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Abstract 
Parkinson's disease (PD) is the fastest growing neurodegeneration 
and has a prediagnostic phase with a lot of challenges to identify 
clinical and laboratory biomarkers for those in the earliest stages or 
those 'at risk'. Despite the current research effort, further progress in 
this field hinges on the more effective application of digital biomarker 
and artificial intelligence applications at the prediagnostic stages of 
PD. It is of the highest importance to stratify such prediagnostic 
subjects that seem to have the most neuroprotective benefit from 
drugs. However, current initiatives to identify individuals at risk or in 
the earliest stages that might be candidates for future clinical trials 
are still challenging due to the limited accuracy and explainability of 
existing prediagnostic detection and progression prediction solutions. 
In this brief paper, we report on a novel digital neuro signature (DNS) 
for prodromal-PD based on selected digital biomarkers previously 
discovered on preclinical Alzheimer's disease. (AD). Our preliminary 
results demonstrated a standard DNS signature for both preclinical 
AD and prodromal PD, containing a ranked selection of features. This 
novel DNS signature was rapidly repurposed out of 793 digital 
biomarker features and selected the top 20 digital biomarkers that are 
predictive and could detect both the biological signature of preclinical 
AD and the biological mechanism of a-synucleinopathy in prodromal 
PD. The resulting model can provide physicians with a pool of patients 
potentially eligible for therapy and comes along with information 
about the importance of the digital biomarkers that are predictive, 
based on SHapley Additive exPlanations (SHAP). Similar initiatives 
could clarify the stage before and around diagnosis, enabling the field 
to push into unchartered territory at the earliest stages of the disease.
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Introduction
Parkinson’s disease (PD) prevalence rate increases with age and 
rises from about 1% in individuals aged ≥60 years to 3.5% in 
older adults of 85–89 years1–3. The complexity of cross-sectional  
diagnosis is stereotypically exemplified in PD, which hap-
pens to be the second-most common neurodegenerative disor-
der after Alzheimer’s disease4–6. The pathological hallmark of 
PD is misfolded α-synuclein protein (aSyn) structures, and the 
gold standard for diagnosis is their identification in post mortem  
pathological examinations of the brain7. However, given that 
most idiopathic patients experience years or sometimes dec-
ades of unspecific symptomology, the field of prediagnostic Par-
kinson’s disease (prodromal-PD) is fast-moving with multiple 
strategies seeking to discover a panel of clinical and laboratory  
biomarkers for those ‘at risk’8. Prodromal-PD9 is when indi-
viduals do not fulfill diagnostic criteria for PD (i.e., bradyki-
nesia and at least one other motor sign) but exhibit signs and 
symptoms that indicate a higher-than-average risk of developing  
motor symptoms and a diagnosis of PD in the future. Pres-
ently, most imaging markers across a range of modalities and 
the emerging literature on fluid and peripheral tissue biomark-
ers is limited in predicting prodromal-PD, pointing to the need 
to identify robust predictors of change across the entire spectrum 
from ordinary to symptomatic PD for more realistic primary  
or secondary preventive trials for PD10.

Consequently, longitudinal measures of pre-motor symptoms 
and behavioral/cognitive decline are essential for evaluating pre-
clinical markers and monitoring prodromal-PD progression.  
Such longitudinal characterization of non-motor features has 
been identified by the Movement Disorders Society (MDS) as 
being valuable for early identification of PD, according to the 
research criteria for prodromal PD11, which include two types of  
measurements: the delineation of the relative temporal trajec-
tories of specific quiet motor and non-motor features that can 
be present before diagnosis and the fluctuation of those features 
over time within and across neurocognitive domains12. The util-
ity of such markers in evaluating prodromal-PD progression  
depends on early symptoms and signs before PD diagnosis is 
possible and may vary across different primary care settings12. 
The utility of such markers in evaluating prodromal-PD pro-
gression depends on early symptoms and signs before PD diag-
nosis is possible and may vary across different primary care  
settings12. However, intra-individual variability (IIV) across sev-
eral measurements, called dispersion, is a sensitive marker for 
detecting change even at prodromal stages of a disease13. One 
digital biomarker tool that utilizes dispersion to provide such  
measurements is the Altoida Digital Neuro Signatures platform 
(DNS), a more efficient, accurate, and sensitive assessment of 
cognitive function than traditional neuropsychological tests, 
both in cross-sectional and longitudinal evaluations14. Previ-
ous studies have validated the machine learning model’s per-
formance to measure dementia disease progression and detect 
the biological signature of prodromal AD, which predicts con-
version from mild cognitive impairment (MCI) to Alzheimer’s  
disease (AD) with 94% prognostic accuracy15.

In this work, we will briefly report on DNS signature simi-
larities from previous studies and the dataset collected in The  

ANANEOS Project, an ambitious longitudinal community-based  
study for healthy aging in Greece. The project is part of the 
GR2021 Priority project Healthy Brains for Life (age 20–99 
years) and focuses on the decentralized and remote assessment 
of the symptoms of preclinical stages in Alzheimer’s disease and  
movement disorders, e.g., Parkinson’s, with a rationale and 
a methodology similar to other international initiatives. Rel-
evant examples of similar large-scale national initiatives can be 
found in Japan with the IROOP registry system for identifying 
risk factors for dementia16, the Sydney (Australia) memory and  
ageing study17, the Framingham heart study in the USA18, the 
UK Biobank study of lifestyle and genetic factors incidence in 
dementia19, the European Prevention of Alzheimer’s Dementia 
Longitudinal Cohort Study20, the FINGER project in Finland21, 
the INTERCEPTOR Project in Italy22 or The Vallecas Project  
in Spain23.

The emergence of large longitudinal primary care cohorts, along-
side advances in digital biomarkers and artificial intelligence 
(AI), has allowed detailed exploration of the full range of early  
motor and non-motor symptoms that predate PD. In con-
trast, advanced prodromal PD detection and prediction mod-
els could become a platform for medical practitioners that plan 
to diagnose or detect the disease earlier and more accurately.  
Despite the enthusiasm that objective motor dysfunction occurs 
prior to diagnosis in PD and the variety of measuring devices, 
which have been developed, including software applications that 
harness passive and active digital biomarkers, e.g. activity and 
motion (and in some cases speech) captured by smartphones  
and tablet devices, custom-built sensors that measure gait, 
bradykinesia, dyskinesia, and nocturnal movement detection 
devices, there are currently very few examples of the application  
of wearable devices or AI models in prediagnostic PD.

Our goal here was to answer the single question: Can detec-
tion and prediction models for Alzheimer’s disease be rapidly  
applied to prodromal Parkinson’s disease using explainable 
artificial intelligence? A major foreseeable hurdle is ensuring  
that any detection and prediction model focuses both on improv-
ing the system performance and AI interpretability, employ-
ing natural language explanations, which could help physicians 
understand the predictions. For the answer above, we focused on  
DNS signature patterns between our existing databases and  
ANANEOS using permutation-based techniques to help us under-
stand the actual effect of the predictors (DNS signatures from 
the existing AD database) in the target database (preclinical  
markers that predict Prodromal-PD progression).

Methods
Data collection
We used a combination of clinical and population data, col-
lected and provided by Altoida, Inc. The clinical data (n=438) is  
described in previous studies15 and consists of controlled tests of 
elderly (≥50 years) subjects with known biological and psycho-
logical biomarkers (e.g., MCI, amyloid-beta (Ab)+, Ab-, AD).  
We used the dataset described as “New validation study” (Clini-
calTrials.gov Identifier: NCT02843529) for this work, the  
original purpose of which was to evaluate the performance of 
Altoida’s application as an adjunctive tool for diagnosing AD. 
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This data was collected in various major cities in Italy, Greece,  
Spain, USA, and Ireland.

The dataset above was enriched with two more databases:

1)  A clinical dataset called RADAR-AD. RADAR-AD 
is a multicentre observational, cross-sectional, cohort 
study in subjects within the preclinical-to-moderate AD  
spectrum as well as healthy controls. The design entails 
three tiers: (1) main study, which includes smart-
phone applications and wearable devices only; (2) first 
sub-study, which in addition includes fixed sensors 
at the participant’s home; and (3) second sub-study, 
which in addition includes fixed sensors in an existing 
smart home environment. Participating clinical sites  
were selected based on their geographic location, 
expertise in digital technologies and disease popula-
tion of interest, and the availability of clinical cohorts  
with known AD biomarkers24.

2)  A population dataset collected by Altoida named  
"healthy basket." A healthy basket is a population 
sample consisting of middle-aged cognitively healthy 
Japanese subjects (n=130). The inclusion criteria for 
participation were age 20–50 years and self-assessed 
cognitively healthy (i.e., no known cognitive disorders).  
The subjects received no stipend for participation, 
and permission for scientific studies was provided by 
accepting the terms and conditions of Altoida, Inc. All 
subject information was anonymized and de-identified.  
Beyond the digital biomarkers collected by the Alto-
ida application, no further biomarkers were recorded 
for this population sample. For both datasets, the sub-
ject’s sex was self-reported. All subjects (of both 
groups) performed multiple test sessions using Altoida’s  
application.

Finally, the target database was part of the Digitally enhanced, 
Decentralized, Multi-omics Observational Cohort (ANANEOS) 
study. ANANEOS is an ongoing single-centre, observational, 
longitudinal cohort (n=500,000) for individuals (aged ≥50 years) 
with a ClinicalTrials.gov Identifier: NCT04701177. The par-
ticipants, recruited initially since March 2021 in Athens, Greece, 
are home-dwelling volunteers with known biological and  
psychological biomarkers at the preclinical stages in Alzheim-
er’s disease and movement disorders, e.g., Parkinson’s, without 
relevant psychiatric, neurological, or systemic disorders. The 
initial cohort size was 2,180 subjects at baseline. At the time of 
this writing (10/13/2021), the project is in the first wave of the  
24-week follow-up visits (n=133).

Table 1 describes our data characteristics for the entire sample 
and stratified by sex, with univariate comparisons. Our data con-
sists of 788 subjects combined from three datasets, two clinical  
datasets15,24 and a healthy population dataset. Subjects were 
distributed over several stages of the AD clinical continuum, 
namely healthy, preclinical AD Ab+, MCI (amyloid-βnegative)  
Ab-, MCI Ab+, dementia due to AD and prodromal PD as reported 
by clinical assessment. To counter the imbalance from multiple 
data points per subject and combining two demographically dif-
ferent datasets, we stratified all analysis by dataset, sex, and  
number of data points. This ensures that we have exactly the 
same number of data points from each sex and from each study 
(clinical and population). The flowchart showing the over-
all dataset structure and the prelim study purpose is shown in  
Figure 1.

Digital neuro signatures (DNS)
For this work, we repurposed data from Altoida’s application 
which collects digital biomarkers for neurocognitive function 
measurement and predictive diagnosis of AD15. Altoida’s appli-
cation collects digital biomarker data for detecting early-onset  

Table 1. Data characteristics. P-value is calculated using a two-sided t-test for age, chi2 for status and the Mann-Whitney rank 
test for the number of data points per subject.

Men Women Total p-value

Population Clinical data N (%) 280 (42%) 378 (58%) 658 1.2e-12

Population data N (%) 94 (72%) 36 (28%) 130 

ANANEOS N (%) 66 (50%) 67 (50%) 133

Age Mean (SD) 56.9 (17.4) 62.7 (12.8) 60.1 7.5e-06

Status Healthy N (%) 198 (45%) 237 (55%) 435 0.786

Preclinical AD N (%) 103 (46%) 117 (54%) 220 

MCI ab- N (%) 16 (38%) 26 (62%) 42 

MCI ab+ N (%) 35 (44%) 43 (56%) 78

AD N (%) 5 (38%) 8 (62%) 13 

Prodromal PD N (%) 13 (54%) 11 (46%) 24

Number of DNS trials (data points) N (%) 1448 (52%) 1359 (48%) 2807 -

Number of DNS trials (data points) per subject Median (IQR) 2 (4) 2 (5) 2 (3) 2.8e-05
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AD. While holding a tablet or smartphone device, the sub-
ject is asked to perform a series of motor functioning tasks 
and two augmented reality (AR) tasks. In the motor function-
ing tasks, the subject is required to draw shapes and tap on 
the (touch)screen using the finger of their dominant hand (see  
Figure 2 for an illustration of all the motor functioning tasks). 
In one of the AR tasks, the subject is asked to place three virtual 
objects in a small space (approximately 3×3 m or 2×4 m) and 
afterward find them again. The AR task is performed by navi-
gating around the space with the tablet or smartphone in both 
hands (see Figure 3). During these tasks, the handheld device 
collects telemetry and touch data from the built-in sensors, ena-
bling profiling of hand micro-movements, screen-touch pres-
sures, walking speed, navigation trajectory, cognitive processing  
speed, and additional proprietary inputs.

A single test session using Altoida’s application consists of two 
batches of motor tasks and two AR tasks. After a subject com-
pletes all tasks, the recorded digital biomarker data from the  
onboard electronics sensors is bundled and securely and anony-
mously uploaded to a server for further processing. Provided 
the data of multiple subjects, machine learning can be used to 
detect patterns. In previous work machine learning was either 
used to classify subjects as healthy or at risk of AD15. In this  
work, we examined DNS signatures from our development data-
set for AD to see if they demonstrated preclinical markers that 

predict prodromal-PD progression, expressed by the capacity  
of results to inform a novel prodromal-PD DNS signature.

Machine learning
We extracted 793 digital biomarker features from the onboard 
electronics sensors describing various cognitive, functional, and 
physiological characteristics of each subject. These features 
include response times, eye-hand coordination precision, fluc-
tuations in the telemetry (accelerometer and gyroscope) data,  
Fourier analysis of the telemetry data, step detection, and addi-
tional proprietary data. Based on the digital biomarker feature 
data from a selection of healthy subjects, we trained a DNS-
match classifier to distinguish prodromal-PD individuals from 
any other group. We used the XGBoost algorithm25 with DNS 
preclinical markers that predict prodromal-PD as the target  
variable for the classification.

Performance evaluation
We applied stratified five-fold grouped cross-validation to esti-
mate the generalization performance of the DNS prodromal-PD  
classifier. We grouped data points by subject to ensure that mul-
tiple data points of a single subject were all in the same fold 
(either training or testing), preventing learning bias. For our  
prodromal-PD classifier, we measured accuracy and precision 
averaged over the five cross-validation testing folds. To assess 
the classifier’s performance on different age groups, we trained 

Figure 1. Flowchart showing the overall dataset structure and the prelim study purpose.
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nine additional classifiers (10 in total), each using different  
random subsets of the data.

Model explainability
We used the Shapley Additive exPlanations (SHAP)26 method to 
better understand the predictions made by the DNS prodromal-
PD classifier. The SHAP method allocates to each feature of a  
classifier a game-theoretical value representing the contribution 
of that feature towards the classification targets. The sign of the 
SHAP values indicates the direction of the contribution, and the  
magnitude of the SHAP value indicates the importance. For our 
classifier, negative SHAP values contribute to classifying as 
non-prodromal-PD, positive numbers towards prodromal-PD.  
SHAP values have an additive property meaning they can be 

summed together to provide the feature contribution of a group  
of features27.

Results
Common DNS signature for preclinical AD and 
prodromal PD and features contribution
We wanted to investigate whether detection and prediction  
models for Alzheimer’s Disease can be rapidly applied to prodro-
mal PD using explainable artificial intelligence. The analysis of  
our prodromal PD classifier revealed at least 20 common fea-
tures that are the same for both preclinical AD and prodromal  
PD. After computing a SHAP value for each DNS signature 
containing more than 793 features from our development data-
set, we arrived at this conclusion. We compared them with a  

Figure 2. The motoric functioning tasks in the Altoida test. These are executed one after another. Using their index finger of their 
dominant hand, from left to right, the task is to 1) draw a circle, 2) draw a square, 3) draw a rotated W shape within 7 seconds, 4) draw as 
many circles as possible within 7 seconds, 5) tap the highlighted buttons (left, right, left, right, etc.) 6) tap the highlighted button as fast as 
possible, the buttons highlight at random.

Figure 3. Illustration of the Augmented Reality (AR) task in the Altoida test. During the AR test, the subject is asked to place and find 
three virtual objects in the room. To do so, the subject is required to walk around the room holding a tablet or smartphone device in front 
of him/her. While doing so, the camera of the device records the environment and displays it back to the user on the screen, augmented 
with virtual objects (in this illustration, a teddy bear). The user needs to place the objects on flat surfaces and later recall their position by 
walking back to that location.
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novel prodromal-PD classifier, which detected a DNS signa-
ture in the ANANEOS validation dataset. We then investigated, 
which of the 793 features contain the most relevant preclinical 

markers that predict prodromal-PD. Figure 4 shows a grouping 
of those features that were ranked as having the highest overall  
contribution in the classifier.

Figure 4. Feature importance of the Prodromal-PD classifier. A) The top twenty feature groups according to the SHAP method. Each 
bar represents the summed SHAP value of the features in that feature group. B) A feature value SHAP distribution plot for the top five 
contributing features. Subject specific SHAP values were computed for each datapoint in the classifier training data. For each feature, we 
then plot for each datapoint a dot with the feature value of that datapoint, with the dot color coded by the relative feature value. The position 
of each dot on the SHAP value x-axis represents the magnitude and the direction of the contribution of that specific feature value of that 
specific datapoint towards classifying as female (-1) or male (+1). Acronyms in the plots are Augmented Reality (AR), Fast Fourier Transform 
(FFT), SHapley Additive exPlanations (SHAP), Accelerometer (ACC), variance (var), first part of a single test (1st) or second part of a single test 
(2nd).
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The primary contributing group of features is named the ignore 
high tone percentage and the AR object placement directness.  
This group consists of an interference index (non-motor feature) 
and a set of frequency magnitudes obtained while the partici-
pant moves around trying to find a virtual object in the AR test  
(motor feature). These features could therefore be interpreted as 
a brain network function and navigation micro-errors. The sec-
ond most important group of digital biomarker features is the  
AR global telemetry variance. The global telemetry variance 
is the variance in the accelerometer and gyroscope signal over 
the entire duration of the AR task. It could be interpreted as  
coarse-scale hand motion micro-movement (motor feature). The 
third and fourth most essential features are frequency magni-
tudes during object placement, belonging to the top group placing  
virtual objects in the AR test, collected using a fast Fourier 
transform (FFT) on the measured accelerometer and gyroscope 
signal over 1.28 seconds before placing (motor feature). The  
remaining elements of the novel DNS prodromal-PD signa-
ture are taking into account age and group together “Motor test 
drawing features” to consider the speed and accuracy of the sub-
ject while drawing various patterns with the index finger (motor  
feature). The “Circle drawing test” measures how long the 
user spent within the limits of the circle while performing the  
motor tests. 

Conclusion
Our work demonstrates that it is possible to detect a novel DNS 
signature from existing datasets using digital biomarker data 
collected from Altoida’s application. The intrinsic similarities 
between preclinical AD markers and preclinical markers that  
predict prodromal-PD seem to be capturing quiet motor and 
non-motor features dependent on age. In the prediagnostic  
Parkinson’s Disease population, the primary differentiat-
ing features are micro-errors and micro-movements detectable 

by Fourier analysis on accelerometer data, although they are  
non-visible to the naked eye. Such prelim results can provide 
physicians with some insights into driving factors of our pre-
diction model from multiple points of view including visu-
alization, and feature importance based on SHapley Additive  
exPlanations (SHAP). Further validation is pending upon larger 
sample size and multiple additional biological markers and  
endpoints.

Data availability
The data that support the findings of this study are available 
from Altoida Inc., but restrictions apply to the availability of 
these data, which were used under license for the current study, 
and so are not publicly available. Data are however available  
from the authors upon reasonable request and with permission  
of the RADAR-AD consortium.

Disclaimer
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contained herein.

Link to IMI website
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Tarnanas et al. present an interesting study on the application of Alzheimer’s disease detection 
and prediction models for the identification and monitoring of prodromal stages of Parkinson’s 
disease. The use of IA-driven assessments on these populations provides an alternative method 
for detecting subtle cognitive deficits preceding the symptomatic phases of Parkinson’s disease in 
a more sensitive way that the one provided by standard neuropsychological measures. The 
predictive value of the digital neuro signature (DNS) appears very promising. This is an interesting, 
well-justified and well-reported and analyzed large-scale study and deserves indexing. 
 
I would like to ask the authors some questions:

Cognitive performance is strongly correlated with age. Also, the use of novel devices and 
techniques in older adults may be mediated by the participant’s skills and familiarization. 
How do the authors think this could impact task sensitivity and specificity? How easy-to-run 
is the Altoida’s application and how learning effects were controlled? 
 

○

The present findings are in line with previous studies suggesting that individuals within the 
preclinical phase of Alzheimer’s disease may exhibit subtle motor dysfunction (Albers et al., 
2015; Buchman & Bennett, 2011) and that intrasubject variability (i.e., the inconsistency of 
performance) might be a more relevant marker of early AD than motor speed (Verghese et 
al., 2008; Mollica et al., 2019). Also, another less-studied variable such as multitasking 
performance appears to be a sensitive indicator of subtle dysfunction. Notwithstanding the 
conclusion that the DNS seems to be a valid probe of early cognitive changes in at-risk 
populations, do the authors think that further research is needed to isolate the critical 
elements of presymptomatic evaluation? 
 

○

How do the authors think that their approach could be effectively implemented in both 
clinical (e.g., primary care) and research (e.g., clinical trials) settings?

○
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Finally, I would like to congratulate the authors for this interesting report and encourage them on 
providing further insights for this potential digital biomarker. 
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Dear Dr. Tort, many thanks for your thorough review and excellent questions. We would like 
to address them here for your attention:

Learning effects and the influence of tech literacy have indeed being measured ○
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through another study performed by an independent third party. Since this is a brief 
report for the specific finding about PD, we are reserving the right to publish those 
results at another publication. 
 
Similar to the answer above, yes further analysis of the psychometric properties of 
the test are also being computed. The clinical protocol of that study will be published 
soon. It has been submitted at another journal. 
 

○

The application of digital biomarkers in clinical practice and clinical trials is actually a 
very interesting question. Different barriers and opportunities exist in those two 
areas. For clinical trials, we aim to become a secondary/primary endpoint that could 
identify and report meaningful change of different groups or patients, e.g. Preclinical 
PD, Prodromal PD and PD diagnosis for therapeutic clinical trials. In the clinical 
domain and once the results of the primary endpoint above are satisfactory, we 
would like to become a companion diagnostic for novel treatments. In general 
however the barriers of entering clinical practice in the primary care setting is a 
multifaceted one. It involves a dialogue with regulators, medical associations, 
healthcare economics (HTA) and other units that spread a long way after the 
demonstration of the clinical benefits. Therefore, we do believe that the first to 
benefit are going to be the clinical trials and after a long time also the primary care 
setting.

○
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First of all, I would like to congratulate the authors for the high level of this paper. AI and 
learning machines have been used to help MD take decisions about diagnosis and 
treatments in a wide range of diseases. 
A very important area that needs this kind of approach is cognitive disease. The 
computational solution used to Alzheimer’s Disease (AD) from Altoida device just showed 
useful and Digital Neuro Signature (DNS), was a good candidate to a new biomarker. The 
use of XGBoost algorithm is an excellent choice once in my point of view is the best machine 
learning to be used for structured data, like what we have in this study. 
 

1. 
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I have two questions for the authors: the first one is how they explain the fact that the same 
20 features, in 793 possibilities,  are the best for AD and Parkinson’s disease (PD), when we 
know that in AD disease the cognitive impairments are more important, instead of in PD the 
motor ones are the main problem mainly in the beginning of these diseases? 
The second one is: If each one item of the 20 features is compared head to head are there 
differences between them, and in case of positive answer, what are they? 
 

2. 

As explained above, is an excellent paper, well written, with a good methodology, and 
deserves to be published. My opinion is this paper is approved.    

3. 

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Neurology, cognitive and behavioral neurology ,trauma Brain Injury, Clinical 
Neurophisiology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Comments on this article
Version 1

Author Response 14 Dec 2021
Ioannis TARNANAS, Altoida Inc., Washington DC, USA 

Dear Dr. Anghinah, many thanks for your enthusiastic review and questions. The work presented 
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here contains a lot of new understanding on the mechanisms of action in two different disease 
areas, Prodromal PD and Preclinical AD. Although the condition itself is caused by a different set of 
proteins and the clinical phenotypes appear when symptomatic completely different, there might 
be a common digital biomarker signature for both. The goal of this study was to be able to reveal 
such similarities and further validate a different machine learning model for PD, which could 
differentiate between the two conditions. Your comments are very welcome and we would 
appreciate having an offline discussion on the topic for more details.

Competing Interests: No competing interests were disclosed.

Open Research Europe

 
Page 14 of 14

Open Research Europe 2021, 1:146 Last updated: 22 DEC 2021


