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Abstract Many pathways towards reaching defossilization goals build on a sub-
stantially increased production of bio-based products and energy carriers including 
liquid biofuels. This is, amongst others, limited by land and phosphorous availabil-
ity. However, it is challenging to adequately capture these limitations in LCA using 
state-of-the-art LCI and LCIA methods. We propose two new methods to overcome 
these challenges: (1) attributional land use and land use change (aLULUC) evenly 
attributes LU-/LUC-related burdens (emissions) occurring in a country to each 
hectare of cropland used in that country and (2) phosphate rock demand as a stand- 
alone resource indicator for a finite resource that cannot be replaced. Approach, 
calculations and used factors are described for both methods, and exemplary results 
for biofuels are presented. We conclude that both methods can yield additional 
insight and can support finding solutions for current challenges in agriculture.

1  Introduction

As for most bio-based products, replacing fossil fuels by biofuels mostly creates 
environmental advantages and disadvantages at the same time. Advantages typically 
relate to climate change mitigation and savings of fossil energy resources, and dis-
advantages of various kinds are usually caused by the required biomass production. 
This well-known pattern is reflected in standard LCA results in the field.

Public and scientific discussions more and more focus on environmental burdens 
and limitations of agriculture that are becoming important bottlenecks of agriculture 
on a global scale. These aspects include land use/biodiversity, water and increas-
ingly also limited phosphate resources. These could also become limiting for cur-
rently discussed pathways for defossilization of the society, which often builds on 
using more bio-based products in general and biofuels of various kinds in particular.
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Results of state-of-the-art LCAs however often do not effectively support finding 
new solutions in these areas for various reasons. This paper focusses on the aspects 
land use/land use change (LUC) and phosphate resources. In the following chapters, 
limitations of current state-of-the-art LCA methods are discussed, and two new 
methods are proposed as solutions: (1) attributional land use and land use (aLU-
LUC) change as new alternative to dLUC/iLUC and (2) phosphate rock demand as 
new stand-alone resource indicator.

2  Attributional Land Use and Land Use Change

2.1  Background

Land use change (LUC) describes the relative change in the use or management of 
an area compared to a previous use of the same area and the associated emissions 
(or emission avoidance). Which methodology is suitable for the quantification 
LUC-related burdens depends on the goal and scope of a study. This can include the 
overall greenhouse gas balance of a country, the traceable direct consequences of a 
specific product in its supply chain (dLUC, direct land use change) or the indirect 
consequences of a change in the market, e.g. triggered by the support of a specific 
product such as biofuels (iLUC, indirect land use change).

In theory, dLUC could accurately determine the actual LUC emissions from a 
product such as rapeseed diesel. However, this is not applicable in practice for sev-
eral reasons: Firstly, existing data is not available and subject to data protection. 
Secondly, more biomass not associated with land use change is available than inter-
ested customers or regulated markets are demanding. Thus, dLUC is not useful to 
mitigate or stop continuing land use change.

iLUC factors are calculated by combining land use models with an economic 
equilibrium or partial system and are intended to estimate the overall impact of a 
targeted or shock-like increase in production on global land use. Fehrenbach [18], 
amongst others, analysed and described the wide range of results depending on the 
choice of model. The iLUC approach is therefore only of limited use for developing 
solutions based on life cycle assessments due to the disagreement amongst experts 
about the suitability and reliability of the various iLUC models. Moreover, iLUC 
always describes results of changes or measures, which is incompatible with attri-
butional LCAs describing the status quo. Finkbeiner [19] also discussed these 
aspects in detail.

We propose a life cycle inventory approach termed attributional land use/land 
use change (aLULUC) to attribute existing and documented burdens caused by land 
use change and continuous burdens/emissions from using converted land to prod-
ucts [1]. Here we focus on climate impacts although further impact categories such 
as biodiversity [2, 3] can also be assessed using the life cycle inventory 
method aLULUC.
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2.2  Approach

A decisive premise for aLULUC is that land use changes to arable land take place 
in reality. These land use changes are usually recorded and associated emissions are 
backed up with data. This includes one-time emissions from actual LUC and con-
tinuous emissions mainly from organic soils caused by LUC but occurring for many 
decades of land use (LU) that can only be stopped if land use is given up and appro-
priate protection measures are taken.

The aLULUC concept is independent of models of future land use change as it is 
the case for iLUC. In the same systematic way as real emissions are attributed to the 
processes of a life cycle, real LUC processes can be attributed to the associated 
processes, as it is also done applying the dLUC concept. However, even if actual 
land use changes can be clearly assigned to certain agricultural products, all agricul-
tural products of a production area compete for limited availabilities on the local 
market for cropland. The reaction of the markets on, e.g. the EU biofuels policy, has 
shown that crops on and products from recently logged land (or from “LUC-free” 
land) can be flexibly allocated to customers according to their preferences. For that 
reason, a land-market-based attribution of aLULUC to products produced on that 
land following the aLULUC concept is a more consistent representation of the 
underlying processes than a direct attribution following the dLUC concept. For the 
majority of agricultural products, country borders are the most appropriate geo-
graphical reference areas for the aLULUC concept. Firstly, there are no internal 
trade barriers within national markets. More importantly, however, decisions and 
policies regarding the conservation of areas such as rainforests, wetlands and grass-
lands are made or influenced at the country level. A more specific attribution of 
LUC to individual crops within these markets would require economic assumptions 
and models that seek to establish causalities. These do not necessarily reflect the 
complex socio-economic and political processes that can cause, promote or pre-
vent LUC.

Following the proposed aLULUC approach, the real land use changes that have 
been caused by agriculture (of a defined region) are allocated to all agricultural 
products in proportion to the land requirements. It is therefore an allocation accord-
ing to the attribute land demand. aLULUC can be calculated for arable land as well 
as for other types of land such as grassland. The country- and year-specific aLU-
LUC factor for arable land is determined as follows: All carbon stock changes in 
biomass and soils caused by net conversion from other types of land use to arable 
land in a country in a certain year are summed up and divided by the area of arable 
land used in that year. One-time changes in biomass and soil carbon stocks (LUC) 
are attributed to the year in which the LUC occurs although actual CO2 emissions 
may be partially delayed by a few years. Continuous emissions of CO2, CH4 and 
N2O from the cultivation of organic soils (LU) are counted in the year in which they 
occur. Averages of aLULUC factors over the last ten available years result in stable 
values that do not disregard medium- to long-term developments. Detailed calcula-
tion procedures and data sources are discussed in [1]. Current emission factors for 
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the climate impact of land use and land use change according to the aLULUC con-
cept for selected countries can be found in Table 1.

2.3  Application Example: GHG Emissions Including aLULUC 
of European Rapeseed Biodiesel

Biodiesel can achieve certain climate change mitigation if it replaces conventional 
diesel. This is however only the case if land use does not cause high additional 
greenhouse gas emissions. Usually, this problem is discussed for palm oil biodiesel 
and deforestation. However, depending on the used land and the methodological 
approach used to attribute emissions from LU and LUC to the fuel, also European 
rapeseed biodiesel can cause in total more greenhouse gas emissions than it saves 
(Fig. 1). Greenhouse gas emissions from LU and LUC in Europe mainly stem from 
conversion of grassland and from cultivation on organic soils, i.e. drained wetlands/
peatland.

The cultivation of rapeseed on former grassland can lead to overall additional 
contributions to climate change following the dLUC approach if common time hori-
zons of up to about 25 years are used. If organic soils/peatlands are used, an analo-
gous direct attribution of LU to the product (termed dLU in the figure) could even 
lead to very high additional greenhouse gas emissions. Where such emissions have 

Table 1 Exemplary country-specific aLULUC emission factors for annual crops cultivated on 
arable land selected from [1]

Country
Total aLULUC
t CO2eq/(ha year)

aLU
t CO2eq/(ha year)

aLUC
t CO2/(ha year)

France 0.90 0.41 0.50
Germany 1.44 1.22 0.21
Italy 0.26 0.14 0.12
Netherlands 4.50 4.08 0.41
Poland 1.60 1.59 0.01
Romania 0.17 0.14 0.03
Spain 0.04 0.04 0.01
United Kingdom 0.55 0.55 0.00
EU 28 1.05 0.85 0.20
Argentina 3.36 0.03 3.33
Colombia 52.3 0.00 52.3
Brazil 9.32 0.00 9.32
Malaysia 55.4 42.9 12.5
Indonesia 30.4 13.7 16.7
India 0.06 0.06 0.00
Russia 0.80 0.30 0.50
USA 0.52 0.52 0.00
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to be attributed to a fuel according to the European renewable energy directive [4], 
no farmer would of course cultivate crops for biofuels. Nevertheless, biofuel crops 
occupy land and increase the pressure to use former grassland and peatland for cul-
tivation of crops in general. Following the aLULUC approach, LU- and LUC- 
related emissions are evenly distributed over all cropland of the respective country. 
This leads to somewhat reduced climate change mitigation for French rapeseed bio-
diesel. Especially emissions from cultivated organic soils in Germany and even 
more so in the Netherlands lead to a substantial reduction of greenhouse gas emis-
sion savings.

This application example shows that LU and LUC can make significant contribu-
tions to carbon footprints also in European countries. The aLULUC approach helps 
that these emissions are not neglected because direct attribution of these emissions 
to products does not take place in practice – neither in Europe nor overseas. Hardly 
anybody would, for example, consider that, e.g. his/her meat could stem from ani-
mals raised on corn grown on drained Northern European peatland.

3  Phosphate Rock Demand

3.1  Background

Phosphate rock is the basic raw material for the production of phosphoric acid, 
which is essential for the production of phosphate products such as fertilizers, ani-
mal feed, food and other industrial products. Ninety per cent of the global supply of 
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Fig. 1 Life cycle greenhouse gas emissions of European rapeseed biodiesel compared to conven-
tional diesel. All results are based on the same life cycle comparison with differences only in the 
used land and the methodological approach to land use (LU) and land use change (LUC). The time 
horizons, over which one-time emissions are distributed, are specified where applicable
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phosphate is used as fertilizer in agriculture [5]. Eighty-five per cent of phosphate 
ore is extracted from marine sedimentary deposits and 15% from magmatic depos-
its, with phosphate ore chemically including iron and aluminium salts as hydrate 
complexes with very different phosphorous and phosphate contents. Deposits based 
on guano deposits are largely exhausted [6]. The main producing countries are cur-
rently China (52%), the USA (10%) and Morocco (12%) [7]. Marketable rock phos-
phate contains between 27% and 40% phosphate ([8] cited in [6]). Besides, recycled 
phosphate can be recovered from sewage sludge by several processes [9, 10].

As a mineral raw material, phosphate is a non-renewable resource. Depending on 
the source, the static lifetime of global phosphate reserves is only several decades to 
a few centuries [11–14] (see Fig. 2).

This shortage is further worsened by a growing world population and simultane-
ously changing consumption patterns [15], resulting in an increasing demand for 
phosphate.

Due to this growing importance, the impossibility of substitution by other raw 
materials in central applications and simultaneous limitation, we recommend inte-
grating the resource “phosphate” in life cycle assessments using a separate indica-
tor. We suggest using the indicator phosphate rock demand as proposed in [16] and 
presented below.

3.2  Approach

Various indicators can be used in LCA to address resource use. One indicator is the 
cumulative raw material demand (CRD), which is defined as the sum of all raw 
materials entering a system – except water and air – expressed in mass units. Other 
indicators also include weighting of the individual raw materials by, e.g. scarcity. 
These established indicators have in common that the mineral resource consump-
tion of phosphate is not reported separately. This is not sufficient especially for 
LCAs with a strong focus on agriculture such as LCAs on biofuels because phos-
phate/phosphorus is a raw material that cannot be replaced by any other element in 
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its main application as a fertilizer. Therefore, the consumption of non-renewable 
phosphate rock needs to be addressed independently from other raw materials.

We propose a new indicator phosphate rock demand (informally also “phosphate 
rock footprint”) following the concept of the CRD but only including phosphate 
rock. Phosphate rock demand is determined by the initial rock mass. The recom-
mended unit for the life cycle inventory is “phosphate rock standard” [16]. The defi-
nition of a standard is necessary because phosphate rock can have significantly 
different phosphate contents. Based on [17], an average content of 25% of P2O5 is 
set for phosphate rock standard. P2O5 is the reference substance/unit commonly 
used in agriculture. This corresponds to 32% raw phosphate. This means that 1 kg 
of mineral P2O5 fertilizer corresponds to 4.0 kg of phosphate rock (std.) or 3.125 kg 
of raw phosphate (std.). This specification explicitly refers to mineral fertilizers. For 
organic fertilizers, a specific procedure must be derived depending on the goal and 
scope of the study. If consequential modelling is applied, for example, additional 
phosphate sources are taken into account, which can replace mineral phosphate 
without restrictions and which are available in limited quantities during the refer-
ence period of the study.

Results can be normalized to inhabitant equivalents by dividing them by the 
average annual resource consumption per inhabitant. The following normalization 
factors were derived for this purpose ([16] for details):

• For the reference area Germany: 16.1 kg phosphate rock (std.)/(inhabitant ∙ year).
• For the reference area Europe: 23.1 kg phosphate rock (std.)/(inhabitant ∙ year).

These factors refer to the 5-year average and thus remove short-term fluctuations 
in the statistics. Normalization factors for other regions can be derived accordingly.

3.3  Application Example: Phosphate Rock Demand 
of Different Biofuels

With the approach described in Chap. 3.2 outlining the definition and calculation of 
the indicator “phosphate rock demand”, the resource phosphate can be integrated 
into life cycle assessments. In the following, the application of this approach is 
explained using an illustrative example. Several bio-based fuels were analysed: bio-
ethanol, biomethane, biodiesel, fuel from vegetable oil and Fischer-Tropsch diesel. 
Figure 3 shows the ranges between minimum and maximum phosphate rock demand 
per biofuel.

The phosphate rock demand of different biofuels differs significantly. First- 
generation biofuels tend to perform much better than second-generation bioethanols 
with respect to phosphate rock depletion. Results also depend heavily on the biofu-
els’ production schemes, co-product uses and their local conditions. This striking 
difference between first- and second-generation bioethanols mainly results from 
phosphate inputs into fermentation processes without subsequent productive 
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recovery. Based on the large range of results, it seems plausible that this aspect has 
not been optimized or not even been recognized as potential problem in the current 
state of process development and maturation. This underlines the importance of the 
indicator phosphate rock demand to support finding solutions to the problem of 
declining non-renewable phosphate resources.

4  Conclusions

In this paper, we presented two LCA extensions that intend to better address limita-
tions of current agriculture in decision-making processes.

The life cycle inventory method attributional land use and land use change (aLU-
LUC) evenly attributes impacts of deforestation, grassland conversion (both LUC) 
and organic soil use (LU) actually taking place in a country to each hectare of crop-
land used in that country. This has several advantages over commonly used dLUC 
or iLUC:
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Fig. 3 Phosphate rock demand of different biofuels compared to the respective conventional fossil 
fuel. The ranges encompass conservatively and optimistically estimated phosphate rock demands 
for each fuel. EtOH stands for bioethanol, SRC for short rotation coppice and FT for Fischer-Tropsch
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• Firstly, aLULUC is based on available data and does not require complex eco-
nomic models or value-based choices of crucial parameters such as time hori-
zons. This makes results more robust.

• Secondly, a comprehensive and regularly updated database is available based on 
the respective national inventory reports and FAOSTAT for LUC and LU.

• Thirdly, in contrast to iLUC, aLULUC is compatible to attributional LCA, 
because it attributes burdens/emissions to products and not to change processes. 
Finally, aLULUC factors on a country level can help to derive meaningful mes-
sages to politicians in charge for protection measures or to consumers.

The LCIA indicator phosphate rock demand was introduced as a stand-alone 
resource indicator because phosphate is a finite resource that cannot be replaced in 
its vital major application as fertilizer. Thus, phosphate consumption without recy-
cling needs to be reduced which requires measures that are independent of other 
finite resources. The phosphate rock footprint was shown to be a valuable tool to 
identify such measures. For biofuels, for example, hot spots of phosphate use were 
found in various life cycle stages. This information can easily be lost in common 
evaluations of common aggregate resource indicators.

In summary, the LCI/LCIA methods aLULUC and phosphate rock demand are 
suitable to derive additional insights and recommendations for LCAs with a wide 
range of goals and scopes. In particular, both methods are designed to yield recom-
mendations how to overcome crucial bottlenecks of agriculture that are solution- 
oriented and useful in practice. Therefore, these methods should be considered as an 
extension of or, if already addressed, alternative to methods nowadays routinely 
applied in LCA.
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