Evaluation of Materials Flow Optimization and Factory Layout in Digital Factories: A Categorical Imperative in Industrial Engineering

Imaekhai Lawrence

Department of Industrial and Production Engineering, Faculty of Engineering and Technology, Ambrose Alli University, Ekpoma, Nigeria

> *Corresponding Author E-Mail Id: oboscos@gmail.com

ABSTRACT

The major factor in order to be competitive in present day modern market without incurring additional cost also respecting customer lead time lies on the ability to identify customized products particularly for engineering-to-order companies. The layout optimization is a fundamental issue required in the present day ever-changing environment in the development of a virtual layout in accordance with the Digital Factory concepts; it can be profitable to identify and also to resolve potential problems during planning phase, before its realization stage. The aim of this survey in order to reduce the production lead times is represented by the proposal of a technological solution for the parts feeding system of the industrial plant analyzed and a layout reconfiguration. Phase one provides an overview of the Digital Factory applications, the phase two after data analysis in a Nigerian manufacturing company, Simio simulation software was employed in the design of the simulation model. A comparison of simulations results concerning queue times obtained from different orders and production have been critically done with actual configuration data. The results from the surveyed company indicated an improvement in terms of increase in customer's satisfaction due to total production lead time reduction and reduction of waiting times

Key Words: Lead time, Optimization, Manufacturing, Simulation model

INTRODUCTION

There were stability of customers demand in the past compared to this present day activities due to to foreign competition [1]. There has been a tremendous growth in high-mix and customization in modern manufacturing demand [2].

The marketing time has been reduced tremendously; customers now enjoy the previleges of making requests for high quality semi-finished goods at low prices when critically evaluated. This then presents a different scenario of a new world where production factories will now have to work hard and even fight most times to dominate in the competitive market circle.

In the competitiveness of this present evaluation, the employment of various strategies globally to absorb fluctuations in market place in demand, introduction of new products in the production planning by engaging existing facilities are viewed as critical competitive issues [3].

By characterization of flexibility and reconfigurability, all these factors can be said to be responsible for a new trend in manufacturing systems [4].

The imperativeness of the layout is its flexibility. Its very strategic to deciding

the the right facility layout for firms. Flexibility has become progressively important in achieving competitive advantage in manufacturing companies [5] hence the decision requires carefully exhibition.

Though complex layout planning design, its activity still involves the optimization of the machines positions, workstations and transportation systems [6]. Recent surveys show that the layout and re-layout optimisation has been modeled to be more efficient by employing information technology tools.

The utilization of simulation techniques in designs and optimisation of existing production processes known to be Digital Factories [7]. Digital Factories are the products development, the production planning and systems. It is now becoming a common practice in production to utilize the digital product development tools in various companies.

Nevertheless, the main focus of this article centres on the production planning of Digital Factories as a concept. Its flexible and allows room for evaluating, designing, monitoring and more so controls the entire manufacturing system employing a 3D simulation with the aim of creating virtual 3D layout which now represent the real facility.

It is essentially useful to development of a virtual layout because it helps to identify and solve potential problems in the planning phase, before the realization of the factory [8].

METHODOLOGY

Survey from Toyota Production System (TPS), with generic Lean Manufacturing principles, which is typically in a manufacturing system, has it that seven types of waste could be identified: Overblown inventory levels, excess production, void running, delays, wasted processes, sub standards and materials handling.

These are as a result of non-functional layout. On the contrary, well-designed layout is responsible for minimizing the material-handling flow, distance traveled by materials and man's movement in relationship with machines within the industry, this makes the manufacturing system super productive valid and efficient. The layout should be designed to reduce or eliminate man machine conflict and encourage flow of materials within the company.

Generally, plant layout is studied to allow the realization of new product and to improve the existing facility to increase production, productivity and reconcile man machine conflicts. It also goes beyond these to ulter the products characteristics, demand by customers, ergonomics of the layout facility. Nevertheless, simulation techniques and modelling enables dynamic analysis which ensure that the plant design problems and potentially generated wastes are seen before the company realizes the plant.

The most employed technique in studying the layout was introduced by Richard Muther in 1973 it's the Systematic Layout Planning (SLP). It is divided into three basic phases:

- Comprehensive and careful data collection,
- Evaluating possible solutions and their performance,
- Selection and improvement of the best solutions.

The method and approach for this survey is schematically shown in Figure 1)

Fig. 1: Schematic Flow-Chart of the Employed Methodology.

The analysis of the processing cycle qualitatively (diagram of the operational process) of each of the product has been explicitly represented in Table I.

	Pi	P1	P2	P3	P4	P5	P6
	Materials Warehouses	V	V	V	V	V	V
	01	1	•	1	1	1	1
Oi	O2	1 1	1	1	1	• 1	. 1
	O3						
	Shipping Area	0	0	0	0	· · ·	

 Table 1: Product Flow Diagram (Oi: Operations required; Pi: ith Product).

In Table II we have the Hollier algorithm that allows determining the right position of the machinery to make the route as linear as possible.

: //:	то	1	2	3	∑ From	Σ From / Σ To
I	1	0	0.5	0	0.5	<u>~</u>
NO	2	0	0	0.5	0.5	0.5/0.75=0.66
FR	3	0	0.25	0	0.25	0.25/0.5=0.5
	ΣTo	0	0.75	0.5	1.25	

 Table 2: Elaboration of from/to Chart (All Data has been Opportunely Weighted and Normalized).

The suitability of this configuration are due to:

- Close distances between workstations,
- Continuity if Flow,
- Flexibility, control and the increased communication,
- Reduction in idle time, maximum queue during processing.

The expected objective to be met is the cost minimization due to materials handling

The 3D model in (Figure 2) is a representation of the planned manufacturing factory that simulates the production process.

Fig. 2: 3D-View of the Simulation Model.

RESULTS

The following are the required data for the comparison of the results of the simulation and the real data: $t_{p,...,}$ represents the effective processing time required by product *k* for the operation *i* on machine *j*;

- *t*_{*s*,*i*,} time required to set equipment, prepare materials required to perform the operation *i*;
- *t*_{*q*,*i*}, waiting time of WIP before operation *i*.,

The tables III, IV and V represent a summary of the results obtained by the done simulation. The compared parameterized results with respect to a k-factor, are described and discussed below. After inserting and completion of the simulation model of the required data eleven simulation runs start.

Various scenarios have been simulated in accordance with the different company orders and also the obtained results have been compared with real data.

Table III is summary of the cumulative time spent by work in process in each work station and machine while, Table IV gives a reports of comparison between real data and simulation results related to production times. The last column reveals the percentage value due to time reduction (ε_R) .

Table V shows comparison of simulated scenario between real. In all the cases, it was observed that the firm obtains a time reduction which ranges from 8 to 1 %.

Finally Figure 3 is a reports of the total time required in 'as is' scenario (S_R) , while the total time required in new scenario simulated (Ss) and also the time savings is expressed in hours.

Fig. 3: The Simulation Results Represented as Total Time Required in 'as is' Scenario (S_R) , Total Time Required in New Scenario Simulated (S_S) and Time Savings (in Hours).

The observation explains that new system performances are definitely better compared to the real ones. Particularly, when the conveyor system was introduced to allows reduction in the waiting time of the batch being completed, time spent by the operators on materials handling between work centres. The time reduction was responsible for results in a substantial total cost reduction for the company.

CONCLUSION

The Digital Factory approach is now known to provide huge support for the decision-making process by completely representating manufacturing process as well as manufacturing layout, it enables the inspection and walk around the (3D model) factory plant.

	ţ,	ų,							ţ,	1/1 20	5.11									i,	i,i M	l _{p1/4}				
1	1 2	1	$\sum_{k \neq j} t_{j+1,j,k}$	1	1	1	1	1	1	,	١	9	11	11	12	Eldpaya Filsana	1	1	1	4	1	1	,	1	2(32) 2(32)	∑ _q ep.ij.k
1	64	61)	120	18	155	31	13	Ш	187	,116	11	192	180	ŝ	*	196	621	611	Ň1	610	634	935	60	ŔĬ	86	8421
:	60	630	12:01	1300	144	171	150	192	1461	111	1525	1521	1115	1334	10	1%??	346	367	350	361	341	355	2461	.361	23690	53648
1	322	32	1843	羽	1(1)	(6)	(1)	1(5)	(NI)	(1)	6974	(11)	(1)?	(11)	651	15395	161.94	16:33	WW	1181	11.19	MUO	10109	(413)	13974	13604
1	151	15	176	:0	167)//	(4)	31	11	154)#}	16)	101	13	×.)1)1	114	159	193	150	(5)	11)1	(5)}	肉	13494	1949
1	153	112	28	200	23	30	X/1	200	200	39	20	2141	33	3/3	216)	;088	33)	30	83	33	33	33	33	33	1007	#5087
1	643	60	12808	1168	134	143	114	1)))	(i))	IJИ	1364	102	1)21	1)11	1910	14.141)1)))(/)	121)%(W/	101	111)%	2601	58856
1	134	130	294	01	(Çi	fil	64	91	11	N)	64;	616	61	(2)	13	111	41)	41	W)	43	49	111	4111	48	1000	1918
1	1132	102	6314	177)	191	113	179	問	117	11.5	110	JIN	1917	1%	171	1,94	州 ?	11:)	100	909	984	脷	Щ.	993	194	106599
,	391	1940	7911	11	τţ	10	14)	10	111	134	34	\hat{a}_{ℓ}	13	10	71	90))((})))))))))())	Xiti)(5)	捌)())	300	41901
10	(j)	(3)	(HH	3017	HU	30%	101	100	3(1)	1115	104)))(100	3481	1145	M862	512	1346	312	1130	32	18	1125	33	<u>9004</u>	16022
11	34	34	14455	1723	121	191	173	1736	13	3415	110	110	1111	114	366	416*2	1157	1106	1134	3005	108	101	1:25	311	1493	80253

Table 3: The Simulation Outputs Relating to Production Time Spent in Eachof the Work Station.

Table 4: The Results as Compared between Total Time (T_R) Required n the 'as is' Scenario S_R and Production Time in the Scenario Simulated S_S in Each Workstation.

		1			1			j			1			1		Σ		
	4	i,	.1	S _k	\hat{h}	4	l,	$f_{\rm f}$	<u>, à</u>	5	5	4	S _k	l ₁	4	34	ŝ	્ય
1	134	(20)	11	1690	(34)	310	1529	切	12	138	45	1	353	341	51	154	10	-685
1	12616	12401	125	15736	9274	2522	1231	1014	1303	4566	43	追	136	316	65	301	394	145
1	16.9	1565	114	(4)97	(388	139	126017	12453	1494	13452	2905	150	622	40	79	134255	2360	345
1	114	176	34	1764	00	13	963	9055	615	40	40	34	343	134	И	17117	194	435
1	713	765	μ	18554	133	1375	10/20	1857	14	1236	775	<u>Ω</u> :	-43	44	41	3256	1556	545
1	12052	1293	224	13,055	12272	113	2342	22228	78	-1212	20	181	613	181	61	£1775	9229	155
<u>5</u>	322	2599	Ж	5991	314	117	3344	1239	355	1925	187	Н	316	3534	35	4827	154	185
1	6/89	636	123	110	19942	113	7914	111	173	533	555	31	433	434	(8)	10028	1((9))	325
1	84	3921	119	8015	(85)	[]64	20:04	1814	91	2392	212	10	601	500	40	11199	4180	4005
10	94	100	112	3992	193	1314	5301	51551	44	NØ	9.84	222	158	1142	(9)	1230	115.21	22%
11	189	:060	171	11111	31094	260	309	20073	唐	:84	1879	刘	403	401	12	11549	1622	185
<u>)</u> (j.ii)	1611	80/8	iN?	(1947)	199972	13900	399508	30/3	K(N)	390	119	19	363	MII	399	10.21	8838	

Table 5: The Results Comparison between the Total Time Required in 'as is' Scenario SR and
Total Time Required in the Scenario Simulated SS, Obtained Adding the Amount of Time Spent in
Queue ($\Delta = T - (\Sigma_i t_{p,i,k} + \Sigma_i t_{q,i,k})); \varepsilon T$ Represents the Total Percentage of Time Saving.

	S	5	5		Δ		
k	T	$\sum_{i} t_{p,t,k}$	$\sum_{i} t_{q,l,k}$	[minutes]	[hours] (rounded)	By	
1	8541	8021	55	465	S	6.09 %	
2	58811	53848	108	4855	18	8.26 %	
3	234255	228610	93	5552	93	2.37%	
4	17107	15949	54	1104	18	6.45%	
5	58256	55087	103	3066	51	5.26 %	
6	61775	58856	128	2791	47	4.52 %	
7	46827	45946	93	788	13	1.68 %	
8	110228	106899	97	3232	54	2.93 %	
9	44499	41901	95	2603	43	5.85 %	
10	107566	105121	159	2286	38	2.13 %	
11	83569	\$0253	137	3179	53	3.80 %	
Σ	831434	800391	1122	29921	499		

REFERENCES

- 1. Chambers, S. (1992). Flexibility in the context of manufacturing strategy. *Manufacturing strategy: process and content, Chapman & Hall, London,* 283-95.
- Telgen, D., van Moergestel, L., Puik, E., Streng, A., Scheefhals, R., Bakker, T., ... & Meyer, J. J. (2014). Hierarchical management of a heterarchical manufacturing grid. In Proceedings of the 24th International Conference on Flexible Automation & Intelligent Manufacturing FAIM.
- 3. Gaimon, C., & Singhal, V. (1992). Flexibility and the choice of manufacturing facilities under short product life cycles. *European Journal of Operational Research*, 60(2), 211-223.
- 4. Koren, Y. (2006). General RMS characteristics. Comparison with dedicated and flexible systems. In *Reconfigurable manufacturing*

systems and *transformable factories* (pp. 27-45). Springer, Berlin, Heidelberg.

- 5. Beckman, S. L. (1990). Manufacturing flexibility: The next source of competitive advantage. *Strategic manufacturing: Dynamic new directions for the 1990s*, 107-132.
- Zelenović, D. M. (1982). Flexibility—a condition for effective production systems. *The International Journal of Production Research*, 20(3), 319-337.
- Gregor, M., Medvecky, S., Matuszek, J., & Stefánik, A. (2009). Digital factory. *Journal of Automation Mobile Robotics and Intelligent Systems*, 3, 123-132.
- 8. Carrie, A. (1988). Simulation of manufacturing systems. John Wiley & Sons, Inc.