
Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 1 / 19

Ensuring Eventual Consistency in a
Microservices Architecture

1 ABSTRACT
How can the architecture of transaction oriented business systems be transformed to a

microservices architecture in a “transaction safe” way, where it can be ensured that the system

ends up in consistent state?

The foundation of this work is the CAP theorem[1],[2]. The CAP theorem states that it is impossible

for distributed systems to simultaneously provide more than two out of the following three

guarantees: Consistency, Availability, Partition tolerance.

With respect to the CAP theorem, microservice architectures are in the AP category, leaving the

system to deal with eventual consistency.

This is a major issue to handle in some business systems, where database consistency is an

absolute must.

One solutions is the use of the SAGA pattern, where compensating transactions handles

inconsistency and eventually ensures consistency.

However, there is a serious issue with compensating transactions – they require transactions to be

reversible. Yet, many business transactions are irreversible by nature – for example an automated

teller machine transaction, where reclaiming the out handed money cannot be guaranteed to be

honored.

This paper will introduce a way to ensure eventual consistency in a microservices architecture with

irreversible transactions. The paper will promote using a dynamic CAP approach, where the CAP

positioning of the system is dynamic based on the concrete business event. Also we will formulate

a microservice architectural pattern where the transactional business events are encapsulated in

modular micro monoliths.

The dynamic CAP approach and the use of modular micro monoliths has been formulated and

developed as a joint effort between a Bankdata[3] and UCL University College[4]. Bankdata has a

long history of handling eventual consistency with a proven record of success. The dynamic CAP

approach is based on these concrete experiences and a more theoretical approach is taken from a

CAP perspective.

2 INTRODUCTION

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 2 / 19

Microservices is a promising architecture that enables businesses to gain an increased IT agility,

and keeping IT up-to-speed with the businesses rapidly changing needs. The key feature

“Independent deployability” gives the different software development teams the freedom to deploy

independently. Hench they are set free of a central release cycle. If fully utilized, the need of

hotfixes will be eliminated, and the support cycle from bug report to deployed bug fix can be

shortened close to the pure development time. Also new functionality can be released as soon as

the development is done, and thereby minimize time to marked, speed up market capitalization

and support a marked leader position.

However all these wonderful benefits comes at a price. Building and running microservices is

nontrivial and requires new capabilities in the IT department since both implementing and running

microservices adds considerable complexity to the IT environment.

As stated by Sam Newman: “developers should only consider using microservices when they have

a “really good reason” for doing so.”[5]

Why does Sam Newman make this statement? From our perspective, it is closely connected to the

issues with ensuring eventual consistency.

Before diving into solving the problems with ensuring eventual consistency, we will take a brief look

at the key features of microservices, followed by looking at microservices from a CAP perspective,

which will set the ground for the consistency discussion.

2.1 KEY FEATURES OF A MICROSERVICE
The upside of microservices features enabling the wonderful benefits is also the downside of

microservices.

Key features of a microservice:

 Highly distributed and dynamic scalability

 Independent deployability

 High availability

One of the key feature of a microservice is independent deployability[6]. This leads to every

microservice owning their own database. Sam Newman states it very clearly:

“Don’t share databases, unless you really have to. And even then do everything you can to avoid it.

In my opinion, it’s one of the worst things you can do if you’re trying to achieve independent

deployability.”[6]

At the same time, every distributed system is constrained by the CAP theorem (Brewer's theorem).

The CAP theorem state that it is impossible for a distributed data store to simultaneously provide

more than two out of the following three guarantees:

 Consistency: Every read receives the most recent write or an error

 Availability: Every request receives a (non-error) response, without the guarantee that it

contains the most recent write

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 3 / 19

 Partition tolerance: The system continues to operate despite an arbitrary number of messages

being dropped (or delayed) by the network between nodes

Since microservices by nature is highly distributed, the CAP theorem implies that due to the

presence of a network partition, one has to choose between consistency and availability.

Another key feature of a microservice is the need for high availability. By nature, networks

are unstable, and leads to the need for handling errors gracefully in order to keep the system

operational [7], [8].

The feature “Highly distributed and dynamic scalability” is related to the scale cube[9]

From a system perspective, the system is functional decomposed (y – axis) around business

capabilities[7], and performance scaling (x – axis) is done by scaling the microservices individually

– for example by using Kubernetes[10].

The z – axis scaling is about data partitioning an at a macro level, it is related to the first

microservice feature “every microservice owns their own database”. However, at a microservice

level, scaling is pure x – axis scaling, where the multiple instances of the same microservice uses

the same database. If the scaling problems ends up being related to database load, CQRS and

event sourcing and be introduced, but from a conceptual perspective – all instances of a

microservice uses the same database.

2.2 THE CAP TEOREM
The CAP theorem sets the ground rules for distributed systems. The theorem states that you

cannot have consistency, availability and partition tolerance at the same time. You must choose

which one you will sacrifice. And since the very nature of microservices systems is that they are

network distributed, it leaves you to choose between consistency and availability [1].

Since a microservice architecture can have thousands of “moving parts” (microservices), that must

interact to fulfill the systems requirements, you really cannot accept non-availability. This leaves

consistency as the only realistic parameter to sacrifice.

To wrap it up: With respect to the CAP theorem, microservice architectures are in the AP category,

leaving the system to deal with lack of consistency.

3 DEALING WITH EVENTUAL CONSISTENCY

3.1 EVENTUAL CONSISTENCY
The lack of consistency in an AP category system means lack of strict consistency, not lack of

consistency in general. It is a shift from ACID to BASE [11]

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 4 / 19

The “E” in BASE stands for Eventually Consistent.

“Eventually Consistent – The fact that BASE does not enforce immediate consistency does not

mean that it never achieves it. However, until it does, data reads are still possible (even though

they might not reflect the reality).”[11]

This means that eventually you will read the correct version of data.

This works if you do not have a transactional coupling between the databases. However, in many

business cases you do have a transactional coupling between the databases. You may think that

using two-phase commit could be used, but if one thinks closely, you will realize that using two-

phase commit will compromise the AP positioning in CAP, since the availability of the participating

services will depend on each other thus compromising the “A” (availability), and leading to a CP

CAP positioning of the system. As Graham Lea puts it

Distributed transactions are icebergs: they can be hard to see, and they can sink your ship.

[12]

The solution to distributed transactions in microservices is simply to avoid them like the

plague. [12]

 Thus – you need another solution, an using the SAGA pattern may solve your problem [6].

3.2 SAGA

The saga design pattern is a way to manage data consistency across microservices in

distributed transaction scenarios. A saga is a sequence of transactions that updates each

service and publishes a message or event to trigger the next transaction step. If a step fails,

the saga executes compensating transactions that counteract the preceding transactions.

[13]

The SAGA pattern uses compensating transactions to handle inconsistency and obtain eventually

consistency. The compensating transactions is like an ACID “rollback”. However compensating

transactions is not the same as ACID transactions. It works more like the book keeping principle of

invoice / credit memo. This means that you do not delete data. You change data or inserts

canceling data. For example. If you have taken 5 items out of stock, and need to “rollback”, you

either increment stock with 5, or inserts “5 added to stock”. The business consequence is that the

stock value is not valid in the timespan between the first transaction and the compensation

transaction, but will eventually be consistent (hence eventual consistency).

3.3 COMPENSATING TRANSACTIONS

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 5 / 19

Compensating transactions could seem to be the silver bullet, However, there is a serious issue

with compensating transactions – they require transactions to be reversible. That means that you

must be able to counteract preceding transactions.

In many cases, it is possible to design the business process in a way where avoid getting into an

irreversible state. In these cases, the way to go, is to design for compensating transactions.

In a number of cases you can get inspiration from “Reversal Adjustment…”[14]

The problem is that some business transactions are irreversible by nature – for example an ATM

machine transaction, where reclaiming the out handed money cannot be guaranteed to be

honored.

3.4 DEALING WITH IRREVERSIBLE STATE.
There are no easy way out of this and to the best of our knowledge: The only way to handle

irreversible transaction is to design the event flow in a way where you do not get into an

irreversible state.

However, there are cases – for example in the banking sector – where a redesign of the business

process is not possible nor feasible. For example, an account balance must be “ensured

consistent”.

This leads us to the following statement:

With respect to CAP. In an AP system (the most common approach for microservice systems). You

can only assure eventual consistency if the microservices support compensating transactions.

This leads to the next statement:

AP systems cannot assure eventual consistency if one or more microservices have irreversible

states.

How do we get out of this deadlock – we want to harvest the benefits from microservices, but we

cannot allow loss of consistency?

4 DYNAMIC CONSISTENCY
We now know that a microservice architecture containing irrepressible transactions is “mission

impossible”

The CAP theorem clearly states that you cannot have all three guarantees:

 Consistency:

 Availability:

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 6 / 19

 Partition tolerance

The only way is to revisit the system design and rethink the way we think about microservices. We

need to think of the CAP positioning of the system as a dynamic thing – not at static decision.

So, if we re-think the way we think of the system and take a business-event perspective, we can

identify the business events that goes down an irrepressible transactions path.

Once these business events are identified, we can establish a handling environment for these

events only, where we sacrifice availability or partition tolerance for these specific business events.

In practice, you will properly end up sacrificing availability.

The advantage is that you maximize harvesting the benefits for microservices by having a fraction

of your business events suffering from potential lack of availability but leaving the rest of the

system fully operational based on eventual consistency.

This is what we call: ensured eventual consistency, using dynamic consistency

5 DYNAMIC CONSISTENCY IN THE BANKING INDUSTRY

5.1 HISTORICAL BACKGROUND AND CURRENT SITUATIONAL AWARENESS
Historically, the banking industry was one of the first movers of IT. The earliest forms of digital

banking trace back to the early 1960’s in the advent of ATMs and card transactions. Suddenly a

banking customer no longer needed a physical accountant to withdraw and deposit his financials –

a machine was now able to service this need.

As early IT adopters throughout the 60s, 70s and 80s, many banks had (and many still have) large

mainframe installations for executing digital processes and large number- and data-crunching

calculations. The reason of mainframe-choice as primary compute power was simply because it

occurred before the IT era of personal computers (PCs), web servers (as we know them today),

virtual machine-farms and so on. There were simply no hosting alternatives for automation of

processes which human hands previously used to perform manually.

In the advent of the internet (and leaping forward into the IoT and cloud-native eras) many banks

had already developed huge amounts of source code measuring in two and three digit mLoC

(million Lines of Code), thousands of applications and IT services through decades of software

development. The IT solutions were often designed in batch-oriented perspectives primarily

targeting employees which was the perfect solution in a closed environment before the internet era

but troublesome in open eco-system perspectives as open solution design and integration with

external parties suddenly became the norm. Exposing large system functionality to other

audiences and in other contexts than for what originally was designed has many challenges.

Among others were principal changes of authentication, authorization, role and access-

management, underlying system design principles / database relations and general functionality

usage. Another seemingly simple challenge also emerged with high-cadence agile practices – in

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 7 / 19

which frequent changes were a must but where the system landscape was designed monolithically

and required massive planning to do monthly/quarterly release trains the Production environment.

One part of the solution was to introduce a “digital platform” able to address the high cadence need

of services and openness of functionality without compromising the main IT systems carrying the

responsibility of the main banking “license of operate”-processes. Designed for Digital [15]

identifies the bimodal need of having an Operational Backbone serving the main processes of

running an enterprise while having a Digital Platform addressing the need of frequent delivery

models, end-user collaboration and adoption of new technology – which in turn reinforces new

business and service models. These concepts go hand in hand with Gartner’s Pace Layered

Application Strategy [16] where systems are categorized into different abstraction levels (Systems

of Record, Systems of Differentiation and Systems of Innovation) – in this context primarily

governing system cadence, decoupling principles and software delivery speed.

Bankdata has as a financial software company some of the same historical challenges as depicted

above. During the last few years Bankdata has invested heavily in enabling agile and DevOps

practices throughout the organization, installing and utilizing state-of-the-art technology for

development/operations and modernized the entire IT estate with microservice architectures in

mind. Examining event driven architectures and patterns such as Publish/Subscribe is part of

Bankdata’s corporate IT strategy towards 2025.

It is not a coincidence that event driven architecture is a part of Bankdata’s 2025 strategy. Patterns

such as Publish/Subscribe are extremely useful for not only decoupling technology components

but can also induce positive organizational impacts minimizing lead time and allow for efficient

service delivery and software construction processes. Let’s examine the current situation.

Bankdata has several strategic development platforms – the important ones here are the

mainframe and the container platform. The change cadence of these two platforms are different as

are the skillsets and competences needed for developing and operating each. The development

methodologies for each platform often also differ. Mainframe applications are coded in an

imperative style and designed for speed and execution throughput whereas the container

applications are designed with an agile mindset and towards microservice architectures.

As the mainframe in most cases holds the master system applications and master data records

there is an obvious need of integrating from a container application to the core banking systems

residing on mainframe. The current method of integrating is via synchronous calls over HTTP and

gives a consistent worldview across the two platforms as the latest database entry is fetched at

every request but induce some challenges.

Whenever a new business feature is developed a lot of data- and application-integration need to

be planned / executed and this impacts not only the primary development team responsible for the

feature but often incur changes on other systems (a new database field in another system, a

webservice delivering new content, etc.). This can in an enterprise perspective induce

organizational chokepoints and bottlenecks as teams developing a business feature often relies on

other teams and their priorities. Certain software areas in a banking context are very core to many

business features and thus the actual teams responsible for these are very popular in terms of new

services and change requests. This tend to result in longer lead-time and teams waiting for other

teams to develop, test and promote their changes to development and production environments.

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 8 / 19

Bankdata proposal is to include an event driven architecture across the two strategic platforms

which upholds to consistency requirements while enabling differentiating products and innovative

teams to execute a high degree of change. The initial proposal of using a platform-wide event

driven architecture pattern combining mainframe workloads with technology agnostic container

applications is the scope of the next few sections.

5.2 TYPES OF EVENT DRIVEN ARCHITECTURES
There are many types of event driven architectures with multiple utilization patterns and many

esoteric details are involved. This whitepaper doesn’t address every specific detail and

characteristic of each technology component nor all available patterns. This section focuses on the

concepts and specific implementation in the context of a dynamic eventual consistency model for

an enterprise event platform.

Before digging into technicalities, first let’s investigate the main integration patterns involved.

5.2.1 Integration patterns

5.2.1.1 Synchronous integration

The synchronous integration pattern maps one solution to another normally via of a directed

system call or via a request-response over-the-wire communication. Often implemented as SOAP

or REST endpoints to functionality, this pattern integrates one system with another. It however also

places design- and run-time constraints on the actors involved in these processes (developer

teams, architects, portfolio planners, etc.). The coupling on design-time often occurs as more than

one team needs to be involved in the system design and development of a specific business

feature. The coupling on run-time occurs as the services are often dependent on each other

impacting resiliency, uptime and other operational measurements.

5.2.1.2 Applicational event-driven architecture

The asynchronous communication pattern allows asynchronous integration between one technical

domain, module/program or microservice to another. Often implemented by a local or platform-

native message-broker this pattern enables decoupling of both microservices, internal services

within a functional area / organization and coherent small sets of functionality to other parties within

reach of the event broker.

5.2.1.3 Enterprise event-driven architecture

The asynchronous communication pattern between large IT systems and execution platforms.

Often implemented by an enterprise service bus and event platform this pattern enables

decoupling of large-scale IT complexes and platforms on a generic level for the purpose of

organizational reuse, cost-efficiency and decoupling. Often utilized when ownership of systems are

organizationally divided, when IT system complexes rely on different cadences in development

speed, technology foundation and/or IT system criticality. This pattern is the objective of the

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 9 / 19

subsequent sections and is planned implemented in Bankdata for increased organizational agility,

cost-effective integrations and for re-use of enterprise services.

5.3 CONCEPTS

5.3.1 Generic concepts in Publish/Subscribe

Publish/Subscribe is an integration pattern in which there is one publisher (also called provider or
producer) and one or more subscribers (also called consumers). The publisher publishes (or
pushes) business events (also called events or messages) to a topic broker mechanism which is
responsible for delivering the events to every subscriber associated with the topic. The integration
pattern is used for application- and platform-decoupling when applications are highly dependent on
reading domain models and states from other systems.

The concepts are shown and explained in detail in figure 1 and in the sections below.

FIGURE 1 PUBLISH/SUBSCRIBE CONCEPTS

5.3.2 Publisher and master data ownership

The publisher (application A) is responsible for publishing events to subscribers when domain

models change and for ensuring that application domain- and entity-models are covered by the

topics offered. The publisher is also responsible for that the existing model is aligned with the topic

events sent. In effect, this means that the event must adhere to the master tables schemas and the

commit scopes of the applications in question. In Bankdata, the publisher owns the topic queue

and must secure capacity management and monitoring of the same.

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 10 / 19

5.3.3 Subscriber and slave data ownership

The subscriber (application B, C, D and E) is responsible for offloading events sent by publishers

and for making necessary changes in the subscriber domain before removing the event from the

subscriber queue. In order of obtaining de-coupling, each subscriber owns its subscription queue

and thus must secure capacity management and monitoring of the subscriber queue. It is not

generally allowed for the subscriber to forward-delegate received events to other systems

downstream as this can lead to cascading event-effects resembling distributed commits. The only

entity which can publish master data-events are the master-data owner, but an application domain

can undertake multiple roles in a complex integration, but may only publish their own master

domain models/master data to others.

5.3.4 Topics

A topic contains a business event-representation and must be business-oriented and generally

understandable from a business-perspective. The topic defines a structure for which events must

adhere to (often represented in JSON format) and the structure and event granularity is owned by

the publisher/master data-owner.

5.3.4.1 Types of delivery

5.3.4.1.1.1 At most once delivery [0-1 delivery]

To secure availability some message brokers promise an “at most once delivery” meaning that

there are no guarantees of delivery. This pattern is in use by certain social media platforms as it is

not important in these contexts whether all your friends see your personal job-, birthday cake- or

photo-update right away, in the right order or even at all. This is normally not applicable in a

banking context as customers expect their financial statements to be relatively consistent and that

the balance of your accounts is consistently maintained – a key principle in these scenarios. In

some case e.g. streaming stock price-reads every microsecond for visualizing a price graph this

delivery pattern can be applicable.

5.3.4.1.1.2 At least once delivery [1+ delivery]

Some message brokers promise an “at least once delivery” meaning that there is a guarantee that

all events are delivered but the same event might be sent twice or more. This pattern is often used

when multi-cast event propagation and horizontal scale-out is important but can introduce

challenges at subscriber side. This is because the subscriber often needs to handle idempotency,

identical events and event ranking which increases the complexity.

5.3.4.1.1.3 Exactly once delivery [exactly 1 delivery]

The message broker delivers events exactly once and guarantees an “all or nothing”-delivery

scheme. This is the preferred delivery model in a banking context as it removes a lot of complexity

and eases the effort needed to keep publishers and subscribers “in sync” while maintaining high

degrees of decoupling.

5.3.4.2 A note on event granularity

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 11 / 19

Getting the event granularity right is key to success when introducing event-based architectures for
ensuring organizational reuse and keeping the enterprise information domain models intact. The
event-granularity is a balance, often made erroneous, between fine- and coarse-grained
information levels:

 Too fine-grained (or too specific) the event-reusability effect shrinks and subscribers need
to subscribe to many topics to get the "full picture" of the domain model under change

 Too coarse-grained (or too generic) the subscriber needs to deduct and interpret the actual
domain change (in effect this means that subscribers replicate both publisher-functionality
and interpretation of data fields at master)

An example of a too fine-grained event could be customerGenderChangedEvent as this point to a
very low level of reusability and low general applicability by subscribers (unless the domain of
course involves gender changes of customers/users as its core functionality).
An example of a too coarse-grained event could be somethingHappenedEvent from the account
domain as this would require interpretation to deduct what business event actually occurred (not to
mention the number of attributes/fields needed to support this very general event notification).

Getting the balance of granularity just right is a very hard modelling task but as a rule of thumb if a)
the event is a representation of a real-world business phenomena used in the application domain
and b) if more than one subscriber is eligible for subscribing to it then there is a good chance that
the event is an enterprise-wide business-event and “just-about-right” in granularity.

5.3.5 Proposed reference architecture

Figure 2 show the proposed reference architecture for the Publish/Subscribe integration pattern in

Bankdata.

5.3.5.1 Run-time step-by-steps

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 12 / 19

1. Application A publishes events to a topic queue which contains the master-data events
governing application domain A. On mainframe this occurs via IBM MQ and the publish
itself is often implemented as a MQ PUT operation implemented via an SDK-enabled call to
a library function to ensure a uniform and shareable format. The SDK is owned by a
centralized department. The topic queue is owned by application A and A must secure that
the database commit-scope follows the MQ commit scope as to align data on master to
follow the publishing of the business event.

2. The topic queue then forwards the event to each subscriber in an "all-or-nothing" delivery-
fashion. On mainframe via IBM MQ, the delivery can be implemented as a MQ ALIAS to the
topic queue enforcing that the MQ PUT to all aliases either all succeed or all fail by use of
standard IBM MQ return codes. In this context, IBM MQ acts as an exactly once delivery
mechanism meaning that no event will be published twice and if an event is sent all
listening subscribers will receive it. In this implementation, subscribers do not need to
handle idempotency nor difference in ranking of events as IBM MQ is a FIFO-queue
manager and events are ranked accordingly. Nevertheless, it is often a good approach to
include a timestamp in the event to let subscribers know of new vs. old / obsolete events.
The delivery association between topic and subscriber is owned centrally and documented
in a software developer portal for increasing awareness and software/event reuse.

3. Subscriber B, C, D and E receives an event on their own local queue and functionality
(such as onEventReceived) is triggered locally. This is often implemented once via an SDK
listening to the local queue with a function/method call-back responsible for inspecting and
offloading the event. Two methods are normally available.

a. An onEventReceived event where the MQ client uses a MQ PEEK-like functionality
allowing the event to be inspected without offloading it from the queue (in case of a
subscriber-crash and/or unhandled exceptions in mid-transaction)

b. An onEventHandled event where the MQ client uses an atomic MQ GET/COMMIT-
like functionality where the event is offloaded the queue allowing the next event to
be received (assuming a non-parallel synchronous offloading pattern).

5.4 KEY ADVANTAGES AND USE-CASES

5.4.1 Decoupling

In Publish/Subscribe, publishers should be unaware of subscribers which stands in opposition with
point-to-point, request-response and bespoke integrations. This has multiple benefits, and a few
are explained below.

5.4.1.1 Organizational agility

New subscribers should be able to be added to an existing topic without publisher development
effort. This strengthen de-coupling of applications into isolated domains which in turn enhance and
increase team autonomy.

5.4.1.2 Re-use and portability

As business events by default represent a business-oriented activity, it is also meant to be re-
usable across contexts. Obviously, multiple versions of a business event should be able to co-exist

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 13 / 19

allowing extended information models to be communicated without breaking former ones. Business
events are also platform unaware (technological agnostic) and represented in text-form (often
JSON) giving integration possibilities to all types of platforms which in turn support high portability
possibilities for instance to cloud workloads.

5.4.1.3 Operational availability and outages

When outages occur, request-response integrations tend to be highly dependent which in turn
means that down-stream systems also fail under the outage impact. In Publish/Subscribe,
subscribers are not read-wise impacted during publisher outages so this integration pattern
minimizes the blast-impacts outages – e.g. subscribers can still function with the domain-model
held locally. Obviously, the subscribers are still impacted by the ability to update the system under
outage in write-scenarios where a master system is down. If a specific subscriber has an outage
this does not impact other subscribers nor the publisher as the subscriber has a local queue and if
within queuing capacity the subscriber can offload the events with the outage has been resolved. If
the queuing capacity is exceeded, the subscriber in question is solely responsible for getting back
“in sync” via a full event bootstrap or re-requesting the original domain model from the publisher.

5.4.2 Cost reduction

In Bankdata most master applications currently reside on mainframe. The synchronous integration
model dictates that de-central applications must access via SOAP/REST-realized webservices or
CICS-endpoints. This model is very proven and secure but have additional drawbacks on the cost-
effects. Mainframe MIPS are expensive and de-central applications need to enquire read-states at
every request and enforce changes upon the master domain-model via direct integration. This
model also scales poorly in terms of price because increase in utilizations (addition of new
customers, products or channels) creates a more-than-proportional increase in MIPS as the price-
model often is expressed in peak-load usages.

As a proposed asynchronous integration model, Publish/Subscribe will allow each subscriber to
hold a persistent representation locally making repeating enquiries on read-states at master
unnecessary as the subscriber holds enough information within his own domain context-boundary.
Obviously, the representation needs to be bootstrapped once to allow initial data load but from that
point and onwards synchronizations from master over MQ will happen in near real-time with each
publish costing approximately O(1) as only one additional MQ operation is needed in the
application commit-scope.

5.4.3 Good use-case candidates

5.4.3.1 Low volatile data

Applications with many reads and few writes are especially good candidates for allowing slave-
representations and asynchronous integration over Publish/Subscribe. As data is persisted locally
no read from master is necessary and thus data which change very rarely are prime candidates for
this pattern usage as very few publish-operations are actually performed. Examples from the
banking world are domain object such as accounts (an account rarely changes but financial
statements associated with it though does) and customer information (a customer’s name and
address also rarely change).

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 14 / 19

5.4.3.2 COTS products and applicational eco-systems

Commercial-of-the-shelf (COTS) and third-party products have their own data-representation by
default. Thus, these products are highly eligible for integration via Publish/Subscribe as they
require own data-models provided by the contractor/vendor. Specialized integrations often also
have very low level of reusability (bespoke one-to-one integrations to this specific product) and are
expensive to implement/operate in a total-cost-of-ownership perspective.

5.5 SOLUTION DESIGN ELEMENTS

5.5.1 Where to implement event publishing

Publishing of events can occur at many levels. In a SOA programming hierarchy, the options often

include the database layer, business layer and presentation layer. There are different tradeoffs for

each choice.

5.5.1.1 Database layer

Publishing of business events on the database layer is often very easy to implement and can be

realized through simple database-replication mechanisms (such as database-triggers or even

QREP on mainframe). Additionally, all SQL processes working directly on the database layer are

handled automatically so that an update process (SQL tooling, stored procedures, SPUFIs, etc.)

will end up sending events to subscribers. However, implementing the event-publishing in this layer

quite often ends up with all subscribers needing to understand the publishing domain in order of

interpreting the events which scales poorly and was the opposite of the main objectives (reuse and

organizational agility)

5.5.1.2 Data-access layer

Publishing of business events on the data-access layer (that is: in code near the SQL statements).

This has an upside that not all changes to master-data objects necessarily need to become a

published event. However, a large interpretation of the actual business change is still needed at

subscriber-sides. In this model, direct database changes (bypassing the code) is no longer

permitted as it will in make the publisher and subscribers world-views inconsistent.

5.5.1.3 Business layer

Publishing of business events on the business layer is in the author’s opinion the best fit choice.

Here the collection of downstream functionality and shared commit-scopes are gathered and can

easily express the event details – before returning upstream with an indication of a successful

service/method invocation (http 200, return code 0, etc.).

5.5.2 Data in events vs. notifications only

In the former sections we have not touched on a small but important detail. Does the actual event

hold specific domain/data information or does the event simply indicate that the subscribers should

bootstrap a domain entity again? Both variants are equally valid but have different tradeoffs. The

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 15 / 19

author’s opinion is to include the relevant data in the event if the security, operational and

governance processes and company policies allow it. It will make the solution code more clean and

remove operational hurdles / runtime dependencies. It will also remove a lot of technical issues

and architectural discussions on the concepts of “time” (e.g. what if a subscriber receives an event

without data and the data-source for re-reading the object at master suddenly becomes

unavailable right after the event have been received? How should the subscriber react in this

case?).

5.6 RISKS, THREATS AND CHALLENGES

5.6.1 Eventual consistency

Publish/Subscribe lives on a foundation of eventual consistency as there is an implicit time-frame

delta in which master is updated and subscribers are notified. This time-span is normally in the

range of milliseconds (<10 milliseconds) but there is a need for a transparent business decision for

whether asynchronous integration is an eligible pattern for the specific system. Most banking

systems can actually live with this small time-span inconsistency but some, such as critical real-

time trading systems, cannot. The systemic de-coupling, organizational agility and cost-reduction

very often out-weights the disadvantages but in an enterprise the decision resides at the business

side.

5.6.2 Slave-representations of data

As each subscriber often owns its own representation of master data, the subscriber is responsible
for upholding to the data governance rules-of-conduct of the master system. It is very important to
understand that Publish/Subscribe is not a database replication pattern but solely an integration
mechanism of distributing a shared view on a centralized, de-coupled information-domain-model to
peers. As such, business events do not normally reflect each database-field from master as the
information needed in each context is naturally different. If one or more subscribers of some
reason get out of sync or misinterpret business events from master, it is the subscriber's
responsibility of getting back into a consistent world-view which of course enforce the master
system to deliver robust service-handles in order of being able to do so.

5.6.3 Delegated and cascading events

Subscribers are permitted to have a local view of other’s master data, but it is an anti-pattern to

re-delegate master events to other peers. As mentioned earlier the reasons for not allowing this

are many but most importantly are

 It creates an ownership model which is not consistent

 It requires that a specific subscriber is available for receiving master messages to send

these further downstream

 if notified by both a data slave and a data master – which is then "most correct" – the

newest, the master or a combination?

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 16 / 19

In short – don’t delegate, cascade or resend events for data and objects you do not have master

ownership of.

6 THOUGHTS ON POTENTIAL PATTERNS FOR DYNAMIC CONSISTENCY
Inspired by:

 The way Bankdata has solved the problem with eventual consistency

 Microservices architecture

 Domain Driven Design

 Modular Monoliths

We purpose a pattern for implementing dynamic consistency.

6.1 ENSURING EVENTUAL CONSISTENCY USING A HYBRID ARCHITECTURE OF MICRO-

SERVICES AND MICRO MONOLITHS.
We need to step back and think about why Sam Newman says:

As stated by Sam Newman: “developers should only consider using microservices when they have

a “really good reason” for doing so.”[5]

One of the nice things about the monolith, is strict consistency (Aka ACID) is not a problem. But

how could you keep strict consistency where is it needed, and still benefit from using a

microservices architecture?

6.1.1 The modular micro monolith

We already talked about identifying the business events that requires strict consistency, but how

do you proceed from that point. A possible process could be:

1) Start with an event storming session, where you have identified the business events.

2) Use the DDD concept of bounded context to organize the identified events into potential

microservices.

3) Group events from a consistency perspective, hawing a pool of events that lives happily with

eventual consistency and a number of groups where events that needs to participate in a strict

consistency scheme.

a) The eventual consistency group:

i) Use the DDD concept of bounded context to organize the identified events into potential

microservices.

b) The strict consistency group:

i) Use the DDD concept of bounded context to organize the identified events into potential

microservices.

ii) Use the consistency boundaries to bundle the potential microservices in such a way

that all events of such an event group are in the same bounded context.

iii) Assemble the potential microservices as modules in a modular micro monolith.

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 17 / 19

Step 1 and 2, is common practice when breaking a system up in microservices.

The ensuring of eventual consistency comes from step 3, where the architecture is transformed

from a microservice architecture to a hybrid architecture of microservices and micro monoliths.

Lets look deeper into the process.

Figur 6-1 Grouping microservices by events shows the grouping of microservices by events that

needs strict consistency.

FIGUR 6-1 GROUPING MICROSERVICES BY EVENTS

This way of splitting up your system will lead to a number of bounded contexts with a sharp

business focus, that are candidates to be microservices. And groups of microservices candidates

that has a transaction coupling (the ones holding consistency scoped events).

Each of these groups needs to be contained in a transaction scope, but using distributed

transactions in a microservices architecture is bad practice.

Distributed transactions are icebergs: they can be hard to see, and they can sink your ship.

[12]

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 18 / 19

The solution to distributed transactions in microservices is simply to avoid them like the

plague. [12]

Our solution to this problem is to “merge” the microservices in a transaction scope into a monolith,

but not just any monolith. We still want to gain maximal advantages from the microservice

architecture. Therefore, we assemble the microservices in a transaction scope as modules in the

monolith. Also we scope the monolith from the transaction scope, keeping the monolith as small as

possible. We call these small transaction scoped monoliths modular micro monoliths.

Another way of saying it. You bundle up microservices that needs to share transaction scope into

one big microservice.

Figur 6-2 The modular micro monoliths illustrates the concept.

FIGUR 6-2 THE MODULAR MICRO MONOLITHS

By using this pattern, we have encapsulated the problem of dealing with irreversible business

transactions, in an architecture that comes very close to being a microservice architecture. The

cost of this is several modular micro monoliths where your system is not perfectly separated in

independent services. In that way, the price you must pay is reduced to shared deployment of the

modules contained in the same modular micro monolith.

Ensuring Eventual Consistency in a Microservices Architecture

© Kaj Bromose (orcid: 0000-0002-8974-2718) and Ronni Laursen (orcid: 0000-0002-2127-1307), 2021
 Page 19 / 19

7 CONCLUSION
The architecture of transaction oriented business systems can be transformed to a microservices

architecture in a “transaction safe” way, where it can be ensured that the system ends up in

consistent state.

This can be achieved by using a dynamic CAP approach, where the CAP positioning of the system

is dynamic based on the concrete business event, where the irreversible transactional business

events are encapsulated in modular micro monoliths.

8 BIBLIOGRAPHY

[1] “CAP theorem”, Wikipedia. dec. 25, 2019. Set: apr. 22, 2020. [Online]. Tilgængelig hos:
https://en.wikipedia.org/w/index.php?title=CAP_theorem&oldid=932419887

[2] “Brewer’s CAP Theorem <= :julianbrowne”. https://www.julianbrowne.com/article/brewers-cap-
theorem (set aug. 05, 2021).

[3] “Bankdata.en”. https://www.bankdata.dk/en (set jun. 18, 2021).
[4] “Apply for one of our Full Degree Programmes at UCL”. https://www.ucl.dk/international (set

jun. 18, 2021).
[5] “When to Use Microservices: Sam Newman and Martin Fowler Share Their Knowledge”,

DreamFactory Software- Blog, maj 04, 2021. https://blog.dreamfactory.com/when-to-use-
microservices-sam-newman-and-martin-fowler-share-their-knowledge/ (set jun. 18, 2021).

[6] S. Newman, Monolith to microservices: evolutionary patterns to transform your monolith. 2020.
Set: apr. 22, 2020. [Online]. Tilgængelig hos:
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23
16576

[7] “Microservices”, martinfowler.com. https://martinfowler.com/articles/microservices.html (set
dec. 01, 2020).

[8] “Making Your Microservices Resilient and Fault Tolerant - DZone Microservices”, dzone.com.
https://dzone.com/articles/making-your-microservices-resilient-and-fault-tole-1 (set dec. 01,
2020).

[9] “The Scale Cube”. https://microservices.io/articles/scalecube.html (set dec. 01, 2020).
[10] “Running Multiple Instances of Your App | Kubernetes”.

https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/ (set dec. 01, 2020).
[11] “ACID vs. BASE: Comparison of Database Transaction Models”, Knowledge Base by

phoenixNAP, nov. 25, 2020. https://phoenixnap.com/kb/acid-vs-base (set jun. 22, 2021).
[12] “Distributed Transactions: The Icebergs of Microservices • Evolvable MeEvolvable Me”.

https://www.grahamlea.com/2016/08/distributed-transactions-microservices-icebergs/ (set dec.
01, 2020).

[13] fernandoBRS, “Saga distributed transactions - Azure Design Patterns”.
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga (set
dec. 01, 2020).

[14] “Reversal Adjustment”, martinfowler.com.
https://martinfowler.com/eaaDev/ReversalAdjustment.html (set maj 31, 2021).

