SDN-based Dynamic and Adaptive Policy Management
System to Mitigate DDoS Attacks

Rishikesh Sahay Gregory Blanc Zonghua Zhang
Institut Mines-Télécom, Institut Mines-Télécom, Institut Mines-Télécom,
. Teélécom SudParis Télécom SudParis IMT Lille Douai
rishikesh.sahay@telecom- gregory.blanc@telecom- zonghua.zhang@imt-lille-
sudparis.eu sudparis.eu douai.fr
Khalifa Toumi Hervé Debar

Institut Mines-Télécom,
Télécom SudParis
khalifa.toumi@telecom-
sudparis.eu

ABSTRACT

This paper presents a dynamic policy enforcement mecha-
nism that allows ISPs to specify security policies to miti-
gate the impact of network attacks by taking into account
the specific requirements of their customers. The proposed
policy-based management framework leverages the recent
Software-Defined Networking (SDN) technology to provide
a centralized platform that allows network administrators to
define global network and security policies, which are then
enforced directly to the OpenFlow switches. One of the ma-
jor objectives of such a framework is to achieve fine-grained
and automated attack mitigation in the ISP network, ulti-
mately reducing the impact of attack and collateral dam-
age to the customer networks. To evaluate the feasibility
and effectiveness of framework, we develop a prototype that
serves for one ISP and three customers. The experimental
results demonstrate that our framework can successfully re-
duce the collateral damage on a customer network caused by
the attack traffic targeting another customer network. More
interestingly, the framework can provide rapid response and
mitigate the attack in a very short time.

Keywords
Security policy, Policy management, SDN

1. INTRODUCTION

In today’s Internet, traffic engineering is mainly performed
by the Internet Service Providers (ISP), while the customers
are usually passive. As we know, one of the major objec-
tives of traffic engineering is to mitigate traffic congestion,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright 2017 ACM 978-1-4503-4486-9/17/04. .. $15.00
http://dx.doi.org/xx.XXxX /XXXXXXX.XXXXXXX

Institut Mines-Télécom,
Télécom SudParis
herve.debar@telecom-
sudparis.eu

which can be caused, among others, by attacks. The lack of
collaboration between an ISP and its customers may even-
tually lead to dissatisfaction among its customers, as legiti-
mate traffic may get dropped. For example, when defending
against Distributed Denial of Service (DDoS) attacks that
attempt to deplete an ISP’s bandwidth, simply prioritiz-
ing legitimate traffic or redirecting suspicious traffic for one
customer may impact other customers of the same ISP, con-
sidering the fact that the same path can be shared between
different customers in an ISP network.

As a matter of fact, without collaborating with their ISPs,
customers do not have much control over the incoming traf-
fic, apart from blocking the attack traffic at their border
router. Therefore, it is in the interest of both the victim
network and its ISP to collaborate for traffic engineering to
mitigate the effect of congestion. In this case, the customer
can express finer requirements that can be addressed as dif-
ferentiated services by the ISP. Despite a large number of
solutions [8, 10] proposed for traffic engineering, they have
not been considered for widespread deployment, chiefly due
to the complexity involved in the network management task,
such as configuring switches and routers for policy enforce-
ment. According to a report from Juniper [12], the network
downtime due to human error accounts for 80% of the to-
tal network downtime. The manual configuration therefore
hinder the dynamic deployment of network services, further
downgrading the Quality of Service (QoS) level for the cus-
tomers of an ISP.

Another fact is that service providers statically provision se-
curity devices with the dedicated network devices, and define
the ordering constraints that must be applied to the pack-
ets [11]. These security and network devices are generally
distributed in the network through separate VLANs, while
network policy is usually applied per VLAN. This essen-
tially leads to static service chaining with the deployment of
static policies for steering network traffic to the security and
network devices [11]. This topological dependency with the
deployment of middleboxes makes ISPs reluctant to deploy
new security functions in their networks for providing secu-
rity services to their customers. Furthermore, all the traffic,

whether it needs to be processed through the security de-
vices or not, eventually traverse these devices, which causes
processing overhead on these devices. Therefore, a dynamic
and automated policy management system is required to
overcome these issues.

Software-Defined Networking (SDN) recently emerges as a
novel networking paradigm that can simplify network ad-
ministration and management by centralizing the decision-
making process [13]. It also provides the administrator a
global view of the network and enables programmability in
the data plane. By leveraging features of SDN, we develop
an automated policy management system in which the ISP
can express high-level policies that can be enforced dynam-
ically as the network environment changes. Specifically, our
policy management system provides collaborative and user
centric automated response for mitigating the attack traffic
and providing the QoS service to the customers of the ISP.
Customers can express their requirements to the ISP, and
based-on the requirements ISP can deploy the policies to
fulfill its customer’ requirements. Our policy management
system reduces the collateral damage caused by the attack
traffic on its multiple customers.

In this paper, we implement our proposed framework for a
specific use case, where the ISP and their customers collab-
orate with each other to mitigate the effect of congestion
caused by DDoS attack. We also experimentally demon-
strate that the framework can help an ISP to provide good
QoS to legitimate traffic, while reducing the impact on other
customers’ traffic.

The remainder of this paper is organized as follows: Sec-
tion 2 provides some related works Section 3 describes our
policy framework, its workflow and functional components.
Section 4 reports our experiments and results. Section 5
concludes the paper.

2. RELATED WORK

To the best of our knowledge, there is a number of works
dealing with policy-based network management leveraging
the SDN paradigm [1,2,7,9]. They usually exploit key fea-
tures such as data plane programmability and network visi-
bility to ease the network management process. In this sec-
tion, we will discuss existing policy-based frameworks, the
policy languages that inspired them, and earlier proposals
in traffic steering.

Traffic steering is an exemplary instance of how to take ad-
vantage of SDN switches to enforce routing policies in an
efficient manner for middlebox-specific networks. One such
effort, SIMPLE [14], alleviates manual operation from ad-
ministrators by allowing them to specify a logical routing
policy and translates it into forwarding rules, in compli-
ance with physical resource constraints. Additionnaly, Flow-
Tags [4] provide a technique to enforce network-wide policies
in spite of packet modifications imposed by middleboxes.

At a higher level, policy languages have been proposed to
specifically program software-defined networks. Languages,
such as Frenetic [6], free programmers from reasoning with
low-level details of the switches and allow them to describe
high-level packet forwarding policies on top of the control

plane. Another example, Procera [17], extends policy design
into event-driven network control, which is not permitted by
configuration languages exposed by controllers. These lan-
guages usually offer the ability to specify routing policies, in
terms that are close to network operations, while we are in-
terested in specifying higher-level policies to enforce security
or quality of service operations.

Policy management frameworks would often rely on the above-
mentioned technological building blocks to satisfy user-centric
requirements. EnforSDN [2] proposes to simplify network
service management by decoupling policy resolution (com-
puting concrete rules) from policy enforcement (pushing low-
level rules) by remarking that the former deals with flows,
e.g., security policies, while the latter forwards packets at
the data plane. It tackles middlebox-induced problems but
fails to accommodate other contexts than the network. Pol-
icyCop [1] is such a QoS policy enforcement framework that
provides an autonomic management of user-centric policies
by monitoring and enforcing the users’ service-level agree-
ments (SLAs). It relies on common data plane interfaces
exposed by OpenFlow forwarding devices for statistics col-
lection and flow information retrieval, and includes a number
of controller applications to support policy monitoring and
enforcement. Our work is interested in extending the in-
puts to the policy engine with security events. Additionally,
the computation of policy routes do not take into account
the availability of security services. Business-level goals are
also taken into account in a policy authoring framework pro-
posed by Machado et al. [9]. Their framework matches these
requirements with the capacities provided by the network
infrastructure in order to decide on an appropriate policy,
through abductive reasoning. It is however unclear how net-
work elements are requested and configured beyond the pol-
icy path computation (referred to as Analysis Phase in their
work). OpenSec [7] is close to our proposal in that this
framework allows provides a language that blends security
services within the autonomic reaction process. However, it
seems to focus the deployment on edge switches, while we are
interested in distributing the policies across the controller’s
network domain.

Our work aims at accommodating multiple customer ser-
vices sharing a network service provider, who doubles as a
security service provider. Going beyond routing and QoS
requirements, we aim at reacting to security events, with
the collaboration of the customers, and offer network-status-
aware security reaction policies. The presence of multiple
competing customers raises a supplementary challenge in
that the reactive policy targeted at a given customer should
little to no impact on other customer services. It is im-
portant to consider the whole network then, and not only
the edge switches, in order to distribute the rules along the
policy path. This path traverses a number of forwarding
switches and security services (either static middleboxes,
or virtualized network functions) in a fashion similar to
OpensSec [7] and SIMPLE [14].

3. POLICY MANAGEMENT AND ENFORCE-
MENT SYSTEM

Our previous analysis shows that most of the existing policy

Policy
Database

Events,
Conditions

Poli
Monitoring De:i:i:Zn
Component | gyiracted Point
Alerts, ISP

ReceiveAlerts
from Customer
Networkand
monitorthe ISP
network

network status
Flow, Action, bandwidth

Policy Orchestratorand
Implementer

OpenFlow Rules

Policy
Enforcement
Point(PEP)

Figure 1: Workflow of the Policy Management Sys-
tem

management frameworks does not take into consideration
the real-time collaborations between ISPs and customers.
This issue will lead to heavy delay of attack detection and
inaccurate response. In particular, the ISP should consider
multiple factors like the current network status and policy
agreements with its customers. Also, it should be adaptive
to the requests of particular customers, so that traffic en-
gineering performed for one customer will not impact the
traffic going to other customers’ network.

To address the aforementioned issues, we propose a pol-
icy management and enforcement framework to achieve dy-
namic and automated configuration and enforcement of net-
work and security policies in the ISP network. With our
solution, the administrator has only to design the high level
security or network policies that will be dynamically and
automatically deployed.

3.1 Design Overview

The design overview of our framework is shown in Fig. 1,
consisting of several functional components: Monitoring Com-
ponent (MC), Policy DataBase (PDB), Policy Decision Point
(PDP), and Policy Orchestrator and Implementer (POI). As
most of the operations are carried out within the ISP do-
main, the customer network is not shown here. To better
illustrate the specific functions of the different components,
the operational workflow is given as follows:

1. An event is triggered at the ISP controller when a noti-
fication is received by the MC from the customer con-
troller. A notification may be a security alert from
a customer or a network status detected by the ISP
controller. The detection mechanism used by the cus-
tomer is out of scope of this paper. We assume that a

customer uses some detection mechanism to flag whether

it is under attack or not [10].

2. The MC module will analyse the notification and ex-

tract the important information as the flow informa-
tion, impact severity of the traffic, security class and
attack type information. Then, it will forward the ex-
tracted inputs to the PDP.

3. The PDP selects the high-level action from the policy
database to be applied on the flow based on the event
and its corresponding conditions. It then forwards the
high-level action, bandwidth request, and flow infor-
mation to the POI.

4. Based on the high level action activated by the PDP,
the POI (1) will identify the Policy Enforcement Points
(PEPs) needed to deploy the policy and (2) will com-
pute one or multiple paths.

5. Based on the resulting paths, the POI will be respon-
sible of the deployment of the specified paths. It will
transfer the chosen actions to a set of OpenFlow rules
that will be deployed by the different switches.

3.2 Design Components

The functional components of the policy management sys-
tem are discussed as follows.

3.2.1 Monitoring Component (MC)

The MC will be responsible for receiving alerts and notifi-
cations from the different customers. Then, it will analyse
them and extract the important information to be used by
the PDP as: flow information (source and destination IP ad-
dresses, protocol), the security class (suspicious, malicious,
legitimate), the type of attack, and the impact severity of
suspicious traffic detected on the customer network. More-
over, this component will be able to monitor the status of
the switches and paths in the ISP network and provides
the network status (congested, normal) to the PDP. Indeed,
to monitor the ISP network, we can use a tool like Open-
NetMon [16] that permits to maintain the traffic matrix for
different paths and switches in the network.

3.2.2 Policy Decision Point (PDP)

The PDP is in charge of global policy decisions in the ISP
network. As a matter of fact, it will firstly activate con-
texts’ based on the status of the networks and/or the re-
ceived alerts. Then, based on the activated contexts, the
received information and the policy database, it will decide
to enforce a set of high-level actions (e.g, redirect, drop, for-
ward). Finally, it will forward the high level actions and
flow information to the POI module to be deployed.

3.2.3 Policy Database (PDB)

It is a repository which contains the predefined security poli-
cies. It provides the flexibility for a network administrator
to define high level security policies without interest to their
deployment.

The context allows to fine-tune the policy that should be
enforced, so as to minimize the side-effects of policy enforce-
ment.

0O~ UL W+

— =
N = OO

Listing 1:
Policy

Syntax used for High-level Security

Event = {UDP_Flood | TCP_SYN |
ICMP_Flood | DNS_Amplification |
QoS_request }

Condition = {Security Class |
Impact_Severity | ISP_Network_Status}

Security Class = {Suspicious | Malicious
| Legitimate}

Impact_Severity = {Low | Medium | High}

ISP_Network_Status = {Normal | Congested

}
Actions = {Redirect | Block | Forward}

Listing 2: A Sample Policy File to redirect suspi-
cious traffic

<Policy PolicyName="Security_policy”>
<Event event="UDP-Flood”>
</Event>
<Condition>
<security class="suspicious”/>
<Impact severity="medium”/>
<ISP_Network_Status status="
normal” />
</Condition>
<Actions action="redirect”/>
</Actions>
</Policy>

In this paper, we provided a syntax (see Listing 1) allowing
the design of a mitigation security policy. Policies are struc-
tured in the Event-Condition-Action (ECA) model which we
believe is suitable for dynamic policy management. Specifi-
cally, each event refers to a specific attack or incident and is
associated with a set of rules. The rules are described as a
set of conditions that match the context in which the attack
or incident occurs (e.g., security class, impact severity, ISP
network status). Security Class contains three classes of
traffic:(1) Malicious denotes the flows that are certain to be
attacked;(2) Legitimate represents the flows that are benign
in nature; (3) Suspicious denotes the flows which can not be
classified into the two former cases and may mix both le-
gitimate and malicious packets. Impact Severity indicates
the impact of the attack traffic on the customer network. It
contains three values: (1) low, (2) medium, and (3) high.
The last element of ECA model Action is essentially a set of
actions to be applied to the identified flows given the con-
text.

Listing 2 is a sample policy to address UDP flood attacks. In
this example, flows that have been identified as UDP floods
will be diverted to other paths in the network (redirect
action). In the case they may mingle legitimate packets
among malicious ones (i.e., the flow is classified as Suspi-
cious), they have a medium impact on the network and in
normal network conditions.

3.2.4 Policy Orchestrator and Implementer (POI)

This module is responsible for path computation and dis-

tributing the rules along the switches in the path for an
ordered processing of flows. It also considers the middle-
boxes to traverse, in order to steer the flows in the net-
work. For instance, the suspicious traffic may be redirected
to a firewall and then a NAT (Network Address Transla-
tor). It gets the flow information (source IP, destination IP),
high-level action, and bandwidth requested as inputs from
the PDP for path computation. Paths are computed using
the policy aware shortest path [3], which enables the traffic
to be routed through a path based on the predefined poli-
cies. Algorithm 1 takes into account the flow informations,
bandwidth requested, and high level action to compute the
path. After path computation, it distributes the rules in the
switches and insert Network Service Header (NSH) [15] in
the packet for processing. NSH helps in steering the flows
in from the core network with only labels. Core switches do
not need to check the whole packet header for forwarding. It
also reduces the number of flow entries in the core switches
of the network.

Algorithm 1 Path_Computation

1: procedure PATH_CoMPUTE(flow,bw_req,action,step,Max_rate)

2: hop < 0

3: path + ||

4: for Flow F and each path p do

5: p <« compute_Bandwidth(maz(all_links)) //Takes
the maximum bandwidth in the path

6: d < Hop_Count(step[i] + step[i + 1])

T

8:

9:

hop_count < hop + d // Computes the hop count in
the path
path.addList(p)
if (C —bw_req) > Maz_rate then //New flow should
not impact other flows traversing the link.
10: return hop_count, path
11: else

4. EXPERIMENT

The purpose of our experiments is to demonstrate, in a sce-
nario with multiple customers, the effectiveness of our pro-
posed policy engine on mitigating traffic congestion and col-
lateral damage in the presence of DDoS attacks.

Customer
ISP Controller Controller
c

@@ -

\ e
Controller
— &

Figure 2: Experimental scenario: one ISP with three
cusomters.

Table 1: Traffic paths in terms of bandwidth and
link loss probability
Paths | Bandwidth | Link Loss Percentage
P 400 Mbps 0
Py 400 Mbps
Ps 400 Mbps
Py 200 Mbps
Ps 100 Mbps
Ps 50 Mbps

| U w| OO

4.1 Settings

The policy enforcement framework is implemented in Python
and run as an OpenFlow application on Ryu SDN controller.
The experiments were carried out in Mininet, which provides
prototyping environment for the OpenFlow switches. The
experimental scenario is shown in Fig. 2, in which we assume
the ISP network contains 14 OF switches and 6 paths, and
the bandwidth and link loss probability of different paths
are assumed in Table 1. Also, the security alerts received by
the ISP are represented in IDMEF format [5].

4.2 Results and Discussions

We use throughput and network jitter, two well accepted QoS
metrics, to evaluate the effectivenss. Some results are re-
ported in the following.

Throughput of legitimate traffic. We measured the
throughput of legitimate traffic in the presence of DDoS at-
tacks. As shown in Figure 2, we used H> to generate DDoS
attack traffic, and observed the impact on the legitimate
traffic going to the customers Ci, C2 and Cs5. As we can
see in Figure 3, the throughput of all the legitimate traffic
dropped sharply to zero as soon as Hs started to attack.
As a result, the SDN controller of customer C5 sends an
alert, which contains the FlowID (source IP, destination IP)
and security class (legitimate), to the module Monitoring
Component in the ISP controller, making PDP decide to
redirect the flow. Subsequently, policy orchestrator and im-
plementer runs Algoritm 1 to compute the best path, i.e., Ps,
and inserts the NSH in the packets for redirection. Finally,
the corresponding OF rules are loaded to PEPs namely OF
switches. As shown in Figure 3, the legitimate traffic head-
ing to C3 therefore was able to quickly return to the normal
level.

Similarly, the traffic flow going to C2 was redirected through
path P> upon the request of customer C> for restoring the
throughput to the normal level. Afterwards, the alert of
customer C7 reached at ISP controller, which interestingly
redirected the traffic originating from host H; (which has
the higher rate) to path P, as well, pushing the through-
put of the traffic (originating from host Hs) to customer C3
down to zero, as shown in Figure 3. This indicates that, due
to the limited availability of high QoS paths in the ISP net-
work, ensuring the QoS for one customer may incur negative
impact on other customers.

QoS provisioning for legitimate traffic. Following the
previous experiment, we examine how the QoS of legitimate

N
o
=}

300

200

.y
o
o

Legitimate traffic throughput(Mbps)

o

40 . 60 80 100 120
Time(sec)

(=)
N
(=}

Figure 3: Throughput of legitimate traffic going to-
wards customer network after redirection.

isoaw"w% g

200

_
a o O
o o o

Legitimate traffic throughput(Mbps)

OQ

20 %0 _ 60 80 100 120
Time(sec)

Figure 4: Throughput of legitimate traffic in the
case traffic going towards C; is redirected through
low suspicious path.

traffic can be provisioned if all the paths with high band-
width are congested. In this experiment, we assume that
customer C; requests for getting better QoS of the traffic
sent from H;. As shown in Figure 4, since the legitimate
traffic going towards customer C3 and Cs were protected
from collateral damage, the traffic from H; was redirected
to the lower bandwidth path P4, ensuring that the QoS was
not heavily impacted despite the congestion of the legitimate
path LP;.

Network Jitter of legitimate traffic. Finally, we test
how the network jitter of legitimate traffic varies because of
congestion in the network. As Fig. 5 shows, the network
jitter of legitimate traffic going towards customers C1, Cs,
and Cj3 started to increase when the attack traffic from Ho
congested the network. However, all of them immediately
decreased when the ISP controller redirected the traffic flows
upon receiving the mitigation requests from the customers.
Despite the similar changing pattern, the network jitter of
the traffic going to Cs decreased earlier compared to those
of Cy and C;. This is simply because customer C3 sent alert
earlier than customers C> and C; did.

S. CONCLUSION

In this paper, we proposed an automated and dynamic pol-
icy enforcement mechanism for mitigating DDoS attacks

1400
1200f
21000
;ﬁ_g 800- Request for redirections
£
s F = C1
£ 600
E - C2
2 400- = C3
200¢
% 80 100 120

. 60
Time(sec)

Figure 5: Network jitter of legitimate traffic.

in a scenario which has one ISP serving for multiple cus-
tomers. One of the major advantages of the mechanism is
that it allows high-level security policies of ISP to be dy-
namically specified based on the security alerts sent from
the customers. The policies are then enforced at OpenFlow
switches via APIs of SDN controller, which an objective to
achieving dynamic security service chaining that is enabled
by the service header in the packets. Our future work will be
focused on resolving the conflicts of reaction policies due to
simultaneous enforcements for different customers. We will
also enrich the the policy attributes and study the resulting
complexities.

Acknowledgment

This research has been partially supported by the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 643964 (SUPERCLOUD).

6. REFERENCES

[1] M. F. Bari, S. R. Chowdhury, R. Ahmed, and
R. Boutaba. Policycop: An autonomic qos policy
enforcement framework for software defined networks.
In 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), pages 1-7, Nov 2013.

[2] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and
E. Raichstein. Enforsdn: Network policies enforcement
with sdn. In 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM),
pages 80-88, May 2015.

[3] Z. Cao, M. Kodialam, and T. V. Lakshman. Traffic
steering in software defined networks: Planning and
online routing. In Proceedings of the 2014 ACM
SIGCOMM Workshop on Distributed Cloud
Computing, DCC ’14, pages 65-70, New York, NY,
USA, 2014. ACM.

[4] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul.
FlowTags: Enforcing Network-wide Policies in the
Presence of Dynamic Middlebox Actions. In
Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, pages
19-24, New York, NY, USA, 2013. ACM.

[5] B. Feinstein, D. Curry, and H. Debar. The Intrusion
Detection Message Exchange Format (IDMEF). RFC

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

4765, Oct. 2015.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. SIGPLAN Not.,
46(9):279-291, Sept. 2011.

A. Lara and B. Ramamurthy. OpenSec: Policy-based
security using software-defined networking. IEEFE
Transactions on Network and Service Management,
13(1):30-42, 2016.

S. B. Lee, M. S. Kang, and V. D. Gligor. Codef:
Collaborative defense against large-scale link-flooding
attacks. In Proceedings of the Ninth ACM Conference
on Emerging Networking Experiments and
Technologies, CONEXT ’13, pages 417-428, New York,
NY, USA, 2013. ACM.

C. C. Machado, J. A. Wickboldt, L. Z. Granville, and
A. Schaeffer-Filho. Policy authoring for
software-defined networking management. In 2015
IFIP/IEEE International Symposium on Integrated
Network Management (IM), pages 216-224, May 2015.
A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and
Y. Zhang. dFence: Transparent Network-based Denial
of Service Mitigation. In Proceedings of the 4th
USENIX Conference on Networked Systems Design
Implementation (NSDI), pages 24-24, Berkeley, CA,
USA, 2007. USENIX Association.

T. Nadeau and P. Quinn. Problem Statement for
Service Function Chaining. RFC 7498, Nov. 2015.
Open Networking Foundation. What’s Behind
Network Downtime? Technical report, Juniper
Networks, 2008.

Open Networking Foundation. SDN Security
Considerations in the Data Center. Technical report,
ONF, 2013.

Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. SIMPLE-fying Middlebox Policy
Enforcement Using SDN. SIGCOMM Comput.
Commun. Rev., 43(4):27-38, Aug. 2013.

P. Quinn and U. Elzur. Network Service Header.
Internet-Draft draft-ietf-sfc-nsh-05, Internet
Engineering Task Force, May 2016. Work in Progress.
N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers.
Opennetmon: Network monitoring in openflow
software-defined networks. In 2014 IEEE Network
Operations and Management Symposium (NOMS),
pages 1-8, May 2014.

A. Voellmy, H. Kim, and N. Feamster. Procera: A
language for high-level reactive network control. In
Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, HotSDN 12, pages 43-48,
New York, NY, USA, 2012. ACM.

