
DWH-DIM: A Blockchain Based Decentralized
Integrity Verification Model for Data Warehouses

Jeroen Bergers∗, Zeshun Shi∗, Ken Korsmit†, and Zhiming Zhao∗
∗Informatics Institute, University of Amsterdam, Amsterdam, 1098 XH, the Netherlands

†Spatial Eye B.V., Culemborg, 4105 JH, the Netherlands
Email: jeroen.bergers@hetnet.nl, z.shi2@uva.nl, ken.korsmit@spatial-eye.com, z.zhao@uva.nl

Abstract—Data manipulation is often considered a serious
problem in industrial applications as data tampering can lead
to inaccurate financial reporting or even a corporate security
crisis. A correct representation of company data is essential
for the companies’ core business processes and is requested
by governments and investors. However, the current solution,
third-party auditing, is expensive and cannot be fully trusted.
In this paper, we present the Data Warehouse Decentralized
Integrity Model (DWH-DIM) to validate the integrity of the
data warehouse and replace the current process. To address
the challenge that the existing distributed integrity verification
models cannot handle GDPR and are limited by scalability,
our model uses a distributed file system to store attributes that
can be used for the integrity verification task. The blockchain
further confirms the authenticity of the files. Based on the
proposed model, we present a detailed implementation of the
DWH-DIM tool. The implementation is tested with a use case
and several benchmarks. Experimental results demonstrate that
our proposed model is feasible and meets the requirement for
certificate warehouse data.

I. INTRODUCTION

Information and data are the most valuable resources of
industrial companies and need to be handled properly to max-
imize their potential [1]. One frequently used data management
solution is the data warehouse. The data warehouse is often
a core technology within business intelligence; it is used
for day-to-day decision making and can contain millions, or
even billions of records [2]. The difference between a data
warehouse and a conventional database is that the former is
subject-oriented, non-volatile, integrated within the company,
and time-variant [3]. One of the core components of the data
warehouse is the extract, transform, load (ETL) system. It
is responsible for extracting data from several sources, the
customization and transposing of the data, and finally making
the data available to users. Normally the ETL system cannot
change the data, but the data stored in the source database
can still be edited by internal or external actors directly in
the source systems. This results in an existing likelihood of
people tampering with the data to influence the outcome of the
system. Current solutions to this problem are through internal
or external audits. Limitations also exist in this approach [4].
For example, when using external auditing, there is always the
probability of dishonesty.

Blockchain technology could be one of the promising solu-
tions to this problem. In general, blockchain is a decentralized
ledger technology with a “chained blocks” data structure;

every block header includes the root of a Merkle tree, a
timestamp, and a hash of the previous block [5]. When
data inside the previous block is changed, the new hash is
never referenced to another block, resulting in rejection by
the network. Consequently, once data is committed to the
chain, it is immutable, decentralized, traceable, and distributed.
Combining these properties with a data warehouse can achieve
the following features:

• Immutability of the data: Data stored in a blockchain
is immutable; combining the blockchain with a data
warehouse can create a tamper-proof data warehouse.

• Immutable access logging system: The immutability
properties of the blockchain can be used to log all the
read/write actions to create an immutable logging system.

• Automated access control: Various techniques have been
designed to use the blockchain as a decentralized, scal-
able, and automated access control system [6]. In com-
bination with the warehouse, this can lead to the right
persons having the right access.

Correct implementation of blockchain within the data ware-
house can verify the integrity of the data without the users
having to worry about it, as the blockchain is tamper-proof
[7]. This can replace the current process of expensive and
not fully trusted third-party audit process by the blockchain,
saving time and costs [8], [9]. The potentials of blockchain
as a data management system has been investigated in recent
studies [10], [11], [7], [4], [12]. This paper builds on top of
the previous research and leads to the creation of the Data
Warehouse Decentralized Integrity Model (DWH-DIM). Un-
like previous models, DWH-DIM is designed to handle large
amounts of data stored in a classical data warehouse while
retaining integrity. DWH-DIM also prevents such malicious
activities, i.e., not only third parties can behave maliciously,
but also users within the organization.

A. Contributions

The contribution of the research is a novel decentralized
model (DWH-DIM) to verify the integrity in an untrusted
environment. Based on the proposed design, we introduce a
second component called the Data Warehouse Decentralized
Integrity Verification Tool (DWH-DIV). This tool is an ad-
dition to the traditional warehouse to make it decentralized.
The main contributions of this paper can be summarized as
follows:



• A decentralized model (DWH-DIM) using blockchain to
verify the integrity of a data warehouse in an untrusted
environment, where the degree of traceability can be
customized based on the importance of the data.

• A methodology to verify data integrity via blockchain
when privacy regulations require the data to be deleted.

• The DWH-DIV tool, a flexible addition on top of the
traditional data warehouse that combines the model,
algorithms, and protocols into a single tool with a user
interface.

• The proposed approach is evaluated on a real data sce-
nario. The results demonstrate that DWH-DIM is able
to detect integrity-related issues and meet the use case’s
scalability criteria.

The rest of this paper is organized as follows: In section
II, the requirements are established and DWH-DIM system
components and workflow are described. Section III introduces
the implementation details of DWH-DIM. In section IV, our
model is tested to investigate whether it meets the require-
ments. Section V briefly reviews the related work. Finally, in
section VI, the work is concluded and future work is presented.

II. DHW-DIM OVERVIEW

In this section, we will explain the system overview of
DWH-DIM. The section is started with an analysis of the
requirements. Next, the system components and workflow are
described in detail.

A. Requirement Analysis

The requirements are made in compliance with Spatial
Eye, a company that creates a data warehouse application.
Despite this, the requirements are suitable to function with
other warehouse systems. The input of DWH-DIM is the
existing warehouse product. DWH-DIM must work with most
of the existing data warehouse products without changing the
core component of the data warehouse product, making it easy
to implement the warehouse in existing warehouse products.
The only requirement to the data warehouse is that data is
uploaded in hourly, daily, or weekly batches. The output of
DWH-DIM is a proof that the data stored in the warehouse is
authentic. There will be three kinds of users interacting with
the system, all needing a different user interface and different
requirements.

1) Primary DWH User: The user in the presented use
case is often a geographic information system (GIS) analyst
working with a geographic information system. The GIS
extracts data from the data warehouse. The primary user does
not want their workflow to be changed. They expect the system
to work fully automatic and do not want to perform different
actions to validate the integrity.

2) Internal Auditor: The internal auditor makes the finan-
cial reports. The internal auditor expects that the asset data
retrieved from the DWH is accurate. They do not have much
IT knowledge, so the auditing process should be easy to set up.

They expect DWH-DIM to be precise, so mistakes or wrong-
doings can be identified early, accurately, and be recovered.
He knows what assets are essential for good bookkeeping.

3) External Auditor: The external auditor can be an in-
vestor, external auditing company, or government agency. They
expect a company to have perfect bookkeeping. They like to
see a certificate to show that everything is correct. For the
external auditor, it is essential that the system is explainable,
as they need to trust the certificate.

B. System Components

DWH-DIM consists of four main components: The data
warehouse (DWH), the Data Warehouse Integrity Verification
tool (DWH-DIV), the distributed file system (DFS), and the
blockchain. The primary connections are shown in Fig. 1.

Auditor

User

DWH

DWH-DIV

BlockchainDFS

BlockchainBlockchain

Internet

DFS
Blockchain

Org2

DFS

External
auditor

Auditor

User

DWH

DWH-DIV

Org1

Auditor

User

DWH

DWH-DIV

OrgN

Fig. 1. Consortium overview of DWH-DIM.

1) Data warehouse: The data warehouse is the data source
of the system. It takes care of the retrieval of data stored in
the various connected databases. Data is added to the source
databases via the warehouse in batches.

2) DWH-DIV: This tool is responsible for the communi-
cation between the system and users. It takes care of the
encryption, authentication, and verification processes. It is
the interface between the users, database managers, and the
integrity verification system.

3) Distributed file system: The distributed file system takes
care of the data storage because of the limited storage ca-
pabilities of blockchain. The file system should permanently
store files and have a precise storage location, preferably based
on file content. Options are the InterPlanetary File system
(IPFS), Hadoop distributed file system, and blockchain-based
file systems like StorJ or bigchanDB.

4) Blockchain: The final component is the blockchain. The
blockchain is the connection between different companies.
The immutability and decentralized properties are being ex-
ploited to store and share integrity verification hashes and



identification attributes. If more parties join the blockchain
network, the degree of protection increases as the system is
more decentralized.

C. DWH-DIM Workflow

A motivating scenario based on a utility company is used
to explain the system for easy understanding of the system.
However, the possibility of use is not limited to utility and
telecom companies. The scenario has been split into three
steps: 1) adding new data to the data warehouse, 2) the internal
integrity check, and 3) the external integrity check.

1) Adding Data: A new internet cable has been put into the
ground. This new cable is sent to the network architect that
adds this together with 300 other changes in the electricity
network to the geographic information system. The geographic
information system uploads the network changes as batch
number 1200 to the data warehouse at the end of the day. The
DWH-DIV tool builds on top of the warehouse extracts identi-
fication and verification attributes from batch 1200. The identi-
fication attributes si are keywords to identify the batch, in this
case this can be: si = {TableId : LowV oltage, BatchId :
1200, T imestamp : 2017− 12− 09, ... : ...}. The verification
attributes sv are to verify the integrity of the warehouse batch
and can include the vertical column hashes. The verification
attributes can vary between data warehouse tables based on
the importance of the data. Still, they should at least consist
of an SHA-256 hash Hr of the content of the batch table
and a description of what other attributes are included in sv .
It is recommended to have at least one SHA-256 hash for
each column in sv . Both si and sv are added together into a
verification record r (r = sv + si). The verification record r
is encrypted using a generated key Ps, the returned cyphertext
CT is stored on the distributed file system. A location hash

User DWH Integirty tool Distributed file
system Smart contract

VVerification Attributes

Identification hash

Identification attributes

Transaction ID

Batch data

Confirmation

Verification record
VIdentification Attributes

(a) New data added to the warehouse

User DWHDWH-DIV IPFSSmart contract

Identification Hash

Verification attributes

Batch y

Identification attributes

Request

Certificate

Verification attributes

Identification attributes

Verification Hash

Identification Hash

Certificate

(b) Integrity check

Fig. 2. The process diagram of the DWH-DIM workflow.

is returned from the distributed file system; this location hash
HL is stored together with integrity verification hash Hr and
the identification attributes si by broadcasting a transaction
to the blockchain network. The private key Ps is stored on
a private ledger database with the identification attributes. An
overview of the actions are performed can be seen in Fig. 2(a).

2) Internal Integrity Check: When an internal auditor re-
quests an audit, the DWH-DIV interface is used. An overview
of these steps can be seen in Fig. 2(b). First, the auditor
selects what database to validate. For this example, the low
voltage power cables are being audited. The first step in the
audit process is to acquire the identification attributes si, and
verification attributes sv for batch N from the low voltage
power cables. Next, the identification attributes si are used
to search the blockchain network via the smart contract for
hv and hl. Now hv” retrieved from the blockchain can be
compared to hv received from the batch data with sv . If both
are the same value, we can confirm the integrity of this specific
batch. However, if this number is not the same, hv can extract r
from the distributed file system and Ps from the private ledger
database. Now r can be decrypted and compared to the voltage
table extracted sv for differences. If the integrity verification
is successful for all the batches, a transaction containing the
date, auditor, and the result is broadcasted to the blockchain.

3) External Integrity Check: The external party can con-
firm that the company’s ledgers are valid by checking the
blockchain for the certification report.

III. DWH-DIM IMPLEMENTATION

This section describes the implementation choices and
technical considerations of DWH-DIM and DWH-DIV. The
creation of DWH-DIM is possible using multiple exciting
technologies. Our code implementation can be found in the
Github repository1.

A. Design choices
The design choices are made in compliance with the utility

company Spatial Eye. However, for other use cases, there
could be more suitable technologies available.

1) Spatial Data Warehouse: The data warehouse product
used for this implementation is the Spatial Warehouse from
Spatial Eye2. The Spatial Warehouse focuses on the advanced
data structure: geographical locations. Nevertheless, it is also
capable of working with numerical and alphabetical data. The
advantage of this tool is that it can track changes in the data
over time, making the data a time series.

2) DWH-DIV: The DWH-DIV tool has been made in
Python using Jupyter notebook. Jupyter notebook is an open-
source, web-based interactive computational environment3. It
is often used by data scientists working in Python, or R.
The decision for Python has been made because it is one
of the most popular programming languages and contains the
necessary external packages, minimizing the complexity of the
tool.

1https://github.com/jeroenbergers/DWH-DIM
2https://www.spatial-eye.com/product-spatial-warehouse.html
3https://jupyter.org/



3) IPFS: For the decentralized storage system, IPFS is
chosen4. IFPS meets all our requirements set in section 3 as
it is decentralized and uses a hash over the file’s content as
a file location. This gives the advantage that data cannot be
stored twice as this will result in the same identification hash,
saving redundant storage space [13].

4) Hyperledger Fabric: Hyperledger Fabric is an open-
source permissioned blockchain infrastructure. The permis-
sioned blockchain was chosen because, in the proposed model,
the participation companies work together in a consortium.
Individually they cannot be trusted, but together they can.
More trust in the network means that a less heavy consensus
mechanism can be used, increasing scalability and decreasing
resource waste. The choice for Hyperledger has been made
based on research [14] showing that Hyperledger has the
best performance in terms of latency, throughput, and privacy
compared to other permissioned blockchains.

DWH-DIM is built with Hyperledger Fabric v2.2. The
recommended consensus protocol in this version is Raft.
The Raft consensus protocol works with one leader node,
determining the order of the transactions and all the other
nodes as followers, replicating the leaders’ decisions [15].
Raft is a Crash fault tolerance algorithm, and the focus is on
performance when nodes go offline. It can tolerate f-number
of faulty nodes in n = 2f + 1 where n is the total number
of nodes [15]. The smart contract in Hyperledger Fabric is
called chaincode (CC) and can be written in Go language,
Node.js, or java. For this implementation, the Go-language
is used to program the chaincode. For communication with
the Hyperledger Fabric network, the node.js SDK is used, as
shown in Fig. 3.

B. Communication

The communication between the components happens via
REST protocol. This allows using HTTP operations as GET
and POST for interaction. Using the Node.js SDK it is possible
to run a Node.js server next to Hyperledger Fabric to make
alterations to the network. The Python package Request can
be used to send the actual operations to the network. Both
CouchDB and IPFS support the possibility of sending HTTP
requests via their API, which means that operations can be
sent using the same logic. An overview of the communication
within the local network can be found in Fig. 3.

C. Chaincode

To implement DWH-DIM, three smart contracts are intro-
duced: 1) the main contract to store the identification attributes
on the chain and retrieve them; 2) a contract to store the private
key on a private peer; and 3) a contract to store the validation
report. All smart contracts are deployed using the four-step
Fabric chaincode lifecycle [15].

1) CC - Integrity Verification : The integrity verification
CC is responsible for the data structure, and it consists of the
functions: CreateRecord, QueryById, and QueryAll. The

4https://ipfs.io/

C
on

fig
ur

at
io

n 
fil

es

Proposals

:5984 - Post

:5001 - Add, Cat 

Distributed file
system 

CouchDB
Sqlite connect()

Users

Blockchain manager

DWH

SDK

:4000 - Post/Get

Fig. 3. Overview of the components and the internal connection.

invoking of the functions works via the Node.JS SDK. The
defined structure of the records is the identification attributes.
The used index key is the identification hash. The structure
can be seen in Fig. 4.

Fig. 4. Structure of the verification attributes inside the create record
chaincode.

2) CC - Private Storage: Hyperledger Fabric offers the
ability to create private data collections. Private data collec-
tions are used to store only an individual’s company their
private data. Other participants on the network cannot view
the private data when they are not given access. In DWH-
DIM, private data collection is used to store the keys necessary
to decrypt the integrity verification file. The advantage of
using this private data collection is that keys can be easily
shared with external auditors when needed. The CC contains a
CreateKeyStorage and a QueryKeyStorage function. The
difference between this CC and the integrity verification CC is
that the data needs to be transient when working with private
data. The index key used for querying is the identification
hash.

3) CC: Integrity Certificates: The integrity certificate CC is
responsible for the storage of the certificate showing that data
is authentic. It has the CreateCertificate function invoked
when all the data has been identified as honest.

D. Fabric SDK - Node.JS
The fabric SDK has three functions: it checks for authoriza-

tion, including the possibility of adding new users, invoking



transactions, and query transactions.
1) Authorization: In Hyperledger, users are assigned

through a certificate authority (CA). The CA gives a certificate
to a user that can be used to sign and authenticate a transac-
tion. For this implementation, we have given every company
one CA and used the default elliptic curve digital signature
algorithm (ECDSA). The secret key is stored offline on the
server side; as a result, the certificate does not have to be sent
via the REST API or stored on the user’s computer. However,
we still need to identify and authenticate the user. For this,
the express-jwt module is used, which allows us to work with
JSON web tokens (JWT) to sign the REST-API requests and
invoke transactions. A new user can be created using a Post
request on the registered URL. The system returns a JWT
token that can be used as a bearer token for the organization’s
transactions.

2) Invoke: In order to invoke a transaction to the
blockchain, a Post request needs to be made to the SDK.
The Post request must mention the chaincode and name of the
chaincode function to invoke a transaction. The Node JS server
uses the JWT token in the header to determine if the user has
the proper authorization. The payload of the transaction is a
JSON string; for private data, this is transient.

3) Query: Querying happens via the same logic as in-
voking but is used when a Get request is received. Instead
of invoking a transaction, the querying happens via the
EvaluateTransaction function.

E. DWH-DIV - Python - Jupyter Notebook

DWH-DIV has been created in Jupyter Notebook and is
responsible for the communication and transformation of the
data. It is the interface between the data warehouse, the
blockchain, the distributed file system, and the user. In ad-
dition, it is responsible for the creation and comparison of
verification attributes and sending the certificate of authenti-
cation to the blockchain. Every user has their own Jupyter
notebook.

1) Interface: In the requirements, three types of users are
identified. All three users use a different part of the system and
require a different interface. This is why three notebooks have
been created, one to upload the data to the warehouse, one to
check the integrity, and one to check the integrity certificate.

2) Add Database: For this implementation, the data is
extracted from the warehouse as an SQ-Lite database. Using
the sqlite3 package in Python, we can directly make queries
in the database and only extract the table and batch needed
for the upload or verification tasks.

3) Verification Attributes: If the database is loaded, individ-
ual verification files can be created based on the number of
batches and tables in the database. The verification attributes
are JSON files containing a different amount of fields. The
fields are dependent on the importance of the data. Storing
more verification attributes increases the traceability and re-
covery of the warehouse. However, it is important to write
in the JSON file what the properties are and how they are
designed, because the attributes must be recreated for the

verification task. In addition, it is necessary to know which
columns are allowed to be changed for the purpose of GDPR
comparison. With this in mind, we propose three different
verification files in Fig. 5, the first one minimum recovery, the
second one for minimum recovery but maximum traceability,
and the final one with maximum recovery and maximum
traceability but a more significant computational overhead and
limiting scalability. For more complex data types as images,
other configurations could be useful. For this implementation,
only option one has been implemented. The first verification
hash HV is used in the integrity document and sent to the
blockchain together with the identification attributes.

Fig. 5. Three options of the proposed verification files.

4) Encryption and Decryption: For encryption and decryp-
tion of the JSON integrity files, the Advanced Encryption
Standard (AES) is used. Before using the encryption function,
the file needs to be encoded into bytes. Then, the file is
encrypted using a secret key and a randomly created nonce.
Both the 16 bytes secret key as the nonce is stored on the
private blockchain node. Then, the encrypted message is sent
to the IPFS. For decryption, the nonce and secret key can be
extracted from the private peer if the user is from the proper
organization and decrypts the IPFS file. Finally, the decrypted
file is decoded and changed back to JSON format to be used
in the verification task.

5) IPFS Connection: For the IPFS connection, the IPFS
desktop daemon is installed. Then, files are uploaded using
the IPFS HTTP package, using simply the add function. This
returns the identification hash stored on the blockchain and
can be used to retrieve the file.

6) Blockchain Connection: Blockchain transactions from
the notebook are sent via the request package. The JSON pay-
loads, besides the access token, function name, and chaincode



name, are the identification attributes and verification hash
shown in Fig. 4. A search request is directly sent to the peer
for querying an individual batch, containing the verification
attributes. To query all, a request is sent to the integrity CC.

7) Verify I and Verify II: We have developed two iden-
tification functions. Verify I is supposed to be the faster
identification method. It uses the verification hash received
from the blockchain and compares it with the new verification
hash created from the database. If this hash is equal, the
data has not been changed, and a deeper investigation is
unnecessary. Verify II is a deeper comparison, as it compares
the two integrity files. This takes more time as the file needs
to be retrieved from IPFS and be compared to the current state
of the database. Therefore, verify II is only used when verify
I results that there is something wrong.

IV. DWH-DIM EVALUATION

In this section, extensive experiments have been performed
to determine whether our model can tackle the gaps and
requirements. Especially, the analysis has been split into
computational benchmarks and throughput experiments to test
whether DWH-DIM has the required scalability.

A. Computational Benchmarks

To verify if DWH-DIM can handle large and complex data
warehouses, the implementation has been tested to multiple
testing use cases. The goal of the benchmarks is to find out
whether our implementation of DWH-DIV is fast enough to
handle the large amount of data stored in a data warehouse.
Further, we want to know if our implementation is able to
handle complex data types as geometry data and what the
limiting factors of our implementation are.

To test the system’s performance, we repeatedly run the
implementation of DWH-DIM with different database settings
to find out how long it takes to perform the functions. The
database will vary in the number of records per batch and
the number of batches per table. It will be evaluated in
seconds since the activation of the function. For the database,
an SQLite database is used containing information about
properties in the Netherlands to simulate a realistic scenario.
A subset table is used to perform the benchmarks containing
28 columns, including two columns containing complex ge-
ometries. The subsets are made by randomly selecting 1.000,
10.000, 100.000, 1.000.000, or 10.000.000 records. Then, each
subset is duplicated, resulting in 10 subsets. Half of the subsets
contain one batch. The other subset contains one batch for
every 1000 records. An overview of the subsets can be seen
in Table I. The subset containing 10.000.000 records has only
been tested once. All other benchmarks are performed in
triplicate.

For the benchmarks, there are four points of interest: 1) the
time in seconds for uploading the subset to the network, 2)
the time in seconds for performing integrity check Verify I, 3)
the time in seconds for performing integrity check Verify II,
and 4) the time in seconds of the individual functions in the

TABLE I
OVERVIEW OF VARIATION IN BENCHMARKS AND EXPERIMENTS

Experiment: 1 2 3 4 5

Benchmark I Records: 103 104 105 106 107

Batches: 1 1 1 1 1

Benchmark II Records: 103 104 105 106 107

Batches: 1 10 100 1000 -

system. In Fig. 6 (1) the first representation has been shown
with variation in the number of batches.

The result shows that the time it takes to upload one batch
is consistent per experiment. As the number of batches in a
table increases from 10 to 100, the upload and verify II time
also increases with a factor of 10. The only case where the
linear increase is not consistent is for verify I. This higher
increase could be explained by a higher search time because
more items are in the database. For verify II, this is less of
an issue as the querying is a more negligible influence on the
run time.

For the next benchmark, the variation in performance with a
changing number of records is evaluated, the results are shown
in Fig. 6 (2). There are some expected results; the time of
Verify I is significantly lower when there are a low number of
records in a batch but increases to the same time as uploading
and Verify II as the number of records inside a batch increases.
This is expected because the difference between Verify I and
Verify II is that for Verify I, the verification document does not
have to be received. The receiving of the verification record
from IPFS happens at a constant time regardless of the number
of records in the batch. Further, it is notable that the duration
of both uploading and verify II increases only slightly when
increasing the number of records from 1000 to 10.000. The
increase in time of uploading from 10.000 to 100.000 and
from 100.000 to 1.000.000 is also insignificant compared to
the increase in time from 1.000.000 to 10.000.000 records per
batch. With this, it is possible to deduce that performance-
wise it is most efficient to upload batches containing 1 million
records as this takes only 100 seconds, and uploading 10
million records takes nearly 10.000 seconds. However, this
would lead to a reduction of tamper traceability in comparison
to uploading smaller sets. To conclude, it is possible to say
that it is not efficient to upload small batches of 1000 records
as this takes almost the same time as 10.000 records and large
batches of 10 million as this takes 100 times as long as batches
from 1 million.

To investigate this further, the time taken by the individual
components and a variety of batch sizes has been recorded
and plotted in Fig. 6 (3). In the figure, it is possible to see
what functions cause the delay. The encryption and decryption
time have not been taken into account because the file size
is the same, resulting in a consistent encryption time. When
having 1000 records per batch, the limiting factor is the two
functions that perform an API request and have to wait for a
response. Both the sending to IPFS and blockchain take almost
2.5 seconds accounting for more than 50% of the upload time.



10
0

10
1

10
2

10
3

Number of batches

(1)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u

ra
ti

o
n

 (
se

c)
Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records in batch

(2)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u

ra
ti

o
n

 (
se

c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records per batch

(3)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Retrieve from DB

Create verifications

Sent to IPFS

Sent to blockchain

Retrieve identifications

2 4 6 8

Input transaction rate (tps)

(4)

0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t 
(t

p
s)

0

0.2

0.4

0.6

0.8

1

S
u

cc
es

s 
ra

ti
o

Throughput (10workers)

Throughput (30workers)

Success ratio (30workers)

Success ratio (10workers)

2 4 6 8

Input transaction rate (tps)

(5)

0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t 
(t

p
s)

0

20

40

60

80

100

S
u

cc
es

s 
ra

ti
o

Throughput (10workers)

Throughput (10workers)

Latency (30workers)

Latency (10workers)

10
0

10
1

10
2

10
3

Number of batches

(1)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u

ra
ti

o
n

 (
se

c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records in batch

(2)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u

ra
ti

o
n

 (
se

c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records per batch

(3)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

D
u

ra
ti

o
n

 (
se

c)

Retrieve from DB

Create verifications

Sent to IPFS

Sent to blockchain

Retrieve identifications

2 4 6 8

Input transaction rate (tps)

(4)

0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t 
(t

p
s)

0

0.2

0.4

0.6

0.8

1

S
u

cc
es

s 
ra

ti
o

Throughput (10workers)

Throughput (30workers)

Success ratio (30workers)

Success ratio (10workers)

2 4 6 8

Input transaction rate (tps)

(5)

0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t 
(t

p
s)

0

20

40

60

80

100

S
u

cc
es

s 
ra

ti
o

Throughput (10workers)

Throughput (10workers)

Latency (30workers)

Latency (10workers)

10
0

10
1

10
2

10
3

Number of batches

(1)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records in batch

(2)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records per batch

(3)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

D
u

ra
ti

o
n

 (
se

c)

Retrieve from DB

Create verifications

Sent to IPFS

Sent to blockchain

Retrieve identifications

2 4 6 8

Input transaction rate (tps)

(4)

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t 

(t
p
s)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s 

ra
ti

o

Throughput (10workers)

Throughput (30workers)

Success ratio (30workers)

Success ratio (10workers)

2 4 6 8

Input transaction rate (tps)

(5)

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t 

(t
p
s)

0

20

40

60

80

100

S
u
cc

es
s 

ra
ti

o

Throughput (10workers)

Throughput (10workers)

Latency (30workers)

Latency (10workers)

10
0

10
1

10
2

10
3

Number of batches

(1)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records in batch

(2)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records per batch

(3)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

D
u

ra
ti

o
n

 (
se

c)

Retrieve from DB

Create verifications

Sent to IPFS

Sent to blockchain

Retrieve identifications

2 4 6 8

Input transaction rate (tps)

(4)

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t 

(t
p
s)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s 

ra
ti

o

Throughput (10workers)

Throughput (30workers)

Success ratio (30workers)

Success ratio (10workers)

2 4 6 8

Input transaction rate (tps)

(5)

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t 

(t
p
s)

0

20

40

60

80

100

S
u
cc

es
s 

ra
ti

o

Throughput (10workers)

Throughput (10workers)

Latency (30workers)

Latency (10workers)

10
0

10
1

10
2

10
3

Number of batches

(1)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records in batch

(2)

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Upload

Verify I

verify II

10
3

10
4

10
5

10
6

10
7

Number of records per batch

(3)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

D
u
ra

ti
o
n
 (

se
c)

Retrieve from DB

Create verifications

Sent to IPFS

Sent to blockchain

Retrieve identifications

2 4 6 8

Input transaction rate (tps)

(4)

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t 

(t
p
s)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s 

ra
ti

o

Throughput (10workers)

Throughput (30workers)

Success ratio (30workers)

Success ratio (10workers)

2 4 6 8

Input transaction rate (tps)

(5)

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t 

(t
p
s)

0

20

40

60

80

100

S
u
cc

es
s 

ra
ti

o

Throughput (10workers) 
Throughput (10workers) 
Latency (10workers)
Latency (30workers)

Fig. 6. Performance of DWH-DIM with (1) different amount of batches on upload and integrity verification tasks; (2) different amount of records per batches
on the upload and integrity verification tasks; (3) different amount of records per batches on the individual components; (4) different workloads in throughput
and success ratio; and (5) different workloads in throughput and average latency.

Both transaction functions do not increase in time when more
records are added to a batch. However, it can be the case that
when multiple companies use a small batch size, the number
of transactions per second to the blockchain increases, causing
a delay. After 100.000 records per batch, retrieving the data
from the database and creating the verification attributes is
the most significant factor. This can be expected as the size of
10.000.000 geographical records has a size of almost 4 GB that
needs to be transferred to DWH-DIV. When a company wants
to upload larger batches, a faster method needs to be found to
get the data to DWH-DIV and to calculate the cryptographic
hashes.

B. Throughput of the Blockchain Network

As mentioned in the previous section, the simultaneous
use of blockchain techniques often leads to decreased per-
formance. This is the limited throughput on the blockchain
networks leading to high latency and failed transactions [16].
For this reason, DWH-DIM tries to limit the number of trans-
actions done with the blockchain. Nevertheless, the blockchain
network needs to handle multiple users at the same time,
making a performance evaluation necessary. For this, a tool
developed by the Hyperledger Foundation called Caliper5 is
used. For the evaluation, Caliper has been installed as a docker
image and run inside a docker container. The performance
benchmarks have been run following these configurations:

• Resources as described in the previous section.
• Invoke transactions using the create records function, can

be seen as Write function.
• One Hyperledger fabric framework containing two orga-

nizations with both one peer and one orderer node.
• Using the RAFT consensus and a CouchDB state

database.
• Different workloads to the Hyperledger fabric framework

by generation several transactions proposals per second
(1, 2, 4, 8, 16, 32, 64, 128, 256).

• A different amount of workers (10 and 30) to diversify
the number of clients connected to the Hyperledger Fabric
network.

5https://github.com/hyperledger/caliper

The performance of the benchmarks is measured by the
metric throughput that is defined as:

throughput =
total committed transactions

total time taken in seconds
(1)

Further metrics used are latency (which is defined as the
average duration of the execution of a transaction) and the
ratio of successful transactions (as defined in equation 2).

success rate =
successful transaction

successful + failed transaction
(2)

Fig. 6 (4) interprets the performance of the system under
a different workload. The highest TPS for both numbers of
workers can be found at an input transaction rate of 128.
Above 128, the number of handled transactions per second
decreases. If we look at the latency at an input rate of 128, it
can be seen that it increases, especially with more workers. In
Fig. 6 (5) the performance is shown with the success rate. It
can be seen that at the input transaction rate of 128, the ratio is
below 0.2. This means that more than 80% of the transaction
fails. The highest input rate for both the number of workers the
success ratio is above 0.9 is at 16 transactions per second. In
Fig. 6 (4) can be seen that for this amount of transactions, the
latency is low and increases fast when increasing the input
transaction rate. In the computational overhead benchmarks,
we concluded that when uploading a small batch of data, the
latency of the blockchain is the most significant influence on
the system. For small batches, this high latency is not desired.

TABLE II
OVERVIEW OF LATENCY PER BENCHMARK SETTING

30 workers 10 workers

input TPS Max (s) Min (s) Avg (s) Max (s) Min (s) Avg (s)

1 10.56 0.38 1.8 8.12 0.37 1.29
2 6.31 0.47 1.68 2.46 0.41 1.35
4 12.76 0.42 2.22 2.68 0.4 1.04
8 22.36 0.47 5.81 5.12 0.43 1.36
16 8.07 1.05 4.32 2.72 0.48 1.26
32 78.47 1.28 36.8 33.17 0.66 18.28
64 74.84 2.14 41.2 46.05 1.06 27.05
126 147.71 1.53 87.4 135.56 1.33 52.5
256 140.56 1.84 96 137.59 4.14 89.78

https://github.com/hyperledger/caliper


In Table II the latency has been shown. It can be seen
that both the average as the max latency increases fast when
going from 16 to 32 transactions. If we take, for example,
a batch of 10.000 records, the upload time will increase
from 9.6 seconds to over 25 seconds with 10 connections
and 32 transactions per second with a maximum of over 80
seconds in the worst case when receiving 32 transactions per
second with 30 connections. Thus, we can conclude that the
preferred amount of transactions that can be written on the
chain simultaneously in this setting is around 16; this will
probably decrease when more peers and orderer services are
connected to the network.

V. RELATED WORK

Current related research is in multiple directions. The
blockchain based data integrity verification tools focus on
proving that a third-party stores the data and does not
modify/read the data. Common challenges in this field are
how to prevent a large computational overhead and how
to minimize redundant data storage. The latter is especially
important in combination with blockchain, as blockchain has
limited scalability. Current research on distributed integrity
data management is presented in [11], [7], [4], [17]. The other
techniques with relevance to the topic are blockchain based
data management tools. These are the techniques presented
in [18], [19], [20]. The common challenges are the limited
scalability of blockchain, the computational overhead of the
integrity checks, the protection of data, and personal data
regulations.

VI. CONCLUSION

In this paper, we propose a new decentralized database
integrity verification tool called DWH-DIM. DWH-DIM is de-
signed to replace the current expensive and semi-honest third-
party auditing tasks. DWH-DIM fills the gap in the existing
literature by working with voluminous, complex data stored
in a traditional data warehouse without changing the system
core component. Besides being decentralized, DWH-DIM is
built with three objectives, namely scalability, protection over
private data, and GDPR compliance.

For further research, the complete data warehouse can be
placed within DWH-DIM for benchmarks. The combination
with a more fine-grained access system will lead to required
integrity verification and an additional possibility to share data.
For example, the decentralized access system presented by
[19] [17] in combination with a decentralized data warehouse
storage and the use of identification attributes, would lead
to a decentralized system where the right persons can find
and access the correct data at any time. This could replace
the current data warehouse system and be leveraged in a
distributed research environment.

ACKNOWLEDGMENT

This work has been partially funded by the European
Union’s Horizon 2020 research and innovation programme
by the ARTICONF project grant agreement No 825134, by

the ENVRI-FAIR project grant agreement No 824068, by the
BLUECLOUD project grant agreement No 862409, and by
the LifeWatch ERIC. The work is also partially supported by
China Scholarship Council.

REFERENCES

[1] R. Mork, P. Martin, and Z. Zhao, “Contemporary challenges for data-
intensive scientific workflow management systems,” in Proceedings of
the 10th Workshop on Workflows in Support of Large-Scale Science,
2015, pp. 1–11.

[2] N. Dedić and C. Stanier, “An evaluation of the challenges of multilin-
gualism in data warehouse development,” 2016.

[3] S. H. A. El-Sappagh, A. M. A. Hendawi, and A. H. El Bastawissy,
“A proposed model for data warehouse etl processes,” Journal of King
Saud University-Computer and Information Sciences, vol. 23, no. 2, pp.
91–104, 2011.

[4] N. Lu, Y. Zhang, W. Shi, S. Kumari, and K.-K. R. Choo, “A secure and
scalable data integrity auditing scheme based on hyperledger fabric,”
Computers & Security, vol. 92, p. 101741, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820300274

[5] M. Belotti, N. Božić, G. Pujolle, and S. Secci, “A vademecum on
blockchain technologies: When, which, and how,” IEEE Communica-
tions Surveys Tutorials, vol. 21, no. 4, pp. 3796–3838, 2019.

[6] P. Patil, M. Sangeetha, and V. Bhaskar, “Blockchain for iot access con-
trol, security and privacy: A review,” Wireless Personal Communications,
pp. 1–20, 2020.

[7] R. Kalis and A. Belloum, “Validating data integrity with blockchain,” in
2018 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), 2018, pp. 272–277.

[8] D. Brandon, “The blockchain: The future of business information
systems,” International Journal of the Academic Business World, vol. 10,
no. 2, pp. 33–40, 2016.

[9] H. Zhou, C. de Laat, and Z. Zhao, “Trustworthy cloud service level
agreement enforcement with blockchain based smart contract,” in 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, 2018, pp. 255–260.

[10] D. V. Dimitrov, “Blockchain applications for healthcare data manage-
ment,” Healthcare informatics research, vol. 25, no. 1, p. 51, 2019.

[11] K. Hao, J. Xin, Z. Wang, Z. Jiang, and G. Wang, “Decentralized
data integrity verification model in untrusted environment,” in Asia-
Pacific Web (APWeb) and Web-age information management (WAIM)
joint international conference on Web and big data. Springer, 2018,
pp. 410–424.

[12] A. A. Siyal, A. Z. Junejo, M. Zawish, K. Ahmed, A. Khalil, and
G. Soursou, “Applications of blockchain technology in medicine and
healthcare: Challenges and future perspectives,” Cryptography, vol. 3,
no. 1, p. 3, 2019.

[13] J. Sun, X. Yao, S. Wang, and Y. Wu, “Blockchain-based secure storage
and access scheme for electronic medical records in ipfs,” IEEE Access,
vol. 8, pp. 59 389–59 401, 2020.

[14] J. Polge, J. Robert, and Y. Le Traon, “Permissioned blockchain
frameworks in the industry: A comparison,” ICT Express, vol. 7, no. 2,
pp. 229–233, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2405959520301909

[15] Hyperledger. (2021) Hyperledger fabric documentation. [Online].
Available: https://hyperledger-fabric.readthedocs.io/en/release-2.2/

[16] Z. Shi, H. Zhou, Y. Hu, S. Jayachander, C. de Laat, and Z. Zhao,
“Operating permissioned blockchain in clouds: A performance study
of hyperledger sawtooth,” in 2019 18th International Symposium on
Parallel and Distributed Computing (ISPDC). IEEE, 2019, pp. 50–57.

[17] H. Wang, Q. Wang, and D. He, “Blockchain-based private provable data
possession,” IEEE Transactions on Dependable and Secure Computing,
2019.

[18] C. Wirth and M. Kolain, “Privacy by blockchain design: a blockchain-
enabled gdpr-compliant approach for handling personal data,” in Pro-
ceedings of 1st ERCIM Blockchain Workshop 2018. European Society
for Socially Embedded Technologies (EUSSET), 2018.

[19] S. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework for
data sharing with fine-grained access control in decentralized storage
systems,” Ieee Access, vol. 6, pp. 38 437–38 450, 2018.

[20] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEE Security and Privacy Workshops.
IEEE, 2015, pp. 180–184.

https://www.sciencedirect.com/science/article/pii/S0167404820300274
https://www.sciencedirect.com/science/article/pii/S2405959520301909
https://www.sciencedirect.com/science/article/pii/S2405959520301909
https://hyperledger-fabric.readthedocs.io/en/release-2.2/

	Introduction
	Contributions

	DHW-DIM Overview
	Requirement Analysis
	Primary DWH User
	Internal Auditor
	External Auditor

	System Components
	Data warehouse
	DWH-DIV
	Distributed file system
	Blockchain

	DWH-DIM Workflow
	Adding Data
	Internal Integrity Check
	External Integrity Check


	DWH-DIM Implementation
	Design choices
	Spatial Data Warehouse
	DWH-DIV
	IPFS
	Hyperledger Fabric

	Communication
	Chaincode
	CC - Integrity Verification 
	CC - Private Storage
	CC: Integrity Certificates

	Fabric SDK - Node.JS
	Authorization
	Invoke
	Query

	DWH-DIV - Python - Jupyter Notebook
	Interface
	Add Database
	Verification Attributes
	Encryption and Decryption
	IPFS Connection
	Blockchain Connection
	Verify I and Verify II


	DWH-DIM Evaluation
	Computational Benchmarks
	Throughput of the Blockchain Network

	Related Work
	Conclusion
	References

