_values=c(NA, rep(c(log(3),log(1.5),0),5),rep(0,3) ,rep(NA
2))

results _df<—cbind . data.frame(results _df, results _df[[ coef”’
]]—rep(y_values ,3))

colnames(results _df) [7]<—"diff”’

auc _list<—c(LR_auc, Firth _auc,logf_auc)

return(list (results _df,auc_list))

}

# create the pseudo—data for the logf regression

# remember that the variables to pass are then features,
constant, 0

prep _logf<—function (data, features ,m) {
# define the weights to use
weights <— c(rep(l,nrow(data)), rep(m/2,ncol(data)=2))

# create a diagonal dataframe. Then make two instances of
each row (the rep part).

# Subtract 1 since the outcome is included in this data

pseudo _data<—diag(ncol(data)—1)[rep(1:ncol(data)—1,each=2)
]

# create the target feature (should be a 0 and 1 for each
feature)

pseudo _data<—as.data.frame(cbind (rep(c(0,1),times=(ncol(
data)—1)) ,pseudo _data))

# give the pseduo data the same column names as the actual
data

names ( pseudo _data )<—names(data)

# combine the data and pseudo data
combined _data<—rbind (data , pseudo _data)

# add the constant
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combined _data[’ constant’]= c(rep(l,nrow(data)) ,rep(0,(ncol(
data) —1)%2))

# add the weights to the pseudo data

# add the constant

combined _data[ myweight’|= c(rep(1,nrow(data)) ,rep(m/2,(
ncol (data)—1)%2))

return (combined _data)
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