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Abstract  11 
Recent advances in wearable sensor technology and machine learning (ML) have allowed for the 12 

seamless and objective study of human motion in clinical applications, including Parkinson’s 13 

disease and stroke. Using ML to identify salient patterns in sensor data has the potential for 14 

widespread application in neurological disorders, so understanding how to develop this approach 15 

for one’s area of inquiry is vital. We previously proposed an approach that combined wearable 16 

inertial measurement units (IMUs) and ML to classify motions made by stroke patients. However, 17 

our approach had computational and practical limitations. We address these limitations here in the 18 

form of a primer, presenting how to optimize a sensor-ML approach for clinical implementation. 19 

First, we demonstrate how to identify the ML algorithm that maximizes classification performance 20 

and pragmatic implementation. Second, we demonstrate how to identify the motion capture 21 

approach that maximizes classification performance but reduces cost. We used previously 22 

collected motion data from chronic stroke patients wearing off-the-shelf IMUs during a 23 

rehabilitation-like activity. To identify the optimal ML algorithm, we compared the classification 24 

performance, computational complexity, and tuning requirements of four off-the-shelf algorithms. 25 

To identify the optimal motion capture approach, we compared the classification performance of 26 

various sensor configurations (number and location on the body) and sensor type (IMUs versus 27 

accelerometers). Of the algorithms tested, linear discriminant analysis had the highest 28 

classification performance, low computational complexity, and modest tuning requirements. Of 29 

the sensor configurations tested, seven sensors on the paretic arm and trunk led to the highest 30 

classification performance, and IMUs outperformed accelerometers. Overall, we present a refined 31 

sensor-ML approach that maximizes both classification performance and pragmatic 32 

implementation. In addition, with this primer, we showcase important considerations for 33 

appraising off-the-shelf algorithms and sensors for quantitative motion assessment. 34 

 35 

1 Introduction 36 

Wearable sensors, such as inertial measurement units (IMUs) and accelerometers, provide an 37 

opportunity for the objective and seamless capture of human motion. Machine learning (ML) 38 

enables computers to learn without being explicitly programmed, and provides an opportunity to 39 

rapidly identify patterns in data. Given recent technological and computational advances, 40 



 

combining wearable sensor data with ML algorithms has the potential for rapid, automated, and 41 

accurate classification of motion.   42 

Researchers have begun using this combined sensor-ML approach in a number of applications. 43 

These include human activity recognition [1-3], gesture analysis [4], assessment of bradykinesia 44 

in Parkinson’s disease [5], motor function assessment in multiple sclerosis [6], and differentiating 45 

between functional and non-functional arm usage in stroke patients [7, 8]. While many of these 46 

studies showcase the application of sensors and ML in clinical populations, no previous work has 47 

detailed the various hardware and software considerations for using the sensor-ML approach. 48 

Furthermore, no guide currently exists to advise investigators in building and troubleshooting this 49 

approach, which sits at the intersection of human movement science, data science, and neurology. 50 

With the potential for the sensor-ML approach to have widespread applicability to neurological 51 

disorders, understanding how to develop this approach for one’s own area of inquiry is paramount.  52 

One possible application of the combined sensor-ML approach is the monitoring of rehabilitation 53 

dose in stroke patients. Quantifying the dose of rehabilitation entails classifying units of 54 

measurement, which are subsequently tallied. In our previous proof-of-principle study, we used 55 

IMUs worn by stroke subjects performing a structured tabletop activity to capture motion data. 56 

Our units of measurement were functional primitives, elemental motions that cannot be further 57 

decomposed by a human observer. We applied an ML algorithm (hidden Markov model with 58 

logistic regression) to the IMU motion data to recognize functional primitives embedded in this 59 

activity, achieving an overall classification performance of 79% [9]. While promising, this sensor-60 

ML approach had variable classification performance among the primitives (62-87% accuracy). It 61 

also did not address research implementation challenges such as the computational complexity and 62 

computational costs of the ML approach, or clinical implementation challenges such as the 63 

expense [10] and electromagnetic intolerance of the IMUs. 64 

In the present study, we address these limitations in the form of a primer, outlining deliberations 65 

that researchers developing their own sensor-ML approach would need to consider. We describe 66 

our rationale and steps for identifying (1) an algorithm that is highly accurate but computationally 67 

tractable, and (2) the type and array of sensors that minimize cost but maximize accuracy. We use 68 

functional primitives as the motion type to be classified, and describe our approach for both 69 

capturing and identifying these motions. We also use off-the-shelf algorithms and sensors, 70 

providing an accessible framework for investigators seeking to address new research and clinical 71 

questions with the sensor-ML approach.  72 

2 Methods 73 

To demonstrate the steps in identifying the optimal ML algorithm and sensor array, we use data 74 

collected from previous work [9]. Briefly, six mild-to-moderately impaired stroke patients (Table 75 

1) moved a toilet paper roll and aluminum can over a horizontal array of targets (Fig. 1).   76 

Subjects performed 5 trials moving the object between a center target and eight radially arrayed 77 

targets (20 cm away). The task generates the following functional primitives: reach (to move into 78 

contact with a target object); transport (to convey a target object); reposition (to move proximate 79 

to a target object); and idle (to stand at the ready near target object).  Functional primitives are 80 

discrete, object-oriented motions with a single goal. Functional primitives are non-divisible and 81 

are largely invariant across individuals [11], may be represented cortically [12-14], and provide a 82 

finer-grained capture of performance in stroke patients who may be unable to accomplish a full 83 

activity. Akin to words, functional primitives are combined to make a functional movement [15] 84 



 

(analogous to a sentence), which in turn are combined to make an activity (analogous to a 85 

paragraph) [16]. For example, a series of reach-transport-reposition primitives could constitute a 86 

functional movement for zipping up a jacket, within the activity of dressing. 87 

Motion data were recorded with 11 IMUs (XSens Technology) worn on the head, sternum, pelvis, 88 

and bilateral hands, forearms, arms, and scapulae. 3D linear accelerations, 3D angular velocities, 89 

and quaternions were generated at 240 Hz. To segment and label the motion data as constituent 90 

primitives, we synchronously recorded motion (30 Hz) with a single video camera. Trained coders 91 

used the video recording to label the beginning and end of each functional primitive, which also 92 

labeled the corresponding IMU data. These labels served as the ground truth. This step enabled us 93 

to train ML algorithms on motion data and test their classification performance against the ground-94 

truth labels. IMU data were z-score normalized and statistical features were extracted. The 95 

statistical features were the following: mean, standard deviation, minimum, maximum, entropy, 96 

skewness, energy, and root mean square. These statistical features have been shown to capture 97 

human motion efficiently, reducing the computational burden [17-19]. Following prior work, we 98 

selected a window size of 0.25 s sliding by 0.1 s [9], from which to derive the statistical features. 99 

The statistical feature data were fed to the ML algorithms.  100 

The dataset consisted of 2881 primitives, consisting of 810 reaches, 708 transports, 781 101 

repositions, and 582 idles. It is important to note that this is the sample size of interest (not the 102 

number of subjects). Accounting for repeated measures within-subject and at each target, and using 103 

this dataset of 2881 primitives with α = 0.05, we have 81% power to detect a classification 104 

performance of at least 79% (positive predictive value, section 3.2.1 below). We used 79% 105 

accuracy as the benchmark for sufficient classification performance as achieved in our previous 106 

study [9]. 107 

3 Computational details 108 

3.1  ML methods for classification  109 

In the present study, we sought to identify an ML algorithm that performs well for identifying 110 

primitives, i.e. has a high classification performance, but that also is practical, i.e. has low 111 

computational overhead and minimal tuning requirements. Supervised ML algorithms work in two 112 

phases: training and testing. During training, ML algorithms learn the relationship between a 113 

pattern of data characteristics (here, the statistical features) and its class (here, its primitive label). 114 

During testing, the trained ML algorithm uses the pattern of data characteristics to identify a new 115 

data sample as one of the primitives. This identification is checked against the ground-truth human 116 

label, thus reading out classification performance. 117 

We considered both generative and discriminative algorithms. Generative algorithms model the 118 

underlying distribution of data for each class, seeking to identify data characteristics that enable 119 

matching of new data samples to a given class. In contrast, discriminative algorithms model the 120 

boundaries between classes and not the data themselves. They seek to identify the plane separating 121 

the classes so that, based on location relative to the plane, a new data sample is assigned to the 122 

appropriate class.  123 

We selected four algorithms that have been found to provide high classification performance in 124 

human activity recognition: linear discriminant analysis (LDA) [18], Naïve Bayes classifier (NBC) 125 

[17], support vector machine (SVM) [20], and k-nearest neighbors (KNN) [19].  LDA and NBC 126 

are generative algorithms, whereas SVM and KNN are discriminative algorithms. We used off-127 



 

the-shelf versions of these algorithms without any special permutations; in other words, the 128 

algorithms are widely available in most machine learning libraries such as scikit-learn [21, 22].    129 

3.2  Algorithm performance metrics  130 

3.2.1 Classification performance of algorithms  131 

We first evaluated how well the algorithms could classify primitives, measuring classification 132 

performance by comparing algorithm-chosen labels against ground-truth human labels. Primitives 133 

were classified as true positive (TP, labels agreed) and false positive (FP, labels disagreed). We 134 

used 60% of the data to train the algorithm and 40% to test it, repeating the process 10 times. A 135 

validation dataset was not used because we were not optimizing algorithm architectures, and the 136 

test dataset provides an unbiased estimate of algorithm performance. Data were randomly selected 137 

for each primitive proportional to its prevalence in the complete dataset (i.e., stratified proportional 138 

sampling). This ensured that each dataset adequately represented the entire sample population. In 139 

addition, to examine the possibility that within-subject dependencies in the training and testing 140 

sets leads to an overestimation of classification performance, we also performed a leave-one-141 

subject-out analysis i.e., training the algorithms using data from all but one subject and testing its 142 

performance on the data from the remaining subjects. This process was repeated 6 times, once for 143 

each subject, and classification performances were averaged.  144 

The first metric for classification performance was positive predictive value (PPV; TP/(TP+FP)). 145 

PPV reflects how often a primitive was actually performed when the algorithm labeled it as such; 146 

in other words, PPV is how often a primitive was correctly classified. We generated primitive-147 

level PPVs in a one-versus-all analysis (e.g., reach vs. transport + reposition + idle combined). 148 

We also generated an overall PPV by combining data for all primitives and tallying all true and 149 

false positives. We prefer PPV because it takes into account the prevalence of the primitive in the 150 

dataset [23]. 151 

The second metric for classification performance was the receiver operating characteristic (ROC) 152 

curve. ROC curves depict the relative tradeoff between true positive rate (sensitivity; y-axis) and 153 

false positive rate (1-specificity; x-axis) and identify the optimal operating point of an algorithm 154 

[24]. Perfect classification would lead to a ROC curve that passes through the upper left corner, 155 

with an area under the ROC curve (AUC) equal to 1 and an operating point at 100% sensitivity 156 

and 100% specificity [24].  157 

3.2.2 Practical performance of algorithms  158 

We next considered the computational complexity of the algorithms in terms of their training and 159 

testing times and their tuning requirements. Having a high computational complexity means that 160 

specialized computing hardware and advanced expertise would be needed, potentially hindering 161 

widespread implementation in research. 162 

3.2.2.1 Training and testing times of the algorithms 163 

The time required to train and test the algorithms was measured for datasets of different sizes. If 164 

training time is fast, rapid appraisal and optimization of the algorithm are possible, favoring rapid 165 

development and deployment. If the testing time is fast, real-time classification and online 166 

feedback are possible, favoring clinical implementation. 167 

We first used 20-100% of the dataset (n=2881 primitives) in randomly selected 10% increments. 168 

At each increment, we measured (1) the time required to train the algorithm (training time), and 169 



 

(2) the time required for a trained algorithm to classify a primitive (testing time). At each 10% 170 

increment, the algorithms were trained de novo to avoid overfitting and to provide unbiased 171 

estimates.  172 

Given the modest size of our dataset, we next used a simulated dataset that could be expected from 173 

a typical sample size of 50 subjects performing a variety of activities. The simulated dataset had 174 

300,000 primitives with same proportion, mean, and variance as our original dataset. We used 25-175 

100% of the dataset in randomly selected 25% increments. At each increment, we measured the 176 

training and testing times, training the algorithm de novo as above. Of note, the simulated dataset 177 

was used only to generate training and testing times, and was not used for classification 178 

performance assessments.  179 

3.2.2.2 Tuning requirements of the algorithms 180 

We also assessed the algorithm’s need for tuning, the adjustment of algorithm parameters to 181 

maximize classification performance. A high tuning requirement requires the extensive analysis 182 

of the algorithm to identify its optimal parameters, potentially limiting implementation in settings 183 

that lack domain expertise. Of note, tuning requirements were only used to index complexity, but 184 

we did not tune the algorithms themselves in the assessment of classification performance. 185 

We operationalized the algorithms’ tuning requirements as the number of parameters that can be 186 

adjusted. We also qualitatively classified the level of domain knowledge required to implement 187 

and tune the algorithms. Based on typical US educational programs, “low” domain expertise 188 

indicates a basic knowledge of statistics, “medium” indicates undergraduate-level knowledge of 189 

machine learning, and “high” indicates graduate-level knowledge of machine learning.  190 

3.2.3 Optimal sensor characteristics  191 

We then focused on the hardware side, seeking the best balance between ease of motion capture 192 

and high classification performance. We first considered the use of IMUs compared to 193 

accelerometers alone. IMUs are a combination of sensors, including accelerometers, gyroscopes, 194 

and magnetometers. Many IMU hardware-software systems generate 3D linear accelerations, 3D 195 

angular velocities, 3D magnetic heading, and 4D quaternions, resulting in 10 data dimensions per 196 

sensor. We used accelerations, angular velocities, and quaternions for derivation of statistical 197 

features (section 2), as these data types have been used previously for human activity recognition 198 

[19, 25, 26]. In contrast, 3D accelerometers generate only 3D linear accelerations, resulting in 3 199 

data dimensions per sensor. 200 

While IMUs are data-rich, they are challenged by electromagnetic drift. Magnetic environments 201 

lead to potentially inaccurate gyroscopic measurements and therefore necessitate frequent 202 

recalibration. While accelerometers are data-sparse, they are largely unaffected by a magnetic 203 

environment.  204 

Another practical consideration for sensor choice is system expense.  IMU systems can cost on the 205 

order of thousands of dollars [10] whereas accelerometry systems cost in the hundreds [27]. It is 206 

possible that cost and set-up time could be optimized by reducing the number of sensors or by 207 

using accelerometers alone. Although simplified and less expensive motion capture would favor 208 

clinical implementation, it may come at the cost of reduced classification performance.  209 

In this analysis, we subsampled data from the IMUs to extract accelerometry data, ensuring that 210 

comparisons were based on identical sensor locations and primitive motions. LDA was trained and 211 

tested on the separate datasets to read out effects on classification performance. 212 



 

3.2.3.1 Optimal sensor number and configuration for classification 213 

We first evaluated how the number of sensors and their location on the body affects classification 214 

performance. We used exhaustive search to systematically test all possible sensor configurations 215 

[28]. This approach provides an unbiased appraisal of all sensor combinations for each incremental 216 

reduction in sensor number.  217 

3.2.3.2 Optimal sensor type for classification 218 

We also evaluated how sensor type affected classification performance. We compared 219 

classification accuracies using IMU data versus accelerometry-only data. This allowed us to 220 

determine whether accelerometers, with their reduced dimensionality, could enable sufficient 221 

accuracy to warrant their use in lieu of IMUs. 222 

4 Results 223 

4.1  Classification performance of algorithms  224 

We first determined the classification performance of multiple ML algorithms using PPVs (Table 225 

2).  LDA and SVM had high classification performance for all primitives (overall PPV 92.5% and 226 

92%, respectively). KNN had intermediate performance (PPV 87.5%) and NBC had the lowest 227 

performance (PPV 80.2%), particularly for reaches (PPV 77%) and transports (PPV 71%). In the 228 

leave-one-subject-out analysis, which addressed the possibility of within-subject dependencies, 229 

similar overall classification performances were identified (PPVs of 89% for LDA, 90% for SVM, 230 

83% for KNN, and 75% for NBC). 231 

To further characterize classification performance, we generated ROC curves for each primitive 232 

(Fig. 2). All algorithms detected idle with high accuracy (AUC > 0.87). For the other primitives, 233 

LDA and SVM had AUCs 0.95-0.99, indicating very high classification performance. KNN also 234 

had high classification performance for reach (AUC 0.94) and transport (AUC 0.90) and 235 

intermediate classification performance for reposition (AUC 0.87). In contrast, NBC had the 236 

lowest classification performance on the remaining primitives (AUC 0.80-0.85). We also 237 

identified the optimal operating point, indicating the best tradeoff between sensitivity and 238 

specificity, for each algorithm (Fig. 2). At their respective optimal operating points, LDA and 239 

SVM achieved high sensitivities (0.83-0.95) and specificities (0.83-0.95) for all primitives. KNN 240 

achieved a high sensitivity (0.91) and specificity (0.86) for transport, but had moderate 241 

sensitivities (0.80-0.88) and specificities (0.79-0.86) for other primitives. NBC had the lowest 242 

sensitivities (0.74-0.81) and specificities (0.74-0.79) for all primitives. In sum, these findings 243 

indicate that LDA and SVM have the highest classification performance of the algorithms tested. 244 

4.2  Training and testing times of the algorithms  245 

We next evaluated the pragmatic aspects of implementing the algorithm to gauge real-world 246 

applicability. We first calculated the time required to train and test the algorithm on increasing 247 

quantities of data (Fig. 3) from our dataset of 2880 primitives. In terms of training times, NBC and 248 

LDA were on the order of seconds (12 s and 26 s, respectively), with training times growing 249 

linearly with increasing data quantity. SVM was on the order of minutes (5.6 min), with training 250 

times growing quadratically with increasing data quantity. KNN required no time to train as an 251 

inherent property of the model. In terms of testing, LDA, NBC, and SVM required sub-millisecond 252 



 

times (approximately 0.03 ms), whereas KNN required the longest time (1.5 ms) with testing times 253 

growing linearly with increasing dataset size. 254 

To investigate the real-world ramifications of training and testing requirements, we generated a 255 

dataset with 300,000 primitives (Fig. 4). Training times became prohibitively long for SVM (up 256 

to 23 h) but were manageable for the other algorithms (up to 13 min). Testing time was relatively 257 

high for KNN (up to 2.3 min), whereas LDA, NBC, and SVM required nominal testing times 258 

(<0.03 ms). Given their consistently low training and testing times, LDA and NBC have the best 259 

practical performance of the algorithms tested. 260 

4.3  Tuning requirements of the algorithms 261 

To gauge the difficulty of algorithm implementation, we characterized their tuning requirements 262 

(Table 3). NBC has the lowest number of parameters (1) and requires a low amount of domain 263 

knowledge in machine learning to optimize it. KNN has a moderate number of parameters (5), but 264 

their optimization is reasonably intuitive and requires a low level of domain knowledge. LDA has 265 

fewer parameters (3), but they require a medium level of domain knowledge.  SVM has many 266 

parameters (9) and requires a high level of domain knowledge to build an accurate and efficient 267 

model. In sum, these findings indicate that NBC and KNN are the easiest to implement, and LDA 268 

implementation requires a modestly higher skillset.  269 

4.4  Optimal sensor characteristics 270 

4.4.1 Optimal sensor number and configuration  271 

To evaluate the effect of the sensor number and configuration on classification performance, we 272 

used an exhaustive search process, which evaluated all combinations of sensor number and 273 

location. We note that exhaustive search arrived at the same optimal configurations for IMUs as 274 

for accelerometers. Seven sensors on the head, sternum, pelvis, and UE of the active side resulted 275 

in the highest classification performance (IMU PPV 92.5%; accelerometer PPV 84%). In 276 

comparison, when exhaustive search progressively added sensors to the non-active forearm, then 277 

hand, then upper arm, then scapula, classification performance worsened (IMU PPV 88%; 278 

accelerometer PPV 80%) (Fig. 5). When exhaustive search progressively removed sensors on the 279 

trunk and then head, performance also worsened. Subsequent removal of sensors from the scapula, 280 

then arm, and then hand further worsened performance, arriving at PPVs of 71% and 62% for 281 

IMUs and accelerometers, respectively, for the remaining forearm sensor. 282 

4.4.2 Optimal sensor type for classification 283 

To finish, we evaluated classification performance using IMU versus accelerometry data only. 284 

Classification performance using accelerometry data was consistently lower than for IMU data for 285 

all sensor configurations (Fig. 5; Table 4). Classification performance with accelerometers was 286 

lower especially for reaches (PPV 77% vs. 93%; Table 4), which include different arm 287 

configurations to grasp the objects (e.g. supinating to side-grasp the aluminum can versus 288 

pronating to overhand grasp the toilet paper roll). These findings indicate that IMU data enable a 289 

superior level of classification, particularly with more variable motions involving forearm 290 

rotations.  291 

 292 

 293 



 

5 Discussion 294 

The combination of wearable sensors and machine learning offers exciting opportunities in 295 

numerous applications, including human activity recognition [1-3] and assessment of impaired 296 

motion [5, 7, 8]. We recently proposed an approach that uses wearable sensors and ML algorithms 297 

to classify functional primitives, which could be summed to quantify rehabilitation dose. In this 298 

study, we aimed to address limitations in this previous work, including a modest computational 299 

performance, high computational complexity, and hardware drawbacks. We present our analyses 300 

as a primer for considering software and hardware variables in the capture and classification of 301 

motion data. We sought to identify—from both performance and practical standpoints—the best 302 

machine learning algorithm, sensor configuration, and sensor type to classify functional primitives 303 

in stroke patients.  304 

Among the ML algorithms, LDA represented the best balance of classification performance and 305 

pragmatic implementation. Among sensor configurations, seven sensors on the paretic arm and 306 

trunk enabled better classification performance than more or fewer sensors on the body. Among 307 

sensor types, IMU data enabled better classification performance than accelerometers. To our 308 

knowledge, this is the first study to systematically outline the steps of identifying optimal ML 309 

algorithms, sensor configurations, and sensor types to automatically classify motion patterns of 310 

neurological patients. 311 

Optimal performer in classification. Evaluating the ability of the ML algorithms to classifying 312 

functional primitives, we found that LDA and SVM had the highest classification performance. 313 

LDA performs well because it aims to reduce dimensionality while preserving as much 314 

discriminatory information as possible. This approach leads to tight clusters and high separation 315 

between the classes [29]. SVM performs well because it projects training data to a high-316 

dimensional space. This approach leads to maximal separation between classes that may not be 317 

possible in the original feature space [30]. Overall, LDA aims to find commonalities within and 318 

differences between data classes, whereas SVM aims to find a classification boundary that is 319 

furthest from the data classes. Importantly, these algorithms maximize rigor in the training phase 320 

by being less susceptible to noisy or outlier data [31, 32]. LDA accomplishes this by using the 321 

clusters’ centers and ignoring outlier samples to classify [31], while SVM uses the most closely 322 

spaced data (i.e., the most difficult to discriminate) to define class boundaries [32]. It is worth 323 

noting that LDA assumes that the underlying classes are normally distributed (unimodal 324 

Gaussians) with the same covariance matrix [29]. If real-world motion data are significantly non-325 

Gaussian, LDA may not capture the complex data structures required for accurate classification. 326 

In this case, classification performance can be tuned by allowing the covariance matrices among 327 

classes to vary, resulting in a regularized discriminant analysis [33].  328 

By comparison, KNN showed a marginally lower classification performance, likely due to its 329 

susceptibility to noise [34]. KNN relies on the assumption that samples from the same class exist 330 

in close proximity. Given a new sample, KNN assigns it to the class with the majority of closest 331 

neighbors [35]. In our current setup of KNN, all nearest sample points are given the same 332 

weighting. Therefore when assigning a class label, a noisy sample will be weighted the same as 333 

other statistically important samples. KNN classification performance can be tuned by choosing 334 

an appropriate weighting metric (e.g., inverse squared weighing) [36], which  ensures that samples 335 

closer to the test sample contribute more to classifying it. Performance may also be tuned by using 336 

mutual nearest neighbors, where noisy samples are detected using pseudo-neighbors (neighbors of 337 

neighbors) and are assigned lower weights [37].   338 



 

Finally, NBC had the lowest performance compared to other algorithms. NBC uses Bayes’ rule 339 

and prior information to classify a new sample, using the posterior probability of it belonging to a 340 

class [38]. Its lower performance may be attributed to its underlying assumption of conditional 341 

independence between data features [39]. This assumption is violated for data streams that are 342 

correlated, such as data from adjacent sensors on the body, like the hand and wrist. The 343 

performance of NBC could be improved by applying principal components analysis to the dataset 344 

as a pre-processing step, and then training the NBC [40]. 345 

Comparing these results with our prior work [9], we found that the four algorithms outperformed 346 

the hidden Markov model-logistic regression (HMM-LR) classifier for identifying the functional 347 

primitives in stroke patients. The improved performance may be due in part to differences in the 348 

training datasets. Our previous study trained the algorithm on healthy control data and tested on 349 

stroke patient data to examine the generalizability of the model. It is conceivable that if the HMM-350 

LR classifier been trained and tested in stroke patients only, its performance would have been 351 

higher. 352 

Optimal performer in practicality. We also determined the most pragmatic algorithms with 353 

respect to their training and testing times and their tuning requirements. In terms of training times, 354 

KNN did not have any computational overhead. This is expected, since KNN requires no training 355 

and shifts its computations to the testing phase. Training times for LDA and NBC grew gradually 356 

with dataset size, but took at most minutes with a real world-sized dataset.  LDA had lower training 357 

times than NBC on a smaller dataset, but required more training time as the dataset increased. This 358 

is explained by the scatter matrix computations and optimization of LDA, which become 359 

computationally expensive as the dataset size increases [18]. By contrast, SVM training time 360 

increased quadratically with dataset size, because finding an optimal hyperplane between classes 361 

entails solving a quadratic programming problem [20]. Complex algorithms such as SVM thus 362 

require more processing time for large datasets, which limits real-world application. For example, 363 

for a modestly sized study, training times for SVM may be on the order of days. This lag would 364 

be prohibitive for rapid tuning, significantly delaying algorithm optimizations. Conversely, 365 

performance of LDA and NBC could be rapidly appraised after training, alerting an investigator 366 

to further tune the algorithm or to move on from it. 367 

In terms of testing times, SVM, LDA, and NBC required sub-milliseconds to classify primitives, 368 

whereas KNN took seconds-minutes and testing times grew linearly with dataset size. This can be 369 

explained by the exhaustive and computationally expensive search performed by KNN [41]. 370 

During testing, the KNN algorithm searches for the k nearest neighbors that have similar data 371 

characteristics as the test sample. With increasing samples and dimensionality of the data, the 372 

search broadens and takes more time. If an investigator wishes to classify primitives offline, KNN 373 

testing times may be acceptable. For applications requiring near- or real-time classification (e.g. 374 

for online feedback), the other algorithms should be considered instead. Alternatively, the 375 

computational complexity of KNN can be reduced by selecting an efficient search algorithm (e.g., 376 

KD tree) [42], which limits the search space during testing.  377 

In terms of ease of tuning to increase classification performance and reduce training/testing time, 378 

we determined that NBC had the lowest parameter complexity and requirement for domain 379 

knowledge in machine learning. KNN has a moderate number of tuning parameters, but they are 380 

relatively straightforward to understand and address. LDA has fewer tuning parameters than KNN, 381 

but moderate domain knowledge is required to select the amount of regularization allowing the 382 

covariance among classes to vary [33]. SVM requires the highest amount of parameter tuning, and 383 



 

necessitates a deep understanding of statistics, optimization, probability theory, and machine 384 

learning [43]. This level of domain knowledge is prohibitive for SVM use in an unsupported 385 

research setting. 386 

Weighing classification performance and pragmatic implementation, we judged LDA to be the 387 

best choice for our application. Investigators will similarly need to weigh their performance goals, 388 

time resources, and available level of expertise for ML implementation in their own motion 389 

classification questions.  390 

Optimal IMU configuration. On the hardware side, we determined the optimal sensor location 391 

and configuration to facilitate data capture while maintaining high classification performance. 392 

Seven sensors (not more or fewer) enabled optimal classification performance, and the best sensor 393 

configuration was placed on the active limb and trunk. This result is expected, given that the 394 

participants performed a unimanual task. Interestingly, accuracy worsened with more sensors, 395 

likely because of the increased dimensionality of the dataset. This may cause the ML algorithm to 396 

overfit the training data, resulting in lower classification performance during the testing phase [44]. 397 

Finally, we found that if only one sensor was available, the forearm location was the most 398 

informative, although classification performance was modest. This location is nonetheless 399 

appealing, given recent advances in smartwatches capable of capturing motion.  400 

Optimal data characteristics. Finally, we determined the sensor type that led to the highest 401 

classification performance. Accelerometry data consistently generated lower accuracies than IMU 402 

data, likely due to its fewer dimensions. Although IMUs enable higher classification performance 403 

than accelerometers, they also have some drawbacks: a higher risk of electromagnetic drift leading 404 

to inaccurate data estimates and the need for more frequent recalibrations, a higher consumption 405 

of energy [45], and a higher cost [10]. Thus there is a tradeoff between robust motion capture and 406 

practical motion capture. We believe that the benefits of richer data and better classification of 407 

IMUs outweigh their practical limitations. However, there currently exist no benchmarks for the 408 

level of classification accuracy needed to justify clinical implementation. If these accuracy 409 

benchmarks are lower than those achieved by IMUs, and if investigators are constrained by 410 

financial resources or the magnetic noisiness of an environment, accelerometers could be 411 

appropriate.   412 

5.1  Limitations and future work 413 

Our study has some limitations to be considered. We importantly do not suggest that we have 414 

found the definitive approach for classifying primitives in rehabilitating stroke patients, for two 415 

reasons. First, our analysis was performed on a dataset of mild-to-moderately impaired stroke 416 

patients, limiting generalization to stroke patients with severe impairment. To achieve high 417 

classification performance across the range of stroke impairment, separately trained ML models 418 

may be needed for different impairment levels. Second, the activity used in this study was highly 419 

structured. The motion characteristics of the resulting primitives were thus more consistent and 420 

limited than what would be found in a real-world rehabilitation setting. The training and testing of 421 

algorithms on functional primitives with an array of kinematic characteristics is still required, and 422 

is ongoing in our laboratory. We use this circumscribed dataset here to showcase the practical 423 

deliberations required in the development of a sensor-ML approach for motion classification.  424 

 425 

  426 



 

6 Conclusion 427 

In summary, we present a primer that details how one can optimize both the software and hardware 428 

facets of motion capture. This work outlines computational and practical considerations for 429 

implementing a sensor-ML approach in quantitative research. Specific to our application, we 430 

demonstrate how to refine a strategy that builds towards the precise and pragmatic classification 431 

of functional primitives in stroke patients. We found that LDA had the best combination of 432 

classification performance and pragmatic performance. We also found that seven sensors on the 433 

paretic UE and trunk maximized classification performance, and that IMUs enabled superior 434 

classification compared to accelerometers.  435 
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8 Figure legends 454 

Figure 1. Tabletop activity set-up. Healthy individual wearing the sensors and transporting the 455 

object from center to a target. 456 

Figure 2. Performance characteristics of machine learning algorithms for (A) Reach, (B) 457 
Transport, (C) Reposition, and (D) Idle. Receiver operating characteristic (ROC) curves show 458 

the trade-off between true positive rate (or sensitivity) and false positive rate (1-specificity). 459 

Curves closer to the top-left corner indicate a better classification performance. The optimal 460 

operating point for each algorithm (solid circles), reflect the best tradeoff between sensitivity and 461 

specificity for an algorithm. The area under the curve (AUC), a measure of classification 462 

performance, is shown in parenthesis for each algorithm. AUC=1 represents perfect classification. 463 

LDA had the highest AUCs followed closely by SVM, indicating high classification performances. 464 

NBC had consistently the lowest AUCs, indicating the weakest classification performance. 465 



 

 466 

Figure 3. Algorithm (A) training times and (B) testing times on sample dataset. The dataset 467 
is comprised of 2880 primitives. We computed times to train and test each algorithm on 20-100% 468 

of the dataset in increments of 10%. To avoid overfitting and compute an unbiased estimate of 469 

training and testing times, ML algorithms were trained and tested de novo with each incremental 470 

increase. For training with the complete sample dataset, SVM required the most time (336 s) while 471 

the other algorithms finished training rapidly (<30 s). For testing, KNN required the most time 472 

(1.5 ms), while the other algorithms finished testing rapidly (<0.03 ms). Please note break in the 473 

y-axis to highlight the difference in the algorithm testing times. 474 

Figure 4. Algorithm (A) training times and (B) testing times on real world-sized dataset. The 475 
dataset is comprised of 300,000 simulated primitives. We evaluated training and testing times 476 

required by each algorithm for quartile increases in dataset size. Please note the break in the y-477 

axes to highlight differences in training and testing times. To avoid overfitting and compute 478 

unbiased estimates, the algorithms were trained and tested de novo at each quartile. For training 479 

with the entire dataset, SVM required the most time (1380 min) while the other algorithms required 480 

less time (LDA: 13 min; NBC: 2.5 min; KNN: 0 min, as per model property). For testing, KNN 481 

required the most time (2.3 min). The remainder of algorithms (LDA, NBC, and SVM) needed a 482 

testing time of <0.09 ms, which grew marginally with increasing sample sizes. 483 

Figure 5. Classification performance for full and reduced sensor counts. Performance was 484 

computed using LDA and data from with progressively reduced sensor counts. Seven sensors 485 

(pelvis, sternum, head, and the active shoulder, upper arm, forearm, and hand) gave the best 486 

classification performance, with a performance drop-off at more or fewer sensors. IMU data 487 

consistently supported higher classification than accelerometery data, achieving PPV 92.5% vs. 488 

82% at the seven sensors. 489 
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10 Table legends 588 

Table 1. Demographic and clinical characteristics of patients. Shown are number of 589 

participants, mean age (range), gender, race, hand dominance, paretic side, mean Fugl-Meyer 590 

assessment score at first assessment (range; maximum 66), and time since stroke (range). Inclusion 591 

criteria were age ≥18 years; premorbid right-hand dominance; unilateral motor stroke; 592 

contralateral arm weakness with Medical Research Council score <5/5 in a major muscle group. 593 

Exclusion criteria were traumatic brain injury; musculoskeletal, medical, or non-stroke 594 

neurological condition interfering with assessment of motor function; contracture at shoulder, 595 

elbow, or wrist; moderate dysmetria or truncal ataxia; visuospatial neglect; apraxia; global 596 

inattention; blindness. 597 

Table 2. Classification performance of machine learning algorithms for functional 598 
primitives. Positive predictive values (PPV) with associated 95% confidence intervals are shown. 599 

PPV reflects how often a primitive was actually made when the algorithm identified it as such, 600 

was calculated for the primitives of reach, transport, reposition, and idle. Primitive-level PPVs 601 

were computed in one-versus-all analysis (e.g., reach vs. transport + reposition + idle combined). 602 

The overall PPV was assessed by combining data for all primitives and tallying all true and false 603 

positives. Overall classification performance was highest for linear discriminant analysis (LDA) 604 

and support vector machine (SVM), moderately high for k-nearest neighbors (KNN), and lowest 605 

for Naïve Bayes classifier (NBC). 606 

Table 3. Complexity of algorithm implementation. Algorithm parameter tuning is necessary to 607 

achieve optimal classification performance. Shown are algorithm tuning characteristics, as 608 

indicated by number and specifics of the tuning parameters. Also shown is a graded estimate of 609 

the level of domain knowledge required to tune these parameters. NBC is considered the simplest 610 

to tune while SVM is the most difficult. LDA has a handful of parameters that require medium 611 

domain knowledge to negotiate. KNN has a moderate number of parameters that are intuitive to 612 

tune and require little domain knowledge. Level of domain knowledge: low, basic knowledge of 613 

statistics; medium, undergraduate-level knowledge of ML; high, graduate-level knowledge of ML. 614 

Table 4. Primitive-level classification using IMU or accelerometer data. Classification 615 

performance is shown using the 7-sensor configuration (pelvis, sternum, head, and the active 616 



 

shoulder, upper arm, forearm, and hand). Accelerometers provided systematically poorer 617 

classification performance compared to IMUs across all primitives. Classification performance 618 

using accelerometry data was particularly low for reach (PPV 77%) and relatively higher for idle 619 

(PPV 88%). 620 

11 Tables 621 

 622 

N 6 

Age (years) 61.7 (46.5 -71.0) 

Gender (Female/Male) 2F/4M 

Dominant arm (Right/Left) 5R/1L 

Paretic side (Right/Left) 6R 

Impairment (Fugl-Meyer score) 52.8 (45 - 62) 

Time since stroke (years) 12.0 (2.0 - 31.1) 
Table 1. Demographic and clinical characteristics of patients. Shown are number of participants, mean age 

(range), gender, race, hand dominance, paretic side, mean Fugl-Meyer assessment score at first assessment (range; 

maximum 66), and time since stroke (range). Inclusion criteria were age ≥18 years; premorbid right-hand 

dominance; unilateral motor stroke; contralateral arm weakness with Medical Research Council score <5/5 in a 

major muscle group. Exclusion criteria were traumatic brain injury; musculoskeletal, medical, or non-stroke 

neurological condition interfering with assessment of motor function; contracture at shoulder, elbow, or wrist; 

moderate dysmetria or truncal ataxia; visuospatial neglect; apraxia; global inattention; blindness. 

 623 
 624 
 625 

Algorithm 
PPVs for functional primitives 

Overall PPV 
Reach Transport Reposition Idle 

LDA 93 ± 1.47% 91 ± 1.65% 93 ± 1.47% 92 ± 1.56% 92.5 ± 1.52% 

NBC 77 ± 2.42% 71 ± 2.61% 83 ± 2.16% 85 ± 2.06% 80.2 ± 2.30% 

SVM 92 ± 1.56% 90 ± 1.73% 92 ± 1.56% 93 ± 1.47% 92 ± 1.56% 

KNN 86 ± 2.00% 87 ± 1.94% 85 ± 2.06% 89 ± 1.80% 87.5 ± 1.90% 

Table 2. Classification performance of machine learning algorithms for functional primitives. Positive 

predictive values (PPV) with associated 95% confidence intervals are shown. PPV reflects how often a primitive 

was actually made when the algorithm identified it as such, was calculated for the primitives of reach, transport, 

reposition, and idle. Primitive-level PPVs were computed in one-versus-all analysis (e.g., reach vs. transport + 

reposition + idle combined). The overall PPV was assessed by combining data for all primitives and tallying all 

true and false positives. Overall classification performance was highest for linear discriminant analysis (LDA) and 

support vector machine (SVM), moderately high for k-nearest neighbors (KNN), and lowest for Naïve Bayes 

classifier (NBC).   
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 629 
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Algorithm 
# tuning 

parameters 
Tuning parameters 

Level of 

domain 

knowledge 

LDA 3 Prior probability, regularization term, optimizer Medium 

NBC 1 selection of prior distribution Low 

SVM 9 

Kernel function, kernel parameters (scale, offset), 

regularization term, # of iterations, Nu, prior 

probability, convergence parameter, optimizer 

High 

KNN 5 
# of neighbors (K), distance metric, search algorithm, 

tie breaker, weighing criterion 
Low 

Table 3. Complexity of algorithm implementation. Algorithm parameter tuning is necessary to achieve optimal 

classification performance. Shown are algorithm tuning characteristics, as indicated by number and specifics of the 

tuning parameters. Also shown is a graded estimate of the level of domain knowledge required to tune these 

parameters. NBC is considered the simplest to tune while SVM is the most difficult. LDA has a handful of parameters 

that require medium domain knowledge to negotiate. KNN has a moderate number of parameters that are intuitive 

to tune and require little domain knowledge. Level of domain knowledge: low, basic knowledge of statistics; 

medium, undergraduate-level knowledge of ML; high, graduate-level knowledge of ML. 
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 632 

Primitives 
Classification performance (PPV) 

IMU Accelerometer 

Reach 93% 77% 

Transport 91% 80% 

Reposition 93% 82% 

Idle 92% 88% 

Average 92.5% 82% 

Table 4. Primitive-level classification using IMU or accelerometer data. Classification performance is shown 

using the 7-sensor configuration (pelvis, sternum, head, and the active shoulder, upper arm, forearm, and hand). 

Accelerometers provided systematically poorer classification performance compared to IMUs across all primitives. 

Classification performance using accelerometry data was particularly low for reach (PPV 77%) and relatively higher 

for idle (PPV 88%). 
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