23
24
25
26
27
28
29

39
40
41
42
43
44

Striking a Balance:
Pruning False-Positives from Static Call Graphs

Anonymous Author(s)

ABSTRACT

Researchers have reported that static analysis tools rarely achieve
a false-positive rate that would make them attractive to developers.
We overcome this problem by a technique that leads to reporting
fewer bugs but also much fewer false positives. Our idea is to prune
the static call graph that sits at the core of many static analyses.
Specifically, static call-graph construction proceeds as usual, after
which a call-graph pruner removes many false-positive edges but
few true edges. The challenge is to strike a balance between being
aggressive in removing false-positive edges but not so aggressive
that no true edges remain. We achieve this goal by automatically
producing a call-graph pruner through an automatic, ahead-of-time
learning process. We added such a call-graph pruner to a software
tool for null-pointer analysis and found that the false-positive rate
decreased from 73% to 23%. This improvement makes the tool more
useful to developers.

CCS CONCEPTS

« Software and its engineering — Automated static analysis;
« Computing methodologies — Supervised learning by classifi-
cation.

ACM Reference Format:

Anonymous Author(s). 2021. Striking a Balance: Pruning False-Positives
from Static Call Graphs. In Proceedings of The 44th International Conference
on Software Engineering (ICSE 2022). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The Problem. Christakis and Bird [11] interviewed developers
about program analysis tools and they concluded:

Program analysis design should aim for a false-
positive rate no higher than 15-20%.

Other empirical studies have found similar results [6, 21, 35]. Un-
til now, this goal has been particularly hard to achieve for static
analyses, which are tools that analyze programs without executing
them.

As a motivating experiment, we tried Wala [40], which is one of
the best tools for static analysis of Java bytecode, on a subset of the
NJR-1 benchmark suite [30]. For each benchmark, we compared
the edges in the static call graph with the edges found by executing
the benchmark. With a context-insensitive analysis, Wala has a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

false-positive rate of 76%, while with a better but also much slower
context-sensitive analysis, the false-positive rate is 70%. Those re-
sults are disappointing though we must emphasize that call graphs
are usually fed to client tools rather than directly to developers. So,
we did a second experiment to see how the high false-positive rate
of call-graphs affects client tools. Specifically, we implemented a
version of a static analysis for warning about null-pointer problems
[18] that is a client of the context-insensitive call-graphs produced
by Wala. We ran this tool on the same subset of NJR-1 and again had
disappointing results: 60 bugs among 223 warnings, on average, so
a false-positive rate of 73%. We can easily imagine how a developer
will tire of investigating warnings that in nearly three of every
four cases are false alarms. However, we can also see a glimmer of
hope: if we can reduce the false-positive rate of static call-graph
constructors, we may be able to move client tools closer to the goal
of a false-positive rate of 15-20%.

Our Idea. Our approach stems from another conclusion by Chris-
takis and Bird [11] who reported a preference of developers:

When forced to choose between more bugs or
fewer false positives, they typically choose the
latter.

This quote inspired our idea for how to improve the false-positive
rate: we will report fewer bugs but also much fewer false positives.
Indirect support for this idea comes from previous work that showed
that practical static analyses aren’t totally sound [27, 37] and there-
fore may miss bugs. Thus, developers expect bug reports to be
incomplete so reporting fewer bugs seems acceptable.

We want to reduce the false-positive rate in a modular way that
leaves existing call-graph constructors unchanged. This brings us
to our idea of a call-graph pruner that statically post-processes a
static call graph by removing many false-positive edges but few
true edges. The challenge is to strike a balance between being
aggressive in removing false-positive edges but no so aggressive
that no true edges remain. Additionally, we have to do better than
removing edges at random because random removals will leave the
false-positive rate unchanged.

How can we design a call-graph pruner?

Our Approach. We execute an automatic, ahead-of-time learning
process on results from both a static and a dynamic call-graph
constructor. The outcome is a call-graph pruner that works as
follows. The call-graph pruner determines the probability that an
edge in the call graph is a false positive, and if this probability is
above a threshold, then the call-graph pruner removes the edge.
We can vary this threshold and thereby tune the call-graph pruner.

In contrast to previous work on using a dynamic analysis to
improve a static analysis [4, 10, 13], we use the dynamic call-graph
constructor only in an ahead-of-time training phase and only on a
training set of programs. Once the training phase has produced a
call-graph pruner, the combination of the call-graph constructor

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

114
115

116

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Q Call-graph
d O ' | False-positive rate: 76%
SRV True-edges missed: 5%

Call-graph
construction
tool

0

Program

call-graph
pruner

Balanced call-graph

construction tool Call-graph
False-positive rate: 34%
True-edges missed: 34%

Figure 1: Overview of our technique

and the call-graph pruner is itself a static analysis, as illustrated in
Figure 1.

Our Contributions and the Rest of the Paper. We begin with an
example of how a call-graph pruner works (Section 2) and then we
detail our contributions:

o We present the design (Section 3) and implementation (Sec-
tion 4) of a tool that produces call-graph pruners.

o We show experimentally (Section 5) that adding a call-graph
pruner to a client tool can significantly decrease the false-
positive rate, in one case from 73% to 23%. Specifically, we
added a call-graph pruner to the tool for warning about
null-pointer problems, after which we got 15 bugs among
20 warnings, on average. Thus we reported 45 fewer bugs
but also 158 fewer false positives.

e We show experimentally (Section 5) that the overhead of
adding a call-graph pruner is 18%.

We end with a discussion of related work (Section 6) and our con-
clusion (Section 7).

Significance. Call-graph pruners improve static call-graphs sig-
nificantly and thereby make client tools more useful to developers.

2 EXAMPLE

Now we give an example of a call-graph pruner, how it works on a
example call graph, and how it affects a client analysis for warning
about null-pointer problems. Our example program in Figure 2,
shown in full in the Appendix, has three classes A, B, C, each of
which has a method foo, and a main method that contains a method
call x. foo(x.f). The variable x is assigned to an object of type C,
but when the access x. f happens, the field A. f may be uninitialized
hence null. Thus the call x. foo(x. f) may pass null as an argument
to C. foo, which, in turn, at the call c. toString(), may throw a
NullPointerException. The program has two additional methods,
including getObjC, that we omitted from Figure 2.

Null-Pointer Warnings. As we mentioned in Section 1, we im-
plemented a version of a static analysis for warning about null-
pointer problems. This analysis finds null-pointer problems that
stem from uninitialized fields, like the problem with c. toString()
that is caused by the uninitialized field A. f. If we run this tool on
the example program, we get three warnings, one for each call of

Anon.

STATIC-ANALYSIS CALL-GRAPH DECISION TREE

dest-node-in-deg > 2.5

A”x = getObjC();
x.foo(x.f);

10% ~ 40% " 109

class C extery class Iyextends A

foo(A c){ foo(A b){ AT
c.toString(); foo(A a){

/‘ b.toString();
} } a.toString();
)) Al

I
Figure 2: Example call-graph and call-graph pruner

class A {

70% 40%

toString in the foo methods. One of them is a true warning but
the other two are false alarms. Let us investigate how that could
happen and what a call-graph pruner can do about it.

Call Graph. The null-pointer tool uses a static call-graph con-
structor that built the call graph shown in Figure 2. In a call graph,
each node is a method, and each edge is a directed edge from one
method to another. Such an edge represents a call that may happen
during the execution of the program.

The call-graph constructor examines the entire program, includ-
ing the methods that we omitted from Figure 2. We skip the details
of how this works and instead we focus on the constructed call
graph. Specifically, in Figure 2 we focus on the four nodes for the
main method, A. foo, B. foo, and C. foo. The call-graph has an edge
from the main method to each of A.foo, B. foo, and C. foo, as well
as an edge some other method to B. foo and a couple of edges from
some other methods to A. foo. The edge from main to C.foo is a
true edge, while the edges from main to A. foo and from main to
B. foo are false positives.

By the way, the edges from main to each of A. foo, B. foo, and
C.foo can arise from difficult-to-analyze methods, one of which is
part of the full example program in the appendix, and another is:

A getObjC() {
return (b1) ? new C() : ((b2) ? new B() : new AQ))
}

where b is a Boolean expression that always evaluates to true.

The Null-Pointer Analysis in more Detail. Based on the call graph
in Figure 2, the null-pointer analysis derives that x. foo(x.f) may
call any of A. foo, B. foo, and C. foo. Then the null-pointer analysis
uses the rule that

if a field is not initialized by the end of a con-
structor, it is marked as Uninitialized; and if an
Uninitialized field is dereferenced, the analysis
gives a null-pointer warning.

Thus, the analysis concludes that each of the foo methods may be
passed null as an argument, and thus it issues a warning for every
one of those methods.

Call-Graph Pruner. The goal of a call-graph pruner is to remove
edges from the call-graph, preferably many false-positive edges
and few true edges. The key component of a call-graph pruner is

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

Striking a Balance:
Pruning False-Positives from Static Call Graphs

a classifier that computes the probability that an edge is a true-
positive. Based on that probability, a call-graph pruner will decide
whether to keep or to remove the edge. Figure 2 shows a classifier
that is represented as a decision tree. Each internal node of the
decision tree asks a true-false question about a call-graph edge. The
recursive decision process begins in the root of the decision tree; if
the answer to the question at the root is false, we move to the left
subtree, while if the answer is true, we move to the right subtree.
When we reach a leaf, we find the probability that the call-graph
edge is a true-positive. Based on this probability, we will decide
whether to keep or remove the call-graph edge.

The decision tree in Figure 2 has three internal nodes that are la-
beled with questions about dest-node-in-deg, which is the in-degree
of the destination node of the edge, and about src-node-out-deg,
which is the out-degree of the source node of the edge. For exam-
ple, the edge from main to C.foo has destination-node in-degree
1 and source-node out-degree 3. This gives us the path false-true-
false, which assigns the edge the probability 70%. Similarly, the
edges from main to A.foo and B.foo get probabilities 10% and
40%, respectively. The call graph in Figure 2 shows those three
probabilities.

Let us set a threshold of 50% for when we deem an edge to be
a false-positive: if the probability of being a true-positive is below
50%, we remove the edge. Then the call-graph pruner will remove
the edges from main to A. foo and B. foo. Hence, the null-pointer
analysis will issue just a single warning, and indeed a true warning,
namely for the call of toString in C. foo.

3 CALL-GRAPH PRUNERS

Now we describe how we use machine learning to produce a call-
graph pruner.

3.1 Overview

We will use Program to denote the set of Java bytecode programs.

A call-graph G € CallGraph is a multi-graph in which each node
represents a method and each edge represents a potential transfer
of control at a method call. Two nodes can have multiple edges
between them because of multiple method calls. Each edge has a
label that identifies the method call site.

We distinguish between two kinds of call-graph constructors
that have the same type:

StaticCallGraphConstructor = Program — CallGraph

DynamicCallGraphConstructor = Program — CallGraph

Here, an element of StaticCallGraphConstructor constructs a call
graph without running the program, while, in contrast, an element
of DynamicCallGraphConstructor runs an instrumented version
of the program on one or more inputs and examines output from
the instrumentation.

The key component of each call-graph pruner is a classifier. A
classifier C € Classifier is a function that maps a vector of feature
values for an edge to a probability that the edge is a true-positive.
In our case, such a vector has 11 elements that we will define in
Section 3.3.

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Our tool for generating classifiers implements a function of this
type:

classifier generator (StaticCallGraphConstructor X

DynamicCallGraphConstructor X
Set[Program])

— Classifier

Our classifier generator executes an automatic, ahead-of-time learn-
ing process on results from running both a static and a dynamic
call-graph constructor on a training set of programs. We will detail
this process in Section 3.2.

Once we have a classifier, we can use it in a call-graph pruner of
this type:

call-graph pruner :

(CallGraph x Classifier X Threshold) — CallGraph

Algorithm 1 shows how a call-graph pruner works. Intuitively, a
call-graph pruner uses a classifier to determine the probability that
an edge in a static call graph is a true-positive. If that probability
is below a given threshold T € Threshold, the call-graph pruner
removes the edge.

Algorithm 1: Call-graph Pruner

1 Inputs: CallGraph G, Classifier C, Threshold T
2 let G’ be a copy of G

3 for every edge e in G do

4 v = the feature values for e
5 if C(v) < T then

6 L remove e from G’

7 Output G’

The threshold parameter enables us to explore different levels of
aggressiveness in removing edges. For our example in Figure 2, we
discussed a threshold of 50% in Section 2, which led to the removal of
two edges. We could also use a lower threshold of 20%, which would
lead to the removal of a single edge, namely the one from main
to A. foo. The challenge is to strike a balance between removing
many false-positive edges and keeping many true-positive edges. In
Section 5 we will show results from an experimental investigation
of how to choose a good threshold.

Notice that we use a static call graph constructor, a dynamic call
graph constructor, and the training set of programs for the sole
purpose of generating a classifier, while those items are no longer
needed when we use the call-graph pruner.

3.2 Our Classifier Generator

We cast the edge-pruning problem as a classification problem for
which learning a classifier can be done with machine learning. We
proceed in three steps.

In the first step, we run the static and dynamic call-graph con-
structor on every program in the training set. The result is a set of
pairs of call graphs: each pair consists of a static call graph and a
dynamic call graph. We use the dynamic call graph as an approxima-
tion of the ground truth: if a static call-graph edge is also present in

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Training Programs

Program-1 hhbbid Program-n
Static Dynamic Static Dynamic
call-graph call-graph call-graph call-graph

N N
Compute Features Compute Features

e1 10 ...10.3 |1 e3 7 ../01 0

€2 8 [...|0.7 |0 €4 1]../06 |1

Concatenate into single Training Set

Train using Classification Algorithm

Trained
Classifier

Figure 3: Classifier Generator workflow

the dynamic call graph, we view it as a true-positive, and otherwise
as a false-positive.

In the second step, for each program, we construct a table in
which each row represents a static-call-graph edge. Figure 3 il-
lustrates this table. The last column in each row (titled Label in
Figure 3) contains a label of 1 or 0, based on whether the edge
exists in the dynamic call-graph. The remaining columns (titled
fi to fi) represent the set of features of the static call-graph edge.
The example in Figure 2 uses two features: dest-node-in-deg and
src-node-out-deg; we will discuss other features below. We can view
each row in the table as a vector of feature-values. Concatenating
the tables of each individual program gives us a single large training
dataset of call-graph edges with ground truth labels. This training
dataset consists of a large number of pairs (x, ye), where x, is a
vector of feature values corresponding to a static call-graph edge,
and y. is a prediction of whether it is a false-positive or not. Our
problem is now expressed in a format where it can be cast as a
machine-learning classification problem [24].

In the third step we run an off-the-shelf machine-learning tool
on the table constructed in second step. The result is a classifier
that for any edge assigns a probability that it is a true-positive.
We picked random forests [16] (ensembles of Decision Trees). One
might try other approaches, which we leave to future work. Our
goal with this step is to show that an off-the-shelf machine-learning
tool is sufficient to get good results.

Our classifier generator can take any static call-graph constructor
as input. For example, we have used the call-graph constructors
WALA [40], Doop [7], and Petablox [28] as inputs and generated a
call-graph pruner for each one.

The complexity of generating a classifier based on a training set
with n edges is O(nlogn) [16].

Anon.

Feature Description

number of edges ending in caller

number of edges out of caller
dest-node-in-deg ~ number of edges ending in callee
dest-node-out-deg number of edges out of callee

depth length of shortest path from main to caller

repeated-edges number of edges from caller to callee

sre-node-in-deg
src-node-out-deg

L-fanout number of edges from the same call-site
node-count number of nodes in G

edge-count number of edges in G

avg-degree average src-node-out-deg in G

avg-L-fanout average L-fanout value in G

Figure 4: Our feature set

3.3 Our Feature set

Now we describe how we designed the feature set that both our
classifier generator and our generated call-graph pruners use.

A feature is information about a static-call-graph edge that may
help predict whether the edge is a true-positive. We would like our
feature set to capture important context and semantic information
about a call-graph edge. Encoding important semantic information
as features is a common machine learning practice for incorporating
domain knowledge into the learning process. For example, since
dynamic dispatch is likely to affect the false-positive probability of
a call-graph edge, we should add features that capture information
about the targets of a method call. Using the context information of
a graph edge has been useful for the related task of selective context
and heap sensitivity in pointer-analysis [20], and we consider it a
good criteria for picking features. Context information can be local
by describing the neighborhood of the edge, or global by describing
the call-graph that the edge is a part of. In addition to capturing
context and semantic features, we identify three criteria that we
want our feature set to satisfy:

(1) linear-time computation complexity,
(2) interpretable and generalizable, and
(3) black-box.

The time-complexity guideline is particularly important given that
some of our benchmarks can have several hundred thousand call-
graph edges. Interpretability gives us an understanding of which
call-graph edges are being dropped, and generalizability ensures
that what is learned for the training edges also applies to call-graph
edges of unseen programs. The black-box criterion implies that the
features should only be designed on the output call-graph, and not
on some internal state or representation of a tool. This allows us
to post-process the results without being specific to a particular
algorithm or tool. Using these criteria, we arrived at the following
features for an edge.

Figure 4 presents our feature set for an edge in a static call graph
G, where the edge is from a caller method caller to a callee method
callee. The node for the main method in G is main. The first seven
features describe local information while the last four describe
global information. Note that the L-fanout of an edge is the number
of outgoing edges at the call-site of that particular edge, whereas

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492

Striking a Balance:
Pruning False-Positives from Static Call Graphs

src-node-out-deg is the number of outgoing edges from all the
call-sites of an entire source method.

Our selection process started with a much longer list of features
that all satisfy the three criteria listed above. We picked from that
list the ones that helped the most with removing false-positives.
Our process used the training set as case studies to find the main
reasons why tools give false positives. The result was the eleven
features in Figure 4.

4 IMPLEMENTATION AND DATASET

Static Call-Graph Constructors. We used the static call-graph con-
structors WALA [40], Doop [7], and Petablox [28]. In each case we
used the default setting, which implements 0-CFA for methods that
are estimated to be reachable from the main method and without
any special handling of reflection. Those tools produce significantly
different call graphs and therefore provide good diversity.

Reflection. In preliminary experiments, we found that enabling
special handling of reflection in the static call-graph constructors
introduces many false-positive edges in the call graphs. Our gener-
ated classifiers tend to assign each of those edges a low probability
of being a true-positive, and therefore our call-graph pruners will
correctly remove most of them. Therefore, special handling of re-
flection presents no additional challenge for call-graph pruning and
we decided to go with the default setting of each static call-graph
constructor.

Dynamic Call-Graph Constructor. We used the open-source tool
Wiretap [22] to instrument the Java bytecode and thereby enable
dynamic call-graph construction. Next, we ran the instrumented
bytecode and collected data about the run, particularly about the
method calls.

Standard Library. The Java standard library is large and has the
potential to dominate the measurements for every benchmark,
which is counterproductive. So, when we do our measurements,
we omit nodes from the standard library as well as edges between
standard library nodes. We preserve aspects of the edges to and
from the standard library in the following way. For every path of
the form

v — (... standard library nodes ...) — w

where v, w are nodes outside the standard library, we create a single
edge from v to w.

Random Forest Classifier. Our classifier generator uses the Ran-
dom Forest algorithm [16] implemented with the Scikit-Learn [31]
library (v0.21.3). The Random Forest algorithm works as follows: it
trains several decision-trees using Bagging [8], and makes predic-
tions by a “majority vote” across the decision trees. The training
took 4 minutes. We tuned the hyper-parameters using Random
Hyper-Parameter Search [5] with 4-fold cross-validation on the
training set. We list the chosen hyper-parameters in the appendix.

Dataset. Our dataset consists of 141 programs from the NJR-1
benchmark suite [30], of which we used 100 programs for gener-
ating three call-graph pruners and the remaining 41 programs for
our evaluation. We selected those 141 programs from the 293 NJR-1
programs according to the following criteria:

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

e consists at least 1,000 methods and at least 2,000 static call-
graph edges according to Wala,

o executes at least 100 distinct methods at runtime, and

o has high coverage: executes a large percentage of the meth-
ods that are reachable from the main method according to
Wala; for our benchmarks, the coverage is 68%, on average.

Each program consists of 560,000 lines of code, on average (not
counting the standard library). In more detail, each program consists
of the main application, which is 8,000 lines of code, on average,
in addition to third-party libraries which account for an estimated
552,000 lines of code, on average.

The total number of static-call-graph edges (not counting the
standard library) that are reachable from the main methods of the
141 programs is 1.3 million. For our classifier generator, each edge
from 100 of those programs is a data point, which is 860,000 edges.
Note that manual creation of ground truth about those 860,000
edges infeasible.

Large Benchmarks. Among the 100 programs that we use for
generating classifiers, a handful have many call-graph edges. This
gives them the potential to dominate how the classifiers work. To
overcome this, we randomly sample 20,000 edges from programs
with more than 20,000 edges. Notice that this sampling is done only
during generation of call-graph pruners, while we use all the edges
from the 41 programs that we use for evaluation.

Analysis Time. Running the three static call-graph constructors
and the dynamic call-graph constructor on all the programs takes
four days of compute time.

Precision and Recall. We estimate the quality of a static call-graph
using the standard notions of precision and recall. In our setting, if
S is the edge set produced by a static call-graph constructor, and
W is the edge set produced by Wiretap, then:

Precision = M Recall = M
IS| Wi
The rate of false-positives is (1— Precision). We compute the average
precision and recall values for the entire test-set by taking the
arithmetic mean over the precision and recall values of individual
programs.

Figure 5 shows a histogram of the original precision and recall
scores for WALA on the 41 individual programs of the test set. Note
that the precision values vary significantly, but almost all programs
get below 40% precision. Hence, there is a lot of scope for improving
the precision. The recall is close to 100% for most programs, but
low for some due to heavy use of reflection, etc.

5 EXPERIMENTAL RESULTS

In this section, we discuss our experimental results that validate
the following claims.

(1) Our generated call-graph pruners for WALA, Doop, and
Petablox produce call graphs with balanced 66% precision
and 66% recall.

(2) Our generated call-graph pruners are significantly better
at boosting precision than context-sensitive analyses, and
have a much smaller overhead.

(3) The precision improvement is consistent across the test set.

523
524
525
526
527
528
529

530

579

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Number of benchmarks
N w B w o ~

-

o

0.4 0.6 0.8
Original Precision

Number of benchmarks
boe NN W W
o w o w o w

v

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Original Recall

1

Figure 5: Precision and recall for 41 test programs.

(4) The call-graph pruner enables a monomorphic call-site
client to balance its skewed 52% precision and 93% recall to
a more balanced 68% precision and 68% recall.

(5) The call-graph pruner enables a null-pointer analysis to
reduce its average warning count from 223 to 20, while
increasing precision from 27% to 77%.

All experiments are run on a separate test set of 41 programs
which were not used during training. The experiments were carried
out on a machine with 24 Intel(R) Xeon(R) Silver 4116 CPU cores at
2.10GHz and 188 Gb RAM. A minimum RAM size of 32Gb is essen-
tial for ensuring that the static analyses run in reasonable time. The
code, lists of train and test programs, pre-computed call-graphs and
instructions on reproducing the experiments are available here [3].
The NJR-1 dataset is available here [39].

5.1 Main Result

Figure 7 gives the main result of the paper: a call-graph pruner can
be successfully used to boost precision and to balance the goals of
precision and recall for the 0-CFA call-graph analysis of WALA,
Doop and Petablox. The plot is used to represent the precision and
recall values of various tools, wherein all precision and recall values
are reported as averages over the test-set programs. The black cross
marks the WALA 0-CFA analysis (23.8% Precision, 95.3% Recall),
the green triangle marks the Doop 0-CFA analysis (23.1% Precision,
92.6% Recall) and the blue circle marks the Petablox 0-CFA analysis
(29.8% Precision, 88.8% Recall). They all have close to perfect recall,
but very poor precision. The red plus sign marks the WALA 1-CFA
analysis (29.6%. 95.4%). The black curve represents the precision-
recall trade-off points obtained when a call-graph pruner is applied

Anon.

Noow WA
n o W o

Number of benchmarks
S

0.3 0.4 0.5 0.6 0.7 0.8 0.9
New Precision

Number of benchmarks

N

0.0 0.2 0.4 0.6 0.8 1.0
New Recall

Figure 6: Precision and recall after call-graph pruning.

1.0
X
A “eITTma-
...*_!!
0.8 1
)
N
0.6
3 By
9] T
o N
-
0.4 v,
AN
L
% N
[
0.2 Ry
R
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Precision
—— call-graph pruner on Wala A Baseline Doop OCFA
—==~ call-graph pruner on Doop ® Baseline Petablox OCFA
----- call-graph pruner on Petablox m Wala Equal Precision-Recall point
X Baseline Wala OCFA m Doop Equal Precision-Recall point
+ Wala 1CFA W Petablox Equal Precision-Recall point

Figure 7: Main Result for the WALA, Doop and Petablox
static analysis tools. The baseline precision-recall values for
the 3 tools, along with the precision-recall curve obtained
after applying a call-graph pruner (averaged over all test
programs)

to the WALA 0-CFA output. The original WALA-0CFA output is a
single point on the precision-recall graph, but the call-graph pruner

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

Striking a Balance:
Pruning False-Positives from Static Call Graphs

gives a curve instead. This is because the call-graph pruner gives a
probability score for each edge being in the ground-truth call-graph,
and by setting different thresholds (i.e. cutoffs below which an edge
is removed), we can obtain different points on the precision-recall
curve. Joining all these different points gives us the black curve
in the figure. Setting a low-probability threshold for accepting an
edge, gives us points near the left end of the black curve, because
we accept a large percentage of edges, thereby giving us higher
recall but lower precision. Setting a high-probability threshold gives
us points near the right end of the curve because we accept only
very few edges which are very likely to be in the ground-truth call-
graph, and this gives us high-precision and low recall. The green
and blue curves represent the precision-recall trade-off obtained
by applying the call-graph pruner to the Doop and Petablox call-
graphs respectively, and the case is very similar to the black WALA
curve.

These curves which trade-off recall for precision show that the
classifier has assigned probabilities meaningfully. In contrast, a
tool that randomly assigns probabilities to edges would result in
a curve that goes straight down to zero recall without improving
any precision. This is because it results in a random removal of
edges, which keeps the ratio of true-positives (i.e. precision) the
same. Boosting precision requires the ratio of false-positive edges
in the removed edge set to be higher than the rest of the edges.

There are 2 particularly interesting points on the black (WALA)
curve in Figure 7. The first is the one marked by the black (WALA)
square (66.0% Precision, 66.0% Recall), which represents the point
with balanced Precision and Recall. Such a point will be useful to any
client analysis which values both precision and recall equally. As
compared to the original WALA 0-CFA (black-cross), this point has
over 72% of the edges from the original call-graph removed, and out
of the removed edges, less than 10% are true positives. This point is
at a 0.45 probability threshold. Similar points for Doop and Petablox,
marked by a green square (hidden behind black square) and blue
square respectively, are at (66.2% Precision, 66.2% Recall) and (66.4%
Precision, 66.4% Recall) respectively. A second interesting point is
the right-most point on the curve after which recall starts dropping
faster, represented by a black star (50% Precision, 92% Recall). Such
a point would be useful for a client analysis that needs to increase a
little precision, without losing much recall. Similar points for Doop
and Petablox, marked by a star, are at (50% Precision, 88% Recall)
and (50% Precision, 87% Recall) respectively.

Both these points give better precision-recall trade-offs than the
1-CFA analysis point. The 1-CFA is limited in its ability to boost
precision because it is constrained to be sound and not lose any
recall. Further, our call-graph pruner adds an overhead of 18% to the
WALA 0-CFA analysis, whereas moving to a 1-CFA analysis adds
292% overhead. Prior research also finds that context-sensitivity
increases analysis time by many folds [26].

For completeness, we also ran this experiment for WALA’s RTA
implementation and it gets similar results (that we show in the
supplementary material). Since the three tools show similar charac-
teristics, we only present numbers for the WALA 0-CFA call-graph
in the rest of this section. The corresponding graphs for Doop and
Petablox are available in the supplementary material.

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Ratio

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Cutoff

— Precision -=-=- F-Score

----- Recall

Figure 8: Probability cutoff plotted vs Precision, Recall and
F-score curves for WALA

Picking a Cutoff value. Figure 8 plots the cutoff values vs Preci-
sion, Recall and F-score. It shows what values each of these metrics
takes at every cutoff value, as well as what the expected cutoff
would be for a given target Precision, Recall or F-score. For exam-
ple, by looking at the figure, we can say that to obtain an expected
Precision of 60%, we can set a cutoff value of 0.4. At this point we
would get a Recall of approximately 75% and F-score of around 65%.
This graph also shows that the point with equal precision-recall is
also very close to the point with maximum F-score.

Human-Interpretable Explanation of the Classifiers. We can give
a human-interpretable explanation of the main aspects of the Ran-
dom Forest classifiers that were learned in the experiment. In each
case, the top-level decisions center around the following generic
classifier:

if ((L-fanout > m) A (dest-node-in-deg > n)) then 0 else 1

The above expression says that if an edge has L-fanout greater
than m and destination-node in-degree greater than n, then the
probability that it is a true edge is 0, and otherwise 1. For each of
the static call-graph constructors, we can identify the constants m
and n:

Wala:

if ((L-fanout > 3.5) A (dest-node-in-deg > 9.5)) then 0 else 1
Doop:

if ((L-fanout > 3.5) A (dest-node-in-deg > 16.5)) then 0 else 1
Petablox:

if ((L-fanout > 3.5) A (dest-node-in-deg > 20.5)) then 0 else 1

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

790

793

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

816

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846

859
860
861
862
863
864
865
866
867
868

869

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Precision Recall
51.8% 92.6%
67.7% 68.4%

Call-graph tool
WALA 0-CFA
WALA 0-CFA + call-graph pruner

Figure 9: Impact of improved call-graph precision on a
monomorphic call-sites client

5.2 Precision and Recall for individual
programs

Figure 6 gives a histogram of the precision and recall scores of
individual programs when a call-pruner is used to prune the WALA
call-graph at the balanced precision-recall point (marked by the
black square in Figure 7). Most of the programs get at least 50%
precision, and a several even reach the 70% precision goal. Contrast
this to the Precision in Figure 5 where almost all programs fail to
cross the 40% precision point. By using a call-graph pruner, 31 out
of the 41 programs have their precision score boosted by at-least
2 times their original precision score. No benchmark gets a worse
precision.

As expected, the recall scores from Figure 6 dropped as compared
to Figure 5. However, most programs still get at least 50% recall,
implying that they retain a good portion of their true edges. Note
that it is impossible to improve recall using a call-graph pruner
since it cannot find new edges that WALA did not find.

Thus, a significant majority of the individual programs consis-
tently get a large precision improvement without loosing too much
recall, and achieve a better precision-recall balance. The Doop and
Petablox graphs have similar characteristics and are shown in the
supplementary material.

5.3 Effect on Client Analyses

Next, we look at the effect of improved call-graph precision on the
monomorphic call-site detection and null-pointer analysis clients.

Monomorphic call-site client. This client is based on the WALA-
generated 0-CFA call-graph, and it uses the dynamic analysis as the
ground-truth. Figure 9 give the precision and recall of a monomor-
phic call-site client with and without the call-graph pruner. The
call-graph pruner helps the client boost precision from 52% to 68%
and balance its goals of precision and recall.

Applications of the monomorphic call-sites client include devir-
tualization and inlining. Since the call-graph analysis is never sound
in practice [27], these applications require some safety checks, re-
sulting in overheads. For example, if devirtualization is used for
optimization, run-time checks need to be inserted to ensure correct-
ness [19]. Higher precision for the monomorphic call-sites client
implies that more of the call-sites declared monomorphic by the
static analysis actually turn out monomorphic in the ground-truth.
This in turn implies that whenever we incur the overhead of inlining
or devirtualization, we are also more likely to realize its benefits.

Null pointer analysis. This analysis is based on the paper by Hu-
bert et. al [18]. It is implemented in WALA, and is used to find null-
pointer errors originating from uninitialized instance fields. The
analysis is context-insensitive, field-insensitive and flow-sensitive.

Anon.

ID Warnings True-Positives in a sample of 10
Before After Before After
B1 137 12 2 10
B2 365 31 4 5
B3 190 15 2 8
B4 308 44 7 10
B5 204 16 0 10
B6 429 42 0 7
B7 404 136 7 10
B8 70 10 0 0
B9 231 10 0 9
B10 102 34 5 8
Average 2.7 7.7

Figure 10: Total warning counts and a manual classification of
a sample of 10 warnings for the null-pointer analysis before
and after applying a call-graph pruner

It only reports potential null-pointer dereferences in application
code, and not for the standard library.

The original WALA call-graph gives us, on average, 223 null
pointer warnings per program. The high volume of warnings makes
it cumbersome for developers to manually inspect and in practice
this results in developers ignoring the tool output entirely [6, 21].
Using the call-graphs produced after pruning gives us much fewer
(on average 20 per program) warnings.

Two of the authors manually inspected a random sample of
10 null-pointer warnings from 10 of the 41 test programs when
used with and without the call-graph pruner. The 10 programs were
chosen with the criteria that they had at least 10 warnings both with
and without the call-graph pruner, and the ratio of warnings with
and without the call-graph pruner was close to (20/223). Figure 10
gives the total warning counts as well as the true-positive counts
(from a sample of 10 warnings) for each of these 10 programs. The
use of a call-graph pruner helped the null-pointer analysis improve
its precision from 27% to 77%

The criteria for marking a warning as a true-positive was that
the author could trace the backward slice of a dereference to an
instance field which was uninitialized by the end of a constructor.
Warnings that either could not be verified in 10 minutes, ran into
another exception before triggering the null exception, or other-
wise unverifiable by the authors, were considered as false-positives.
Reachability from the main method was not considered because it
is hard to verify manually.

5.4 Threats to Validity

The first threat is the use of a dynamic analysis as a proxy for
the call-graph ground truth. It assumes good coverage of the true
ground-truth call-graph, and affects the precision-recall calcula-
tions. Improving dynamic analysis coverage is a non-trivial and
orthogonal problem and any techniques improving coverage will
automatically improve our technique and evaluation. Symbolic ex-
ecution [23] is one option to improve coverage, but it doesn’t scale
to the size of our programs. Instead, we use a subset of the NJR-1

871
872
873

874

876
877

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949

950

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Striking a Balance:
Pruning False-Positives from Static Call Graphs

benchmark set which gets good coverage. Note that this threat does
not affect the evaluation of the null-pointer analysis.

The second threat is the manual inspection of the null-pointer
warnings, which are vulnerable to human errors. The authors in-
specting the errors have a limited familiarity with the code-bases
of the examined program. This could lead to misclassification of
both true and false errors, and affect the precision score accord-
ingly. Further, the precision scores are reported for a sample of 10
programs.

The third threat to validity is the generalizability of the results
to programs outside the NJR dataset. Our assumption is that our
learning and evaluation results generalize to other programs outside
the dataset.

6 RELATED WORK

Our technique is the first to apply machine learning to boost call-
graph precision. In our discussion of related work, we focus on three
areas: combining static and dynamic analyses, applying machine
learning to remove static-analysis false-positives, and improving
the precision of call-graph construction.

Combining static and dynamic analysis. Prior research has used
a dynamic analysis to improve the precision of a static analysis.
Grech et. al [13] generate dynamic heap information and use this
as a drop-in replacement for the heap modeling part in an existing
static analysis tool to improve its precision. Artzi et. al [4] use a
dynamic analysis to confirm the mutability information computed
by a static analysis. Chen et. al [10] use the information from test-
executions to prioritize the alarms given by a static analysis. The
main drawback that these tools face is that they need the dynamic
analysis to be run every single time the tool is run. In contrast, our
technique needs the dynamic analysis only for generating a call-
graph pruner. After that, a call-graph pruner is purely a static tool,
and hence does not suffer from the usual drawbacks of a dynamic
analysis like long execution times or finding good inputs.

Applying machine learning to improve static-analysis by remov-
ing false-positives. The technique of filtering static-analysis false-
positives by casting it to a classification problem with hand-picked
features has been used for static bug-analysis tools [12, 15, 34, 38,
42]. Each of these works follows the same workflow: collect static
analysis error-reports, get a programmer to label them as true or
false-positives, design a feature-set for the error reports, and then
train a classifier on these labeled error-reports to identify false-
positives. However, they have minor differences among themselves
in terms of the feature-set chosen, the bug-reporting tool used and
the benchmarks used for the training data. Ruthruff et. al [34] use
the FindBugs [17] bug-reporting tool and the set of Java programs
at Google as their dataset. Heckman and Williams [15] also use
FindBugs reported bugs on 2 open-source Java projects. Yuksel
and Sozer [42] classify bug-alerts for a digital TV software. Flynn
et al. [12] combine the bug-alerts from multiple tools, in addition
to using the hand-picked features. Tripp et. al [38] work with a
JavaScript security checker’s warnings from popular Web sites as
its dataset.

Our work differs in three ways: it uses an estimate of ground-
truth produced by dynamic analysis, it has a generalizable approach

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

to picking a feature set, and it has a tunable precision-recall trade-
off, as we discuss next.

The key bottleneck faced by each of these prior works was that
they relied on the collection of human-labeled ground-truth, which
does not scale. This restricted their dataset to a handful of projects
and a couple of thousand data-points (bug reports) at best. In fact,
for each type of error, there is typically less than a few hundred bugs
in each of the datasets. In contrast, our technique uses an estimate
of ground-truth produced by dynamic analysis, which allows it to
scale to a much larger number of programs with a million data
points (call-graph edges).

The second major difference is in the choice of the feature-set.
This is partly a consequence of the fact that the previous work
focuses on static-analysis error report data, which is different from
the graph output generated by call-graph construction tools. Hence
some of the common features used in these works are the bug-
priority level, file-modification-frequency, coding-style metrics,
and lexical features (like method or package names). These fea-
tures, though appropriate, violate generalizability and black-box
guiding principles listed in Section 3.3. Non-black-box features like
bug-priority level will not generalize across different tools or al-
gorithms, and non-generalizable features like lexical features are
unlikely to generalize to programs outside the dataset. In contrast,
we use a systematic approach to selecting features, as described in
Section 3.3, and as a consequence, our approach generalizes eas-
ily across multiple programs and multiple call-graph construction
tools.

The third difference is that these prior works, except for [38],
provide a single precision-recall point. [38] provide eight differ-
ent precision-recall points, by varying the classifier used. Instead,
our approach has a tunable precision-recall trade-off by predict-
ing edge-probabilities and pruning edges with probability lower
than a threshold. Further, we only use a single classifier (Random
Forests) since it achieves superior precision-recall trade-offs than
the classifiers used in [38].

Another area that uses machine learning for filtering false pos-
itive is the work by Raghothaman et al. [32]. They predict the
probabilities of static-analysis alarms using Bayesian inference and
update these as the user resolves alarms as true or false positives.
This paradigm of online learning, where the model is learned and
improved as the user gives feedback, is quite different from our
fully-automated offline learning paradigm, where we do a one-time
training on a large dataset of static and dynamic analysis outputs
and require no user input.

Improving the precision of call-graph construction. Lhotak [25]
designed an interactive tool to qualitatively understand the root
cause of differences between different static and dynamic analysis
tools. This is then used in a case study to understand the main
cause of imprecision in a static analysis tool as compared to its
corresponding dynamic analysis output. In contrast, our classifier
generator is fully automated, using machine learning, and doesn’t
require a skilled programmer to use an interactive tool to figure
out the cause of the imprecision.

Sawin and Rountev [36] propose certain heuristics to deal with
dynamic features like reflection, dynamic class loading and native
method-calls in Java, which helps to improve call-graph precision

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

of the CHA algorithm without sacrificing much recall. Similarly,
a call-graph pruner trades of a little recall for a large boost in
precision, but it achieves this through automated machine learning
on a dataset of call-graphs instead, and is able to boost precision
by a much larger amount. Additionally, we work with a 0-CFA
baseline (with no handling of dynamic features like reflection),
which already has a large precision gain over a CHA algorithm
with reflection handling.

Zhang and Ryder [43] create precise application-only call-graphs
by identifying which edges from the standard library to the applica-
tion are really false-positive. This is similar to the precision boost
we gain for the edges that go via the standard library. However,
we generate a classifier that learns this on its own from data, and
we use the classifier in a call-graph pruner that is able to boost
precision even further.

There has also been prior work that uses a dynamic analysis to
evaluate call-graph related static analysis tools [1, 9, 33, 37]. Our
tool, in addition, also uses the dynamic analysis results as training
labels to prune the result from a static call-graph construction tool.

7 CONCLUSION

Our approach to generating a high-precision call-graph first runs
an existing black-box call-graph constructor and then prunes the
resulting call graph. A call-graph pruner uses a classifier, which is
trained on a large number of static and dynamic call-graphs, to pre-
dict the probability of an edge being a true-positive. Using different
thresholds for the edge probabilities we can tune the precision-
recall trade-off of the call-graph. We empirically showed how a
call-graph pruner can be used to boost precision and balance the
recall and precision of call-graphs produced by WALA, Doop and
Petablox, which are otherwise skewed towards high recall and low
precision. We also ran a null-pointer analysis and a monomorphic
call-sites analysis with these pruned call-graphs, and we showed
that they got much closer to the high-precision expectations of
their users.

Future work includes automatically learning a feature-set for use
by our pruner generator and our generated call-graph pruners. A
particularly promising avenue for future work is to explore graph
neural networks for automatic feature-learning. Recent work has
used graph neural networks [14] for program analysis tasks like
program similarity [29], variable misuse prediction [2, 41] variable
name prediction [2], and method name prediction [41]. The features
that are discovered in those papers are not features of call graphs
and hence this remains an open problem.

APPENDIX

The example in Figure 2 is an excerpt of from the program that
Figure 11 shows in full.

Our classifier generator uses the Random Forest algorithm [16]
implemented with the Scikit-Learn [31] library (v0.21.3). We tuned
the hyper-parameters using Random Hyper-Parameter Search [5].
The score for which we optimized was the area under the precision-
recall curve and Figure 12 lists the chosen hyper-parameters.

10

class A{
A f;
void foo(A a){
a.toString();

class B extends A{
A f;
void foo(A a){
a.toString();

class C extends B{
void foo(A c){
c.toString();

public class Main{

static A id(A a){
new A().foo(a);
return a;

}

static A getObjC(){
new A().foo(new AQ));
new B().foo(new AQ));
A p = id(new AQ));
A g = id(new B());
A r = id(new C());
return r;

}
public static void main(
String[] args){
A x = getObjC(Q);
x.foo(x.f);
x.f = new AQ);

}

Figure 11: Program for the example in Section 2

Hyperparameter Value
Number of Trees 1000
Maximum Depth 10
Bootstrapping False
Minimum samples for split 2
Maximum features for split sqrt(feature count)
Minimum samples for leaf 1

Split quality criterion Entropy
Other hyper-parameters Library default

Figure 12: Hyper-parameters for Random-Forests

Anon.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

Striking a Balance:
Pruning False-Positives from Static Call Graphs

REFERENCES

(1]

[2

=

(3]

(6

=

[7

[

=

[10

(1]

[12

[13]

[15]

[16]

[17]

[18

Karim Ali and Ondiej Lhotak. 2012. Application-Only Call Graph Construction.
In ECOOP 2012 - Object-Oriented Programming, James Noble (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 688-712.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
BJOFETxR-

Anonymous. 2021. Artifact for ICSE-22 submission "Striking a Balance: Pruning
False-Positives from Static Call Graphs". https://doi.org/10.5281/zenodo.5391007
Shay Artzi, Adam Kiezun, David Glasser, and Michael D. Ernst. 2007. Combined
Static and Dynamic Mutability Analysis. In Proceedings of the Twenty-Second
IEEE/ACM International Conference on Automated Software Engineering (Atlanta,
Georgia, USA) (ASE 07). Association for Computing Machinery, New York, NY,
USA, 104-113. https://doi.org/10.1145/1321631.1321649

James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter
Optimization. J. Mach. Learn. Res. 13, 1 (Feb. 2012), 281-305. http://dl.acm.org/
citation.cfm?id=2503308.2188395

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66-75. https://doi.org/10.1145/1646353.1646374
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Spec-
ification of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (Orlando, Florida, USA) (OOPSLA *09). ACM, New York, NY, USA,
243-262. https://doi.org/10.1145/1640089.1640108

Leo Breiman. 1996. Bagging predictors. Machine Learning 24, 2 (01 Aug 1996),
123-140. https://doi.org/10.1007/BF00058655

Raymond P. L. Buse and Westley Weimer. 2009. The Road Not Taken: Estimating
Path Execution Frequency Statically. In Proceedings of the 31st International
Conference on Software Engineering (ICSE ’09). IEEE Computer Society, USA,
144-154. https://doi.org/10.1109/ICSE.2009.5070516

Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting Static
Analysis Accuracy with Instrumented Test Executions. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 1154-1165. https:
//doi.org/10.1145/3468264.3468626

Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA,
332-343. https://doi.org/10.1145/2970276.2970347

Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard Qin,
Jennifer Burns, David Zubrow, Robert Stoddard, and Guillermo Marce-Santurio.
2018. Prioritizing Alerts from Multiple Static Analysis Tools, Using Classification
Models. In Proceedings of the 1st International Workshop on Software Qualities
and Their Dependencies (Gothenburg, Sweden) (SQUADE ’18). Association for
Computing Machinery, New York, NY, USA, 13-20. https://doi.org/10.1145/
3194095.3194100

Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smarag-
dakis. 2018. Shooting from the Heap: Ultra-Scalable Static Analysis with
Heap Snapshots. In Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA
2018). Association for Computing Machinery, New York, NY, USA, 198-208.
https://doi.org/10.1145/3213846.3213860

Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 855-864. https:
//doi.org/10.1145/2939672.2939754

Sarah Heckman and Laurie Williams. 2009. A Model Building Process for Identi-
fying Actionable Static Analysis Alerts. In Proceedings of the 2009 International
Conference on Software Testing Verification and Validation (ICST "09). IEEE Com-
puter Society, USA, 161-170. https://doi.org/10.1109/ICST.2009.45

Tin Kam Ho. 1995. Random Decision Forests. In Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition (Volume 1) - Volume 1
(ICDAR ’95). IEEE Computer Society, USA, 278.

David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN Not.
39, 12 (Dec. 2004), 92-106. https://doi.org/10.1145/1052883.1052895

Laurent Hubert, Thomas Jensen, and David Pichardie. 2008. Semantic Founda-
tions and Inference of Non-null Annotations. In Formal Methods for Open Object-
Based Distributed Systems, Gilles Barthe and Frank S. de Boer (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 132-149.

11

[19

[20

[21

[22

[23

[24]

[25

[26]

[27

[28

[29

@
=

(31]

(32

(33]

[34

[35

[36]

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and
Toshio Nakatani. 2000. A Study of Devirtualization Techniques for a Java Just-In-
Time Compiler. In Proceedings of the 15th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (Minneapolis, Min-
nesota, USA) (OOPSLA °00). Association for Computing Machinery, New York,
NY, USA, 294-310. https://doi.org/10.1145/353171.353191

Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Learning Graph-Based
Heuristics for Pointer Analysis without Handcrafting Application-Specific Fea-
tures. Proc. ACM Program. Lang. 4, OOPSLA, Article 179 (Nov. 2020), 30 pages.
https://doi.org/10.1145/3428247

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don'’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the 2013 International Conference on Software Engineering (San
Francisco, CA, USA) (ICSE ’13). IEEE Press, 672-681.

Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction.
Proc. ACM Program. Lang. 2, OOPSLA, Article 146 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276516

Sarfraz Khurshid, Corina S. PAsAreanu, and Willem Visser. 2003. Generalized
Symbolic Execution for Model Checking and Testing. In Tools and Algorithms
for the Construction and Analysis of Systems, Hubert Garavel and John Hatcliff
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 553-568.

S. B. Kotsiantis. 2007. Supervised Machine Learning: A Review of Classifica-
tion Techniques. In Proceedings of the 2007 Conference on Emerging Artificial
Intelligence Applications in Computer Engineering. I0S Press, NLD, 3-24.
Ondrej Lhotak. 2007. Comparing Call Graphs. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (San Diego, California, USA) (PASTE °07). Association for Computing
Machinery, New York, NY, USA, 37-42. https://doi.org/10.1145/1251535.1251542
Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Scalability-
First Pointer Analysis with Self-Tuning Context-Sensitivity. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL,
USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY,
USA, 129-140. https://doi.org/10.1145/3236024.3236041

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondfej Lhotak, J. Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Meller, and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A Manifesto.
Commun. ACM 58, 2 (Jan. 2015), 44-46. https://doi.org/10.1145/2644805

Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A User-Guided
Approach to Program Analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association
for Computing Machinery, New York, NY, USA, 462-473. https://doi.org/10.
1145/2786805.2786851

Aravind Nair, Avijit Roy, and Karl Meinke. 2020. FuncGNN: A Graph Neural
Network Approach to Program Similarity. In Proceedings of the 14th ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM) (Bari, Italy) (ESEM ’20). Association for Computing Machinery, New York,
NY, USA, Article 10, 11 pages. https://doi.org/10.1145/3382494.3410675

Jens Palsberg and Cristina V. Lopes. 2018. NJR: A Normalized Java Resource.
In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (Amsterdam,
Netherlands) (ISSTA ’18). Association for Computing Machinery, New York, NY,
USA, 100-106. https://doi.org/10.1145/3236454.3236501

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python . Journal of Machine Learning Research 12 (2011), 2825-2830.
Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
User-Guided Program Reasoning Using Bayesian Inference. SIGPLAN Not. 53, 4
(June 2018), 722-735. https://doi.org/10.1145/3296979.3192417

Atanas Rountev, Scott Kagan, and Michael Gibas. 2004. Static and Dynamic
Analysis of Call Chains in Java. In Proceedings of the 2004 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (Boston, Massachusetts, USA)
(ISSTA °04). Association for Computing Machinery, New York, NY, USA, 1-11.
https://doi.org/10.1145/1007512.1007514

Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and
Gregg Rothermel. 2008. Predicting Accurate and Actionable Static Analysis
Warnings: An Experimental Approach. In Proceedings of the 30th International
Conference on Software Engineering (Leipzig, Germany) (ICSE "08). Association
for Computing Machinery, New York, NY, USA, 341-350. https://doi.org/10.
1145/1368088.1368135

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (March 2018), 58-66. https://doi.org/10.1145/3188720

J. Sawin and A. Rountev. 2011. Assumption Hierarchy for a CHA Call Graph
Construction Algorithm. In 2011 IEEE 11th International Working Conference on
Source Code Analysis and Manipulation. 35-44.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

1258

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.5281/zenodo.5391007
https://doi.org/10.1145/1321631.1321649
http://dl.acm.org/citation.cfm?id=2503308.2188395
http://dl.acm.org/citation.cfm?id=2503308.2188395
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICSE.2009.5070516
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/3194095.3194100
https://doi.org/10.1145/3194095.3194100
https://doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/353171.353191
https://doi.org/10.1145/3428247
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3276516
https://doi.org/10.1145/1251535.1251542
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/3382494.3410675
https://doi.org/10.1145/3236454.3236501
https://doi.org/10.1145/3296979.3192417
https://doi.org/10.1145/1007512.1007514
https://doi.org/10.1145/1368088.1368135
https://doi.org/10.1145/1368088.1368135
https://doi.org/10.1145/3188720

ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA Anon.

1277 [37] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the Recall of 1335
1278 Static Call Graph Construction in Practice (ICSE ’20). Association for Computing 1336
Machinery, New York, NY, USA, 1049-1060. https://doi.org/10.1145/3377811.
1279 3380441 1337
1280 [38] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014. 1338
1281 ALETHEIA: Improving the Usability of Static Security Analysis. In Proceedings 1339
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
1282 (Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New 1340
1283 York, NY, USA, 762-774. https://doi.org/10.1145/2660267.2660339 1341
1284 [39] Akshay Utture, Christian Gram Kalhauge, Shuyang Liu, and Jens Palsberg. 2020. 1342
NJjR-1 Dataset. https://doi.org/10.5281/zenodo.4839913
1285 [40] WALA. 2015. IBM, “T.J. Watson Libraries for Analysis (WALA),”. http://wala. 1343
1286 sourceforge.net. 1344
[41] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning Semantic
1287 Program Embeddings with Graph Interval Neural Network. Proc. ACM Program. 1345
1288 Lang. 4, OOPSLA, Article 137 (Nov. 2020), 27 pages. https://doi.org/10.1145/ 1346
1289 3428205 1347
[42] U. Yiiksel and H. Sozer. 2013. Automated Classification of Static Code Anal-
1290 ysis Alerts: A Case Study. In 2013 IEEE International Conference on Software 1348
1291 Maintenance. 532-535. 1349
1209 [43] Weilei Zhang and Barbara G. Ryder. 2007. Automatic Construction of Accurate 1350
Application Call Graph with Library Call Abstraction for Java: Research Articles. o
1293 F. Softw. Maint. Evol. 19, 4 (July 2007), 231-252. 1351
1294 1352
1295 1353
1296 1354
1297 1355
1298 1356
1299 1357
1300 1358
1301 1359
1302 1360
1303 1361
1304 1362
1305 1363
1306 1364
1307 1365
1308 1366
1309 1367
1310 1368
1311 1369
1312 1370
1313 1371
1314 1372
1315 1373
1316 1374
1317 1375
1318 1376
1319 1377
1320 1378
1321 1379
1322 1380
1323 1381
1324 1382
1325 1383
1326 1384
1327 1385
1328 1386
1329 1387
1330 1388
1331 1389
1332 1390
1333 1391

1334 12 1392

https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.5281/zenodo.4839913
http://wala.sourceforge.net
http://wala.sourceforge.net
https://doi.org/10.1145/3428205
https://doi.org/10.1145/3428205

	Abstract
	1 Introduction
	2 Example
	3 Call-Graph Pruners
	3.1 Overview
	3.2 Our Classifier Generator
	3.3 Our Feature set

	4 Implementation and Dataset
	5 Experimental Results
	5.1 Main Result
	5.2 Precision and Recall for individual programs
	5.3 Effect on Client Analyses
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

