
MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY

G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

Contents

Abstract 1
1. Models 2
2. Compressing a disordered stacked dataset 3
3. Models, class function and the generating function 4
4. Algorithmic complexity of a class function 6
5. The group of invariances of the class function 7
6. The efficiency of implementation of a class function by a neural network 8
7. The entropy of a class function; Deep and shallow functions 9
8. Shallow vs. Deep vs. Recurrent networks 10
9. Modeling in the Solomonoff prior 12
10. Perturbation of an optimal, well trained network 13
11. Discussion 14
References 16

Abstract

I aim to show that models, classification or generating functions, invariances and datasets
are algorithmically equivalent concepts once properly defined, and provide some concrete
examples of them. I then show that a) neural networks (NNs) of different kinds can be
seen to implement models, b) that perturbations of inputs and nodes in NNs trained to
optimally implement simple models propagate strongly, c) that there is a framework in
which recurrent, deep and shallow networks can be seen to fall into a descriptive power
hierarchy in agreement with notions from the theory of recursive functions. The motivation
for these definitions and following analysis lies in the context of cognitive neuroscience, and
in particular in [17], where the concept of model is used extensively, as is the concept of
algorithmic complexity.

1

ar
X

iv
:1

61
2.

05
62

7v
1

 [
cs

.L
G

]
 1

3
D

ec
 2

01
6

2 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

1. Models

Let us first define formally the notion of model as in [17] in the context of computation:

Definition 1. The optimal model or k-model of a dataset is the shortest program that
generates (or, equivalently, compresses) the dataset efficiently (i.e., succinctly in the Kol-
mogorov sense).

A model is any program that generates the dataset, optimal or not. In general, we don’t
have access to optimal models. Some examples of models are:

• A Lempel-Ziv-Welch (LZW) compressed version of a file is an implementation of
a model of the data in the file (running on the programming environment that
can carry out the decompression). The implementation may be a poor one if the
data does not contain regularities that are in the form of substring repetition (e.g.,
as in the digits of π, which can be generated by a simple algorithm but without
repetition regularities).
• A program that provided with initial condition inputs, generates dynamical data

for some physical system (e.g., positions and velocities of particles in a gas).
• Any physics model encoded in equations (e.g., Maxwell’s equations) and associ-

ated methods (e.g., calculus) which can procedurally be computed given some ini-
tial/boundary conditions to generate data.

The following, as we will discuss, are also equivalent to models:

• A pattern recognition program. E.g., a feedforward neural network (NN) trained to
recognize images of hands, whether it is shallow (one layer, SNN) or deep (multiple
layers, DNN). Such networks essentially provide an implementation to compute a
function.
• A recurrent NN (RNN) classifying inputs by going into an attractor (a Hopfield

network).
• An LSTM network trained to classify sequences into labels, for example for speech

identification of a given word. Again, there are invariances (who says the words, or
how) encoded by the network, and again we can think of the network as encoding
the model for a spoken word.

In the human brain and in machine learning we talk about neural networks, and, in general
of recurrent neural networks. For example, learned sequences of motor activity are encoded
in many vertebrate brains by “complex spatio-temporal patterns of neural activity” [10].

We also point out that in general the Kolmogorov Complexity of a string is uncomputable
due to the halting problem of Turing machines [7]. However, there are ways to deal
with this limitation in practice. For instance, if we limit computation to programming
using primitive recursive functions (PR), which are described by programs that include
for-loops but not while loops1, then all such programs halt. Algorithmic complexity
limited to PR is therefore computable. For example, feedforward networks are PR, and

1See the BlooP and FlooP languages as discussed in [11]

MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY 3

one may in practice seek to find the simplest (shortest as a program) such feedforward
NN that computes a PR function. Of course, it may be that if one uses a more general
(complete) language, a shorter program can be produced for the same PR function.

2. Compressing a disordered stacked dataset

In the discussion below we will refer often to binary (two class) classification of images
to make the discussion concrete, although the reasoning is more general. We will use the
symbols B = {0, 1} (a set with two elements) and X ≡ Bn for image space (with n pro-
portional to the number of pixels in an image). A (digital) class function is a map from
f(x) : X → B (e.g., from images to binary numbers, as in binary classification of images).

The discussion is entirely framed in finite, discrete sets. We restrict the discussion
throughout to discrete images, both in pixel and in digitization and function values. Image
space is thus large but finite. If we consider 24 bit/pixel images of 1000 by 1000 pixels,
with size |X | = 2n, with n = 24 · 106. This is a large number, but the set of binary class
functions f(x) ∈ F : X → B is much larger2, log |F| = |X |.

In practice, we can assume that the number of possible images is much smaller, however,
because many images are never encountered.

To be concrete, here we will refer to a stacked dataset Df : the dataset generated from
all hand images, which we imagine as a random stack of images x ∈ X (a datacube). Thus,
the dataset is generated using the same rule (“hand”, which we imagine as a program that
takes some inputs and generates an image of a hand) with varying parameters θ ∈ P = Bm
at each iteration plus a varying background for each image, which we assume belongs to
a space of possible backgrounds B. We call the set of “hand” images H ⊂ P × B (not all
combinations of background and hand realizations are possible, they have to fit). It is a
finite set of size |H| < |P| × |B|. Although this type of dataset is not the most general, it
is fitting for the discussion of neural networks below. We will also assume that the stack
is disordered, to make compression more difficult3.

The stacked dataset, a string of bits, has length l(Df) = |H| log |X |. We assume through-
out that

|X | >> |H| >> 1.

2We will use log to refer to log2 througout.
3However, it is possible that the optimal compressing program will identify the underlying group struc-

ture of image generation and use that to order the images and then compress them better. This concept has
been proposed by Barbour as the mechanism behind the emergence for the parameter of time, for instance,
if we imagine the images to be snapshots of a dynamical system [1].

4 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

3. Models, class function and the generating function

Neural networks encode functions. Eg., a feedforward network maps inputs to outputs.
In what sense is a neural network or a function a model of the dataset? As defined, models
are mathematical objects (programs) which unpack into a dataset.

From optimal model to generating function to class function: Let us first see
how a k-model can be used to define a classification function. To be concrete, let us imagine
the staked dataset generated from all the images of a rotating and flexing hand we can
generate with a few parameters (rotations, shape changes), a large, random stack of each
image (x ∈ X). Since we generated the data simply, we know we can compress it into a
program in which part of the program describes what is invariant (generating function),
and what is changing (shape, perspective). More formally, the program can be thought as
consisting of three parts. One part encodes what a hand is in algorithmic terms through
an image generating function of some parameters x = g(θ), with θ ∈ P:

g(θ) : P −→ X .

The second part is a sequence θi where the hand model parameters are changed and has no
structure. The last part describes the background, which we assume also has no structure.
The optimal model (a compressing program) must thus encode a hand image generating
function xθ = g(θ). A suboptimal model need not do this (e.g., in the worse case it may
say “print the following bits in the dataset: ”).

If the model is optimal, the first part will be the algorithmically simplest program that
encodes the generating function, and presumably unique. To find it we could for example
carry out all possible reordering of images in the dataset, and compare the models that our
compressor produces for each case. Part of the model will be invariant to such operations—
the one corresponding to the generating function.

The make the example a bit more concrete, the model may look like this:

def Model :

def HandImageCreator (theta)

Inputs parameter t h e t a which d e f i n e s po s i t i on ,

ro ta t i on , shape or o ther hand f e a t u r e s .

Generates image o f hand wi th whi te background

Provides a l i s t o f the background p i x e l IDs

[. . .]

return image , backgroundPixe ls

we need a l i s t o f t h e t a s in some order

P= CreateParameterSet [. . .]

for each theta in P:

MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY 5

handImage , backgroundPixe ls = HandImageCreator (theta)

B= CreatePoss ib l eBackgroundsLi s t (backgroundPixe ls)

for b in B:

handImage . addBackground (b)

p lace handImage in Stack

return Stack

We could actually create a finite listing of all possible parameter-background combinations
and simply iterate over them or over a permutation of this list (this model is PR).

An useful concept to specify the generating function is that of the Kolmogorov Struc-
ture function, Φk of the dataset [7]. This function is Φk(Df) = log |S| where S is the
smallest set that 1) contains the dataset as an element and 2) can be described with no
more than k bits. The function equals the length of the dataset for k = 0 (Φ0(Df) = l)
and 0 when the k = K[Df] (ΦKDf = 0), since there is only one set that contains

Df). As we add more bits, we constrain further the size of S, which will decrease rapidly
while regularities are encoded. At some point, the rate of decrease of log |S| will be of 1
per bit, which means we are then encoding the incompressible part of the dataset—in this
case constraining the random list of parameters and background. Thus, the program at
the critical length k∗ [7] is the one that makes use of the generating function, and may
look like this “Iterate over all possible images and keep those which have maximal cor-
relation with the output of the generating function for some parameter θ with due care
for masking. Create an element per permutation of this stack.” Here we assume that the
generating function provides images of a hand and a mask for the white background—a
list of background pixels to compute the correlation with the masked image. The set S∗

defined using k∗ bits is called the “algorithmic sufficient statistic for the dataset”, and
satisfies K(x) + c = K(S∗) + log |S∗| = k∗ + log |S∗|.

From the generating function we can construct a classifier of hands (class function). We
can write a program that given an image x scans over all allowed parameter vales (including
backgrounds b) and outputs 1 if there exits a value such that g(θ, b) = x, or zero otherwise.
We can also carry out the search with a fixed b0 by allowing some error, ||g(θ, b0)−x|| < ε.

From class function to model: To illustrate now how a classification or class function
can be used to create a model, let us begin with a simple type, a function defined by a
feedforward network such as the ones used for image classification. Such a network encodes
a function f(x) that when input an image of hand x outputs a value of 1, and 0 otherwise,

f(x) : X −→ B.

Geometrically, this function is an invariant over the manifold of hand images embedded in
image space—a point which we will return to later.

6 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

With the class function we can create a model to generate datasets of images of hands:

Model 1. Find the set of points H = {x ∈ X | f(x) = 1}, and list them (or a specified
subset) in some order.

In general, there will be many solutions and therefore elements in H, which brings to
light the meaning of compression. There will be many such points. For simplicity, assume
we can simply list them (in some random order). Thus, we can use f(x) and a number
(a parameter) to select an element in the list to unpack the function into an image of a hand.

We can also create a generating function from the class function in a similar way: use
the class function to generate all images of hands in some order and use that list as the
generating function table from integers (parameter space) to images.

In this way, we can talk about some types of models (models of stacked datasets) as
functions represented/encoded by neural networks or other machine learning systems. The
same reasoning can be applied to recurrent neural network (RNN) trained for some similar
task: e.g., once given an input, the trained network will orbit around dynamical attrac-
tor the encodes that “memory” or classification output. The interesting point is that the
attractor (or the output of a subset of nodes mapped to a single output here for binary
functions) that the system enters is invariant under a set of transformation of the inputs,
exactly as we discussed before.

We note that in this example, class as well as generating function are primitive recursive,
since the input space is finite.

4. Algorithmic complexity of a class function

We have a notion of algorithmic complexity for strings or datasets, the Kolmogorov
complexity, i.e., the length of the shortest (Turing) program capable of generating the
string in some universal language [7]. We would like to extend this notion to functions
in the present context. This motivates the following definitions. Let an ordering of a
countable set S be a function xi : Z→ S.

Definition 2. The algorithmic complexity K[f] of a binary valued function f(x) is the
algorithmic complexity of the ordered stacked dataset SH ≡ [{x ∈ X | f(x) = 1}] = [H] (a
string or list) given its ordering,

K[f] = K[Df |ordering] ≈ k∗f
where k∗ is the length shortest program capable of generating all hand images (the hard
part) and then a set of all possible stacks from permutations of the images (easy).

Thus, only k∗f bits are needed to specify the class function, or, equivalently, the generating

function. If we did not know the order, we would need log |H|! ≈ |H| log |H| bits to
specify it: the algorithmic complexity of the dataset is K[Df] = k∗f + log |H|! ≈ k∗f +

|H| log |H|. This is large, but much smaller that the length of the dataset, K[Df] <<

MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY 7

Figure 1. Left: Input (image) space X , the subspace of hand images H =
{x ∈ X | f(x) = 1} and a example of automorphism (arrows) leaving the
class one set H invariant. Right: a sample element x ∈ H ⊂ X .

l(Df) = |H| log |X |. Ignoring the program length k∗ (which we assume is small compared
to the other quantities), compression results from us being able to use log |H| bits to specify
a hand image, instead of the full log |X |, and the compression ratio is ρ = log |H|/ log |X |.

5. The group of invariances of the class function

A class function defines an equivalence relation (i.e., images in the same class are equiv-
alent). This motivates the following definition (Figure 1).

Definition 3. Given a class function f(x) : X → B, we define the set of invariant transfor-
mations of the function (or more simply invariances) to be automorphisms of the domain
space T : X → X such that ∀x ∈ H we have T (x) ∈ H = {x ∈ X | f(x) = 1}. The set of
all such automorphisms forms a group, Gf , the group of invariances of the class function,
which acts on input (image) space.

Examples of such automorphisms are permutations of the elements of particular class in
X that leave the other one alone (permutation on H x Identity on H̄). More generally, Gf
contains as elements all permutations that leave elements in the same class.

Also, Gf is a big set, with as many elements as permutations of elements in H multiplied
by those of its complement,

Gf ∼ SH × SH̄

8 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

That Gf forms a group is easy to see: it has an identity, composition of invariances is an
invariance, each invariance has an inverse, and composition is associative. It is immediate
that the group of invariances is equivalent to the class function as well (up to labeling).

Theorem 1. The group of invariances of a class function f(x) : X → B uniquely deter-
mines the class function up to labeling.

Proof: by definition, f(x) = f(x′) if and only if there exists T ∈ Gf such that T (x) = x′.
Thus, the set of invariances partitions X into subsets which can be assigned a unique,
distinct label (the equivalence class), reproducing the class function.

Similar reasoning applies to an q-class (multiclass) functions. Each class has associated
a group of invariances of the set of images. Thus, learning a class is equivalent to learning
the associated function invariance group (up to label, i.e., up to log q! bits, with q the
number of classes).

Thus class functions are equivalent to subgroups of invariances or permutations, so by
Cayley’s theorem, to some group (every group is isomorphic to a group permutations). For
instance, the group of rotations acts on image space an appears as a homeomorphism from
the rotation group to the group of permutations of the hand image space (a permutation
representation of rotations).

We can see that in this framework, function, invariance group and dataset algo-
rithmic complexities are essentially equivalent notions. It is the structure of the
group of invariances that is related to the depth of the associated generating function,
which can be seen as using the group actions to iterate from image to image. For instance,
rotations of images (group action) can sequentially generate many of the images in the
stack. This is a “deep”, recursive operation (there is a Lie group involved), and one that
a classifier can exploit.

6. The efficiency of implementation of a class function by a neural
network

Although neural networks can be seen to implement functions (or models, group of
invariances or datasets), they may be inefficient implementations. We can imagine, for
instance, a network with dead-end or even disconnected nodes. A neural network may
be defined, essentially, by a set of connectivity matrices and biases (we assume the node
activation function to be constant). This motivates the definition of implementation length.

Definition 4. The implementation length of a neural network, l(N), is the minimal pro-
gram length required to specify the architecture and parameter values of N (the algorithmic
complexity of its architecture).

MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY 9

We note that implementation length is directly related to the number of parameters in
the networks’s architecture, and hence to the amount of data it will need for training.

We can now define the concept of implementation efficiency of a function (or model) by
a network, which quantifies how succinct is the implementation of the class function.

Definition 5. Let network Nf implement a function f(x). The efficiency of the network is
defined by the ratio of the algorithmic complexity of the function and the minimal descrip-
tion length of the network implementation, which we can assume lies between 0 (inefficient)
and 1 (optimal) after some normalization:

E [Nf] =
K[f]

l(Nf)
.

7. The entropy of a class function; Deep and shallow functions

Can we define the entropy of a class function? We know that the stacked dataset must
contain at least |H| log |H| bits, and no more than |H| log |X | = l(Df). We recall here that
entropy rate is closely related to Lempel-Ziv compression [7].

Definition 6. Let hDf
be the entropy rate of the dataset. The total (Shannon) information

or entropy of the dataset/model/function is H[Df] = hDf
|H|. We say a classification

function is deep when its algorithmic complexity is much smaller than its entropy, i.e.,
K[Df] << H[Df] ≈ lLZW [Df] ≈ |H|hDf

.

Intuitively, a function is deep if it is doing a lot (generating entropy4) despite being
algorithmically simple. Consider the following description lengths for the dataset, starting
from the initial long one:

d = l(Df) = |H| log |X |
dlzw = l(Df)hDf

= hDf
|H| log |X |

dK = K[Df] = k∗ + |H| log |H|
We note that it is known that for most, but not all datasets, dlzw ≈ dK [7]. Examples of
deep generating functions from P = Bm → X = Bn are “For a given ordered input of m
bits, move 2m ∗ n positions to to the right in the binary expansion of π and extract the
following n bits ” using algorithms from Ramanujan’s work [3]. Or, “using an elementary
Cellular Automaton such as Rule 110 [19] with dimension n and some random initial con-
dition, carry out 2m steps and return that line of n-bits.” In both cases, many iterations
are needed. The functions are highly recursive (basically performing the same operation
over and over), with at least as many recursions as there are “images” in the stack (|H|).
The role of recursion in computation is also discussed by Bennett [2], who proposed the
concept of logical depth of a string at a significance level s as the minimal number of steps

4One is tempted to make use here, or a connection to, ideas in the mathematics of fractals, such as
fractal dimension, for a metric that relates to this idea of generating entropy or “filling” output space.

10 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

t required to compute it with s bits more than the minimum program length.

On the other extreme, we may talk of “shallow” functions, which require the direct use
of a look-up table to output data. An example would be a function to describe Chaitin’s
constant Ω or other truly incompressible datasets. As we discuss below, a shallow NN is ap-
propriate for such a task, but deep functions benefit from the availability of the for-loops

offered by multilayer or recurrent networks.

8. Shallow vs. Deep vs. Recurrent networks

A neural network can be seen as implementing a program to compute a function as a
sequence of steps in a special programming language. In this language, each layer repre-
sents a set of parallel computational steps in a sequence of several possible. Each step uses
the same basic operations. As we saw, the function thus encoded provides the means for
compression of datasets which can then be represented efficiently by the equation f(x) = 1.

A Shallow network is a network of the form [14]

N (x) =
N∑
k=1

ak σ(〈wk, x〉+ bk).

A deep network can be recursively defined by h1 = x and N(x) = hL+1, where

hl+1 =

Nl∑
k=1

alk σ(〈wlk, hl〉+ blk)

for l = 1, .., L, which includes a SNN as a special case with only one layer.
An RNN has the form

ht+1 =

N∑
k=1

ak σ(〈wk, ht〉+ 〈vk, xt〉+ bk)

where N(xt) = σo(〈wo, ht〉+ bo).

Feedforward NNs have been shown to be able to approximate any multivariate primitive
recursive function [8, 12]. Moreover, if the function to be approximated is compositional
or recursive, e.g.,

f(x1, , x8) = h3 (h21 (h11 (x1, x2) , h12 (x3, x4)) , h22 (h13 (x5, x6) , h14 (x7, x8)))

(which is best visualized as a compositional tree), then it is known that a hierarchical,
compositional network performs better (will need less training data) [14]. This is a way
of saying that if the data we want the NN to learn is in some sense simple (compositional
or recursive), then simpler structure networks (hierarchical) will perform better (given the
same amount of training data) than shallow networks (SNNs), because they can achieve

MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY 11

the same accuracy with simpler architectures (fewer nodes or “complexity”).

Thus, although shallow networks can approximate any function, they are limited as a
programming language in terms of their efficiency. Compositionally (depth) provides NNs
more programming power.

Intuitively, a random function can be efficiently encoded by a shallow network, since all
that can be done is provide the function table, which is essentially what a SNN will do.

If a dataset has low algorithmic complexity (allows for a short description) yet its mod-
el/function has high entropy, it is fairly intuitive that generally speaking deep networks
will provide more succinct, and hence easier to train network structures than shallow ones,
which are limited to one step computations (smaller programming language repertoire) and
essentially to producing function tables [15].

However, a DNN is again a limited type of system as a programming language: the num-
ber of steps it can carry out are fixed once and for all. In essence, a DNN can only carry
out a fixed, finite number of for-loop steps and can be seen as the equivalent to primitive
recursive functions (see, e.g., [19]). It is not capable of universal computation, as its depth
is fixed. Once trained, it computes a primitive recursive function: once its weights are
determined, is deterministic w.r.t its inputs. Recurrent neural networks (RNNs), on the
other hand, are known to be Turing complete [18, 9]. Recurrence enables universal mod-
eling. In an RNN, outputs depend on inputs and its initial state. Thus, it can respond to
the same input in different ways, depending on its state (program). In computation theory
terms, it includes the analog of the while loop, which extends their reach and makes them
universal. This gives it a much larger repertoire, including memory, and puts it the class
of µ-recursive functions or universal Turing machines.

Thus, although all NNs are universal with regard to primitive recursive functions, RNNs,
then DNNs and last SNNs should form an efficient encoding hierarchy and, hence, a hierar-
chy in terms of training set requirements (since the architecture of the network determines
how many trainable parameters it has). We formalize this in the following conjecture,
which is in the same spirit as the one in [14]:

Conjecture 1 (Network Hierarchy). The implementation efficiency of deep functions (with
K[f] << H[f]) by networks is highest for recurrent, then deep, then shallow networks, i.e.,

E [N recurrent
f] ≥ E [N deep

f] ≥ E [N shallow
f]

Furthermore, the inequalities are stronger the larger the ratio of entropy to algorithmic
complexity of the function, Rf = H[f]/K[f].

We sketch a possible proof:

12 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

(1) SNNs and DNNs are equivalent computationally to PR functions, a subset of the
language used in µ-recursive functions. RNNs are universal. This is already known
[18].

(2) Although we deal here with functions that are computable by SNNs (using lookup
tables, since the input and output space is finite), access restricted to a subset of a
programming language can only lead to longer algorithmic descriptions and there-
fore longer implementation lengths and heavier architectures (more parameters to
train). This is immediate as well. In particular, not having access to for-loops

(SNNs), or only to a fixed finite number of them (as in DNNs) is a disadvantage.
(3) We can take the viewpoint of the generating function angle (equivalently to class

function or model). We have |H| log |H| bits of information as inputs (generating
function parameters) to expand into the dataset, which has |H| log |X | random
looking bits. This is to be achieved by iteration (repeated calculation). In order to
generate randomly looking sequences, recursion, reuse of prior calculations must be
employed (for-loop steps)—copying inputs many times will not generate entropy.

Deep functions will benefit greatly from DNN architectures. A shallow function com-
puting an algorithmically random string will require a shallow network with essentially
as many nodes as the size of |X | (to function as a lookup table). In the case of a deep
(simple) function, a DNN or an RNN, depending on how deep the function is, will require
fewer nodes (and training points), because this architecture can exploit and represent the
simplicity of the underlying function. Paralleling the reasoning in [14], in this case we
would need log |X | nodes (one per input), but it would be interesting to getter a better
estimate on the number of nodes as a function of the size of both input and hand-space,
and the algorithmic complexity of the model.

9. Modeling in the Solomonoff prior

With regard to the practical implication of this conjecture, we can extend it making
reference to the Solomonoff prior5 [7]. We recall here the (Solomonoff) algorithmic or
universal (un-normalized) probability PU (x) of a string x. This is the probability that a
given string x could be generated by a random program. An important result is that this
is given by PU (x) ≈ 2−KU (x) [13]. Thus, short programs contribute most to the probability
of observing a given data string and, furthermore, the probability of a given string to
be produced by a random program is dominated by its Kolmogorov complexity. We can
hypothesize that such is the case in the real world: most datasets, models or functions in
the real world will be short but entropic (simple programs are know to produce entropic
datasets [19]).

Conjecture 2. The implementation efficiency of networks is higher for deep than shallow
networks in the Solomonoff universal prior. That is, for most dataset derived functions

5 Alternatively, we can argue the relevance of entropic strings from a anthropic algorithmic principle:
cognitive system can one model deep functions.

MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY 13

(with high universal probability),

E [N r
f] ≥ E [N d

f] ≥ E [N s
f]

with the probability function defined by the Solomonoff prior. Furthermore, the inequalities
are stronger the larger the ratio of entropy to algorithmic complexity of the function, Rf =
H[f]/K[f].

The proof rests on showing that most simple functions are also entropic.

10. Perturbation of an optimal, well trained network

Here we wish to consider a scenario in which a) one class is much smaller than the other
(l|H|/|X | << 1) and b) the smaller class is very large still compared to the class function
program length (the function is deep).

For instance, let us consider the simplest trained NN with perfect performance in iden-
tifying hand images. To train this NN, suppose that we have used a short, simple program
to generate a large number of hand images by transformation of a template. For simplicity,
let us consider only 3D translations and rotations of the hand. Those involve 6 degrees of
freedom. Allowing for 64 bits per parameter, we have some 264·6 ∼ 10116 possible hand
images, to which we need to add backgrounds using a random number generator (another

big space). This may seem big, but it is small compared to the input space 224·106 in
monochrome 24 bit images.

Perturbation of inputs to the NN: Let us suppose, then, that we have found a
perfectly performing, efficient network D for our binary classification problem. What
can we say about its connectivity? For comparison, let Dr be a network with the same
architecture but random weights. If we input an arbitrary image of a hand h ∈ X to D it
will certainly output 1 (for hand, D(h) = 1, while the outcome with the second network
will be random. Now suppose that we perturb the hand image. Since the space of hand
images is much smaller than the space of not-hands (low relative entropy of f(x)), the
effect on D will be to change its output to 0 with high probability, D(h + δh) = 0, while
the effect on the random network will be random. We can summarize this by averaging
over the space of perturbations,

〈D(h)−D(h+ δ)〉 = 1, 〈Dr(h)−Dr(h+ δ)〉 = 0

Moreover, if we ask the same question with “not-hand” input images h̄ ∈ X , a perturbation
will not have much effect in either case. In the first case, this is simply because the subspace
of not-hand images is much bigger than the subspace of hands. A perturbation of “not-
hand” will, with probability near one, leave the image in the same class. In the case of the
random network, the outcome will be random, and the change again average out.

〈D(h̄)−D(h̄+ δ)〉 = 0, 〈Dr(h̄)−Dr(h̄+ δ)〉 = 0

14 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

So we have two similarly sized NNs, and their response to perturbation is very different
depending on the class of the image they are processing.

We can summarize this in the following theorem:

Theorem 2. In an efficient, well trained NN encoding a class function in which one class
is much smaller than the other, a perturbation of the NN input when fed by an example
in the smaller class will propagate efficiently with high probability, but not in a randomly
parameterized NN with the same architecture or for activations in the other, larger class.

Perturbation of nodes in the NN: What about perturbations of a node in the
network? An efficient but shallow NN implementing a deep function with a large range
of size |X | will use many nodes, basically as many as the size of |X | (to see this one can
refer to the work in [14], with ε seen as scale parameter to discretize the input space into

hypercubes of size ε1/m). Perturbation of the activation function or value of a node will
only affect the output for some input values, but not all the input space. For an efficient
DNN, on the other hand, each node will have to play a crucial role in the calculation of
all the values in the function table. A perturbation of the node will have a big impact on
the entire function. The impact on a performing deep efficient network will again be to
take to the larger class. If it did not, we could simply remove that node and get an equally
performing simpler network. Perturbations will always lead to classification into the larger
class space.

Theorem 3. In an efficient, well trained NN encoding a class function in which one class
is much smaller than the other, a perturbation of a node NN when fed by an example in
the smaller class will propagate efficiently with high probability if the network is deep, but
not in a shallow NN, or randomly parameterized NN with the same architecture or for
activations in the other, larger class.

This potentially establishes a link between the perturbation complexity index (PCI) mea-
sured by perturbing human cortical neuronal networks by TMS [6] and algorithmic com-
plexity.

Furthermore, perturbations in such a network will appear to be decorrelated at different
locations due to the non-linear nature of signal transmission in NNs. This provides the
“information” aspect and a potential explanation for hard to compress multichannel EEG
streams using LZW in the PCI [6].

Finally, we note that although hierarchical networks represent a subset of all multivariate
functions [14], it would appear that RNNs can bypass this limitation, as they are universal,
by affording compositional DNNs of infinite depth.

11. Discussion

What mechanisms are in place to evolve simple programs or efficient networks? A
network is actually a computer program, and it may be a good or a poor implementation
of the model, so we may ask how long or even how compressible this program is as a
string. Such program may contain much underused, inefficient or even irrelevant code, while

MODELS, NETWORKS AND ALGORITHMIC COMPLEXITY 15

maintaining great classification performance and in fact implementing a simple model. For
example, the program, in general Turing machine terms, could have lengthy code to write
and erase a billion random digits before outputting the class label. In a network we could
have orphaned nodes that don’t contribute to the final computation. So the program or
network architecture, as a string, may actually be huge and incompressible (algorithmically
very complex).

How such an inefficient program has come to be found during training among all possible
others of that size is an interesting question. We can think of this aspect of the problem
from the point of view of evolutionary programming. Let us suppose we set up a problem
with a simple program as the solution. We can imagine we have setup an evolutionary
system where programs are bred to perform well on the task, starting from small programs
that aggregate to larger ones at each generation. It is fairly clear that in such an organic-
growth type of search, the large, inefficient but performing program will never be found,
since smaller solutions are at hand, and the space of programs becomes huge quickly with
program size. From this growth structure, hierarchies and power laws will emerge naturally
[16]. Since we may know (because we defined it) the underlying model to be very simple,
searching for solutions from short to longer programs will speed up the process significantly.

We can conjecture that as real neural networks develop in brains during learning, they
must implement simplicity principles in the process, such as sparsity. One mechanism is
a synaptic cap growth model, which seems to force in a natural way the emergence of
sparse networks [10]. Of course, sparsity is one way to approach the K minimum. Another
example is [5], where it is shown that one way to create robust networks with high memory
capacity (attractors or learned sequences) is by a) sparsity, b) more numerous, stronger
bidirectional connections than random networks. In machine learning, e.g., from statistical
learning theory to Echo State Networks, sparsity is important and normally used. Ro-
bustness of such networks is also related to good generalization [4] and hence sparsity or,
probably more generally, Kolmogorov simplicity. And in terms of resources, simplicity is
great: less memory and computation will be needed. Scarcity, competition are both helpful
in this context, since they will lead to some form of simplicity. This may be the reason why
evolutionary search is successful. It provides a gradient towards simple programs. Memory,
power/energy and computation time as limited resources will undoubtedly be important
for model selection in competitive worlds.

Why is the universe simple? Is the answer anthropic — i.e., “If it wasn’t simple, there
would not be a discussion” — or can we do better? Regardless of the answer, assuming
there is simplicity exists is a valid starting point (as generations of physicists can attest).

Acknowledgements: This work partially supported by the FET Open Luminous
project (this project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme H2020-FETOPEN-2014-2015-RIA under agreement No.
686764). The author is very grateful to Tomaso Poggio for his lectures (9.520 Statisti-
cal Learning Theory and Applications - MIT) and inspiring discussions on the topics of
network/function compositionally, depth and their links to simplicity.

16 G. RUFFINI - DEC 2016 — STARLAB TECHNICAL NOTE, TN00339 (V0.9)

References

[1] Julian Barbour. The end of time. Oxford University Press, 1999.
[2] CH Bennet. Logical depth and physical complexity. In Rolf Herken, editor, The Universal Turing

Machine–a Half-Century Survey, pages 227–257. Oxford University Press, 1988.
[3] J. M. Borwein, P. B. Borwein, and D. H . Bailey. Ramanujan, modular equations, and approximations

to pi, or how to compute one billion digits of pi. Amer. Math. Monthly, pages 201–219, 1989.
[4] Olivier Bousquet and Andre Elisseef. Stability and generalization. Journal of Machine Learning Re-

search, 2:499–526, 2002.
[5] Nicolas Brunel. Is cortical connectivity optimized for storing information? Nature, 19(5), May 2016.
[6] Adenauer G. Casali, Olivia Gosseries, Mario Rosanova, Mélanie Boly, Simone Sarasso, Karina R.

Casali, Silvia Casarotto, Marie-Aurélie Bruno, Steven Laureys, Giulio Tononi, and Marcello Massimini.
A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl
Med, 5(198), 2013.

[7] Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley & sons, 2 edition,
2006.

[8] G Cybenko. Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals,
and Systems, 2(4):303–314, 1989.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
http://www.deeplearningbook.org, 2016.

[10] Richard H. R. Hahnloser, Alexay A. Kozhevnikov, and Michale S. Fee. An ultra-sparse code underlies
the generation of neural sequences in a songbird. Nature, 419, 2002.

[11] Douglas Hofstadter. Godel, Escher, Bach. Basic Books, 1979.
[12] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,,

4(2):251–257, 1991.
[13] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Spriger

Verlag, 2008.
[14] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. Learning functions: When is deep better than

shallow. Technical Report CBMM Memo No. 045, CBBM, 2016.
[15] T Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why and when

can deep – but not shallow –networks avoid the curse of dimensionality: a review. CBMM Memo,
(058), 2016.

[16] Erzsebet Ravasz and Albert-Laszlo Barabasi. Hierarchical organization in complex networks. Phys.
Rev., E(67), 2003.

[17] G. Ruffini. An algorithmic information theory of consciousness. Submitted to the Neuroscience of Con-
sciousness, August 2016.

[18] H. T. Siegelmann and E.D. Sontag. On the computational power of neural nets. Journal of computer
and system sciences, 50(1):132–150, 1995.

[19] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

	Abstract
	1. Models
	2. Compressing a disordered stacked dataset
	3. Models, class function and the generating function
	4. Algorithmic complexity of a class function
	5. The group of invariances of the class function
	6. The efficiency of implementation of a class function by a neural network
	7. The entropy of a class function; Deep and shallow functions
	8. Shallow vs. Deep vs. Recurrent networks
	9. Modeling in the Solomonoff prior
	10. Perturbation of an optimal, well trained network
	11. Discussion
	References

