
University of Torino

Doctoral School on Science
and High Technology

Computer Science Department

Doctoral Thesis

PiCo:
A Domain-Specific Language for

Data Analytics Pipelines

Author:
Claudia Misale

Cycle XVIII

Supervisor:
Prof. Marco Aldinucci

Co-Supervisor:
Prof. Guy Tremblay

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

ii

“Simplicity is a great virtue but it requires hard work to achieve it
and education to appreciate it.
And to make matters worse: complexity sells better. ”

Edsger W. Dijkstra, “On the nature of Computing Science”

Marktoberdorf, 10 August 1984

iii

UNIVERSITY OF TORINO

Abstract

Computer Science Department

Doctor of Philosophy

PiCo:
A Domain-Specific Language for Data Analytics Pipelines

by Claudia Misale

In the world of Big Data analytics, there is a series of tools aiming at simplifying
programming applications to be executed on clusters. Although each tool claims to
provide better programming, data and execution models—for which only informal
(and often confusing) semantics is generally provided—all share a common under-
lying model, namely, the Dataflow model. Using this model as a starting point, it is
possible to categorize and analyze almost all aspects about Big Data analytics tools
from a high level perspective. This analysis can be considered as a first step toward
a formal model to be exploited in the design of a (new) framework for Big Data
analytics. By putting clear separations between all levels of abstraction (i.e., from
the runtime to the user API), it is easier for a programmer or software designer
to avoid mixing low level with high level aspects, as we are often used to see in
state-of-the-art Big Data analytics frameworks.

From the user-level perspective, we think that a clearer and simple semantics is
preferable, together with a strong separation of concerns. For this reason, we use
the Dataflow model as a starting point to build a programming environment with
a simplified programming model implemented as a Domain-Specific Language, that
is on top of a stack of layers that build a prototypical framework for Big Data
analytics.

The contribution of this thesis is twofold: first, we show that the proposed model
is (at least) as general as existing batch and streaming frameworks (e.g., Spark,
Flink, Storm, Google Dataflow), thus making it easier to understand high-level
data-processing applications written in such frameworks. As result of this analysis,
we provide a layered model that can represent tools and applications following the
Dataflow paradigm and we show how the analyzed tools fit in each level.

Second, we propose a programming environment based on such layered model in the
form of a Domain-Specific Language (DSL) for processing data collections, called
PiCo (Pipeline Composition). The main entity of this programming model is
the Pipeline, basically a DAG-composition of processing elements. This model is
intended to give the user an unique interface for both stream and batch processing,
hiding completely data management and focusing only on operations, which are
represented by Pipeline stages. Our DSL will be built on top of the FastFlow
library, exploiting both shared and distributed parallelism, and implemented in
C++11/14 with the aim of porting C++ into the Big Data world.

v

Acknowledgements
Questi quattro anni sono stati veramente brevi. Praticamente non me ne sono
accorta. Ho imparato tante cose, molte ancora non ho capito come si fanno (ad
esempio non so fare le revisioni in maniera educata ed elegante, non ho imparato
a parlare in pubblico, non so riassumere i meeting..) e faccio ancora arrabbiare
tantissimo il mio supervisore, il Professor Marco Aldinucci. A lui, infatti, dire
semplicemente “grazie” non è abbastanza. Specie per la pazienza che ha avuto con
me, da tutti i punti di vista.

These four years were really short. I did not notice they are gone. I learned a lot,
I still do not understand how to do a lot of things (for instance I am not able to
review papers in a polite and elegant way, I did not learn to talk in public, I am not
able to summarize meetings..) and I still make my supervisor very angry with me,
Professor Marco Aldinucci. It is not enough to say “thank you” to him. Especially
for the patience he had with me, from all points of view.

Sono arrivata a Torino senza conoscerlo, chiedendogli di essere il mio supervisore
per il dottorato. Non potevo fare scelta migliore. Tutto quello che so lo devo a lui.
Le ore passate ad ascoltarlo spiegarmi i mille aspetti di quest’area di ricerca (anche
se per lui, di aspetti, ce ne sono sempre e solo due), mi hanno aperto la mente e
mi hanno formato tantissimo, anche se ancora ho tutto da imparare. Quattro anni,
infatti, non bastano. Mi ha sempre spronato a fare meglio, a guardare dentro le
cose, e cercherò di portarmi dietro i suoi insegnamenti ovunque la vita mi porterà.
Inoltre la sua simpatia e i suoi modi di fare, sono stati ottimi compagni in questi
anni di dottorato. S̀ı, anche gli insulti lo sono stati! Grazie, theboss. Di cuore.

I arrived in Turin without knowing that much about Prof. Aldinucci and I asked him
to be my supervisor. I could not make a better choice. Everything I know is thanks to
him. I spent a lot of hours listening to him explaining all aspects about this research
area (even if, from his point of view, there are always only two aspects), this opened
my mind and made me grow up a lot, even if I still have to learn. Four years are
not enough, actually. He always pushed me to do my best, to look inside things, and
I will always try to bring his teachings with me, wherever I will go. Furthermore,
his pleasantness and his way to do things, have been perfect companionship in these
years. Thank you, theboss. Thank you so much.

Ci sono alcune persone che voglio ringraziare, perché tanto mi hanno dato e sarò
sempre in debito con loro per questo.

There are a few people I want to thank, because they gave me so much and I will
always be in debt with them.

Vorrei iniziare con il mio co-supervisore, il Professor Guy Tremblay. Grazie di
avermi seguito e di avermi aiutato cos̀ı tanto nella stesura della tesi e nel capire
tanti argomenti che, per entrambi, erano nuovi: la tua grande esperienza è stata
illuminante, sei stato una guida importantissima. Grazie ancor di più per i tanti
consigli per la presentazione che mi hai dato, ho cercato di seguirli al meglio e spero
di esserne stata all’altezza.

I would like to start with my co-supervisor, professor Guy Tremblay. Thank you so
much for helping me so much while writing this thesis and thank you for helping
me in understanding topics that, for both, were new: your great experience has been
enlightening, you have been a very important guide. Thank you even more for all
the advices about the presentation, I tried to follow all of them the best I can do and
I hope I have been able to do that.

Vorrei ringraziare i revisori per il lavoro di revisione che hanno fatto: i loro com-
menti sono stati preziosissimi e molto dettagliati. Mi hanno permesso di migliorare
il manoscritto e soprattutto di rivedere molti aspetti che l’inesperienza non mi per-
mette ancora di vedere.

vi

I would like to thank reviewers for the great job they did, their impressive knowledge
and experience, and the time the dedicated to my work: their comments have been
precious and very detailed. Their advices made me improve the manuscript and,
mostly, to review a lot of aspects that the inexperience makes me not able to see
them yet.

Un profondo grazie va ai miei colleghi: una cricca di persone uniche con cui ho
condiviso tanto e tanto mi hanno dato. Le nostre serate “non facciamo tardi” che
finivano alle 4 o 5 del mattino, le mangiate, le uscite, i giochi, i mille discorsi, le
Gossip Girlz.. Grazie di tutto ciò che mi avete dato.

Grazie a Caterina, la mia secolare amica. Tu sai tutto di me, che altro ti devo dire.
Siamo cresciute insieme nei cinque anni di università all’UniCal in cui ne abbiamo
combinate tante e mi hai assistito durante questi anni: sei anche tu una colonna
portante di questo dottorato e una portante nella mia vita.

Quasi tutte le pause pranzo del mio dottorato le ho trascorse in palestra a “pic-
chiare la gente”, come dicono i miei colleghi. Le lezioni di kick-boxing/muay-thai
sono state assolutamente una droga e a renderle tali sono state innanzitutto le per-
sone che ho conosciuto l̀ı. Grazie al Maestro Beppe e ai ragazzi, ho imparato ad
apprezzare questo magnifico sport fatto di disciplina, rispetto, autocontrollo, che mi
ha permesso di spingermi oltre i ciò che pensavo fossero i miei limiti fisici e mentali.
Grazie, Maestro, per avermi fatto scoprire un lato di me a me sconosciuto e grazie
della persona e amico che sei. Grazie a tutti i miei “amici delle botte”, grazie delle
botte che mi avete dato, della perfetta compagnia che siete sia in palestra che fuori,
per avermi aiutato a scaricare l’ansia accumulata ogni giorno.

Grazie a Roberta, la mia amica di botte numero uno in assoluto. Abbiamo condiviso
tanto in palestra e siamo cresciute insieme, mi hai fatto crescere e mi hai insegnato
tanto. Soprattutto, hai ascoltato e sopportato tutti i miei sfoghi e le mie frustrazioni
da dottoranda. Mai ti ringrazierò abbastanza.

E infine, i pezzi grossi. La mia famiglia, a cui tutto devo. Soprattutto per la
pazienza che avete avuto con me: so che è stata dura, infatti vi chiedo scusa per
questo. Grazie per l’avermi sempre appoggiato in tutte le mie scelte e per avermi
permesso di raggiungere questo traguardo. Vorrei sempre rendervi orgogliosi di me
e spero che questo dottorato mi aiuti in questo obiettivo. Perché siete il mio esempio
di correttezza e forza.

Maurizio. Ti ho conosciuto durante il nostro dottorato, sei diventato parte della
mia vita dal primo istante. Abbiamo condiviso questo percorso insieme: i momenti
belli, quelli un po’ critici, la fatica mentale e fisica. La tua intelligenza e le tue
intuizioni mi hanno sempre affascinato e ispirato. Spero sarai orgoglioso, almeno
un po’, di me alla fine di questa storia. Lo sai che.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Results and Contributions . 1
1.2 Limitations and Future Work . 4
1.3 Plan of the Thesis . 5
1.4 List of Papers . 5
1.5 Funding . 7

2 Technical Background 9
2.1 Parallel Computing . 9
2.2 Platforms . 9

2.2.1 SIMD computers . 10
Symmetric shared-memory multiprocessors 10
Memory consistency model 11
Cache coherence and false sharing 12

2.2.2 Manycore processors . 12
2.2.3 Distributed Systems, Clusters and Clouds 14

2.3 Parallel Programming Models . 14
2.3.1 Types of parallelism . 15

Data parallelism . 16
Map . 16
Reduce . 17

2.3.2 The Dataflow Model . 18
Actors . 18
Input channels . 19
Output channels . 19
Stateful actors . 19

2.3.3 Low-level approaches . 19
2.3.4 High-level approaches . 21
2.3.5 Skeleton-based approaches . 22

Literature review of skeleton-based approaches 22
2.3.6 Skeletons for stream parallelism 23

2.4 Programming multicore clusters . 25
2.4.1 FastFlow . 25

Distributed FastFlow . 28
2.5 Summary . 29

3 Overview of Big Data Analytics Tools 31
3.1 A Definition for Big Data . 31
3.2 Big Data Management . 32
3.3 Tools for Big Data Analytics . 33

3.3.1 Google MapReduce . 33
The five steps of a MapReduce job 34

3.3.2 Microsoft Dryad . 36
A Dryad application DAG . 36

3.3.3 Microsoft Naiad . 37

viii

Timely Dataflow and Naiad programming model 37
3.3.4 Apache Spark . 38

Resilient Distributed Datasets 39
Spark Streaming . 40

3.3.5 Apache Flink . 41
Flink Programming and Execution Model 41

3.3.6 Apache Storm . 42
Tasks and Grouping . 43

3.3.7 FlumeJava . 44
Data Model and Transformations 44

3.3.8 Google Dataflow . 45
Data Model and Transformations 46

3.3.9 Thrill . 47
Distributed Immutable Arrays 48

3.3.10 Kafka . 49
Producer-Consumer Distributed Coordination 49

3.3.11 Google TensorFlow . 49
A TensorFlow application . 50

3.3.12 Machine Learning and Deep Learning Frameworks 51
3.4 Fault Tolerance . 51
3.5 Summary . 52

4 High-Level Model for Big Data Frameworks 53
4.1 The Dataflow Layered Model . 53

4.1.1 The Dataflow Stack . 54
4.2 Programming Models . 54

4.2.1 Declarative Data Processing 55
4.2.2 Topological Data Processing 56
4.2.3 State, Windowing and Iterative Computations 56

4.3 Program Semantics Dataflow . 58
4.3.1 Semantic Dataflow Graphs 58
4.3.2 Tokens and Actors Semantics 59
4.3.3 Semantics of State, Windowing and Iterations 60

4.4 Parallel Execution Dataflow . 60
4.5 Execution Models . 64

4.5.1 Scheduling-based Execution 64
4.5.2 Process-based Execution . 66

4.6 Limitations of the Dataflow Model 66
4.7 Summary . 67

5 PiCo Programming Model 69
5.1 Syntax . 69

5.1.1 Pipelines . 71
5.1.2 Operators . 71

Data-Parallel Operators . 72
Pairing . 73
Sources and Sinks . 73
Windowing . 74
Partitioning . 74

5.1.3 Running Example: The word-count Pipeline 75
5.2 Type System . 75

5.2.1 Collection Types . 75
5.2.2 Operator Types . 76
5.2.3 Pipeline Types . 77

5.3 Semantics . 78
5.3.1 Semantic Collections . 78

Partitioned Collections . 79
Windowed Collections . 79

ix

5.3.2 Semantic Operators . 80
Semantic Core Operators . 80
Semantic Decomposition . 81
Unbounded Operators . 82
Semantic Sources and Sinks 82

5.3.3 Semantic Pipelines . 82
5.4 Programming Model Expressiveness 84

5.4.1 Use Cases: Stock Market . 84
5.5 Summary . 86

6 PiCo Parallel Execution Graph 87
6.1 Compilation . 87

6.1.1 Operators . 89
Fine-grained PE graphs . 90
Batching PE graphs . 91
Compilation environments . 92

6.1.2 Pipelines . 92
Merging Pipelines . 93
Connecting Pipelines . 93

6.2 Compilation optimizations . 94
6.2.1 Composition and Shuffle . 94
6.2.2 Common patterns . 94
6.2.3 Operators compositions . 96

Composition of map and flatmap 96
Composition of map and reduce 97
Composition of map and p-reduce 98
Composition of map and w-reduce 99
Composition of map and w-p-reduce 100

6.3 Stream Processing . 101
6.4 Summary . 101

7 PiCo API and Implementation 103
7.1 C++ API . 103

7.1.1 Pipe . 104
7.1.2 Operators . 105

The map family . 106
The combine family . 107
Sources and Sinks . 108

7.1.3 Polymorphism . 109
7.1.4 Running Example: Word Count in C++ PiCo 111

7.2 Runtime Implementation . 111
7.3 Anatomy of a PiCo Application . 113

7.3.1 User level . 113
7.3.2 Semantics dataflow . 114
7.3.3 Parallel execution dataflow 114
7.3.4 FastFlow network execution 115

7.4 Summary . 117

8 Case Studies and Experiments 119
8.1 Use Cases . 119

8.1.1 Word Count . 119
8.1.2 Stock Market . 119

8.2 Experiments . 120
8.2.1 Batch Applications . 120

PiCo . 121
Comparison with other frameworks 123

8.2.2 Stream Applications . 127
PiCo . 128

x

Comparison with other tools 129
8.3 Summary . 132

9 Conclusions 133

A Source Code 137

xi

List of Figures

2.1 Structure of an SMP. 11
2.2 Map pattern . 16
2.3 Reduce pattern . 17
2.4 MapReduce pattern . 18
2.5 A general Pipeline pattern with three stages. 24
2.6 Farm pattern . 24
2.7 Pipeline of Farm . 25
2.8 Layered FastFlow design . 27

3.1 An example of a MapReduce Dataflow 35
3.2 A TensorFlow application graph . 50

4.1 Layered model representing the levels of abstractions provided by the
frameworks that were analyzed. 54

4.2 Functional Map and Reduce dataflow expressing data dependencies. 58
4.3 A Flink JobGraph (4.3a). Spark DAG of the WordCount application

(4.3b). 58
4.4 Example of a Google Dataflow Pipeline merging two PCollections. . 59
4.5 MapReduce execution dataflow with maximum level of parallelism

reached by eight map instances. 61
4.6 Spark and Flink execution DAGs. 61
4.7 Master-Workers structure of the Spark runtime (a) and Worker hier-

archy example in Storm (b). 65

5.1 Graphical representation of PiCo Pipelines 70
5.2 Unbounded extension provided by windowing 76
5.3 Pipeline typing . 77

6.1 Grammar of PE graphs . 88
6.2 Operators compilation in the target language. 89
6.3 Compilation of a merge Pipeline . 93
6.4 Compilation of to Pipelines . 93
6.5 Forwarding Simplification . 94
6.6 Compilation of map-to-map and flatmap-to-flatmap composition. . . 96
6.7 Compilation of map-reduce composition. 97
6.8 Compilation of map-to-p-reduce composition. 98
6.9 Compilation of map-to-w-reduce composition. Centralization in w-F1

for data reordering before w-reduce workers. 99
6.10 Compilation of map-to-w-p-reduce composition. 100

7.1 Inheritance class diagram for map and flatmap. 107
7.2 Inheritance class diagram for reduce and p-reduce. 107
7.3 Inheritance class diagram for ReadFromFile and ReadFromSocket. . 108
7.4 Inheritance class diagram for WriteToDisk and WriteToStdOut. . . 109
7.5 Semantics DAG resulting from merging three Pipes. 112
7.6 Semantics DAG resulting from the application in listing 7.3. 114
7.7 Semantics DAG resulting from connecting multiple Pipes. 114
7.8 Parallel execution DAG resulting from the application in listing 7.3. 115

xii

8.1 Scalability and execution times for Word Count application in PiCo. 121
8.2 Scalability and execution times for Stock Pricing application in PiCo. 122
8.3 Comparison on best execution times for Word Count and Stock Pric-

ing reached by Spark, Flink and Pico. 124
8.4 Scalability and execution times for Stream Stock Pricing application

in PiCo. 128

xiii

List of Tables

2.1 Collective communication patterns among ff dnodes. 28

4.1 Batch processing. 62
4.2 Stream processing comparison between Google Dataflow, Storm, Spark

and Flink. 63

5.1 Pipelines . 70
5.2 Core operator families. 72
5.3 Operator types. 76

7.1 the Pipe class API. 104
7.2 Operator constructors. 106

8.1 Decomposition of execution times and scalability highlighting the
bottleneck on ReadFromFile operator in the Word Count benchmark. 123

8.2 Decomposition of execution times and scalability highlighting the
bottleneck on ReadFromFile operator in the Stock Pricing benchmark.123

8.3 Execution configurations for tested tools. 124
8.4 Average, standard deviation and coefficient of variation on 20 runs

for each benchmark. Best execution times are highlighted. 126
8.5 User’s percentage usage of all CPUs and RAM used in MB, referred

to best execution times. 127
8.6 Decomposition of execution times and scalability highlighting the

bottleneck on ReadFromSocket operator. 129
8.7 Flink, Spark and PiCo best average execution times, showing also

the scalability with respect to the average execution time with one
thread. 130

8.8 Average, standard deviation and coefficient of variation on 20 runs
of the stream Stock Pricing benchmark. Best execution times are
highlighted. 131

8.9 User’s percentage usage of all CPUs and RAM used in MB, referred
to best execution times. 131

8.10 Stream Stock Pricing: Throughput values computed as the number
of input stock options with respect to the best execution time. . . . 131

xv

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
AVX Advanced Vector Extensions
CSP Communicating Sequential Processes
DSL Domain Specific Language
DSM Distributed Shared Memory
DSP Digital Signal Processor
EOS End Of Stream
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
JIT Just In Time
JVM Java Virtual Machine
MIC Many Integrated Core
MPI Message Passing Interface
NGS Next Generation Sequencing
PGAS Partitioned Global Address Space
PiCo Pipeline Composition
RDD Resilient Distributed Datasets
RDMA Remote Direct Memory Access
RMI Remote Method Invocation
SPMD Single Program Multiple Data
STL Standard Template Library
TBB Threading Building Blocks

xvii

Alla mia famiglia

1

Chapter 1

Introduction

Big Data is becoming one of the most (ab)used buzzword of our times. In companies,
industries, academia, the interest is dramatically increasing and everyone wants to
“do Big Data”, even though its definition or role in analytics is not completely clear.
Big Data has been defined as the “3Vs” model, an informal definition proposed by
Beyer and Laney [32, 90] that has been widely accepted by the community:

“Big data is high-Volume, high-Velocity and/or high-Variety informa-
tion assets that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and process
automation.”

In this definition, Volume refers to the amount of data that is generated and stored.
The size of the data determines whether it can be considered big data or not.
Velocity is about the speed at which the data is generated and processed. Finally,
Variety pertains to the type and nature of the data being collected and processed
(typically unstructured data).

The “3Vs” model has been further extended by adding two more V -features: Vari-
ability, since data not only are unstructured, but can also be of different types (e.g.,
text, images) or even inconsistent (i.e., corrupted), and Veracity, in the sense that
the quality and accuracy of the data may vary.

From a high-level perspective, Big Data is about extracting knowledge from both
structured and unstructured data. This is a useful process for big companies such
as banks, insurance, telecommunication, public institutions, and so on, as well as
for business in general.

Extracting knowledge from Big Data requires tools satisfying strong requirements
with respect to programmability — that is, allowing to easily write programs and
algorithms to analyze data — and performance, ensuring scalability when running
analysis and queries on multicore or cluster of multicore nodes. Furthermore, they
need to cope with input data in different formats, e.g. batch from data marts, live
stream from the Internet or very high-frequency sources.

1.1 Results and Contributions

By studying and analyzing a large number of Big Data analytics tools, we identi-
fied the most representative ones: Spark [131], Storm [97], Flink [67] and Google
Dataflow [5], that we surveyed in Sect. 3. The three major contributions from this
study are the following:

An unifying semantics for Big Data analytics frameworks. Our fo-
cus is on understanding the expressiveness of their programming and execution

2 Chapter 1. Introduction

models, trying to come out with a set of common aspects that constitute the main
ingredients of existing tools for Big Data analytics. In Chapter. 4, they will be sys-
tematically arranged in a single Dataflow-based formalism organized as a stack of
layers. This will serve a number of objectives, such as the definition of semantics of
existing Big Data frameworks, their precise comparison in terms of their expressive-
ness, and eventually the design of new frameworks. As we shall see, this approach
also makes it possible to uniformly capture different data access mechanisms, such
as batch and stream, that are typically claimed as distinguished features, thus mak-
ing it possible to directly compare data-processing applications written in all the
mainstream Big Data frameworks, including Spark, Flink, Storm, Google Dataflow.

As result of this analysis, we provide a layered model that can represent tools
and applications following the Dataflow paradigm and we show how the analyzed
tools fit in each level. As far as we know, no previous attempt has been made to
compare different Big Data processing tools, at multiple levels of abstraction, under
a common formalism.

A new data-model agnostic DSL for Big Data. We advocate a new
Domain Specific Language (DSL), called Pipeline Composition (PiCo), designed
over the presented layered Dataflow conceptual framework (see Chapter 4). PiCo
programming model aims at easing the programming and enhancing the performance
of Big Data applications by two design routes: 1) unifying data access model, and
2) decoupling processing from data layout.

Simplified programming. Both design routes undertake the same goal, which is the
raising of the level of abstraction in the programming and the execution model with
respect to mainstream approaches in tools for Big Data analytics, which typically
force the specialization of the algorithm to match the data access and layout. Specif-
ically, data transformation functions (called operators in PiCo) exhibit a different
functional types when accessing data in different ways. For this reason, the source
code should be revised when switching from one data model to the next. This
happens in all the above mentioned frameworks and also in the abstract Big Data
architectures, such as the Lambda [86] and Kappa architectures [84]. Some of them,
such as the Spark framework, provide the runtime with a module to convert streams
into micro-batches (Spark Streaming, a library running on Spark core), but still a
different code should be written at user-level. The Kappa architecture advocates
the opposite approach, i.e., to “streamize” batch processing, but the streamizing
proxy has to be coded. The Lambda architecture requires the implementation of
both a batch-oriented and a stream-oriented algorithm, which means coding and
maintaining two codebases per algorithm.

PiCo fully decouples algorithm design from data model and layout. Code is designed
in a fully functional style by composing stateless operators (i.e., transformations in
Spark terminology). As discussed in Chapter 5, all PiCo operators are polymorphic
with respect to data types. This makes it possible to 1) re-use the same algorithms
and pipelines on different data models (e.g., streams, lists, sets, etc); 2) reuse the
same operators in different contexts, and 3) update operators without affecting the
calling context, i.e., the previous and following stages in the pipeline. Notice that in
other mainstream frameworks, such as Spark, the update of a pipeline by changing
a transformation with another is not necessarily trivial, since it may require the
development of an input and output proxy to adapt the new transformation for the
calling context.

Enhance performance. PiCo has the ambition of exploring a new direction in the
relationship between processing and data. Two successful programming paradigms
are object-oriented and task-based approaches: they have been mainstream in se-
quential and parallel computing, respectively. They both tightly couple data and
computing. This coupling supports a number of features at both language and

1.1. Results and Contributions 3

run-time level, e.g., data locality and encapsulation. At the runtime support level,
they might be turned into crucial features for performance, such as increasing the
likely access to the closest and fastest memory and the load balancing onto multi-
ple executors. In distributed computing, the quest for methods to distribute data
structures onto multiple executors is long standing. In this regard, the MapReduce
paradigm [61] introduced some freshness in the research area by exploiting the idea
of processing data partitions in the machine where they are stored together with
a relaxed data parallel execution model. Data partitions are initially randomized
across a distributed filesystem for load balancing, computed (Map phase), then
shuffled to form other partitions with respect to a key and computed again (Reduce
phase). The underneath assumption is that the computing platform is a cluster.
All data is managed by way of distributed objects.

As mentioned, PiCo aims at fully abstracting data layout from computing. Beyond
programmability, we believe the approach could help in enhancing performance for
two reasons. First, because the principal overhead of modern computing is data
movement across the memory hierarchy and the described exploitation of locality is
really effective for embarrassingly parallel computation only—being an instance of
the Owner-Computes Rule (in the case of output data decomposition, the Owner-
Computes Rule implies that the output is computed by the process to which the
output data is assigned.). This argument, however, falls short in supporting locality
for streaming, even when streaming is arranged in sliding windows or micro-batches
and processed in a data-parallel fashion. The problem is that the Owner-Computes
Rule does not help in minimizing data transfers, since anyway data flows from one
of more sources to one or more sinks. For this, a scalable runtime support for
stream and batch computing cannot be simply organized as a monolithic master-
worker network, as it happen for mainstream Big Data frameworks. As described in
Chapter 6, the network of processes and threads implementing the runtime support
of PiCo is generated from the application by way of structural induction on op-
erators, exploiting a set of basic, compositional runtime support patterns, namely
FastFlow patterns (see Sect. 2.4.1). FastFlow [56] is an open source, structured
parallel programming framework supporting highly efficient stream parallel compu-
tation while targeting shared memory multicores. Its efficiency mainly comes from
the optimized implementation of the base communication mechanisms and from its
layered design. It provides a set of ready-to-use, parametric algorithmic skeletons
modeling the most common parallelism exploitation patterns, which may be freely
nested to model more complex parallelism exploitation patterns. It is realized as a
C++ pattern-based parallel programming framework aimed at simplifying the de-
velopment of applications for (shared-memory) multi-core and GPGPU platforms.
Moreover, PiCo relies on the FastFlow programming model, based on the decoupling
of data from synchronizations, where only pointers to data are effectively moved
through the network. The very same runtime can be used on a shared memory
model (as in the current PiCo implementation) as well as in distributed memory
or on Partitioned Global Address Space (PGAS) or Distributed Shared Memory
(DSM), thus allowing a high portability at the cost of just managing communica-
tion among actors, which is left to the runtime.

A fluent C++14 DSL To the best of our knowledge, the only other on-
going attempt to address Big Data analytics in C++ is Thrill (see Sect. 3.3), which
is basically a C++ Spark clone with a high number of primitives in contrast with
PiCo, in which we used a RISC approach. The Grappa framework [98] is a platform
for data-intensive applications implemented in C++ and providing a Distributed
Shared Memory (DSM) as the underlying memory model, which provides fine-grain
access to data anywhere in the system with strong consistency guarantees. It is no
more active under development.

PiCo is specifically designed to exhibit a functional style over C++14 standard
by defining a library of purely functional data transformation operators exhibiting

4 Chapter 1. Introduction

1) a well-defined functional and parallel semantics, 2) a fluent interface based on
method chaining to relay the instruction context to a subsequent call [70]. In this
way, the calling context is defined through the return value of a called method and
is self-referential, where the new context is equivalent to the last context. In PiCo,
the chaining is terminated by a special method, namely the run() method, which
effectively executes the pipeline. The fluent interface style is inspired by C++’s
iostream >> operator for passing data across a chain of operators.

Many of the mainstream frameworks for Big Data analytics are designed on top of
Scala/Java, which simplifies the distribution and execution of remote objects, thus
the mobility of code in favor of data locality. This choice has its own drawbacks,
consider for instance a lower stability caused by Java’s dynamic nature. By using
C++, it is possible to directly manage memory as well as data movement, which
represents one of the major performance issues because of data copying. In PiCo,
no unnecessary copy is done and, thanks to the FastFlow runtime and the FastFlow
allocator, it is possible to optimize communications (i.e., only pointers are moved)
as well as manage allocations in order to reuse as much memory slots as possible.
Moreover, the FastFlow allocator can be used also in a distributed memory scenario,
thus becoming fundamental for streaming applications.

A last consideration about the advantage of using C++ instead of Java/Scala is
that C++ allows a direct offloading of user-defined kernels to GPUs, thus lean-
ing also towards specialized computing with DSPs, reconfigurable computing with
FPGA, but also specialized networking co-processors, such as Infiniband RDMA
verbs (which is a C/C++ API). Furthermore, Kernel offloading to GPUs is a fea-
ture already present in FastFlow that can be done with no need by the user to care
about data management from/to the device [12].

1.2 Limitations and Future Work

PiCo has been designed to be implemented on cache-coherent multicores, GPUs,
and distributed memory platforms. Since it is still in a prototype phase, only a
shared memory implementation is provided but, thanks to the FastFlow runtime,
it will be easy to 1) port it to run on distributed environment and 2) make PiCo
exploit GPUs, since both features are already supported by FastFlow. PiCo is also
still missing binary operator implementations, which are a work in progress. From
the actual performance viewpoint, we aim to solve dynamic allocation contention
problems we are facing in input generation nodes, as showed in Chapter 8, which
limits PiCo scalability. In PiCo, we rely on the stability of a lightweight C++
runtime, in contrast to Java. We measured RAM and CPU utilization with the
sar tool, which confirmed a lower memory consumption by PiCo with respect to
the other frameworks when compared on batch application (Word Count and Stock
Pricing) and stream application (Stock Pricing streaming). As another future work,
we will provide PiCo with fault tolerance capabilities for automatic restore in case
of failures. Another improvement for PiCo implementation on distributed systems
would be to exploit the very same runtime on PGAS or DSMs, in order to still
be able to use FastFlow’s characteristic of moving pointers instead of data, thus
allowing a high portability at the cost of just managing communication among
actors in a different memory model, which is left to the runtime.

1.3. Plan of the Thesis 5

1.3 Plan of the Thesis

The thesis will proceed as follows:

• Chapter 2 provides technical background by reviewing the most common
parallel computing platforms and then by introducing the problem of ef-
fective programming of such platforms exploiting high-level skeleton-based
approaches on multicore and multicore cluster platforms; in particular we
present FastFlow, which we use in this work to implement the PiCo runtime.

• Chapter 3 defines the Big Data terminology. It then continues with a survey
of state-of-the-art of Big Data Analytics tools.

• Chapter 4 analyzes some well-known tools — Spark, Storm, Flink and Google
Dataflow — by providing a common structure based on the Dataflow model
describing all levels of abstraction, from the user-level API to the execution
model. This Dataflow model is proposed as a stack of layers where each
layer represents a dataflow graph/model with a different meaning, describing
a program from what is exposed to the programmer down to the underlying
execution model layer.

• Chapter 5 proposes a new programming model based on Pipelines and op-
erators, which are the building blocks of PiCo programs, first defining the
syntax of programs, then providing a formalization of the type system and
semantics. The chapter also presents a set of use cases. The aim is to show
the expressiveness of the proposed model, without using the current specific
API in order to demonstrate that the model is independent from the imple-
mentation.

• Chapter 6 discusses how a PiCo program is compiled into a directed acyclic
graph representing the parallelization of a given application, namely the par-
allel execution dataflow. This chapter shows how each operator is compiled
into its corresponding parallel version, providing a set of optimization appli-
cable when composing parallel operators.

• Chapter 7 provides a comprehensive description of the actual PiCo implemen-
tation, both at user API level and at runtime level. A complete source code
example (Word Count) is used to describe how a PiCo program is compiled
and executed.

• Chapter 8 provides a set of experiments based on examples defined in Sec-
tion 5.4. We compare PiCo to Spark and Flink, focusing on expressiveness
of the programming model and on performances in shared memory.

• Chapter 9 concludes the thesis.

1.4 List of Papers

This section provides the complete list of my publications, in reverse chronologi-
cal order. Papers (i)–(vi) are directly related to this thesis. Papers (i) and (ii)
introduces the Dataflow Layered Model presented in Chapter 4. Paper (iii) and
(iv) are results of part of the work I did as an intern in the High Performance
System Software research group in the Data Centric Systems Department at IBM
T.J. Watson research center. During this period, the task I accomplished was to
modify the Spark network layer in order to use the RDMA facilities provided by the
IBM JVM. These papers refer to the optimization of the Spark shuffle strategy, in
which a novel shuffle data transfer strategy is proposed, which dynamically adapts
the prefetching to the computation.

6 Chapter 1. Introduction

Paper (v) introduces the Loop-of-stencil-reduce paradigm that generalizes the itera-
tive application of a Map-Reduce pattern and discusses its GPU implementation in
FastFlow. As already done in this work, it will be possible to apply the same tech-
niques in the offloading of some PiCo operators to GPU (see Sect. 1.2). Paper (vi)
presents a novel approach for functional-style programming of distributed-memory
clusters with C++11, targeting data-centric applications. The proposed program-
ming model explores the usage of MPI as communication library for building the
runtime support of a non-SPMD programming model, as PiCo is. The paper itself
is a preliminary study for the PiCo DSL.

Papers (vii)–(xiv) are not directly related to this thesis. Most of them are related to
the design and optimization of parallel algorithms for Next Generation Sequencing
(NGS) and Systems Biology, which is an application domain of growing interest for
parallel computing. Also, most the algorithms in this domain are memory-bound,
as are many problems in Big Data analytics; moreover, they make a massive use of
pipelines to process NGS data, aspect that is reflected also in Big Data analytics.
Even if not directly related to this thesis, working on the parallel implementation
of NGS algorithms has definitely been an excellent motivation for this work.

Paper’s list is divided into journal and conference papers list.

Journal Papers

(i) Claudia Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison
of big data frameworks on a layered dataflow model. Parallel Processing
Letters, 27(01):1740003, 2017

(ii) B. Nicolae, C. H. A. Costa, Claudia Misale, K. Katrinis, and Y. Park.
Leveraging adaptative I/O to optimize collective data shuffling patterns for
big data analytics. IEEE Transactions on Parallel and Distributed Systems,
PP(99), 2016

(iii) M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, Claudia Misale,
G. Peretti Pezzi, and M. Torquati. A parallel pattern for iterative stencil +
reduce. Journal of Supercomputing, pages 1–16, 2016

(iv) F. Tordini, M. Drocco, Claudia Misale, L. Milanesi, P. Liò, I. Merelli,
M. Torquati, and M. Aldinucci. NuChart-II: the road to a fast and scal-
able tool for Hi-C data analysis. International Journal of High Performance
Computing Applications (IJHPCA), 2016

(v) Claudia Misale, G. Ferrero, M. Torquati, and M. Aldinucci. Sequence align-
ment tools: one parallel pattern to rule them all? BioMed Research Interna-
tional, 2014

(vi) M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, Claudia Misale,
C. Calcagno, and M. Coppo. Parallel stochastic systems biology in the cloud.
Briefings in Bioinformatics, 15(5):798–813, 2014

Conference Papers

(i) B. Nicolae, C. H. A. Costa, Claudia Misale, K. Katrinis, and Y. Park.
Towards memory-optimized data shuffling patterns for big data analytics. In
IEEE/ACM 16th Intl. Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2016, Cartagena, Colombia, 2016. IEEE

(ii) M. Drocco, Claudia Misale, and M. Aldinucci. A cluster-as-accelerator
approach for SPMD-free data parallelism. In Proc. of Intl. Euromicro PDP
2016: Parallel Distributed and network-based Processing, pages 350–353, Crete,
Greece, 2016. IEEE

1.5. Funding 7

(iii) F. Tordini, M. Drocco, Claudia Misale, L. Milanesi, P. Liò, I. Merelli, and
M. Aldinucci. Parallel exploration of the nuclear chromosome conformation
with NuChart-II. In Proc. of Intl. Euromicro PDP 2015: Parallel Distributed
and network-based Processing. IEEE, Mar. 2015

(iv) M. Drocco, Claudia Misale, G. Peretti Pezzi, F. Tordini, and M. Aldinucci.
Memory-optimised parallel processing of Hi-C data. In Proc. of Intl. Euromi-
cro PDP 2015: Parallel Distributed and network-based Processing, pages 1–8.
IEEE, Mar. 2015

(v) M. Aldinucci, M. Drocco, G. Peretti Pezzi, Claudia Misale, F. Tordini,
and M. Torquati. Exercising high-level parallel programming on streams: a
systems biology use case. In Proc. of the 2014 IEEE 34th Intl. Conference on
Distributed Computing Systems Workshops (ICDCS), Madrid, Spain, 2014.
IEEE

(vi) Claudia Misale. Accelerating bowtie2 with a lock-less concurrency approach
and memory affinity. In Proc. of Intl. Euromicro PDP 2014: Parallel Dis-
tributed and network-based Processing, Torino, Italy, 2014. IEEE. (Best paper
award)

(vii) Claudia Misale, M. Aldinucci, and M. Torquati. Memory affinity in multi-
threading: the bowtie2 case study. In Advanced Computer Architecture and
Compilation for High-Performance and Embedded Systems (ACACES) – Poster
Abstracts, Fiuggi, Italy, 2013. HiPEAC

1.5 Funding

This work has been partially supported by the Italian Ministry of Education and
Research (MIUR), by the EU-H2020 RIA project “Toreador” (no. 688797), the
EU-H2020 RIA project “Rephrase” (no. 644235), the EU-FP7 STREP project
“REPARA” (no. 609666), the EU-FP7 STREP project “Paraphrase” (no. 288570),
and the 2015-2016 IBM Ph.D. Scholarship program.

9

Chapter 2

Technical Background

In this chapter, we provide a technical background to help the reader go through
the topics of this thesis. We first review the most common parallel computing
platforms (Sect. 2.2); then we introduce the problem of effective programming of
such platforms exploiting high-level skeleton-based approaches on multicore and
multicore cluster platforms; in particular we present FastFlow, which we use in this
work to implement the PiCo runtime.

2.1 Parallel Computing

Computing hardware has evolved to sustain the demand for high-end performance
along two basic ways. On the one hand, the increase of clock frequency and the
exploitation of instruction-level parallelism boosted the computing power of the
single processor. On the other hand, many processors have been arranged in multi-
processors, multi-computers, and networks of geographically distributed machines.

Nowadays, after years of continual improvement of single core chips trying to in-
crease instruction-level parallelism, hardware manufacturers realized that the ef-
fort required for further improvements is no longer worth the benefits eventually
achieved. Microprocessor vendors have shifted their attention to thread-level paral-
lelism by designing chips with multiple internal cores, known as multicores (or chip
multiprocessors).

More generally, parallelism at multiple levels is now the driving force of computer
design across all classes of computers, from small desktop workstations to large
warehouse-scale computers.

2.2 Platforms

We briefly recap the review of existing parallel computing platforms from Hennessy
and Patterson [73].

Following Flynn’s taxonomy [69], we can define two main classes of architectures
supporting parallel computing:

• Single Instruction stream, Multiple Data streams (SIMD): the same instruc-
tion is executed by multiple processors on different data streams. SIMD
computers support data-level parallelism by applying the same operations to
multiple items of data in parallel.

• Multiple Instruction streams, Multiple Data streams (MIMD): each processor
fetches its own instructions and operates on its own data, and it targets task-
level parallelism. In general, MIMD is more flexible than SIMD and thus
more generally applicable, but it is inherently more expensive than SIMD.

10 Chapter 2. Technical Background

We can further subdivide MIMD into two subclasses:

– Tightly coupled MIMD architectures, which exploit thread-level paral-
lelism since multiple cooperating threads operate in parallel on the same
execution context;

– Loosely coupled MIMD architectures, which exploit request-level par-
allelism, where many independent tasks can proceed in parallel “natu-
rally” with little need for communication or synchronization.

Although it is a very common classification, this model is becoming more and more
coarse, as many processors are nowadays “hybrids” of the classes above (e.g., GPU).

2.2.1 SIMD computers

The first use of SIMD instructions was in 1970s with the vector supercomputers
such as the CDC Star-100 and the Texas Instruments ASC. Vector-processing ar-
chitectures are now considered separate from SIMD machines: vector machines were
processing the vectors one word at a time exploiting pipelined processors (though
still based on a single instruction), whereas modern SIMD machines process all
elements of the vector simultaneously [107].

Simple examples of SIMD computers are Intel Streaming SIMD Extensions (SSE) [76]
for the x86 architecture. Processors implementing SSE (with a dedicated unit) can
perform simultaneous operations on multiple operands in a single register. For
example, SSE instructions can simultaneously perform eight 16-bit operations on
128-bit registers.

AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD
instructions for x86 instruction set architecture (ISA) proposed by Intel in July
2013, and is supported in Intel’s Xeon Phi x200 (Knights Landing) processor [77].
Programs can pack eight double precision or sixteen single precision floating-point
numbers, or eight 64-bit integers, or sixteen 32-bit integers within the 512-bit vec-
tors. This enables processing of twice the number of data elements that AVX/AVX2
can process with a single instruction and four times that of SSE.

Advantages of such approach are almost negligible overhead and little hardware
cost; however, they are difficult to integrate into existing code, as this actually
requires writing in assembly language.

One of the most popular platform specifically targeting data-level parallelism con-
sists in the use of Graphics Processing Units (GPU) for general-purpose computing,
known as General-Purpose computing on Graphics Processing Units (GPGPU).
Moreover, using specific programming languages and frameworks (e.g., NVIDIA
CUDA [102], OpenCL [85]) partially reduces the gap between high computational
power and easiness of programming, though it still remains a low-level parallel
programming approach, since the user has to deal with close-to-metal aspects like
memory allocation and data movement between the GPU and the host platform.

Typical GPU architectures are not strictly SIMD architectures. For example,
NVIDIA CUDA-enabled GPUs are based on multithreading, thus they support all
types of parallelism; however, control hardware in these platforms is limited (e.g.,
no global thread synchronization), making GPGPU more suitable for data-level
parallelism.

Symmetric shared-memory multiprocessors

Thread-level parallelism implies the existence of multiple program counters, hence
being exploited primarily through MIMDs. Threads can also be used to support

2.2. Platforms 11

ProcessorProcessorProcessorProcessor

Main memory I/O system

One or

more levels

of cache

One or

more levels

of cache

One or

more levels

of cache

One or

more levels

of cache

Shared cache

Private

caches

Figure 2.1: Structure of an SMP.

data-level parallelism, but some overhead is introduced at least by thread commu-
nication and synchronization. This overhead means the grain size (i.e., the ratio of
computation to the amount of communication), which is a key factor for efficient
exploitation of thread-level parallelism.

The most common MIMD computers are multiprocessors, defined as computers
consisting of tightly coupled processors that share memory through a shared address
space. Single-chip systems with multiple cores are known as multicores. Symmetric
(shared-memory) multiprocessors (SMPs) typically feature small numbers of cores
(nowadays from 12 to 24), where processors can share a single centralized memory,
to which they all have equal access to (Fig. 2.1). In multicore chips, the memory
is effectively centralized, and all existing multicores are SMPs. SMP architectures
are also sometimes called uniform memory access (UMA) multiprocessors, arising
from the fact that all processors have a uniform latency from memory, even if the
memory is organized into multiple banks.

The alternative design approach consists of multiprocessors with physically dis-
tributed memory, called Distributed-Memory Systems (DSM). To support larger
numbers of processors, memory must be distributed rather than centralized; oth-
erwise, the memory system would not be able to support the bandwidth demands
of processors without incurring excessively long access latency. Such architectures
are known as nonuniform memory access (NUMA), since the access time depends
on the location of a data word in memory.

Memory consistency model

The memory model, or memory consistency model, specifies the values that a shared
variable read in a multithreaded program is allowed to return. The memory model
affects programmability, performance and portability by constraining the transfor-
mations that any part of the system may perform. Moreover, any part of the system
(hardware or software) that transforms the program must specify a memory model,
and the models at the different system levels must be compatible [[37, 115]]. The
most basic model is the Sequential Consistency, in which all instructions executed
by threads in a multithreaded program appear in a total order that is consistent with
the program order on each thread [88]. Some programming languages offer sequen-
tially consistency in a multiprocessor environment: in C++11, all shared variables
can be declared as atomic types with default memory ordering constraints. In Java,
all shared variables can be marked as volatile.

12 Chapter 2. Technical Background

For performance gains, modern CPUs often execute instructions out of order to
fully utilize resources. Since the hardware enforces instructions integrity, it can
be noticed in a single thread execution. However, in a multithreaded execution,
reordering may lead to unpredictable behaviors.

Different CPU families have different memory models, thus different rules concern-
ing memory ordering, but also the compiler optimizes the code by reordering in-
structions. To guarantee Sequential Consistency, you must consider how to prevent
memory reordering. Ways can be lightweight synchronizations or fences, full fence,
or acquire/release semantics. Sequential Consistency restricts many common com-
piler and hardware optimizations and to overcome the performance limitations of
this memory model, hardware vendors and researchers have proposed several relaxed
memory models reported in [4].

In lock-free programming for multicore (or any symmetric multiprocessor), sequen-
tial consistency must be ensured by preventing memory reordering. Herlihy and
Shavit [74] provide the following definition of lock-free programs: ”In an infinite
execution, infinitely often some method call finishes”. In other words, as long as
the program is able to keep calling lock-free operations, the number of completed
calls keeps increasing. It is algorithmically impossible for the system to lock up dur-
ing those operations. C/C++ and Java provide portable ways of writing lock-free
programs with sequential consistency or even weaker consistency models.

For such purpose of writing sequentially consistent multithreaded programs, C++
introduced the atomics standard library, which provides fine-grained atomic opera-
tions [37] that guarantee Sequential Consistency only for data race free programs,
hence allowing also lockless concurrent programming. Each atomic operation is in-
divisible with regards to any other atomic operation that involves the same object.
Atomic objects are free of data races.

Cache coherence and false sharing

SMP machines usually support the caching of both shared and private data, reduc-
ing the average access time as well as the required memory bandwidth. Unfortu-
nately, caching shared data introduces a new problem because the view of memory
held by two different processors is through their individual caches, which could end
up seeing two different values. This problem is generally referred to as the cache
coherence problem and several protocols have been designed to guarantee cache co-
herence. In cache-coherent SMP machines, false sharing is a subtle source of cache
miss, which arises from the use of an invalidation-based coherence algorithm. False
sharing occurs when a block is invalidated (and a subsequent reference causes a
miss) because some word in the block, other than the one being read, is written
into. In a false sharing miss, the block is shared, but no word in the cache is actually
shared, and the miss would not occur if the block size were a single word.

2.2.2 Manycore processors

Manycore processors are specialized multi-core processors designed to exploit a high
degree of parallelism, containing a large number of simpler, independent processor
cores, often called Hardware accelerators. A manycore processor contains at least
tens of cores and usually distributed memory, which are connected (but physically
separated) by an interconnect that has a communication latency of multiple clock
cycles [110]. A multicore architecture equipped with hardware accelerators is a form
of heterogeneous architecture. Comparing multicore to manycore processors, we can
characterize them as follows:

2.2. Platforms 13

• Multicore: a symmetric multiprocessing (SMP) architecture containing tightly
coupled identical cores that (usually) share all memory, where caches are
hardware cache coherent.

• Manycore: are specialized multicore processors designed for a high degree
of parallel processing, containing a large number of simpler, independent
processor cores (e.g., tens up to thousands) with a reduced cache coherency
to increase performance. A manycore architecture may run a specific OS, as
for Intel MIC coprocessor Xeon Phi.

As the core count increases, hardware cache coherency is unlikely to be sustained [45].
Accelerators share some features: they are typically slower with respect to multicore
CPUs, the high performance is obtained by high level of parallelism, data transfer
from host to device is slower than memory bandwidth in host processors and need
data locality to obtain good performance. Following we provide a description of
some of those accelerators, used regularly in High-Performance Computing (HPC).

• GPUs: Graphics Processing Units include a large number of small processing
cores (from hundreds to thousands) in an architecture optimized for highly
parallel workloads, paired with dedicated high performance memory. They
are accelerators, used from a general purpose CPU, that can deliver high
performance for some classes of algorithms. Programming GPUs requires
using the Nvidia CUDA programming model or the OpenCL cross-platforms
programming model.

• Intel Xeon Phi: Xeon Phi is a brand name given to a series of massively-
parallel multicore co-processors designed and manufactured by Intel, targeted
at HPC. An important component of the Intel Xeon Phi coprocessor’s core is
its Vector Processing Unit (VPU). In the second generation MIC architecture
product from Intel, Knights Landing, each core have two 512-bit vector units
and will support AVX-512 SIMD instructions, specifically the Intel AVX-512
Foundational Instructions (AVX-512F) with Intel AVX-512 Conflict Detec-
tion Instructions (AVX-512CD), Intel AVX-512 Exponential and Reciprocal
Instructions (AVX-512ER), and Intel AVX-512 Prefetch Instructions (AVX-
512PF) [77]. The Xeon Phi co-processor family can be programmed with
OpenMP, OpenCL, MPI and TBB using offloading directives, Cilk/Cilk Plus
and specialised versions of Intel’s Fortran, C++ and math libraries.

Differently from GPUs, which exist in different models with typically thou-
sands of cores, the co-processor comprises up to sixty-one Intel cores that can
run at most 4 hyper threads per core, and are connected by a high perfor-
mance on-die bidirectional interconnect [80].

Intel Knights Landing co-processor belongs to the Xeon family and is Xeon
Phi’s successor, increasing the total number of cores from 61 to 64, always
exploiting 4 hyper threads per core. Knights Landing is made up of 36 tiles.
Each tile contains two CPU cores and two VPUs (vector processing units) per
core (total of four per tile). Unlike GPUs and previous Xeon Phi manycore
cards, which functioned solely as co-processors, the new Knights Landing is
more than just an accelerator: it is designed to self-boot and can control an
operating system as the native processor.

• FPGA: Field Programmable Gate Arrays (FPGAs) are semiconductor de-
vices based around a matrix of configurable logic blocks (CLBs) connected
via programmable interconnects. FPGAs can be reprogrammed to desired ap-
plication or functionality requirements after manufacturing. The FPGA con-
figuration is generally specified using a hardware description language (HDL),
similar to that used for an application-specific integrated circuit (ASIC).

14 Chapter 2. Technical Background

2.2.3 Distributed Systems, Clusters and Clouds

A distributed system is a model in which components located on networked com-
puters communicate and coordinate their actions by passing messages. It can be
composed by various hardware and software components, thus exploiting homoge-
neous and heterogeneous architectures. An important aspect of distributed com-
puting architectures is the method of communicating and coordinating work among
concurrent processes. Through various message passing protocols, processes may
communicate directly with one another, typically in a master-slave relationship,
operating to fulfill the same objective. This master-slave relationship reflects the
typical execution model of Big Data analytics tools on distributed systems: the mas-
ter process is assigned to coordinate slaves execution (typically called workers) and
coordination. Slaves may execute the same program or part of the computation, and
they communicate with each other and with the master by message passing. Mas-
ter and slaves may also exchange data via serialization. From the implementation
viewpoint, those architectures are typically programmed by exploiting the Message
Passing Interface (MPI) [105], a language-independent communication protocol used
for programming parallel computers, as well as a message-passing API that supports
point-to-point and collective communication by means of directly callable routines.
Many general-purpose programming languages have bindings to MPI’s functional-
ities, among which: C, C++, Fortran, Java and Python. Moving to the Big Data
world, tools are often implemented in Java in order to easily exploit facilities such as
Java RMI API [103], which performs remote method invocation supporting direct
transfer of serialized Java classes and distributed garbage collection. These models
for communication will be further investigated in Section 2.3.3.

In contrast with shared-memory architectures, clusters look like individual comput-
ers connected by a network. Since each processor has its own address space, the
memory of one processor cannot be accessed by another processor without the as-
sistance of software protocols running on both processors. In such design, message-
passing protocols are used to communicate data among processors. Clusters are
examples of loosely coupled MIMDs. These large-scale systems are typically used
for cloud computing with a model that assumes either massive numbers of indepen-
dent requests or highly parallel intensive compute tasks.

There are two classes of large-scale distributed systems:

1) Private clouds, in particular multicore clusters, which are inter networked —
possibly heterogeneous — multicore devices.

2) Public clouds, which are (physical or virtual) infrastructures offered by providers
in the form of inter networked clusters. In the most basic public cloud model,
providers of IaaS (Infrastructures-as-a-Service) offer computers — physical or (more
often) virtual machines — and other resources on-demand. Public IaaS clouds can
be regarded as virtual multicore clusters. The public cloud model encompasses a
pay-per-use business model. End users are not required to take care of hardware,
power consumption, reliability, robustness, security, and the problems related to
the deployment of a physical computing infrastructure.

2.3 Parallel Programming Models

Shifting from sequential to parallel computing, a trend largely motivated by the
advent of multicore platforms, does not always translate into greater CPU perfor-
mance: multicores are small-scale but full-fledged parallel machines and they retain
many of their usage problems. In particular, sequential code will get no performance
benefits from them: a workstation equipped with a quad-core CPU but running se-
quential code is wasting 3

4 of its computational power. Developers are then facing

2.3. Parallel Programming Models 15

the challenge of achieving a trade-off between performance and human productivity
(total cost and time to solution) in developing and porting applications to multicore
and parallel platforms in general.

Therefore, effective parallel programming happens to be a key factor for efficient
parallel computing, but efficiency is not the only issue faced by parallel program-
mers: writing parallel code that is portable on different platforms and maintainable
are tasks that programming models should address.

2.3.1 Types of parallelism

Types of parallelisms can be categorized in four main classes:

• Task Parallelism consists of running the same or different code (task) on
different executors (cores, processors, etc.). Tasks are concretely performed
by threads or processes, which may communicate with one another as they
execute. Communication takes place usually to pass data from one thread to
the next as part of a graph. Task parallelism does not necessarily concern
stream parallelism, but there might cases in which the computation of each
single item in a input stream embeds an independent (thus parallel) task, that
can efficiently be exploited to speedup the application. The farm pattern is
a typical representation of such class of patterns, as we will describe in next
sections.

• Data Parallelism is a method for parallelizing a single task by processing
independent data elements in parallel. The flexibility of the technique re-
lies upon stateless processing routines implying that the data elements must
be fully independent. Data Parallelism also supports Loop-level Parallelism
where successive iterations of a loop working on independent or read-only
data are parallelized in different flows-of-control (according to the model co-
begin/co-end) and concurrently executed.

• Stream Parallelism is a method for parallelizing the execution (aka. filtering)
of a stream of tasks by segmenting each task into a series of sequential1 or
parallel stages. This method can be also applied when there exists a total
or partial order, respectively, in a computation preventing the use of data
or task parallelism. This might also come from the successive availability of
input data along time (e.g., data flowing from a device). By processing data
elements in order, local state may be either maintained in each stage or dis-
tributed (replicated, scattered, etc.) along streams. Parallelism is achieved
by running each stage simultaneously on subsequent or independent data el-
ements.

• DataFlow Parallelism is a programming paradigm modeling a (parallel) pro-
gram as a directed graph where operations are represented by nodes, and
edges model data dependencies. Nodes in this graph represent functional
unit of computation over data item (tokens) flowing on edges. In contrast
with procedural (imperative) programming model, a DataFlow program is
described as a set of operations and connections among them, defined as a
set of input and output edges. Operations execute as soon as all their input
edges have an incoming token available and operations without a direct de-
pendence can be run in parallel. This model, formalized by Kahn [83], is one
of the main building blocks of the model proposed in this thesis. A further
description is provided in subsequent sections.

Since Data Parallelism and Dataflow Parallelism are important aspects in this work,
we explore them further in the next two paragraphs.

1In the case of total sequential stages, the method is also known as Pipeline Parallelism.

16 Chapter 2. Technical Background

f(x)i

f(x)i

f(x)i

f(x)i1x

2x

n-1x
n-2x
n-3x

0x

1y

2y

n-1y
n-2y
n-3y

0y

Figure 2.2: A general representation of a Map data parallel
pattern. Input data structure is partitioned according to
the number of workers. Business logic function is replicated

among each worker.

Data parallelism

A data-parallel computation performs the same operation on different items of a
given data structure at the same time. Opposite to task parallelism, which empha-
sizes the parallel nature of the computation, data parallelism stresses the parallel
nature of the data2.

Formally, a data parallel computation is characterized by partitioning data struc-
tures and function replication: a common partitioning approach divides input data
between the available processors. Depending on the algorithm, there might be cases
in which data dependencies exist among partitioned subtasks: many data-parallel
programs may suffer from bad performance and poor scalability because of a high
number of data dependencies or a low amount of inherent parallelism.

Here we present two widely used instances of data parallel patterns, namely the
map and the reduce patterns, that are also the most often used patterns in Big
Data scenarios. Other data parallel patterns exist, which basically permit to apply
higher-order functions to all the elements of a data structure. Among them we
can mention the fold pattern and the scan (or prefix sum) pattern. There is also
the stencil pattern, which is a generalization of the map pattern, and under a
functional perspective both patterns are similar, but the stencil encompasses all
those situations that require data exchange among workers [12].

Map

The map pattern is a straightforward case of data parallel paradigm: given a func-
tion f that expresses an application’s behavior, and a data collection X of known
size (e.g., a vector with n elements), a map pattern will apply the function f to all
the elements xi ∈ X:

yi = f(xi) ∀i = 0, . . . , n− 1 .

Each element yi of the resulting output vector Y is the result of a parallel compu-
tation. A pictorial representation of the map pattern is presented in Fig. 2.2.

Notable examples that naturally fit this paradigm include some vector operations
(scalar-vector multiplication, vector sum, etc.), matrix-matrix multiplication (in

2We denote this difference by using a zero-based numbering when indexing data struc-
tures in data parallel patterns.

2.3. Parallel Programming Models 17

1x2xn-1x n-2x n-3x 0x

Figure 2.3: A general Reduce pattern: the reduction is
performed in parallel organizing workers in a tree-like struc-
ture: each worker computes the function ⊕ on the results
communicated by the son worker. The root worker delivers

the reduce result.

which the result matrix is partitioned, the input matrices replicated), the Mandel-
brot set calculation, and many others.

Reduce

A reduce pattern applies an associative binary function (⊕) to all the elements of
a data structure. Given a vector X of length n, the reduce pattern computes the
following result:

x0 ⊕ x1 ⊕ . . .⊕ xn−1 .

In Figure 2.3, we report an example of a possible implementation of a reduce pattern,
in which the reduce operator is applied over the assigned partition of the vector in
parallel, and each single result is then used to compute a global reduce. In a tree-
like organization, leaf nodes compute their local reduce and then propagate results
to parent nodes; the root node delivers the reduce result.

While the reduce pattern is straightforward for associative and commutative oper-
ators (e.g., addition and multiplication of real numbers is associative), this is no
more true for floating point operators. Floating-point operations, as defined in the
IEEE-754 standard, are not associative [1]. Studies demonstrated how, on massively
multi-threaded systems, the non-deterministic nature of how machine floating-point
operations are interleaved, combined with the fact that intermediate values have to
be rounded or truncated to fit in the available precision leads to non-deterministic
numerical error propagation [129].

The composition of a map step and a reduce step generates the Map+Reduce pat-
tern, in which a function is first applied, in parallel, to all elements of a data
structure, and then the results from the map phase are merged using some reduc-
tion function (see Figure 2.4). This is an important example of the composability
allowed by parallel patterns, which permits to define a whole class of algorithms for
data-parallel computation.

The functional composition of these two parallel patterns is the basis of Google’s
MapReduce distributed programming model and framework [61], which exploits key-
value pairs to compute problems that can be parallelized by mapping a function

18 Chapter 2. Technical Background

Figure 2.4: A Map+Reduce pattern.

over a given dataset and then combining the results. Likely, it is the largest pat-
tern framework in use, and spun off different open-source implementations, such as
Hadoop [130] and Phoenix [109].

Both Map and Reduce patterns are exploited in PiCo and they are further described
in Chapter 5.

2.3.2 The Dataflow Model

Dataflow Process Networks are a special case of Kahn Process Networks, a model
of computation that describes a program as a set of concurrent processes commu-
nicating with each other via FIFO channels, where reads are blocking and writes
are non-blocking [83]. In a Dataflow process network, a set of firing rules is associ-
ated with each process, called actor. Processing then consists of “repeated firings
of actors”, where an actor represents a functional unit of computation over tokens.
For an actor, to be functional means that firings have no side effects—thus actors
are stateless—and the output tokens are pure functions of the input tokens. The
model can also be extended to allow stateful actors.

A Dataflow network can be executed mainly by two classes of execution, namely
process-based and scheduling-based—other models are flavors of these two. The
process-based model is straightforward: each actor is represented by a process that
communicates via FIFO channels. In the scheduling-based model—also known as
dynamic scheduling—a scheduler tracks the availability of tokens in input to actors
and schedules enabled actors for execution; the atomic unit being scheduled is
referred as a task and represents the computation performed by an actor over a
single set of input tokens.

Actors

A Dataflow actor consumes input tokens when it fires and then produces output
tokens; thus it repeatedly fires on tokens arriving from one or more streams. The

2.3. Parallel Programming Models 19

function mapping input to output tokens is called the kernel of an actor.3 A firing
rule defines when an actor can fire. Each rule defines what tokens have to be
available for the actor to fire. Multiple rules can be combined to program arbitrarily
complex firing logics (e.g., the If node).

Input channels

The kernel function takes as input one or more tokens from one or more input
channels when a firing rule is activated. The basic model can be extended to allow
for testing input channels for emptiness, to express arbitrary stream consuming
policies (e.g., gathering from any channel).

Output channels

The kernel function places one or more tokens into one or more output channels
when a firing rule is activated. Each output token produced by a firing can be
replicated and placed onto each output channel (i.e., broadcasting) or sent to specific
channels, in order to model arbitrarily producing policies (e.g., switch, scatter).

Stateful actors

Actors with state can be considered like objects (instead of functions) with methods
used to modify the object’s internal state. Stateful actors is an extension that allows
side effects over local (i.e., internal to each actor) states. It was shown by Lee and
Parks [91] that stateful actors can be emulated in the stateless Dataflow model
by adding an extra feedback channel carrying the value of the state to the next
execution of the kernel function on the next element of the stream and by defining
appropriate firing rules.

In the next sections, we provide a description of various other low-level and high-
level programming models and techniques.

2.3.3 Low-level approaches

Typically, low-level approaches provide the programmers only with primitives for
flow-of-control management (creation, destruction), their synchronization and data
sharing, which are usually accomplished in critical regions accessed in mutual exclu-
sion (mutex). As an example, POSIX thread library can be used for this purpose.
Parallel programming languages are usually extensions to well-established sequen-
tial languages, such as C/C++, Java or Fortran, where the coordination of multiple
execution flows is either obtained by means of external libraries, linked at compile
time to the application source code (e.g., Pthreads, OpenMP, MPI), or enriched
with specific constructs useful to orchestrate the parallel computation, for instance
consider the Java Concurrency API and the C++11 standard published in 2011,
which introduced multithreaded programming. The well known report, authored
by H. Boehm [36], provides specific arguments that a pure library approach, in
which the compiler is designed independently of threading issues, cannot guarantee
correctness of the resulting code. It is illustrated that there are very simple cases
(concurrent modification, adjacent data rewriting and register promotion) in which

3The Dataflow Process Network model also seamlessly comprehends the Macro
Dataflow parallel execution model, in which each process executes arbitrary code. Con-
versely, an actor’s code in a classical Dataflow architecture model is typically a single
machine instruction. In the following, we consider Dataflow and Macro Dataflow to be
equivalent models.

20 Chapter 2. Technical Background

a pure library-based approach seems incapable of expressing an efficient parallel
algorithm.

Programming parallel complex applications in this way is certainly hard; tuning
them for performance is often even harder due to the non-trivial effects induced by
memory fences (used to implement mutex) on data replicated in core’s caches.

Indeed, memory fences are one of the key sources of performance degradation in
communication intensive (e.g., streaming) parallel applications. Avoiding memory
fences means not only avoiding locks but also any kind of atomic operation in
memory (e.g., Compare-And-Swap, Fetch-and-Add). While there exists several
assessed fence-free solutions for asynchronous symmetric communications,4 these
results cannot be easily extended to asynchronous asymmetric communications5,
which are necessary to support arbitrary streaming networks. This ability is one of
the core features of FastFlow (2.4.1).

A first way to ease the programmer’s task and improve program efficiency consists
in raising the level of abstraction of concurrency management primitives. As an
example, threads might be abstracted out in higher-level entities that can be pooled
and scheduled in user space possibly according to specific strategies to minimize
cache flushing or maximize load balancing of cores. Synchronization primitives can
be also abstracted out and associated to semantically meaningful points of the code,
such as function calls and returns, loops, etc. Intel Threading Building Block (TBB)
[78], OpenMP [106], and Cilk [47] all provide this kind of abstraction — each of
them in its own way. This kind of abstraction significantly simplifies the hand-
coding of applications but it is still too low-level to effectively (semi-)automatize
the optimization of the parallel code. In the following paragraphs, we describe a
bit more in detail a list of low level parallel programming frameworks and APIs.

POSIX Threads (or Pthreads) [40] are one of the most famous low-level paral-
lel programming APIs for shared-memory environments, defined by the standard
POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995). They are present in ev-
ery Unix-like operating system (Linux, Solaris, Mac OS X, etc.) and other POSIX
systems, giving access to OS-level threads and synchronization mechanisms. Since
Pthreads is a C library, it can be used in C++ programs as well, though there
have been much improvements in the C++11 standard aimed at facilitating shared-
memory parallel programming from a low-level to a high-level parallel programming.
We remark that ISO C++ is completely independent from POSIX and it is provided
also in non-POSIX platforms.

Message Passing Interface (MPI) [105] is a language-independent communica-
tion protocol used for programming parallel computers, as well as a message-passing
API that supports point-to-point and collective communication by means of directly
callable routines. Many general-purpose programming languages have bindings to
MPI’s functionalities, among which: C, C++, Fortran, Java and Python.

Mainly targeted at distributed architectures, MPI offers specific implementations for
almost any high-performance interconnection network. At the same time, shared-
memory implementations exist, that allow the use of MPI even on NUMA and
multi-processors systems.

MPI allows to manage synchronization and communication functionalities among
a set of processes, and provides mechanisms to deploy a virtual topology of the
system upon which the program is executing. These features, supported by a rich
set of capabilities and functions, clearly require high programming and networking
skills: MPI has long been the lingua franca of HPC, supporting the majority of
all supercomputing work scientists and engineers have relied upon for the past two
decades. Nonetheless, MPI is at a low level of abstraction for application writers:

4Single-Producer-Single-Consumer (SPSC) queues [89].
5Multiple-Producer-Multiple-Consumer queues (MPMC).

2.3. Parallel Programming Models 21

using MPI means programming at the transport layer, where every exchange of
data has to be implemented through sends and receives, data structures must be
manually decomposed across processors and every update of the data structure
needs to be recast into a flurry of messages, synchronizations, and data exchange.

OpenMP [106] is considered by many the de facto standard API for shared-memory
parallel programming. OpenMP is an extension that can be supported by C, C++
and Fortran compilers and defines an “accelerator-style” programming, where the
main program is run sequentially while code is accelerated in specific points, running
in parallel, using special preprocessor instructions known as pragmas. Compilers
that do not support specific pragmas can ignore them, making an OpenMP program
compilable and runnable on every system with a generic sequential compiler.

While Pthreads are low-level and require the programmer to specify every detail
of the behavior of each thread, OpenMP allows to simply state which block of
code should be executed in parallel, leaving to compiler and run-time system the
responsibility to determine the details of the thread behavior. This feature makes
OpenMP programs simpler to code, with a risk of unpredictable performance that
strongly depends on compiler implementations and optimizations. For instance,
in [111] OpenMP limitations have been demonstrated such as its inability to perform
reductions on complex data types as well as scheduling issues on applications with
irregular computations (such as the Mandelbrot benchmark).

OpenCL [85] is an API designed to write parallel programs that execute across
heterogeneous architectures, and allows the users to exploit GPUs for general pur-
pose tasks that can be parallelized. It is implemented by different hardware ven-
dors such as Intel, AMD and NVIDIA, making it highly portable and allowing
OpenCL code to be run on different hardware accelerators. OpenCL allows the im-
plementation of applications onto FPGAs, allowing software programmers to write
hardware-accelerated kernel functions in OpenCL C, an ANSI C-based language
with additional OpenCL constructs. OpenCL represents an extension to C/C++
but must be considered a low-level language, focusing on low-level features manage-
ment rather than high-level parallelism exploitation patterns. It has the capability
to revert to the CPU for execution when there is no GPU in the system, and its
portability makes it suitable for hybrid (CPU/GPU) or cloud based environments.

Java provides multi-threading and RPC support (Java RMI API) that can be
used to write parallel applications for both shared memory and distributed memory
architectures [103]. The original implementation depends on Java Virtual Machine
(JVM) class representation mechanisms and it only supports making calls from one
JVM to another. However, while being a high-level sequential language, parallel
support is provided in a low-level fashion, possibly lower than OpenMP.

2.3.4 High-level approaches

Parallel programming has always been related to HPC environments, where pro-
grammers write parallel code by mean of low-level libraries that give complete con-
trol over the parallel application, allowing them to manually optimize the code in
order to exploit at best the parallel architecture. This programming methodol-
ogy has become unsuitable with the fast move to heterogeneous architectures, that
encompass hardware accelerators, distributed shared-memory systems and cloud
infrastructures, highlighting the need for proper tools to easily implement parallel
applications.

It is widely acknowledged that the main problem to be addressed by a parallel
programming model is portability : the ability to not only compile and execute the
same code on different architectures and obtain the same top performance [58], but
also — and even more complex — the challenge of performance portability, that
is, implementing applications that scale on different architectures. A high-level

22 Chapter 2. Technical Background

approach to parallel programming is a better way to go if we want to address this
problem, so that programmers can build parallel applications and be sure that they
will perform reasonably well on the wide choice of parallel architectures available
today [114].

Attempts to raise the level of abstraction and reduce the programming effort date
back to at least three decades. Notable results have been achieved by the algo-
rithmic skeleton approach [48] (aka. pattern-based parallel programming), that has
gained popularity after being revamped by several successful parallel programming
frameworks. Despite some criticisms — mostly related to the limited amount of
patterns that might not be sufficient to allow a decent parallelization of most al-
gorithms — algorithmic skeletons success has been determined by the numerous
advantages it has compared to traditional parallel programming frameworks.

2.3.5 Skeleton-based approaches

Algorithmic skeletons have been initially proposed by Cole [49] to provide prede-
fined parallel computation and communication patterns, hiding parallelism manage-
ment from the user. Algorithmic skeletons capture common parallel programming
paradigms (e.g., Map+Reduce, ForAll, Divide&Conquer, etc.) and make them
available to the programmer as high-level programming constructs equipped with
well-defined functional and extra-functional semantics [11]. Ideally, algorithmic
skeletons address the difficulties of parallel programming (i.e., concurrency exploita-
tion, orchestration, mapping, tuning) moving them from the application design to
development tools, by capturing and abstracting common paradigms of parallel
programming and providing them with efficient implementations. This idea can be
considered at the core of structured parallel programming : expressing the parallel
code as a composition of simple “building blocks”.

Literature review of skeleton-based approaches

Many skeletons have been proposed in literature in the last two decades covering
many different usage schema of the three classes of parallelism, on top of both the
message passing [50, 57, 113, 9, 16, 35, 108, 13, 61, 10] and shared memory [7, 78]
programming models.

Here, we discuss some skeleton libraries that target C/C++ as their execution lan-
guage, and mostly focus on parallel programming for multi-core architectures. For
a broader survey of algorithmic skeletons, we refer to González-Vélez and Leyton’s
survey [71].

P3L is one of the earliest proposal for pattern-based parallel programming [53]. P 3L
is a skeleton-based coordination language that manages the parallel or sequential
execution of C code. It comes with a proper compiler for the language, and uses
implementation templates to compile the code into a target architecture. P 3L
provides patterns for both stream parallelism and data parallelism.

SKELib [54] builds upon the contributions of P 3L by inheriting, among other
features, the template system. It differs from P 3L because a coordination language
is no longer used, and skeletons are provided as a C library. It only offers stream-
based skeletons (namely farm and pipe patterns).

SkeTo [95] is a C++ library based on MPI that provides skeletons for distributed
data structures, such as arrays, matrices, and trees. The current version is based
on C++ expression templates, used to represent part of an expression where the
template represents the operation and parameters represent the operands to which
the operation applies.

2.3. Parallel Programming Models 23

SkePU [66] is an open-source skeleton programming framework for multi-core
CPUs and multi-GPU systems. It is a C++ template library with data-parallel and
task-parallel skeletons (map, reduce, map-reduce, farm) that also provides generic
container types and support for execution on multi-GPU systems, both with CUDA
and OpenCL.

SkelCL [116] is a skeleton library targeting OpenCL. It allows the declaration of
skeleton-based applications hiding all the low-level details of OpenCL. The set of
skeletons is currently limited to data-parallel patterns: map, zip, reduce and scan,
and it is unclear whether skeleton nesting is allowed. A limitation might come from
the library’s target, which is restricted to the OpenCL language: it likely benefits
from the possibility to run OpenCL code both on multi-core and on many-core
architectures, but the window for tunings and optimizations is thus quite restricted.

Muesli — Muenster Skeleton Library [46] — is a C++ template library that sup-
ports shared-memory multi-processor and distributed architectures using MPI and
OpenMP as underlying parallel engines. It provides data parallel patterns such as
map, fold (i.e., reduce), scan (i.e., prefix sum), and distributed data structures like
distributed arrays, matrices and sparse matrices. Skeleton functions are passed to
distributed objects as pointers, since each distributed object has skeleton functions
as internal member of the class itself. The programmer must explicitly indicate
whether GPUs are to be used for data parallel skeletons, if available.

Intel Threading Building Blocks (TBB) [78] defines a set of high-level paral-
lel patterns that permit to exploit parallelism independently from the underlying
platform details and threading mechanisms. It targets shared-memory multi-core
architectures, and exposes parallel patterns for exploiting both stream parallelism
and data parallelism. Among them, the parallel for and parallel foreach

methods may be used to parallelize independent invocation of the function body
of a for loop, whose number of iterations is known in advance. C++11 lambda
expression can be used as arguments to these calls, so that the loop body function
can be described as part of the call, rather than being separately declared. The
parallel for uses a divide-and-conquer approach, where a range [0, num iter) is
splitted into sub-ranges and each sub-range r can be processed as a separate task
using a serial for loop.

GrPPI [62] is a generic high-level pattern interface for stream-based C++ appli-
cations. Thanks to its high-level C++ API, this interface allows users to easily
expose parallelism in sequential applications using already existing parallel frame-
works, such as C++ threads, OpenMP and Intel TBB. It is implemented using C++
template meta-programming techniques to provide interfaces of a generic, reusable
set of parallel patter patterns without incurring in runtime overheads. GrPPI tar-
gets the following stream parallel processing patterns: Pipeline, Farm, Filter and
Stream-Reduce. Parallel versions and to implement the proposed interfaces are im-
plemented by we leveraging C++11 threads and OpenMP, and the pattern-based
parallel framework Intel TBB. These patterns are parametrized by user defined
lambdas and they are nestable.

FastFlow [15] is a parallel programming framework originally designed to support
streaming applications on cache-coherent multicore platforms. It will be described
more in detail in Section 2.4.1, since it is part of the PiCo runtime.

2.3.6 Skeletons for stream parallelism

A stream-parallel program can be naturally represented as a graph of independent
stages (kernels or filters) which communicate over data channels. Conceptually, a
streaming computation represents a sequence of transformations on the data streams

24 Chapter 2. Technical Background

in the program. Parallelism is achieved by running each stage of the graph simul-
taneously on subsequent or independent data elements. Several skeletons exist that
support stream-parallel programming.

The Pipeline skeleton is one of the most widely-known pattern (see Fig. 2.5). Par-
allelism is achieved by running each stage simultaneously on subsequent data ele-
ments, with the pipeline’s throughput being limited by the throughput of the slowest
stage. It is typically used to model computations expressed in stages, and in the
general case a pipeline has at least two stages. Given a sequence x1, . . . , xk of input
tasks and the simplest form of a pipeline with three stages, the computation on
each single task xi is expressed as the composition of three functions f , z and g,
where the second stage (function z) executes on the results of the application of
the first stage, z(f(xi)), and third stage applies the function z on the output of the
second stage: g(z(f(xi))).

r1xk-1 p = rk rk-1p = f(x)ii r = g(q)i i
x1xk p = q = z(p) ii

Figure 2.5: A general Pipeline pattern with three stages.

The parallelization is obtained by concurrently executing all the stages onto different
consecutive items of the input stream. In the general form, a pipeline with stages
s1, . . . , sm computes the output stream

sm(sm−1(. . . s2(s1(xk)) . . .)), . . . , sm(sm−1(. . . s2(s1(x1)) . . .)) .

The sequential code has to be described in terms of function composition, where the
output of each stage is sent to the next one, respecting the function ordering. The
semantic of the pipeline paradigm ensures that all stages will execute in parallel.

The Farm skeleton models functional replication and consists in running multiple
independent stages in parallel, each operating on different tasks of the input stream,
thus it is often used to model embarrassingly parallel computations.

The Farm skeleton can be better understood as a three stage — emitter, workers,
collector — pipeline (see Fig. 2.6). The emitter dispatches stream items to a set of
workers, which independently elaborate different items. The output of the workers
is then gathered by the collector into a single stream. More complex combinations
of both patterns are possible, such as a pipeline of farms, where each stage of the
pipeline is, in fact, a farm (as in Figure 2.7).

x1 y1xk-1 yk yk-1emitter collectorxk

f(x)i

f(x)i

f(x)i

f(x)i

s1 s3

s2

Figure 2.6: A simple Farm pattern with an optional col-
lector stage, whose stroke is dashed. Background light-gray
boxes show that a farm pattern can be embedded into a

three-stages pipeline.

2.4. Programming multicore clusters 25

x1 y1xk-1 yk yk-1xk E C

W

W

W

W

s1

1 1

1

1

1

11

E C

W

W

W

W

s2

2 2

2

2

2

2

Figure 2.7: A combination of pipeline and farm patterns,
where each stage of a two-stage pipeline is a farm. In this fig-
ure, subscripts in farms components are used to distinguish

the two farms.

The Loop skeleton (also known as feedback), provides a way to generate cycles in a
stream graph. By using a feedback channel, it is possible to route back results in
order to implement iterative computations. This skeleton is typically used together
with the farm skeleton to model recursive and Divide&Conquer computations, in
which an input task is recursively sub-divided in sub-tasks until a condition is met,
then each sub-task is executed and results are merged. For instance, in a Farm
pattern as in Fig. 2.6 we can connect the Collector to the Emitter with a feedback
channel. In general it is possible to connect Farm, Pipeline and feedback channels
to build more complex networks.

2.4 Programming multicore clusters

Programming tools and frameworks are needed to efficiently target architectures
hosting inter networked — possibly heterogeneous — multicore devices, which ap-
pear to be the reference architecture ferrying programmers from the mainly sequen-
tial to mainly parallel programming era [29].

Shared-memory multicores and clusters/networks of processing elements require
quite different techniques and tools to support efficient parallelism exploitation.
The de facto standard tools in both cases are OpenMP [106] and MPI [105], used
either alone or in conjunction. Despite being efficient on some classes of applications,
OpenMP and MPI share a common set of problems: poor separation of concerns
among application and system aspects, a rather low level of abstraction presented to
the application programmers, and poor support for really fine grained applications.

At the moment, it is not clear if the mixed MPI/OpenMP programming model
always offers the most effective mechanisms for programming clusters of SMP sys-
tems [41]. Furthermore, when directly using communication libraries such as MPI,
the abstraction level is rather low and the programmer has to think about decompos-
ing the problem, integrating the partial solutions, and bother with communication
problems such as deadlocks and starvation.

Therefore, we advocate the use of high-level parallel programming frameworks tar-
geting hybrid multicore and distributed platforms as a vehicle for building efficient
parallel software — possibly derived semi-automatically from sequential code —
featuring performance portability over heterogeneous parallel platforms.

2.4.1 FastFlow

FastFlow [56] is an open source, structured parallel programming framework sup-
porting highly efficient stream parallel computation while targeting shared memory
multicores. Its efficiency mainly comes from the optimized implementation of the
base communication mechanisms and from its layered design. It provides a set of

26 Chapter 2. Technical Background

ready-to-use, parametric algorithmic skeletons modeling the most common paral-
lelism exploitation patterns, which may be freely nested to model more complex
parallelism exploitation patterns. It is realized as a C++ pattern-based parallel
programming framework aimed at simplifying the development of applications for
(shared-memory) multi-core and GPGPU platforms.

The key vision of FastFlow is that ease-of-development and runtime efficiency can
both be achieved by raising the abstraction level of the design phase. FastFlow
provides a set of algorithmic skeletons addressing both stream parallelism — with
the farm and pipeline patterns — and data parallelism — providing stencil, map,
reduce pattern, and their arbitrary nesting and composition [19]. Map, reduce
and stencil patterns can be run both on multi-cores and offloaded onto GPUs. In
the latter case, the user code can include GPU-specific statements (i.e., CUDA or
OpenCL statements).

Leveraging the farm skeleton, FastFlow exposes a ParallelFor pattern [55], where
chunks of a loop iterations having the form for(idx=start;idx<stop;idx+=step)

are executed by the farm workers. Just like TBB, FastFlow’s ParallelFor pattern
uses C++11 lambda expression as a concise and elegant way to create function
objects: lambdas can “capture” the state of non-local variables by value or by
reference and allow functions to be syntactically defined when needed.

From the performance viewpoint, one distinguishing feature at the core of Fast-
Flow is that it supports lock-free (fence-free) Multiple-Producer-Multiple-Consumer
(MPMC) queues [18] that can support low-overhead high-bandwidth multi-party
communications on multicore architectures, i.e., any streaming network, including
cyclic graphs of threads. The key intuition underneath FastFlow is to provide the
programmer with lock-free MP queues and MC queues (that can be used in pipeline
to build MPMC queues) to support fast streaming networks.

Traditionally, MPMC queues are built as passive entities: threads concurrently
synchronize (according to some protocol) to access data; these synchronizations are
usually supported by one or more atomic operations (e.g., Compare-And-Swap)
that behave as memory fences. FastFlow design follows a different approach: to
avoid any memory fence, the synchronizations among queue readers or writers are
arbitrated by an active entity (e.g., a thread). We call these entities Emitter (E) or
Collector (C) according to their role; they actually read an item from one or more
lock-free SPSC queues and write onto one or more lock-free SPSC queues. This
requires a memory copy but no atomic operations.

The performance advantage of this solution comes from the higher speed of the copy
operation compared with the memory fence; this advantage is further increased by
avoiding cache invalidation triggered by fences. This also depends on the size and
the memory layout of copied data. The former point is addressed using data pointers
instead of data, and ensuring that the data is not concurrently written: in many
cases this can be derived by the semantics of the skeleton that has been implemented
using MPMC queues — as an example this is guaranteed in a stateless farm and
many other cases.

FastFlow design is layered (see Fig. 2.8). The lower layer, called simple streaming
networks, basically provides two basic abstractions:

• process-component, i.e., a control flow realized with POSIX threads and pro-
cesses, for multicore and distributed platforms respectively.

• 1-1 channel, i.e., a communication channel between two components, real-
ized with wait-free single-producer/single-consumer queues (FF-SPSC) [14]
or zero-copy ZeroMQ channels [134], for multicore and distributed platforms,
respectively.

2.4. Programming multicore clusters 27

Core patterns
pipeline, farm, feedback

High-level patterns
parallel_for, parallel_forReduce, …

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

OpenCL

Figure 2.8: Layered FastFlow design .

Both realizations of the 1-1 channel are top state-of-the-art in their classes, in terms
of latency and bandwidth. As an example, FF-SPSC exhibits a latency down to 10
nanoseconds per message on a standard Intel Xeon @2.0GHz [14].

1 class ff_node {

2 protected:

3 virtual bool push(void* data) { return qout->push(data); }

4 virtual bool pop(void** data) { return qin->pop(data); }

5 public:

6 virtual void* svc(void * task) = 0;

7 virtual int svc_init() { return 0; };

8 virtual void svc_end() {}

9 ...

10 private:

11 SPSC* qin;

12 SPSC* qout;

13 };

Listing 2.1: FastFlow ff node class schema.

Above this mechanism, the second layer — called arbitrary streaming networks —
further generalizes the two concepts, providing:

• FastFlow node, i.e., the basic unit of parallelism that is typically identified
with a node in a streaming network. It is used to encapsulate sequential
portions of code implementing functions, as well as high-level parallel pat-
terns such as pipelines and farms. From the implementation viewpoint, the
ff_node C++ class realizes a node in the shared-memory scenario and the
ff_dnode extends it in the distributed memory setting (see Listing 2.1).

• Collective channel, i.e., a collective communication channel, either among
ff_nodes or many ff_dnodes.

Eventually, the third layer provides the farm, pipeline and other parallel patterns
as C++ classes.

Each ff node is used to run a concurrent activity in a component, and it has two
associated channels: one used to receive input data (pointers) to be processed and
one to deliver the (pointers to the) computed results. Representing communication
and synchronization as a channel ensures that synchronisation is tied to communi-
cation and allows layers of abstraction at higher levels to compose parallel programs
where synchronization is implicit. The svc method encapsulates the computation

28 Chapter 2. Technical Background

to be performed on each input datum to obtain the output result. svc_init and
svc_end methods are executed when the application is started and before it is ter-
minated. The three methods should be provided by the programmer in order to
instantiate an ff node.

Distributed FastFlow

FastFlow also provides an implementation running on distributed systems, based
on the ZeroMQ library. Briefly, ZeroMQ is an LGPL open-source communication
library [134] providing the user with a socket layer that carries whole messages
across various transports: inter-thread communications, inter-process communica-
tions, TCP/IP, and multicast sockets. ZeroMQ offers an asynchronous communica-
tion model, which provides a quick construction of complex asynchronous message-
passing networks, with reasonable performance.

A ff dnode (distributed ff node) provides an external channel specialized to
provide different patterns of communication. The set of communication collectives
allows one to provide exchange of messages among a set of distributed nodes, using
well-known predefined patterns. The semantics of each communication pattern
currently implemented are summarized in Table 2.1. In the current version (see
Fig. 2.8), which supports distributed platforms, many graphs of ff nodes can be
connected by way of ff dnodes (which support network collective channels), thus
providing a useful abstraction for effective programming of hybrid multicore and
distributed platforms.

Pattern Description

unicast unidirectional point-to-point communication between
two peers

broadcast sends the same input data to all connected peers

scatter sends different parts of the input data, typically par-
titions, to all connected peers

onDemand the input data is sent to one of the connected peers,
the choice of which is taken at runtime on the basis
of the actual workload

fromAll aka. all-gather, collects different parts of the data
from all connected peers combining them in a single
data item

fromAny collects one data item from one of the connected peers

Table 2.1: Collective communication patterns among
ff dnodes.

The FastFlow programming model is based on streaming of pointers, which are
used as synchronization tokens. This abstraction is kept also in the distributed
version (i.e., across network channels) by way of two auxiliary methods provided by
ff dnode for data marshalling and unmarshalling according to ZeroMQ specifics.
These (virtual) methods provide the programmers with the tools to serialize and
de-serialize data flowing across ff dnodes. The hand-made serialization slightly
increases the coding complexity (e.g., with respect to Java automatic serialization)
but makes it possible to build efficient network channels. While ZeroMQ provides
an abstraction to implement a queue-based distributed network, different libraries

2.5. Summary 29

can be used for the data serialization step, e.g., Boost.Serialize [93] or Google Pro-
tobuf [94].

FastFlow has also been provided with a minimal message passing layer implemented
on top of InfiniBand RDMA features [112]. The proposed RDMA-based commu-
nication channel implementation achieves comparable performance with highly op-
timised MPI/InfiniBand implementations. The results obtained demonstrate that
the RDMA-based library can improve application performance by more than 30%
with a consistent reduction of CPU time utilization with respect to the original
TCP/IP implementation.

2.5 Summary

In this chapter we provided a review of the most common parallel computing plat-
forms, programming models for multicore and cluster of multicores. From a hard-
ware perspective, we presented multicore, manycore processors such as accelerators
and distributed systems. From a high-level programming model perspective, we
listed the four main classes of parallelism (task, data, stream and dataflow paral-
lelism) followed by some insights about the Dataflow model, a model of computation
describing a program as a set of concurrent processes extensively used in this thesis.
We also provided a review of low-level approaches in parallel programming, such as
POSIX programming model, MPI, TBB and OpenMP. In particular, we reviewed
programming model for the described platforms exploiting high-level skeleton-based
approaches, focusing on the FastFlow library, which we use in this work to imple-
ment the PiCo runtime.

31

Chapter 3

Overview of Big Data
Analytics Tools

Big Data is a term used to identify data sets that are very large and/or complex
(i.e., unstructured) so that traditional data processing applications are inadequate
to process them. In this chapter we will describe what Big Data is starting by its
“formal” definition. We then continue with a survey of the state-of-the-art of Big
Data Analytics tools.

3.1 A Definition for Big Data

Big Data has been defined as the “3Vs” model, an informal definition proposed by
Beyer and Laney [32, 90] that has been widely accepted by the community:

“Big data is high-Volume, high-Velocity and/or high-Variety informa-
tion assets that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and process
automation.”

More in detail:

• Volume: The amount of data that is generated and stored. The size of the
data determines whether it can be considered big data or not

• Velocity: The speed at which the data is generated and processed

• Variety: The type and nature of the data that, when collected, are typically
unstructured

The “3Vs” model can be extended by adding two more V -features: 1) Variability,
since data not only are unstructured, but can also be of different types (i.e. text,
images) or even inconsistent and, 2) Veracity, in the sense that the quality and
accuracy of the data may vary.

In 2013, IBM tried to quantify the amount of data being produced: “Every day, we
create 2.5 quintillion bytes of data — so much that 90% of the data in the world
today has been created in the last two years alone.” [75]

There is no clear-cut definition on how “big” the data should be to be considered
Big Data. Data is said to be Big if it becomes difficult to be stored, analyzed and
searched using traditional database systems, since it is large, unstructured and hard
to be organized. Consider, for instance, large organizations like Facebook: having
more than 950 millions users, it pulls in 500 Terabytes per day, into a 100 Petabytes

32 Chapter 3. Overview of Big Data Analytics Tools

warehouse, and runs 70 000 queries per day on this data as of 2012.1 Here are some
of the statistics provided by the company:

• 2.5 billion content items shared per day

• 2.7 billion Likes per day

• 300 million photos uploaded per day

• 100+ Petabytes of disk space in one of their largest Hadoop (HDFS) clusters

• 105 Terabytes of data scanned every 30 minutes

• 70 000 queries executed on these databases per day

• 500+ Terabytes of new data stored into the databases every day

Of course, Facebook is not the unique entity producing Big Data. There is a large
set of use cases in which Big Data analysis can produce knowledge. For instance,
the IoT (Internet of Things) is the interconnection of uniquely identifiable devices
connected (also among each other) to the Internet. Those devices are referred to
as “connected” or “smart” devices. Big Data and IoT are strictly connected, since
billions of devices produce massive amount of data, and companies can benefit
from analyzing all that information in order to produce new knowledge. Another
use case example comes from healthcare and genomics, where the amount of data
being produced by sequencing, mapping, and analyzing genomes takes those areas
into the realm of Big Data. Big Data can improve operational efficiencies, help
predict and plan responses to disease epidemics, improve the quality of monitoring
of clinical trials, and optimize healthcare spending at all levels from patients to
hospital systems to governments. Another key area is genomics sequencing which
is expected to be the future of healthcare [33]. Big Data can also be not that big.
Companies not as big as Facebook or Twitter may be interested in analyzing their
data, as well as institutions, public offices, banks, etc.

Extracting knowledge from Big Data is also related to programmability, that is,
how to easily write programs and algorithms to analyze data, and performance
issues, such as scalability when running analysis and queries on multicore or cluster
of multicores. For this reason, starting from the Google MapReduce paper [61],
a constantly increasing number of frameworks for Big Data processing has been
implemented. In the next section, we provide an overview of such frameworks,
starting from an sum-up about data management.

3.2 Big Data Management

Big Data management is more complex than simple database management. It can
be seen as the process of capturing, delivering, operating, protecting, enhancing,
and disposing of the data cost-effectively, which needs the ever-going reinforcement
of plans, policies, programs, and practices [92].

HDFS The Hadoop Distributed File System (HDFS) [23] is a distributed file
system designed to run on commodity hardware. It is highly fault-tolerant and
designed to be deployed on low-cost hardware. It is part of the Hadoop Ecosys-
tem [22], consisting of: 1) the high-throughput Hadoop Distributed File System
HDFS [23], 2) MapReduce engine for data processing and, 3) Hadoop YARN [26]
software for resource management and job scheduling and monitoring. In recent
years, Hadoop has been detached from the MapReduce processing engine, so that

1
https://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/

https://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/

3.3. Tools for Big Data Analytics 33

it became possible to use the HDFS+YARN layer as the base ecosystem for other
frameworks, such as Apache Spark, Apache Storm, etc.

HDFS provides high throughput access to application data and is suitable for ap-
plications that have large data sets. Being a software distributed file system, HDFS
runs on top of the local file systems but it appears to the user as a single namespace
accessible via HDFS URI.

An HDFS instance typically run on hundred or thousands of commodity components
that may fail, implying that, at a given time, there can be some components not
(virtually) working or unable to recover from their failure. Therefore, the system
should support constant monitoring, error detection, fault tolerance, in order to
automatically recover from failure. HDFS is tuned to support a modest number
(tens of millions) of large files, which are typically Gigabytes to Terabytes in size.
In its first implementation, HDFS assumed a write-once-read-many access model
for files, assumption that simplified the data coherency problem and enabled high
throughput data access. The append operation was added later (single appender
only).2 HDFS is mainly designed for batch processing, since it is specialized for
high throughput of data access rather than low latency.

NoSQL The Not Only SQL model [104] is a distributed database whose data
model is not strictly relational. The data structures used by NoSQL databases
(e.g. key-value, plain document, graph) are different from those used by default
in relational databases, making some operations faster in NoSQL. These databases
have to abide by the CAP theorem (Consistency-Availability-Partition tolerance),
proposed by Brewer in [39]. This theorem asserts that a distributed system cannot
provide simultaneously all the following properties:

1. Consistency: all nodes see the same data at the same moment (single up-to-
date copy of the data);

2. Availability: all data should always be available by all entities requesting. If
a node is not responsive, any data request must terminate;

3. Partition tolerance: the system continues to operate despite arbitrary message
loss or failure of part of the system.

By playing with the CAP theorem, many NoSQL stores compromise consistency
in favor of availability and partition tolerance, which also brings design simplicity.
A distributed database system does not have to drop consistency and are ACID
compliant but, on the other hand, these systems are much more complex and slow
with respect to NoSQL. Frameworks using the NoSQL paradigm are, for instance,
ZooKeeper [27], HBase [25], Riak [31] or Cassandra [24].

3.3 Tools for Big Data Analytics

In this section, we provide the background related to Big Data analytics tools,
starting from the Google MapReduce model to the most modern frameworks.

3.3.1 Google MapReduce

Programming for Big Data poses many challenges, first of all ease of programming
and high performance. Google can be considered the pioneer of Big Data processing,

2https://issues.apache.org/jira/browse/HDFS-265

34 Chapter 3. Overview of Big Data Analytics Tools

as the publication of the MapReduce framework paper [61] made this model “popu-
lar” — almost “mainstream”. Inspired by the map and reduce functions commonly
used in functional programming, a MapReduce program is composed of a map and
a reduce procedures: more specifically, the user-defined map function processes a
key-value pair to generate a set of intermediate key-value pairs, and the reduce

function aggregates all intermediate values associated with the same intermediate
key.

The contribution of the MapReduce programming model is not the composition of
map and reduce functions, but in the utilization of a key-value model in this process
and the repartitioning step, known as shuffle. One aspect often stressed underlying
this model is the data locality exploitation during the map phase, following the idea
of moving the computation to the data. That is, the runtime exploits the natural
data partitioning on a distributed file systems by forcing operations to be computed
using only local data — of course, during the shuffle phase, some data will be copied
to other nodes of the cluster.

We now explain in more detail how a MapReduce computation is characterized.

The five steps of a MapReduce job

From a high-level perspective, a MapReduce job can be divided into three macro
steps: 1) a Map step in which each worker node applies the map function to the
local data, transforming each datum v into a pair 〈 k, v 〉, and writes the output
to temporary storage; 2) a Shuffle step where worker nodes redistribute data based
on the value of the keys such that all data belonging to one key is located on the
same worker node, and 3) a Reduce step where each worker computes the reduce

function on local (key-partitioned) data.

Users write MapReduce applications defining the sequential kernel functions (map,
reduce) that are automatically parallelized by the runtime and executed on a large
cluster. During the execution, map invocations are distributed across multiple ma-
chines, provided each map operation can be executed independently on input split
on different machines. The same applies for the reduce invocations, that are dis-
tributed by partitioning the intermediate key space into R sets, provided that all
outputs of the map operation with the same key are processed by the same reducer
at the same time, and that the reduction function is associative and commutative.
Besides partitioning the input data and running the various tasks in parallel, the
runtime also manages all communications and data transfers, load balance, and
fault tolerance.

Looking more deeply into the MapReduce model, it can be described as a 5-step
parallel and distributed computation:

1. Input preparation: the runtime designates Map processors by assigning
the input key value k1 that each processor would work on, and provides that
processor with all the input data associated with that key value.

2. User-defined map execution: map is run exactly once for each k1 key value,
generating output organized by key values k2. The intermediate key-value
pairs produced by the map function are buffered in memory. Periodically,
the buffered pairs are written to local disk, partitioned into R regions by the
partitioning function (called partitioner) that is given the key and the number
of reducers R and returns the index of the desired reducer processor.

3. Shuffle map output: reduce processors are designed by the runtime, by
assigning k2 key value to a predefined processor. A reducer reads remotely
the buffered data from the local disks of the Map workers. When a Reduce
worker completes with data reading, it sorts the data by the intermediate
keys. Typically many different keys map to the same reduce task.

3.3. Tools for Big Data Analytics 35

4. User-defined reduce execution: reduce is run exactly once for each k2
produced by the map step assigned to each Reduce worker.

5. Produce output: the MapReduce system collects all the reduce output for
each key to produce the final outcome.

These five steps can be logically thought of as running in sequence — each step
starts only after the previous step is completed — although in practice they can be
interleaved as long as the final result is not affected. Out of these five steps, sorting
and partitioning are performed natively by the runtime.

Figure 3.1: An example of a MapReduce Dataflow

Figure 3.13 shows the dataflow of operations coming from a MapReduce execution.
In more detail, it shows the pipeline (input pre-processing – map – sort – shuffle
– reduce – output processing) in all of its inner steps. It can be noted that while
only two nodes are depicted, the same pipeline is replicated across all nodes, thus
making all the worker nodes aware of the whole computation.

MapReduce tasks must be written as acyclic dataflow programs, i.e. a stateless
mapper followed by a stateless reducer, putting some limitations in performance
when considering iterative computations such as machine learning algorithms [99].
This is especially due to the repeated writes to disk, that represent a bottleneck
when revisiting a single working set multiple times is necessary [132].

In Listing 3.1, we show a source code extract of a MapReduce application, in which
only the map and reduce function are presented.

3Figure taken from https://developer.yahoo.com/hadoop/tutorial/module4.html

https://developer.yahoo.com/hadoop/tutorial/module4.html

36 Chapter 3. Overview of Big Data Analytics Tools

1 public class WordCount {

2 public static class TokenizerMapper extends Mapper<Object,Text,Text,

IntWritable>{

3 private final static IntWritable one = new IntWritable(1);

4 private Text word = new Text();

5

6 public void map(Object key, Text value, Context context) throws IOException,

InterruptedException{

7 StringTokenizer itr = new StringTokenizer(value.toString());

8 while (itr.hasMoreTokens()) {

9 word.set(itr.nextToken());

10 context.write(word, one);

11 }

12 }

13 }

14 }

15

16 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,

IntWritable> {

17 private IntWritable result = new IntWritable();

18 public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

19 int sum = 0;

20 for (IntWritable val : values) {

21 sum += val.get();

22 }

23 result.set(sum);

24 context.write(key, result);

25 }

26 }

Listing 3.1: The map and reduce functions for a Java
Word Count class example in MapReduce.

3.3.2 Microsoft Dryad

Dryad [79] is a Microsoft research framework for distributed processing of coarse-
grain data parallel applications. A Dryad application is a Dataflow graph where
computational vertexes are connected among each other with communication chan-
nels. Dryad runs the application by executing the graph’s vertexes on a set of
available computers, communicating through files, TCP pipes, and shared-memory
FIFO queues. Kernel functions executed by the vertexes are sequential functions
(with no threads creation or data contention) provided by the user. Concurrency
arises from scheduling vertexes to run simultaneously on shared memory or on dis-
tributed systems. A Dryad application developer can specify an arbitrary directed
acyclic graph to describe the application’s communication patterns, and express the
data transport mechanisms (files, TCP pipes, and shared memory FIFO queues)
between the computation vertexes. Dryad is notable for allowing graph vertexes
to use an arbitrary number of inputs and outputs, while MapReduce restricts all
computations to take a single input set and generate a single output set. Although
Dryad provides a nice alternative to MapReduce, Microsoft terminated development
on Dryad in 2011.

A Dryad application DAG

In Dryad, graphs are created by combining subgraphs or by using simple vertexes. A
graph is formally defined as a tuple G = 〈VG, EG, IG, OG〉 where VG and EG are set
of vertexes and edges, while IG ⊆ VG and OG ⊆ VG are input and output vertexes,
respectively. No graph can contain edges entering an input vertex nor can contain
edges exiting an output vertex. Edges are created in two ways: 1) by applying a
composition of two existing graphs (a single vertex is considered a graph), and 2) by

3.3. Tools for Big Data Analytics 37

merging graphs by the union of their vertexes and edges. Edges represent channels.
By default, channels are implemented as temporary files where the producer vertex
writes to and the producer vertex reads from. Users can even choose to use channel
implemented as shared memory FIFO queues or TCP channels. Once created, a
Dryad DAG is optimized using various heuristics. The Dryad runtime parallelizes
the application graph by distributing the computational vertexes across various
execution engines (in shared memory or shared nothing). Note that replicating
the whole application graph is also a valid distribution, to exploit data parallelism.
Scheduling of the computational vertexes on the available hardware is handled by
the runtime.

3.3.3 Microsoft Naiad

Naiad is an investigation of data-parallel dataflow computation, successor of Dryad,
focusing on low-latency streaming and cyclic computations [96]. Naiad’s authors
introduced a new computational model called Timely Dataflow, which enriches
dataflow computation with timestamps that represent logical points in the com-
putation. This model provides the user with the possibility of implementing itera-
tive computations, thanks to feedback loops in the dataflow. Stateful nodes in the
dataflow can manage a global status for coordination: they asynchronously receive
messages and notifications of global progress, used also in loop management.

Timely Dataflow and Naiad programming model

Timely Dataflow is a model of data-parallel computation that extends traditional
dataflow by associating each communication event with a virtual time that does not
need to be ordered. As in the Time Warp mechanism [81], virtual times serve to
differentiate between data in different phases or aspects of a computation, for exam-
ple, data associated with different batches of inputs and different loop iterations.
A formal definition of Timely Dataflow can be found in [3]. In this model, each
node may request different notifications about completions for loops, for instance,
thus allowing asynchronous processing. Timely Dataflow graphs are directed graphs
where vertexes are organized into possibly nested loop contexts. Edges entering a
loop context must pass through an ingress vertex and edges leaving a loop context
must pass through an egress vertex. Additionally, every cycle in the graph must
be contained entirely within some loop context, and must include at least one feed-
back vertex that is not nested within any inner loop context. Every token flowing
on edges carries a timestamp of the form Timestamp := (e ∈ N, 〈 c1, . . . cn〉 ∈ Nk).
The value e represents an epoch, corresponding to integer timestamp representing
the id of the item within the stream, while k is the depth of nesting in a timestamp
having k ≥ 0 loop counters.

The programming model is quite straightforward: a Naiad program is implemented
by means of Dataflow nodes created by extending the Vertex<T> interface. Such
vertex is a possibly stateful object that sends and receives messages, and requests
and receives notifications. Message exchange and notification delivery are asyn-
chronous. Vertexes can modify arbitrary state in their callbacks, and send mes-
sages on any of their outgoing edges. Parallelism is obtained by creating multiple
instances of some vertexes, thus exploiting data parallelism in operators, inter-
operators parallelism and loop parallelism. A Naiad application may be run on
shared memory and on distributed systems. The smallest unit of computation is
the Worker, namely a single thread, called a shard. Processes are larger unit of
computation, which may contain one or more Workers (thus executing one or more
vertexes). A single machine may host one or more processes.

Listing 3.2 presents a code fragment implementing a MapReduce style computation.

38 Chapter 3. Overview of Big Data Analytics Tools

1 // 1a. Define input stages for the dataflow.

2 var input = controller.NewInput<string>();

3

4 // 1b. Define the timely dataflow graph.

5 var result = input.SelectMany(y => map(y))

6 .GroupBy(y => key(y), (k, vs) => reduce(k, vs));

7

8 // 1c. Define output callbacks for each epoch

9 result.Subscribe(result => { ... });

10

11 // Step 2. Supply input data to the query.

12 input.OnNext(/* 1st epoch data */);

13 input.OnNext(/* 2nd epoch data */);

14 input.OnNext(/* 3rd epoch data */);

15 input.OnCompleted();

Listing 3.2: A LINQ MapReduce computation
example in Naiad (taken from [96]).

Step 1a defines the source of data, and Step 1c defines what to do with output data
when produced. Step 1b constructs a Timely Dataflow graph using SelectMany

and GroupBy library calls, which are pre-defined vertexes. SelectMany applies its
argument function to each message (thus it is a map function), and GroupBy groups
results by a key function before applying its reduction function reduce. Once the
graph is built, in step 2 OnNext supplies the computation with epochs of input
data. The Subscribe stage applies its callback to each completed epoch of data
it observes. Finally, OnCompleted indicates that no further epochs of input data
exist, so the runtime can drain messages and shut down the computation.

3.3.4 Apache Spark

As mentioned in previous sections, MapReduce is not suitable for iterative algo-
rithms or interactive analytics, not because it is not possible to implement iterative
jobs, but because data have to be repeatedly stored and loaded at each iteration.
Furthermore, data can be replicated on the distributed file system between succes-
sive jobs. Apache Spark [133, 131, 132] design is intended to solve this problem
by reusing the working dataset by keeping it in memory, For this reason, Spark
represents a landmark in Big Data tools history, having a strong success in the com-
munity. The overall framework and parallel computing model of Spark is similar to
MapReduce, while the innovation is in the data model, represented by the Resilient
Distributed Dataset (RDD), which are immutable multisets. In this Section, we
only give an overview of Spark, which will be further investigated in Chapter 4.

A Spark program can be characterized by the two kinds of operations applicable to
RDDs: transformations and actions. Those transformations and actions compose
the directed acyclic graph (DAG) representing the application. Transformations
are the functional style operations applicable to collections, such as map, reduce,
flatmap, that are uniformly applied to whole RDDs [131]. Actions return a value to
the user after running a computation on the dataset, thus they effectively start the
program execution. Transformations in Spark are lazy, in that they do not compute
their results right away. Instead, they just store the transformations applied to some
base dataset, and they are computed when an action requires a result to be returned
to the driver program, that is, the main program written by the programmer.

3.3. Tools for Big Data Analytics 39

Listing 3.3 shows the source code for a simple Word Count application in the Java
Spark API.

1 JavaRDD<String> textFile=sc.textFile("hdfs://...");

2

3 JavaRDD<String> words =

4 textFile.flatMap(new FlatMapFunction<String, String>() {

5 public Iterable<String> call(String s) {

6 return Arrays.asList(s.split(" "));

7 }

8 });

9

10 JavaPairRDD<String, Integer> pairs =

11 words.mapToPair(new PairFunction<String, String, Integer>() {

12 public Tuple2<String, Integer> call(String s) {

13 return new Tuple2<String, Integer>(s, 1);

14 }

15 });

16

17 JavaPairRDD<String, Integer> counts =

18 pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {

19 public Integer call(Integer a, Integer b) {

20 return a + b;

21 }

22 });

23 counts.saveAsTextFile("hdfs://...");

Listing 3.3: A Java Word Count example in Spark.

For stream processing, Spark implements an extension through the Spark Stream-
ing module, providing a high-level abstraction called discretized stream or DStream
[133]. Such streams represent results in continuous sequences of RDDs of the same
type, called micro-batch. Spark’s execution model relies on the Master-Worker
model: a cluster manager (e.g., YARN) manages resources and supervises the ex-
ecution of the program. It manages application scheduling to worker nodes, which
execute the application logic (the DAG) that has been serialized and sent by the
master.

Resilient Distributed Datasets

An RDD is a read-only collection of objects partitioned across a cluster of computers
that can be operated on in parallel. A Spark application consists of a driver program
that creates RDDs from, for instance, HDFS files or an existing Scala collection
as well as creating RDDs from queries to databases. The driver program may
transform an RDD in parallel by invoking supported operations with user-defined
functions, which returns another RDD. Since RDDs are read-only collections, each
transformation on such collections creates a new RDD containing the result of the
transformation. This new collection is not materialized, nor kept in memory: it is
the result of an expression rather than a value and it is computed each time the
transformation is called. The driver can also persist an RDD in memory, allowing
it to be reused efficiently across parallel operations without recomputing it. In fact,
the semantics of RDDs have the following properties:

• Abstract: elements of an RDD do not have to exist in physical memory. In
this sense, an element of an RDD is an expression rather than a value. The
value can be computed by evaluating the expression when necessary (i.e.,
when executing an action).

• Lazy and Ephemeral: RDDs can be created from a file or by transforming
an existing RDD such as map, filter, groupByKey, reduceByKey, join, etc.
However, RDDs are materialized on demand when they are used in some
operation, and are discarded from memory after use. This thus performs a
sort of lazy evaluation.

40 Chapter 3. Overview of Big Data Analytics Tools

• Caching and Persistence: a dataset can be cached in memory across oper-
ations, which allows future actions to be much faster since they not have
to be reconstructed. Caching is a key tool for iterative algorithms and fast
interactive use cases and it is actually one special case of persistence that al-
lows different storage levels, e.g. persisting the dataset on disk or in memory
but as serialized Java objects (to save space), replicating it across nodes, or
storing it off-JVM heap.

• Fault Tolerance: if any partition of an RDD is lost, the lost block will auto-
matically be recomputed using only the transformations that originally cre-
ated it.

The operations on RDDs take user-defined functions, which are considered closures
in functional programming style features provided by the Scala programming lan-
guage, used to implement the Spark runtime. A closure can refer to variables in
the scope when created, which will be copied to the workers when Spark runs a
closure. We recall that, exploiting the JVM and serialization features, it is possible
to serialize closures and send them to Workers.

Operations on RDDs take user-defined functions as arguments, which act as closures
that can refer to non-local variables from the scope where they were created. These
captured variables will be copied to the workers when Spark runs a closure. We
recall that, exploiting the JVM and serialization features, it is possible to serialize
closures and send them to workers.

Spark also offers two kinds of shared variables:

• Broadcast variables, which are copied to the workers once, and appropriate
when large read-only data is used in multiple operations

• Accumulators, which are states local to Workers that are only “updated”
through an associative operation and can therefore be efficiently supported
in parallel. Accumulators can thus be used to implement counters or sums.
Only the driver program can read the accumulator’s value. Spark natively
supports accumulators of numeric types.

By reusing cached data in RDDs, Spark offers great performance improvement over
Hadoop MapReduce [131], thus making it suitable for iterative machine learning
algorithms. Similar to MapReduce, Spark is independent of the underlying storage
system. It is the application developer’s duty to organize data on distributed nodes
— i.e., by partitioning and collocating related datasets, etc. — if a distributed
file system is not available. These are critical for interactive analytics, since just
caching is insufficient and not effective for extremely large data.

Spark Streaming

For stream processing, Spark implements an extension through the Spark Streaming
module, providing a high-level abstraction called discretized stream or DStream
[133]. Such streams represent results in continuous sequences of RDDs of the same
type, called micro-batch. Operations over DStreams are “forwarded” to each RDD
in the DStream, thus the semantics of operations over streams is defined in terms
of batch processing according to the simple translation op(a) = [op(a1), op(a2), . . .],
where [·] refers to a possibly unbounded ordered sequence, a = [a1, a2, . . .] is a
DStream, and each item ai is a micro-batch of type RDD. All RDDs in a DStream
are processed in order, whereas data items inside an RDD are processed in parallel
without any ordering guarantees.

3.3. Tools for Big Data Analytics 41

3.3.5 Apache Flink

Formerly known as Stratosphere [21], Apache Flink [42] focuses on stream program-
ming. The abstraction used is the DataStream, which is a representation of a stream
as a single object. Operations are composed (i.e, pipelined) by calling operators on
DataStream objects. Flink also provides the DataSet type for batch applications,
that identifies a single immutable multiset—a stream of one element. A Flink pro-
gram, either for stream or batch processing, is a term from an algebra of operators
over DataStreams or DataSets, respectively.

Flink, differently from Spark, is a stream processing framework, meaning that both
batch and stream processing are based on a streaming runtime. It can be consid-
ered one of the more advanced stream processors as many of its core features were
already considered in the initial design [42]. A strong attention is put on providing
exactly-once processing guarantee, reached by implementing an algorithm based on
Chandy-Lamport algorithm for distributed snapshots [44]. In this algorithm, water-
mark items are periodically injected into the data stream and trigger any receiving
component to create a checkpoint of its local state. On success, all local checkpoints
for a given watermark comprise a distributed global system checkpoint. In a failure
scenario, all components are reset to the last valid global checkpoint and data is
replayed from the corresponding watermark. Since data items may never overtake
watermark items, acknowledgment does not happen on a per-item basis.

Other aspects of Flink will be further investigated in Chapter 4.

Flink Programming and Execution Model

Flink adopts a programming model similar to Spark, in which operations are applied
to datasets and streams in a object oriented fashion. The basic building blocks are
streams and transformations (note that a DataSet is internally also a stream). A
stream is an intermediate result, and a transformation is an operation that takes
one or more streams as input, and computes one or more result streams.

Listing 3.4 shows Flink’s source code for the simple Word Count application.

1 public class WordCountExample {

2 public static void main(String[] args) throws Exception {

3 final ExecutionEnvironment env =

4 ExecutionEnvironment.getExecutionEnvironment();

5 DataSet<String> text = env.fromElements("Text...");

6 DataSet<Tuple2<String, Integer>> wordCounts =

7 text.flatMap(new LineSplitter())

8 .groupBy(0)

9 .sum(1);

10

11 wordCounts.print();

12 }

13

14 public static class LineSplitter

15 implements FlatMapFunction<String, Tuple2<String, Integer>> {

16 @Override

17 public void flatMap(String line,

18 Collector<Tuple2<String, Integer>> out) {

19 for (String word : line.split(" ")) {

20 out.collect(new Tuple2<String, Integer>(word, 1));

21 }

22 }

23 }

24 }

Listing 3.4: A Java Word Count example in Flink.

Flink programs are mapped to streaming dataflows, consisting of streams and trans-
formation operators that build arbitrary directed acyclic graphs (DAGs). Each

42 Chapter 3. Overview of Big Data Analytics Tools

dataflow starts with one or more sources and ends in one or more sinks. Special
forms of cycles are permitted via iteration constructs that are discussed in Sec-
tion 4.2.3.

Flink’s execution model relies on the Master-Worker model: a deployment has at
least one job manager process that coordinates checkpointing, recovery, and that
receives Flink jobs. The job manager also schedules work across the task manager
processes (i.e. workers) which usually reside on separate machines and in turn
execute the code. For distributed execution, Flink optimizes the DAG by chaining
operator subtasks together into tasks: it reduces the overhead of thread-to-thread
handover and buffering, and increases overall throughput while decreasing latency.
Stateful stream operators are discussed in Section 4.2.3.

3.3.6 Apache Storm

Apache Storm [97, 117, 126] is a framework targeting only stream processing. It is
perhaps the first widely used large-scale stream processing framework in the open
source world. Storm’s programming model is based on three key notions: Spouts,
Bolts, and Topologies. A Spout is a source of a stream, that is (typically) connected
to a data source or that can generate its own stream. A Bolt is a processing element,
so it processes any number of input streams and produces any number of new output
streams. Most of the logic of a computation goes into Bolts, such as functions,
filters, streaming joins or streaming aggregations. A Topology is the composition
of Spouts and Bolts resulting in a network. Storm uses tuples as its data model,
that is, named lists of values of arbitrary type. Hence, Bolts are parametrized with
per-tuple kernel code. Each time a tuple is available from some input stream, the
kernel code gets activated to work on that input tuple. Bolts and Spouts are locally
stateful, as we discuss in Section 4.2.3, while no global consistent state is supported.
Globally stateful computations can be implemented since the kernel code of Spouts
and Bolts is arbitrary. However, eventual global state management would be the
sole responsibility of the user, who has to be aware of the underlying execution
model in order ensure program coordination among Spouts and Bolts. It is also
possible to define cyclic graphs by way of feedback channels connecting Bolts.

While Storm targets single-tuple granularity in its base interface, the Trident API is
an abstraction that provides declarative stream processing on top of Storm. Namely,
Trident processes streams as a series of micro-batches belonging to a stream consid-
ered as a single object. Listing 3.5 show Storm’s source code for the simple Word
Count application.

3.3. Tools for Big Data Analytics 43

1 public class WordCountTopology {

2 public static class SplitSentence extends ShellBolt implements IRichBolt {

3 public SplitSentence() {

4 super("python", "splitsentence.py");

5 }

6

7 @Override

8 public void declareOutputFields(OutputFieldsDeclarer declarer) {

9 declarer.declare(new Fields("word"));

10 }

11

12 @Override

13 public Map<String, Object> getComponentConfiguration() {

14 return null;

15 }

16 }

17

18 public static class WordCount extends BaseBasicBolt {

19 Map<String, Integer> counts = new HashMap<String, Integer>();

20

21 @Override

22 public void execute(Tuple tuple, BasicOutputCollector collector) {

23 String word = tuple.getString(0);

24 Integer count = counts.get(word);

25 if (count == null) count = 0;

26 count++;

27 counts.put(word, count);

28 collector.emit(new Values(word, count));

29 }

30

31 @Override

32 public void declareOutputFields(OutputFieldsDeclarer declarer) {

33 declarer.declare(new Fields("word", "count"));

34 }

35 }

36

37 public static void main(String[] args) throws Exception {

38 TopologyBuilder builder = new TopologyBuilder();

39 builder.setSpout("spout", new RandomSentenceSpout(), 5);

40 builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");

41 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new

Fields("word"));

42 Config conf = new Config();

43 conf.setDebug(true);

44 conf.setNumWorkers(3);

45 StormSubmitter.submitTopology(args[0], conf, builder.createTopology());

46 }

47

Listing 3.5: A Java Word Count example in Storm.

Tasks and Grouping

The execution of each and every Spout and Bolt by Storm is called a Task, which
is the smallest logical unit of a Topology. In simple words, a Task is either the
execution of a Spout or a Bolt. At a given time, each Spout and Bolt can have
multiple instances running in multiple separate threads. The execution model in
Storm is based on a Master-Worker paradigm, in which Workers receive Tasks from
the runtime. Apache Storm has two type of nodes, Nimbus (master node) and Su-
pervisor (worker node). Nimbus is the central component of Apache Storm, running
the Storm Topology. Nimbus analyzes the Topology and gathers the tasks to be ex-
ecuted. Then, it distributes each task to an available supervisor. A Supervisor will
have one or more worker processes to which it delegates Tasks. Worker processes
will spawn as many executors as needed and run the task. Apache Storm uses an
internal distributed messaging system for the communication between Nimbus and
Supervisors.

44 Chapter 3. Overview of Big Data Analytics Tools

Stream grouping controls how the tuples are routed in the Topology. There are four
main built-in groupings:

• Shuffle Grouping: tuples are randomly distributed across the Bolt’s tasks so
that each Bolt is guaranteed to get an equal number of tuples

• Field Grouping: this performs a tuple partitioning, in which tuples with the
same field values are sent forward to the same worker executing the bolts

• Global Grouping: all the streams can be grouped and forwarded to one Bolt.
This grouping sends tuples generated by all instances of the source to a single
target instance.

• All Grouping: sends a single copy of each tuple to all instances of the receiving
bolt. This kind of grouping is used to send signals to Bolt (i.e., broadcast).

3.3.7 FlumeJava

FlumeJava [43] is a Java library developed by Google for data-parallel pipelines. It
can be considered the ancestor of Google Dataflow. Its core is centered on parallel
operators on parallel collections: internally, it implements parallel operations using
deferred evaluation, thus the invocation of a parallel operation is stored with its
arguments in an internal execution plan graph structure. Once the execution plan
for the whole computation has been constructed, FlumeJava optimizes the execution
plan by, for example, fusing chains of parallel operations together into a small
number of MapReduce operations. FlumeJava supports only batch execution and
with a Bulk-synchronous model: the runtime executor traverses the operations in
the execution plan in forward topological order, executing each one in turn. The
same program can execute completely locally when run on small inputs and using
many parallel machines when run on large inputs.

Data Model and Transformations

In FlumeJava, there are several classes representing different data. The core ab-
straction for representing data is the PCollection, containing ordered as well as
unordered data. The second core abstraction is the PTable, representing data in
the form of key-value pairs, where the value is always a PCollection. PCollections
are transformed via parallel operations, such as parallelDo (i.e., map) or join,
for instance. Those parallel operations are executed lazily. Each PCollection object
is represented internally with a deferred (not yet computed) or materialized (com-
puted) state. A deferred PCollection holds a pointer to the deferred operation that
computes it, holding references to the PCollections that are its arguments (which
may themselves be deferred or materialized) and the deferred PCollections that are
its results. When a FlumeJava operation like parallelDo() is called, it creates a
ParallelDo deferred operation object and returns a new deferred PCollection that
points to it. The result of executing a series of FlumeJava operations is thus a
directed acyclic graph of deferred PCollections and operations, called the execu-
tion plan. The execution plan is visited by the internal optimizer with the goal of
producing the most efficient execution plan.

One of the most important operations is the MapShuffleCombineReduce (MSCR), in
which FlumeJava optimizer transforms combinations of ParallelDo, GroupByKey,
CombineValues, and Flatten operations into single MapReduce step. It extends
MapReduce by allowing multiple reducers and combiners. Furthermore it allows
each reducer to produce multiple outputs, by removing the requirement that a
reducer must produce outputs with the same key as the reducer input, and by
allowing pass-through outputs, thereby making it a better target for the optimizer,
which improves communication patterns.

3.3. Tools for Big Data Analytics 45

The code shown in Listing 3.6 presents a word count example in Apache Crunch [52],
the Java library for creating FlumeJava pipelines.

1 public class WordCount {

2 public static void main(String[] args) throws Exception {

3 // Create an object to coordinate pipeline creation and execution.

4 Pipeline pipeline = new MRPipeline(WordCount.class);

5

6 // Reference a given text file as a collection of Strings.

7 PCollection<String> lines = pipeline.readTextFile(args[0]);

8

9 // Define a function that splits each line in a PCollection of Strings

10 // into a PCollection made up of the individual words in the file.

11 PCollection<String> words = lines.parallelDo(

12 new DoFn<String, String>() {

13 public void process(String line, Emitter<String> emitter) {

14 for (String word : line.split("\\s+")) {

15 emitter.emit(word);

16 }

17 }

18 },

19 Writables.strings() // Indicates the serialization format

20);

21

22 // The count method applies a series of Crunch primitives and returns a

23 // map of the top 20 unique words in the input PCollection to their counts.

24 // We then read the results of the MapReduce jobs that performed the

25 // computations into the client and write them to stdout.

26 for (Pair<String, Long> wordCount: words.count().top(20).materialize()) {

27 System.out.println(wordCount);

28 }

29 }

30 }

Listing 3.6: A Complete Java Word Count example in
Crunch API for FlumeJava.

3.3.8 Google Dataflow

Google Dataflow SDK [6] is part of the Google Cloud Platform [72]. Here, “Dataflow”
is used refering to the “Dataflow model” to describe the processing and program-
ming model of the Cloud Platform. This framework aims to provide a unified model
for stream, batch and micro-batch processing. It is built based on four major con-
cepts:

• Pipelines

• PCollections

• Transforms

• I/O Sources and Sinks

The base entity is the Pipeline, representing a data processing job consisting of a
set of operations that can read a source of input data, transform that data, and
write out the resulting output. The data and transforms in a pipeline are unique
to, and owned by, that Pipeline, while multiple Pipelines cannot share data or
transforms. A Pipeline can be linear but it can also branch and merge, thus making
a Pipeline a directed graph of steps and its construction can create this directed
graph by using conditionals, loops, and other common programming structures. It
is possible to implement iterative algorithms only if a fixed and known number of
iterations is provided, while it may not be easy to implement algorithms where
the Pipeline’s execution graph depends on the data itself. This happens because
of the computation graph which is built in an intermediate language that is then

46 Chapter 3. Overview of Big Data Analytics Tools

optimized before being executed. With iterative algorithms, the complete graph
structure cannot be known beforehand, so it is necessary to know the number of
iteration in advance in order to replicate the subset of stages in the pipeline involved
in the iterative step.

The DAG resulting from a Pipeline is optimized and compiled into a language-
agnostic representation before execution.

The execution of a Dataflow program is typically launched on the Google Cloud
Platform. When run, Dataflow runtime enters the Graph Construction Time phase
in which it creates an execution graph on the basis of the Pipeline, including all
the Transforms and processing functions. The execution graph is translated into
JSON format and it transmitted to the Dataflow service endpoint. Once validated,
this graph is translated into a job on the Dataflow service, which automatically
parallelizes and distributes the processing logic to the workers allocated by the user
to perform the job.

Data Model and Transformations

A PCollection represents a potentially large, immutable bag of elements, that can
be either bounded or unbounded. Elements in a PCollection can be of any type, but
the type must be consistent. However, the user must provide the runtime with the
encoding of the data type as a byte string in order to serialize and send data among
distributed processing units. Dataflow’s Transforms use PCollections, that is, it
is the only abstract data type accepted by operations. Each PCollection is local
to a specific Pipeline object and has the following properties: 1) It is immutable;
each transformation instantiates a new PCollection. 2) It does not support random
access to individual elements and, 3) A PCollection is private to a Pipeline.

The bounded (or unbounded) nature of a PCollection affects how Dataflow processes
the data. Bounded PCollections can be processed using batch jobs, that might
read the entire data set once, and perform processing in a finite job. Unbounded
PCollections must be processed using streaming jobs, as the entire collection can
never be available for processing at any one time and they can be grouped by using
windowing to create logical windows of finite size.

A Transform represents an operation on PCollections, that is, it is a stage of the
Pipeline. It accepts one (or multiple) PCollection(s) as input, performs an operation
on the elements in the input PCollection(s), and produces one (or multiple) new
PCollection(s) as output. Transforms are applied to an input PCollection by calling
the apply method on that collection. The output PCollection is the value returned
from PCollection.apply.

3.3. Tools for Big Data Analytics 47

For example, Listing 3.7 shows how to create a Word Count Pipeline.

1 public static void main(String[] args) {

2 // Create a pipeline parameterized by commandline flags.

3 Pipeline p = Pipeline.create(PipelineOptionsFactory.fromArgs(arg));

4 //The Count transform below returns a new PCollection of key/value

5 //pairs, where each key represents a unique word in the text.

6

7 p.apply(TextIO.Read.from("gs://...")) // Read input.

8 .apply(ParDo.named("ExtractWords").of(new DoFn<String, String>() {

9 @Override

10 public void processElement(ProcessContext c) {

11 for (String word : c.element().split("[^a-zA-Z’]+")) {

12 if (!word.isEmpty()) {

13 c.output(word);

14 }

15 }

16 }

17 }))

18 .apply(Count.<String>perElement())

19 .apply("FormatResults",

20 MapElements.via(new SimpleFunction<KV<String, Long>, String>() {

21 @Override

22 public String apply(KV<String, Long> input) {

23 return input.getKey() + ": " + input.getValue();

24 }

25 }))

26 .apply(TextIO.Write.to("gs://...")); // Write output.

27

28 // Run the pipeline.

29 p.run();

30 }

Listing 3.7: Java code fragment for a Word Count
example in Google Dataflow.

The ParDo is the core element-wise transform in Google Dataflow, invoking a user-
specified function on each of the elements of the input PCollection to produce zero
or more output elements (flatmap semantics) collected into an output PCollection.
Elements are processed independently, possibly in parallel across distributed cloud
resources.

When executing a ParDo transform, the elements of the input PCollection are first
divided up into a certain number of “bundles” (which can be considered like micro-
batches). These are farmed off to distributed worker machines (or run locally). For
each bundle of input elements, processing proceeds as follows:

1. A fresh instance of the argument DoFn (namely the class argument of the
ParDo transform) is created on a worker (through deserialization or other
means).

2. The DoFn’s startBundle method is called to initialize the bundle, if overridden.

3. The DoFn’s processElement method is called on each of the input elements in
the bundle.

4. The DoFn’s finishBundle method is called to complete its work, if overridden.

The ParDo can take also additional “side input”, that is a state local to the ParDo

instance or a broadcast value.

Google Dataflow will be further investigated in Chapter 4.

3.3.9 Thrill

Thrill [34] is a prototype of a general purpose big data batch processing framework
with a data-flow style programming interface implemented in C++ and exploiting

48 Chapter 3. Overview of Big Data Analytics Tools

template meta-programming. Thrill uses arrays rather than multisets as its primary
data structure to enable operations like sorting, prefix sums, window scans, or
combining corresponding fields of several arrays (zipping). Thrill programs run in
a collective bulk-synchronous manner similar to most MPI programs, focusing on
fast in-memory computation, but transparently uses external memory when needed.
The functional programming style used by Thrill enables easy parallelization, which
also works well for shared memory parallelism. A consequence of using C++ is that
memory management has to be done explicitly. However, memory management in
modern C++11 has been considerably simplified, and Thrill uses reference counting
extensively. Thrill’s authors wanted to emphasize that, with the advent of C++11
lambda-expressions, it has become easier to use C++ for big data processing using
an API comparable to currently popular frameworks like Spark or Flink.

Thrill execution model is similar to MPI programs, where the same program is run
on different machines, i.e., SPMD (Single Program, Multiple Data). The binary is
executed simultaneously on all machines and communication supports TCP sockets
and MPI. Each machine is called a host and each thread on a host is called a worker.
There is no master or driver host, as all communication is done collectively.

Distributed Immutable Arrays

Thrill’s data model is based on distributed immutable array (DIA). A DIA is an array
of items distributed over the cluster, to which no direct access is permitted, that is,
it is only possible to apply operations to the array as a whole. In a Thrill program,
these operations are used to lazily construct a DIA data-flow graph in C++, as
shown in Listing 3.8. The data-flow graph is only executed when an action operation
is encountered. How DIA items are actually stored and in what way the operations
are executed on the distributed system remains transparent to the user. In the
current Thrill prototype, the array is usually distributed evenly among workers, in
order. DIAs can contain any C++ data type, provided serialization methods are
available. Thrill provides built-in serialization methods for all primitive types and
most STL types; only custom non-trivial classes require additional methods. Each
DIA operation is implemented as a C++ template class.

1 void WordCount(thrill::Context& ctx, std::string input, std::string output) {

2 using Pair = std::pair<std::string, size_t>;

3 auto word_pairs = ReadLines(ctx, input).template FlatMap<Pair>(

4 // flatmap lambda: split and emit each word

5 [](const std::string& line, auto emit) {

6 Split(line, ’ ’, [&](std::string_view sv) {

7 emit(Pair(sv.to_string(), 1));

8 });

9 });

10 word_pairs.ReduceByKey(

11 // key extractor: the word string

12 [](const Pair& p) { return p.first; },

13 // commutative reduction: add counters

14 [](const Pair& a, const Pair& b) { return Pair(a.first, a.second + b.second)

; }

15)

16 .Map([](const Pair& p) { return p.first + ": " + std::to_string(p.second); })

17 .WriteLines(output);

18 }

Listing 3.8: A C++ complete Word Count example in
Thrill.

The immutability of a DIA enables functional-style dataflow programming. As DIA
operations can depend on other DIAs as inputs, these form a directed acyclic graph
(DAG), which is called the DIA dataflow graph, where vertexes represent operations
and directed edges represent data dependencies.

3.3. Tools for Big Data Analytics 49

A DIA remains purely an abstract dataflow between two concrete DIA operations,
allowing to apply optimizations such as pipelining or chaining, combining the logic
of one or more functions into a single one (called pipeline). All independently
parallelizable local operations (e.g., FlatMap, Map) and the first local computation
steps of the next distributed DIA operation are packed into one block of optimized
binary code. Via this chaining, it is possible to reduce the data movement overhead
as well as the total number of operations that need to store intermediate arrays.

3.3.10 Kafka

Apache Kafka [87] is an open-source stream processing platform implemented in
Scala and Java, aiming to provide a unified, high-throughput, low-latency platform
for handling real-time data feeds. Kafka is based on a producer-consumer model
exchanging streams of messages. Each stream of messages of a particular type is
called a topic: a producer can publish messages to a topic, which are then stored
at a set of servers called brokers, while a consumer can subscribe to one or more
topics from the brokers, and consume the subscribed messages by pulling data from
the brokers. A feature of Kafka is that each message stream provides an iterator
interface over the stream produced. The consumer can iterate over every message
in the stream and, unlike traditional iterators, the message stream iterator never
terminates and exposes a blocking behavior until new messages are published. Since
Kafka is distributed, a Kafka cluster typically consists of multiple brokers, hence a
topic is divided into multiple partitions and each broker stores one or more of those.
A consumer consumes messages from a particular partition sequentially.

Producer-Consumer Distributed Coordination

Each producer can publish a message to either a randomly selected partition or a
partition semantically determined by a partitioning key and a partitioning func-
tion. Kafka implements the concept of consumer groups consisting of one or more
consumers having subscribed to a set of topics. Different consumer groups consume
independently the full set of subscribed messages without communication among
groups, since they can be in different processes or machines. The consumer starts a
thread to pull data from each owned partition, starting the iterator over the stream
from the offset stored in the offset registry. As messages get pulled from a partition,
the consumer periodically updates the latest consumed offset in the offset registry.

When there are multiple consumers within a group, each will be notified of a broker
or consumer change. It is possible for a consumer to try to take ownership of a
partition still owned by another consumer. In this case, the first consumer releases
all the partitions that it currently owns and retries the re-balance process after a
certain timeout.

In this architecture, there is no master node, since consumers coordinates among
themselves in a decentralized manner.

3.3.11 Google TensorFlow

Google TensorFlow [2] is a framework specifically designed for machine learning
applications, where the data model consists of multidimensional arrays called ten-
sors and a program is a composition of operators processing tensors. A TensorFlow
application is built as a functional-style expression, where each sub-expression can
be given an explicit name. The TensorFlow programming model includes control
flow operations and, notably, synchronization primitives (e.g., MutexAcquire and

50 Chapter 3. Overview of Big Data Analytics Tools

MutexRelease for critical sections). This latter observation implies that Tensor-
Flow exposes the underlying (parallel) execution model to the user, who has to
program the eventual coordination of operators concurring over some global state.
TensorFlow allows expressing conditionals and loops by means of specific control
flow operators such as For operator.

Each node has firing rules that depend on the kind of incoming tokens. For example,
control dependencies edges can carry synchronization tokens: the target node of
such edges cannot execute until all appropriate synchronization signals have been
received.

TensorFlow replicates actors implementing certain operators (e.g., tensor multi-
plication) on tensors (input tokens). Hence, each actor is a data-parallel actor
operating on intra-task independent input elements—here, multi-dimensional ar-
rays (tensors). Moreover, iterative actors/hierarchical actors (in case of cycles on
a subgraph) are implemented with tags similar to the MIT Tagged-Token dataflow
machine [28], where the iteration state is identified by a tag and independent it-
erations are executed in parallel. In iterative computations, it is worthwhile to
underline that in TensorFlow an input can enter a loop iteration whenever it be-
comes available (as in Naiad), instead of imposing barriers after each iteration, as
done, for instance, in Flink.

A TensorFlow application

Listing 3.9 presents a code snippet of a TensorFlow application generating the
dataflow graph in figure 3.2. The example computes the rectified linear unit function
for neural network activations.

1 import tensorflow as tf

2 b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes

3 W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals

4 x = tf.placeholder(name="x") # Placeholder for input

5 relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)

6 C = [...] # Cost as a function of Relu

7 s = tf.Session()

8 for step in xrange(0, 10):

9 input = ...construct 100-D input array ...# Create 100-d vector for input

10 result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input

11 print step, result

Listing 3.9: Example of a Python TensorFlow code
fragment in [2].

Figure 3.2: A TensorFlow application graph

Figure 3.2 shows a TensorFlow application graph example from [2]. A node of
the graph represents a tensor operation, which can also be a data generation one
(nodes W , b, x): operators are mapped to actors that take as input single tokens

3.4. Fault Tolerance 51

representing Tensors (multi-dimensional arrays), and are activated once except for
iterative computations.

3.3.12 Machine Learning and Deep Learning Frameworks

Besides we described only TensorFlow in our overview, different other Machine
and Deep Learning frameworks are present in the community. In the following, we
provide common characteristics from both data and programming model perspective
of some well known frameworks such as Caffe, Torch and Theano. We do not provide
a comprehensive list since focusing on Machine and Deep Learning it is out of the
scope of this overview. A comparative study of such frameworks can be found in
Bahrampour et al. work [30].

Caffe [82] is a framework for Deep Learning providing the user with state-of-the-art
algorithms and a collection of reference models. It is implemented in C++ with
Python and MATLAB interfaces. Furthermore, it provides support for offload-
ing computations on GPUs. Caffe was first designed for vision, but it has been
adopted and improved by users in speech recognition, robotics, neuroscience, and
astronomy. Its data model relies on the Blob, a multi-dimensional array used as a
wrapper over the actual data being processed, providing also synchronization ca-
pability between the CPU and the GPU. From an implementation perspective, a
blob is an N-dimensional array stored in a C-contiguous fashion. Blobs provide a
unified memory interface holding data; e.g., batches of images, model parameters,
and derivatives for optimization.

At a higher level, Caffe considers applications as Dataflow graphs. Each program
implements a Deep Network (or simply net): compositional models that are nat-
urally represented as a collection of inter-connected layers that work on chunks of
data. Caffe implements Networks in the concept of net, that is, a set of layers con-
nected in a directed acyclic graph (DAG). Caffe does all the bookkeeping for any
DAG of layers to ensure correctness of the forward and backward passes. A typical
net begins with a data layer that loads from disk and ends with a loss layer that
computes the objective for a task such as classification or reconstruction.

Theano [123] is a Python library that allows to define, optimize, and evaluate math-
ematical expressions involving multi-dimensional arrays, called tensors, which are
the basic data model for neural network and deep learning programming. Like other
frameworks, it provides support for kernel offloading on GPUs. Its programming
model is similar to TensorFlow and, at higher level, applications are represented by
directed acyclic graphs (DAG): these graphs are composed of interconnected Apply,
Variable and Op nodes, the latter representing the application of an Op to some
Variable.

Torch [51] is a machine learning framework implemented in Lua that runs on Lua
(JIT) compiler. Torch implements also CUDA and CPU backends. The core data
model is represented by Tensors, which extends basic set of types in the Lua pro-
gramming language, to provide an efficient multi-dimensional array type. This
Tensor library provides classic operations including linear algebra operations, im-
plemented in C, leveraging SSE instructions on Intel platforms. Optionally, it can
bind linear algebra operations to existing efficient BLAS/Lapack implementations
(like Intel MKL). Torch provides a module for building neural networks using a
Dataflow based API.

3.4 Fault Tolerance

Fault tolerance is an important aspect to consider when implementing frameworks
for analytics. The main benefits of implementing fault tolerance is to guarantee

52 Chapter 3. Overview of Big Data Analytics Tools

recovery from faults: consider, for instance, when multiple instances of an applica-
tion are running and one server crashes for some reason. In this case, the system
must be able to recover autonomously and consistently from the system failure.
Of course, enabling fault tolerance decreases performances of applications. In Big
Data analytics framework, fault tolerance includes both system failure and data
recovery with checkpointing techniques, but also a software level fault tolerance.
The latter is implemented within the framework itself and requires also application
recovery from system failure, e.g., a remote worker node crashes and part of the
computation must be restarted. This guarantees must be confirmed also when run-
ning streaming applications. Real-time stream processing systems must be always
operational, which requires them to recover from all kinds of failures in the system,
comprehending also the need to store and recover a certain amount of data already
processed by the streaming application. Consider, for instance, Spark Streaming
management of fault tolerance. In a Spark Streaming application, data is usually
received from sources like Kafka and Flume are buffered in the executor’s memory
until their processing has completed. If the driver fails, all workers and executors
fails as well, and data can not be recovered even if the driver is restarted. To avoid
this data loss, Write Ahead Logs have been introduced. Write Ahead Logs (also
known as a journal) are used in database and file systems to ensure the durability
of any data operations. The intention of the operation is first stored into a durable
log , and then the operation is applied to the data. If the system fails in the middle
of applying the operation, this can recovered and re-executed by reading the log.
It worths nothing that such operations at run-time increase the application execu-
tion time and decrease performance and resource utilization, but when running on
distributed systems fault tolerance has to be guaranteed.

3.5 Summary

In this Chapter we provided a definition of Big Data and the description of most
common tools for analytics and data management. Of course this list is not com-
prehensive of all tools, since it would be a very hard task to collect all of them in
a single place and it goes beyond the scope of this work. Nevertheless, we believe
that the descriptions we provided could be useful to help the reader in having a
good overview about the topic and the results of the effort of computer scientists
in the community.

53

Chapter 4

High-Level Model for Big
Data Frameworks

In this chapter we analyze some well-known tools—Spark, Storm, Flink and Google
Dataflow—and provide a common structure underlying all of them, based on the
Dataflow model [91] that we identified as the common model that better describes all
levels of abstraction, from the user-level API to the execution model. We instantiate
the Dataflow model into a stack of layers where each layer represents a dataflow
graph/model with a different meaning, describing a program from what is exposed
to the programmer down to the underlying execution model layer.

4.1 The Dataflow Layered Model

With the increasing number of Big Data analytics tools, we witness a continu-
ous fight among implementors/vendors in demonstrating how their tools are better
than others in terms of performances and expressiveness. In this hype, for a user
approaching Big Data analytics (even an educated computer scientist), it might be
difficult to have a clear picture of the programming model underneath these tools
and the expressiveness they provide to solve some user defined problem. With this
in mind, we wanted to understand the features those tools provide to the user in
terms of API and how they are related to parallel computing paradigms.

We use the Dataflow model to describe these tools since it is expressive enough
to describe the batch, micro-batch and streaming models that are implemented in
most tools for Big Data processing. Being all realized under the same common idea,
we show how various Big Data analytics tools share almost the same base concepts,
differing mostly in their implementation choices.

Furthermore, we put our attention to a problem arising from the high abstraction
provided by the model that reflects into the examined tools. Especially when con-
sidering stream processing and state management, non-determinism may arise when
processing one or more streams in one node of the graph, which is a well-known
problem in parallel and distributed computing.

In Section 4.1.1, we outline an architecture that can describe all these models at
different levels of abstraction (Fig. 4.1) from the (top) user-level API to the (bottom-
level) actual network of processes. In particular, we show how the Dataflow model
is general enough to subsume many different levels only by changing the semantics
of actors and channels.

54 Chapter 4. High-Level Model for Big Data Frameworks

Framework API

Program Semantics Dataflow

Parallel Execution Dataflow

Process Network Dataflow

Platform

User-level API

Semantics of the application in terms
of dataflow graphs

Instantiation of semantic dataflow
that explicitly expresses parallelism

Runtime execution model
(e.g., Master-Workers)

Runtime language or platform
(e.g., JVM)

Figure 4.1: Layered model representing the levels of ab-
stractions provided by the frameworks that were analyzed.

4.1.1 The Dataflow Stack

The layered model shown in Fig. 4.1 presents five layers, where the three inter-
mediate layers are Dataflow models with different semantics, as described in the
paragraphs below. Underneath these three layers is the Platform level, that is, the
runtime or programming language used to implement a given framework (e.g., Java
and Scala in Spark), a level which is beyond the scope of our paper. On top is the
Framework API level, that describes the user API on top of the Dataflow graph,
which will be detailed in Section 4.2. The three Dataflow models in between are as
follows.

• Program Semantics Dataflow : We claim the API exposed by any of the con-
sidered frameworks can be translated into a Dataflow graph. The top level of
our layered model captures this translation: programs at this level represent
the semantics of data-processing applications in terms of Dataflow graphs.
Programs at this level do not explicitly express any form of parallelism: they
only express data dependencies (i.e., edges) among program components (i.e.,
actors). This aspect is covered in Section 4.3.

• Parallel Execution Dataflow : This level, covered in Section 4.4, represents an
instantiation of the semantic dataflows in terms of processing elements (i.e.,
actors) connected by data channels (i.e., edges). Independent units—not
connected by a channel—may execute in parallel. For example, a semantic
actor can be replicated to express data parallelism, so that the given function
can be applied to independent input data.

• Process Network Dataflow : This level, covered in Section 4.5, describes how
the program is effectively deployed and executed onto the underlying plat-
form. Actors are concrete computing entities (e.g., processes) and edges are
communication channels. The most common approach is for the actual net-
work to be a Master-Workers task executor.

4.2 Programming Models

Data-processing applications are generally divided into batch vs.stream processing.
Batch programs process one or more finite datasets to produce a resulting finite
output dataset, whereas stream programs process possibly unbounded sequences of
data, called streams, doing so in an incremental manner. Operations over streams

4.2. Programming Models 55

may also have to respect a total data ordering—for instance, to represent time
ordering.

Orthogonally, we divide the frameworks’ user APIs into two categories: declarative
and topological. Spark, Flink and Google Dataflow belong to the first category—
they provide batch or stream processing in the form of operators over collections or
streams—whereas Storm, Naiad, Dryad belong to the second one—they provides
an API explicitly based on building graphs.

4.2.1 Declarative Data Processing

This model provides building blocks as data collections and operations on those col-
lections. The data model follows domain-specific operators, for instance, relational
algebra operators that operate on data structured with the key-value model.

Declarative batch processing applications are expressed as methods on objects repre-
senting collections (e.g. Spark, Google Dataflow and Flink) or as functions on values
(e.g. PCollections, in Google Dataflow): these are algebras on finite datasets, whose
data can be ordered or not. APIs with such operations are exposing a functional-like
style. Here are three examples of operations with their (multiset-based) semantics:1

groupByKey(a) = {(k, {v : (k, v) ∈ a})} (4.1)

join(a, b) = {(k, (va, vb)) : (k, va) ∈ a ∧ (k, vb) ∈ b} (4.2)

map〈f〉(a) = {f(v) : v ∈ a} (4.3)

The groupByKey unary operation groups tuples sharing the same key (i.e., the first
field of the tuple); thus it maps multisets of type (K × V)∗ to multisets of type
(K × V ∗)∗. The binary join operation merges two multisets by coupling values
sharing the same key. Finally, the unary higher-order map operation applies the
kernel function f to each element in the input multiset.

Declarative stream processing programs are expressed in terms of an algebra on
eventually unbounded data (i.e., stream as a whole) where data ordering eventually
matters. Data is usually organized in tuples having a key field used for example to
express the position of each stream item with respect to a global order—a global
timestamp—or to partition streams into substreams. For instance, this allows ex-
pressing relational algebra operators and data grouping. In a stream processing
scenario, we also have to consider two important aspects: state and windowing;
those are discussed in Section 4.2.3.

Apache Spark implements batch programming with a set of operators, called trans-
formations, that are uniformly applied to whole datasets called Resilient Distributed
Datasets (RDD) [131], which are immutable multisets. For stream processing, Spark
implements an extension through the Spark Streaming module, providing a high-
level abstraction called discretized stream or DStream [133]. Such streams represent
results in continuous sequences of RDDs of the same type, called micro-batch. Op-
erations over DStreams are “forwarded” to each RDD in the DStream, thus the
semantics of operations over streams is defined in terms of batch processing ac-
cording to the simple translation op(a) = [op(a1), op(a2), . . .], where [·] refers to a
possibly unbounded ordered sequence, a = [a1, a2, . . .] is a DStream, and each item
ai is a micro-batch of type RDD.

Apache Flink ’s main focus is on stream programming. The abstraction used is the
DataStream, which is a representation of a stream as a single object. Operations are
composed (i.e, pipelined) by calling operators on DataStream objects. Flink also
provides the DataSet type for batch applications, that identifies a single immutable

1Here, {·} denotes multisets rather than sets.

56 Chapter 4. High-Level Model for Big Data Frameworks

multiset—a stream of one element. A Flink program, either for stream or batch
processing, is a term from an algebra of operators over DataStreams or DataSets,
respectively. Stateful stream operators and iterative batch processing are discussed
in Section 4.2.3.

Google Dataflow [6] provides a unified programming and execution model for stream,
batch and micro-batch processing. The base entity is the Pipeline, representing a
data processing job consisting of a set of operations that can read a source of input
data, transform that data, and write out the resulting output. Its programming
model is based on three main entities: Pipeline, PCollection and Transformation.
Transformations are basically Pipelines’ stages, operating on PCollections, that are
private to each Pipeline. A PCollection represents a potentially large, immutable
bag of elements, that can be either bounded or unbounded. Elements in a PCol-
lection can be of any type, but the type must be consistent. One of the main
Transformations in Google Dataflow is the ParDo operation, used for generic par-
allel processing. The argument that provided to ParDo must be a subclass of a
specific type provided by the Dataflow SDK, called DoFn. The ParDo takes each
element in an input PCollection, performs some user defined processing function on
that element, and then emits zero, one, or multiple elements to an output PCollec-
tion. The function provided is invoked independently, and in parallel, on multiple
worker instances in a Dataflow job.

4.2.2 Topological Data Processing

Topological programs are expressed as graphs, built by explicitly connecting pro-
cessing nodes and specifying the code executed by nodes.

Apache Storm is a framework that only targets stream processing. Storm’s pro-
gramming model is based on three key notions: Spouts, Bolts, and Topologies. A
Spout is a source of a stream, that is (typically) connected to a data source or that
can generate its own stream. A Bolt is a processing element, so it processes any
number of input streams and produces any number of new output streams. Most
of the logic of a computation goes into Bolts, such as functions, filters, streaming
joins or streaming aggregations. A Topology is the composition of Spouts and Bolts
resulting in a network. Storm uses tuples as its data model, that is, named lists
of values of arbitrary type. Hence, Bolts are parametrized with per-tuple kernel
code. Each time a tuple is available from some input stream, the kernel code gets
activated to work on that input tuple. Bolts and Spouts are locally stateful, as we
discuss in Section 4.2.3, while no global consistent state is supported. Yet, glob-
ally stateful computations can be implemented since the kernel code of Spouts and
Bolts is arbitrary. However, eventual global state management would be the sole
responsibility of the user, who has to be aware of the underlying execution model in
order to ensure program coordination among Spouts and Bolts. It is also possible
to define cyclic graphs by way of feedback channels connecting Bolts.

While Storm targets single-tuple granularity in its base interface, the Trident API is
an abstraction that provides declarative stream processing on top of Storm. Namely,
Trident processes streams as a series of micro-batches belonging to a stream con-
sidered as a single object.

4.2.3 State, Windowing and Iterative Computations

Frameworks providing stateful stream processing make it possible to express mod-
ifications (i.e., side-effects) to the system state that will be visible at some future
point. If the state of the system is global, then it can be accessed by all system
components. Another example of global state is the one managed in Naiad via
tagged tokens in their Timely Dataflow model. On the other hand, local states can

4.2. Programming Models 57

be accessed only by a single system component. For example, the mapWithState

functional in the Spark Streaming API realizes a form of local state, in which
successive executions of the functional see the modifications to the state made by
previous ones. Furthermore, state can be partitioned by shaping it as a tuple space,
following, for instance, the aforementioned key-value paradigm.

Google Dataflow provides a form of state in the form of side-input, provided as
additional inputs to a ParDo transform. A side input is a local state accessible by
the DoFn object each time it processes an element in the input PCollection. Once
specified, this side input can be read from within the ParDo transform’s DoFn while
processing each element.

Windowing is another concept provided by many stream processing frameworks.
A window is informally defined as an ordered subset of items extracted from the
stream. The most common form of windowing is referred as sliding window and
it is characterized by the size (how many elements fall within the window) and
the sliding policy (how items enter and exit from the window). Spark provides
the simplest abstraction for defining windows, since they are just micro-batches
over the DStream abstraction where it is possible to define only the window length
and the sliding policy. Storm and Flink allow more arbitrary kinds of grouping,
producing windows of Tuples and WindowedStreams, respectively. Notice this does
not break the declarative or topological nature of the considered frameworks, since
it just changes the type of the processed data. Notice also that windowing can be
expressed in terms of stateful processing, by considering window-typed state.

Google Dataflow provides three kind of windowing patterns: fixed windows defined
by a static window size (e.g. per hour, per second). Sliding windows defined by a
window size and a sliding period. The period may be smaller then the size, to allow
overlapping windows. Session windows capture some period of activity over a subset
of data partitioned by a key. Typically, they are defined by a timeout gap. When
used with partitioning (e.g., grouping by key), Grouping transforms consider each
PCollection on a per-window basis. GroupByKey, for example, implicitly groups
the elements of a PCollection by key first and then by window. Windowing can
be used with bounded PCollections, and it considers only the implicit timestamps
attached to each element of a PCollection, and data sources that create fixed data
sets assign the same timestamp to every element. All the elements are by default
part of a single, global window, causing the execution in classic MapReduce batch
style.

Finally, we consider another common concept in batch processing, namely iter-
ative processing. In Flink, iterations are expressed as the composition of ar-
bitrary DataSet values by iterative operators, resulting in a so-called Iterative-
DataSet. Component DataSets represent for example step functions—executed in
each iteration—or termination condition—evaluated to decide if iteration has to be
terminated. Spark’s iteration model is radically simpler, since no specific construct
is provided to implement iterative processing. Instead, an RDD (endowed with
transformations) can be embedded into a plain sequential loop. Google Dataflow
iteration model is similar to Spark’s but it’s limited. It is possible to implement it-
erative algorithms only if a fixed and known number of iterations is provided, while
it may not be easy to implement algorithms where the pipeline’s execution graph
depends on the data itself. This happens because of the computation graph build
in the intermediate language that is then optimized before being executed. With
iterative algorithms, the complete graph structure cannot be known in advance, so
it is necessary to know the number of iteration in advance in order to replicate the
subset of stages in the pipeline involved in the iterative step.

58 Chapter 4. High-Level Model for Big Data Frameworks

m r
A m(A) b

Figure 4.2: Functional Map and Reduce dataflow express-
ing data dependencies.

4.3 Program Semantics Dataflow

This level of our layered model provides a Dataflow representation of the program
semantics. Such a model describes the application using operators and data depen-
dencies among them, thus creating a topological view common to all frameworks.
This level does not explicitly express parallelism: instead, parallelism is implicit
through the data dependencies among actors (i.e., among operators), so that oper-
ators which have no direct or indirect dependencies can be executed concurrently.

4.3.1 Semantic Dataflow Graphs

A semantic Dataflow graph is a pair G = 〈V, E 〉 where actors V represent opera-
tors, channels E represent data dependencies among operators and tokens represent
data to be processed. For instance, consider a map function m followed by a reduce
function r on a collection A and its result b, represented as the functional composi-
tion b = r(m(A)). This is represented by the graph in Fig. 4.2, which represents the
semantic dataflow of a simple map-reduce program. Notice that the user program
translation into the semantic dataflow can be subject to further optimization. For
instance, two or more non-intensive kernels can be mapped onto the same actor to
reduce resource usage.

(a) Flink JobGraph
(b) Spark DAG

Figure 4.3: A Flink JobGraph (4.3a). Spark DAG of the
WordCount application (4.3b).

Notably, the Dataflow representation we propose is adopted by the considered
frameworks as a pictorial representation of applications. Fig. 4.3b shows the seman-
tic dataflow—called application DAG in Spark—related to the WordCount applica-
tion, having as operations (in order): 1. read from text file; 2. a flatMap operator
splitting the file into words; 3. a map operator that maps each word into a key-value

4.3. Program Semantics Dataflow 59

pair (w, 1); 4. a reduceByKey operator that counts occurrences of each word in the
input file. Note that the DAG is grouped into stages (namely, Stages 0 and 1),
which divide map and reduce phases. This distinction is related to the underlying
parallel execution model and will be covered in Section 4.4. Flink also provides a
semantic representation—called JobGraph or condensed view— of the application,
consisting of operators (JobVertex) and intermediate results (IntermediateDataSet,
representing data dependencies among operators). Fig. 4.3a(b) presents a small
example of a JobGraph.

Figure 4.4: Example of a Google Dataflow Pipeline merg-
ing two PCollections.

In Fig. 4.4 it is reported the semantics dataflow representing an application where,
after branching into two PCollections, namely A and B, the pipeline merges the two
together into a single PCollection. This PCollection contains all names that begin
with either A or B. The two PCollections are then merged into a final PCollection
after the Flatten operator has merged PCollections of the same type. We can
highlight two aspects in this example. The first one is the branching node: this
node’s semantics is to broadcast elements of the PCollection to A-extractor and
B-extractor nodes, thus duplicating the input collection. The second aspect is the
merging node, namely the Flatten node: it is a transform in the Google Dataflow
SDK merging multiple PCollection, having a from-all input policy and producing a
single output value.

4.3.2 Tokens and Actors Semantics

Although the frameworks provide a similar semantic expressiveness, some differences
are visible regarding the meaning of tokens flowing across channels and how many
times actors are activated.

When mapping a Spark program, tokens represent RDDs and DStreams for batch
and stream processing respectively. Actors are operators—either transformations or
actions in Spark nomenclature—that transform data or return values (in-memory
collection or files). Actors are activated only once in both batch and stream pro-
cessing, since each collection (either RDD or DStreams) is represented by a single
token. In Flink the approach is similar: actors are activated only once in all scenar-
ios except in iterative algorithms, as we discuss in Section 4.3.3. Tokens represent
DataSets and DataStreams that identify whole datasets and streams respectively.
Google Dataflow follows an approach similar to Spark, in which tokens represent
PCollections either in batch and stream processing. Actors are represented by
Transforms accepting PCollections in input and producing PCollections in output.

Storm is different since tokens represent a single item (called Tuple) of the stream.
Consequently, actors, representing (macro) dataflow operators, are activated each
time a new token is available.

From the discussion above, we can note that Storm’s actors follow a from-any policy
for consuming input tokens, while the other frameworks follow a from-all policy as

60 Chapter 4. High-Level Model for Big Data Frameworks

in the basic Dataflow model. In all the considered frameworks, output tokens are
broadcast onto all channels going out of a node.

4.3.3 Semantics of State, Windowing and Iterations

In Section 4.2.3 we introduced stateful, windowing and iterative processing as con-
venient tools provided by the considered frameworks.

From a Dataflow perspective, stateful actors represent an extension to the basic
model—as we sketched in Section 2.3.2—only in case of global state. In particu-
lar, globally-stateful processing breaks the functional nature of the basic Dataflow
model, inhibiting for instance to reason in pure functional terms about program
semantics (cf. Section 4.6). Conversely, locally-stateful processing can be emulated
in terms of the pure Dataflow model, as discussed in [91]. As a direct consequence,
windowing is not a proper extension since windows can be stored within each actor’s
local state [60]. However, the considered frameworks treat windowing as a primitive
concept. This can be easily mapped to the Dataflow domain by just considering
tokens of proper types.

Finally, iterations can be modeled by inserting loops in semantic dataflows. In
this case, each actor involved in an iteration is activated each time a new token
is available and the termination condition is not met. This implementation of
iterative computations is similar to the hierarchical actors of Lee & Parks [91], used
to encapsulate subgraphs modeling iterative algorithms.

4.4 Parallel Execution Dataflow

This level represents parallel implementations of semantic dataflows. As in the
previous section, we start by introducing the approach and then we describe how
the various frameworks instantiate it and what are the consequences this brings to
the runtime.

The most straightforward source of parallelism comes directly from the Dataflow
model, namely, independent actors can run in parallel. Furthermore, some actors
can be replicated to increase parallelism by making replicas work over a partition
of the input data—that is, by exploiting full data parallelism. This is the case,
for instance, of the map operator defined in Section 4.2.1. Both the above schemas
are referred as embarrassingly parallel processing, since there are no dependencies
among actors. Note that introducing data parallelism requires partitioning input
tokens into sub-tokens, distributing those to the various worker replicas, and then
aggregating the resulting sub-tokens into an appropriate result token—much like
scatter/gather operations in message passing programs. Finally, in case of de-
pendent actors that are activated multiple times, parallelism can still be exploited
by letting tokens “flow” as soon as each activation is completed. This well-known
schema is referred as stream/pipeline parallelism.

Fig. 4.5 shows a parallel execution dataflow for the MapReduce semantic dataflow
in Fig. 4.2. In this example, the dataset A is divided in 8 independent partitions
and the map function m is executed by 8 actor replicas; the reduce phase is then
executed in parallel by actors enabled by the incoming tokens (namely, the results)
from their “producer” actors.

4.4. Parallel Execution Dataflow 61

r

r

r

m m

r

m m

r

r

m m

r

m m

Figure 4.5: MapReduce execution dataflow with maximum
level of parallelism reached by eight map instances.

(a) Spark Execution DAG

(b) Flink Execution Graph

Figure 4.6: Spark and Flink execution DAGs.

Spark identifies its parallel execution dataflow by a DAG such as the one shown in
Fig. 4.6a, which is the input of the DAG Scheduler entity. This graph illustrates
two main aspects: first, the fact that many parallel instances of actors are created
for each function and, second, the actors are grouped into the so called Stages that
are executed in parallel if and only if there is no dependency among them. Stages
can be considered as the hierarchical actors in [91]. The actors grouping in stages
brings another strong consequence, derived from the implementation of the Spark
runtime: each stage that depends on one or more previous stages has to wait for
their completion before execution. The depicted behavior is analogous to the one
encountered in the Bulk Synchronous Parallelism paradigm (BSP) [128]. In a BSP
algorithm, as well as in a Spark application, a computation proceeds in a series of
global supersteps consisting in: 1) Concurrent computation, in which each actor
executes its business code on its own partition of data; 2) Communication, where
actors exchange data between themselves if necessary (the so called shuffle phase);
3) Barrier synchronization, where actors wait until all other actors have reached the
same barrier.

Flink transforms the JobGraph (Fig. 4.3a) into the Execution Graph [42] (Fig. 4.6b),
in which the JobVertex (a hierarchical actor) is an abstract vertex containing a
certain number of ExecutionVertexes (actors), one per parallel sub-task. A key
difference compared to the Spark execution graph is that a dependency does not
represent a barrier among actors or hierarchical actors: instead, there is effective
tokens pipelining and actors can be fired concurrently. This is a natural imple-
mentation for stream processing, but in this case, since the runtime is the same, it
applies to batch processing applications as well. Conversely, iterative processing is
implemented according to the BSP approach: one evaluation of the step function

62 Chapter 4. High-Level Model for Big Data Frameworks

Spark Flink Google Dataflow

Graph
specifica-
tion

Implicit, OO-style
chaining of trans-
formations

Idem Idem

DAG Join operation Idem Join and Merge opera-
tion

Tokens RDD DataSet PCollection

Nodes Transformations
from RDD to RDD

Transformations
from DataSet to
DataSet

Transformations from
PCollection to PCollec-
tion

Parallelism Data parallelism in
transformations +
Inter-actor, task
parallelism, limited
by per-stage BSP

Data parallelism in
transformations +
Inter-actor task
parallelism

Idem

Iteration Using repetitive se-
quential executions
of the graph

Using iterate &

iterateDelta

Using repetitive sequen-
tial executions of the
graph

Table 4.1: Batch processing.

on all parallel instances forms a superstep (again a hierarchical actor), which is also
the granularity of synchronization; all parallel tasks of an iteration need to complete
the superstep before the next one is initiated, thus behaving like a barrier between
iterations.

Storm creates an environment for the execution dataflow similar to the other frame-
works. Each actor is replicated to increase the inter-actor parallelism and each group
of replicas is identified by the name of the Bolt/Spout of the semantics dataflow
they originally belong to, thus instantiating a hierarchical actor. Each of these
actors (actors group) represents data parallel tasks without dependencies. Since
Storm is a stream processing framework, pipeline parallelism is exploited. Hence,
while an actor is processing a token (tuple), an upstream actor can process the next
token concurrently, increasing both data parallelism within each actors group and
task parallelism among groups.

In Google Dataflow the execution of a Dataflow program is typically launched on
the Google Cloud Platform. When run, Dataflow runtime enters the Graph Con-
struction Time phase in which it creates an execution graph on the basis of the
Pipeline, including all the Transforms and processing functions. The parallel exe-
cution dataflow is similar to the one in Spark and Flink, and parallelism is expressed
in terms of data parallelism in Transforms (e.g., ParDo function) and inter-actor
parallelism on independent Transforms. In Google Dataflow nomenclature, this
graph is called Execution Graph. Similarly to Flink, pipeline parallelism is ex-
ploited among successive actors.

4
.4

.
P

ara
llel

E
x
ecu

tion
D

a
tafl

ow
63

Google Dataflow Storm Spark Flink

Graph
specification

Implicit, OO-style chaining of
transformations

Explicit, Connections between
bolts

Implicit, OO-style chaining of
transformations

Implicit, OO-style chaining of
transformations

DAG Join and Merge operation Multiple incoming/outgoing con-
nections

Join operation Join operation

Tokens PCollection Tuple (fine-grain) DStream DataStream

Nodes Transformations from PCollection
to PCollection

Stateful with “arbitrary” emission
of output tuples

Transformations from DStream to
DStream

Transformations from DataStream
to DataStream

Parallelism Data parallelism in transforma-
tions +
Inter-actor task parallelism

Data parallelism between different
bolt instances +
Stream parallelism between stream
items by bolts

Analogous to Spark Batch paral-
lelism

Analogous to Flink Batch paral-
lelism+
Stream parallelism between stream
items

Table 4.2: Stream processing comparison between Google Dataflow, Storm, Spark and Flink.

64 Chapter 4. High-Level Model for Big Data Frameworks

Summarizing, in sections 4.3 and 4.4 we showed how the considered frameworks
can be compared under the very same model from both a semantic and a parallel
implementation perspective. The comparison is summarized in Tables 4.1 for batch
processing and 4.2 for stream processing.

4.5 Execution Models

This layer shows how the program is effectively executed, following the process and
scheduling-based categorization described in Section 2.3.2.

4.5.1 Scheduling-based Execution

In Spark, Flink and Storm, the resulting process network dataflow follows the
Master-Workers pattern, where actors from previous layers are transformed into
tasks. Fig. 4.7a shows a representation of the Spark Master-Workers runtime. We
will use this structure also to examine Storm and Flink, since the pattern is similar
for them: they differ only in how tasks are distributed among workers and how the
inter/intra-communication between actors is managed.

The Master has total control over program execution, job scheduling, commu-
nications, failure management, resource allocations, etc. The master also relies on
a cluster manager, an external service for acquiring resources on the cluster (like
Mesos, YARN or Zookeper).

The master is the one that knows the semantic dataflow representing the current
application, while workers are completely agnostic about the whole dataflow: they
only obtain tasks to execute, that represent actors of the execution dataflow the
master is running. It is only when the execution is effectively launched that the
semantic dataflow is built and eventually optimized to obtain the best execution
plan (Flink, Google Dataflow). With this postponed evaluation, the master creates
the parallel execution dataflow to be executed.

Each framework has its own instance of the master entity: in Spark it is called
SparkContext, in Flink it is the JobManager and in Storm it is called Nimbus, in
Google Dataflow it is called Cloud Dataflow Service. In Storm and Flink, the data
distribution is managed in a decentralized manner, that is, it is delegated to each
executor, since they use pipelined data transfers and forward tokens as soon as
they are produced. For efficiency, in Flink tuples are collected in a buffer which
is sent over the network once it is full or reach a certain time threshold. In Spark
batch, data can be possibly dispatched by the master but typically each worker
get data from a DFS. In Spark streaming, the master is the one responsible for
data distribution: it discretizes the stream into micro-batches that are buffered into
workers’ memory.

The master generally keeps track of distributed tasks, decides when to schedule the
next tasks, reacts to finished vs. failed tasks, keeps track of the semantic dataflow
progress, and orchestrates collective communications and data exchange among
workers. This last aspect is crucial when executing the so-called shuffle operation,
which implies a data exchange among executors. Whereas workers do not have any
information about others, to exchange data they have to request information to the
master and, moreover, specify they are ready to send/receive data.

In Google Dataflow the Master is represented by the Cloud Dataflow managed
service that deploys and execute the DAG representing the application, built during
the Graph Construction Time (see Sect. 4.4). Once on the Dataflow service, the
DAG becomes a Dataflow Job. The Cloud Dataflow managed service automatically

4.5. Execution Models 65

(a) Master-Workers

(b) Worker hierarchy

Figure 4.7: Master-Workers structure of the Spark run-
time (a) and Worker hierarchy example in Storm (b).

partitions data and distributes the Transforms code to Compute Engine instances
(Workers) for parallel processing.

Workers are nodes executing the actor logic, namely, a worker node is a pro-
cess in the cluster. Within a worker, a certain number of parallel executors is
instantiated, that execute tasks related to the given application. Workers have no
information about the dataflow at any level since they are scheduled by the master.
Despite this, the different frameworks use different nomenclatures: in Spark, Storm
and Flink cluster nodes are decomposed into Workers, Executors and Tasks.

A Worker is a node of the cluster, i.e., a Spark worker instance. A node may host
multiple Worker instances. An Executor is a (parallel) process that is spawned in
a Worker process and it executes Tasks, which are the actual kernel of an actor of
the dataflow. Fig. 4.7b illustrates this structure in Storm, an example that would
also be valid for Spark and Flink.

In Google Dataflow, workers are called Google Compute Engine, and occasionally are
referred to as Workers or VMs. The Dataflow managed service deploys Compute
Engine virtual machines associated with Dataflow jobs using Managed Instance
Groups. A Managed Instance Group creates multiple Compute Engine instances
from a common template and allows the user to control and manage them as a
group. The Compute Engines execute both serial and parallel code (e.g., ParDo

parallel code) related to a job (parallel execution DAG).

66 Chapter 4. High-Level Model for Big Data Frameworks

4.5.2 Process-based Execution

In TensorFlow, actors are effectively mapped to threads and possibly distributed on
different nodes. The cardinality of the semantic dataflow is preserved, as each actor
node is instantiated into one node, and the allocation is decided using a placement
algorithm based on cost model optimization. This model is statically estimated
based on heuristics or on previous dataflow execution of the same application. The
dataflow is distributed on cluster nodes and each node/Worker may host one or more
dataflow actors/Tasks, that internally implement data parallelism with a pool of
threads/Executors working on Tensors. Communication among actors is done using
the send/receive paradigm, allowing workers to manage their own data movement
or to receive data without involving the master node, thus decentralizing the logic
and the execution of the application.

As we have seen in Sec. 3.3, a sort of mixed model is proposed by Naiad. Nodes rep-
resent data-parallel computations. Each computer or thread, called shard, executes
the entire dataflow graph. It keeps its fraction of the state of all nodes resident in
local memory throughout, as for a scheduling based execution. Execution occurs in
a coordinated fashion, with all shards processing the same node at any time, and
graph edges are implemented by channels that route records between shards as re-
quired. There is no Master entity directing the execution: each shard is autonomous
also in fault tolerance and recovering.

4.6 Limitations of the Dataflow Model

Reasoning about programs using the Dataflow model is attractive since it makes the
program semantics independent from the underlying execution model. In particular,
it abstracts away any form of parallelism due to its pure functional nature. The most
relevant consequence, as discussed in many theoretical works about Kahn Process
Network and similar models—such as Dataflow—is the fact that all computations
are deterministic.

Conversely, many parallel runtime systems exploit nondeterministic behaviors to
provide efficient implementations. For example, consider the Master-Workers pat-
tern discussed in Section 4.5. A naive implementation of the Master node dis-
tributes tasks to N Workers according to a round-robin policy—task i goes to
worker i (mod N)—which leads to a deterministic process. An alternative policy,
generally referred as on-demand, distributes tasks by considering the load level of
each worker, for example, to implement a form of load balancing. The resulting
processes are clearly nondeterministic, since the mapping from tasks to workers
depends on the relative service times.

Non-determinism can be encountered at all levels of our layered model in Fig. 4.1.
For example, actors in Storm’s topologies consume tokens from incoming streams ac-
cording to a from-any policy—process a token from any non-empty input channel—
thus no assumption can be made about the order in which stream tokens are pro-
cessed. More generally, the semantics of stateful streaming programs depends on
the order in which stream items are processed, which is not specified by the seman-
tics of the semantic dataflow actors in Section 4.3. As a consequence, this prevents
from reasoning in purely Dataflow—i.e., functional—terms about programs in which
actor nodes include arbitrary code in some imperative language (e.g., shared vari-
ables).

4.7. Summary 67

4.7 Summary

In this chapter we analyzed Spark, Storm, Flink and Google Dataflow by showing
the common structure underlying all of them, based on the Dataflow model. We
provided a stack of layers that can be useful to the reader to understand how the
same ideas, either if implemented differently, are common to these frameworks. The
proposed stack is composed by the following layers: Program Semantics Dataflow
representing the semantics of data-processing applications in terms of Dataflow
graphs, where no form of parallelism is expressed; Parallel Execution Dataflow :
represents an instantiation of the semantic dataflows in terms of processing elements.
For example, a semantic actor can be replicated to express data parallelism, so that
the given function can be applied to independent input data; finally, the Process
Network Dataflow describes how the program is effectively deployed and executed
onto the underlying platform.

69

Chapter 5

PiCo Programming Model

In this Chapter, we propose a new programming model based on Pipelines and
operators, which are the building blocks of PiCo programs [65]. In the model
we propose, we use the term Pipeline to denote a workflow that processes data
collections—rather than a computational process—as is common in the data pro-
cessing community [72].

The novelty with respect to other frameworks is that all PiCo operators are poly-
morphic with respect to data types. This makes it possible to 1) re-use the same
algorithms and pipelines on different data models (e.g., streams, lists, sets, etc);
2) reuse the same operators in different contexts, and 3) update operators without
affecting the calling context, i.e., the previous and following stages in the pipeline.
Notice that in other mainstream frameworks, such as Spark, the update of a pipeline
by changing a transformation with another is not necessarily trivial, since it may
require the development of an input and output proxy to adapt the new transfor-
mation for the calling context.

In the same line, we provide a formal framework (i.e., typing and semantics) that
characterizes programs from the perspective of how they transform the data struc-
tures they process—rather than the computational processes they represent. This
approach allows to reason about programs at an abstract level, without taking into
account any aspect from the underlying execution model or implementation.

This chapter proceeds as follows. We formally define the syntax of a program, which
is based on Pipelines and operators whereas it hides the data structures produced
and generated by the program. We define the Program Semantics layer of the
Dataflow stack as it has been defined in [120]. Then we provide the formalization
of a minimal type system defining legal compositions of operators into Pipelines.
Finally, we provide a semantic interpretation that maps any PiCo program to a
functional Dataflow graph, representing the transformation flow followed by the
processed collections.

5.1 Syntax

We propose a programming model for processing data collections, based on the
Dataflow model. The building blocks of a PiCo program are Pipelines and Opera-
tors, which we investigate in this section. Conversely, Collections are not included
in the syntax and they are introduced in Section 5.2.1 since they contribute at
defining the type system and the semantic interpretation of PiCo programs.

70 Chapter 5. PiCo Programming Model

op

(a) Source

op

(b) Sink

op

(c) Processing

p p1

(d) Linear to

p1

p · ·

pn

(e) Non-linear to

p1

op

p2

(f) pair

p1

·

p2

(g) merge

Figure 5.1: Graphical representation of PiCo Pipelines

Pipeline Structural
properties

Behavior

new op - data is processed by opera-
tor op (i.e., unary Pipeline)

to p p1 . . . pn associativity for linear Pipelines:
to (to pA pB) pC ≡
to pA (to pB pC) ≡
pA | pB | pC

destination commutativity:
to p p1 . . . pn ≡
to p pπ(1) . . . pπ(n)

for any π permutation of 1..n

data from Pipeline p is
sent to all Pipelines pi (i.e.,
broadcast)

pair p1 p2 op - data from Pipelines p1 and
p2 are pair-wise processed
by operator op

merge p1 p2 associativity:
merge (merge p1 p2) p3 ≡
merge p1 (merge p2 p3) ≡
p1 + p2 + p3

commutativity:
merge p1 p2 ≡
merge p2 p1

data from Pipelines p1 and
p2 are merged, respecting
the ordering in case of or-
dered collections

Table 5.1: Pipelines

5.1. Syntax 71

5.1.1 Pipelines

The cornerstone concept in the Programming Model is the Pipeline, basically a
DAG-composition of processing operators. Pipelines are built according to the fol-
lowing grammar1:

〈Pipeline〉 ::= new 〈unary-operator〉
| to 〈Pipeline〉 〈Pipeline〉 . . . 〈Pipeline〉
| pair 〈Pipeline〉 〈Pipeline〉 〈binary-operator〉
| merge 〈Pipeline〉 〈Pipeline〉

We categorize Pipelines according to the number of collections they take as input
and output:

• A source Pipeline takes no input and produces one output collection

• A sink Pipeline consumes one input collection and produces no output

• A processing Pipeline consumes one input collection and produces one output
collection

A pictorial representation of Pipelines is reported in Figure 5.1. We refer to
Figs. 5.1a, 5.1b and 5.1c as unary Pipelines, since they are composed by a sin-
gle operator. Figs. 5.1e and 5.1d represent, respectively, linear (i.e., one-to-one)
and branching (i.e., one-to-n) to composition. Figs. 5.1f and 5.1g represent com-
position of Pipelines by, respectively, pairing and merging. A dotted line means the
respective path may be void (e.g., a source Pipeline has void input path). More-
over, as we show in Section 5.2, Pipelines are not allowed to consume more than
one input collection, thus both pair and merge Pipelines must have at least one
void input path.

The meaning of each Pipeline is summarized in Table 5.1.

5.1.2 Operators

Operators are the building blocks composing a Pipeline. They are categorized
according to the following grammar of core operator families:

〈core-operator〉 ::= 〈core-unary-operator〉 | 〈core-binary-operator〉

〈core-unary-operator〉 ::= 〈map 〉 | 〈combine 〉 | 〈emit 〉 | 〈collect 〉

〈core-binary-operator〉 ::= 〈b-map 〉 | 〈b-combine 〉

The intuitive meanings of the core operators are summarized in Table 5.2.

1For simplicity, here we introduce the non-terminal unary-operator (resp.
binary-operator) that includes core and partitioning unary (resp. binary) operators.

72 Chapter 5. PiCo Programming Model

Operator family Categorization Decomposition Behavior

map unary,
element-wise

no applies a user function to each
element in the input collection

combine unary,
collective

yes synthesizes all the elements in
the input collection into an
atomic value, according to a
user-defined policy

b-map binary,
pair-wise

yes the binary counterpart of map:
applies a (binary) user function
to each pair generated by pairing
(i.e. zipping/joining) two input
collections

b-combine binary,
collective

yes the binary counterpart of
combine: synthesizes all pairs
generated by pairing (i.e.
zipping/joining) two input
collections

emit produce-only no reads data from a source, e.g.,
regular collection, text file, tweet
feed, etc.

collect consume-only no writes data to some destination,
e.g., regular collection, text file,
screen, etc.

Table 5.2: Core operator families.

In addition to core operators, generalized operators can decompose their input
collections by:

• partitioning the input collection according to a user-defined grouping policy
(e.g., group by key)

• windowing the ordered input collection according to a user-defined windowing
policy (e.g., sliding windows)

The complete grammar of operators follows:

〈operator〉 ::= 〈core-operator〉
| 〈w-operator〉 | 〈p-operator〉 | 〈w-p-operator〉

where w- and p- denote decomposition by windowing and partitioning, respectively.

For those operators op not supporting decomposition (cf. Table 5.2), the following
structural equivalence holds: op ≡ w-op ≡ p-op ≡ w-p-op.

Data-Parallel Operators

Operators in the map family are defined according to the following grammar:

〈map 〉 ::= map f | flatmap f

5.1. Syntax 73

where f is a user-defined function (i.e., the kernel function) from a host language.2

The former produces exactly one output element from each input element (one-
to-one user function), whereas the latter produces a (possibly empty) bounded
sequence of output elements for each input element (one-to-many user function)
and the output collection is the merging of the output sequences.

Operators in the combine family synthesize all the elements from an input collection
into a single value, according to a user-defined kernel. They are defined according
to the following grammar:

〈combine 〉 ::= reduce ⊕ | fold+reduce ⊕1 z ⊕2

The former corresponds to the classical reduction, whereas the latter is a two-
phase aggregation that consists in the reduction of partial accumulative states (i.e.,
partitioned folding with explicit initial value). The parameters for the fold+reduce
operator specify the initial value for each partial accumulator (z ∈ S, the initial
value for the folding), how each input item affects the aggregative state (⊕1 : S ×
T → S, the folding function) and how aggregative states are combined into a final
accumulator (⊕2 : S × S → S, the reduce function).

Pairing

Operators in the b-map family are intended to be the binary counterparts of map

operators:

〈b-map 〉 ::= zip-map f | join-map f
| zip-flatmap f | join-flatmap f

The binary user function f takes as input pairs of elements, one from each of the
input collections. Variants zip- and join- corresponds to the following pairing
policies, respectively:

• zipping of ordered collections produces the pairs of elements with the same
position within the order of respective collections

• joining of bounded collections produces the Cartesian product of the input
collections

Analogously, operators in the b-combine family are the binary counterparts of
combine operators.

Sources and Sinks

Operators in the emit and collect families model data collection sources and sinks,
respectively:

〈emit 〉 ::= from-file file | from-socket socket | . . .

〈collect 〉 ::= to-file file | to-socket socket | . . .
2Note that we treat kernels as terminal symbols, thus we do not define the language in

which kernel functions are defined; we rather denote this aspect to a specific implementa-
tion of the model.

74 Chapter 5. PiCo Programming Model

Windowing

Windowing is a well-known approach for overcoming the difficulties stemming from
the unbounded nature of stream processing. The basic idea is to process parts of
some recent stream history upon the arrival of new stream items, rather than store
and process the whole stream each time.

A windowing operator takes an ordered collection, produces a collection (with the
same structure type as the input one) of windows (i.e., lists), and applies the sub-
sequent operation to each window. Windowing operators are defined according to
the following grammar, where ω is the windowing policy:

〈w-operator〉 ::= w-〈core-operator〉 ω

Among the various definitions from the literature, for the sake of simplicity we
only consider policies producing sliding windows, characterized by two parameters,
namely, a window size |W |—specifying which elements fall into a window—and a
sliding factor δ—specifying how the window slides over the stream items. Both
parameters can be expressed either in time units (i.e., time-based windowing) or in
number of items (i.e., count-based windowing). In this setting, a windowing policy
ω is a term (|W |, δ, b) where b is either time or count. A typical case is when
|W | = δ, referred as a tumbling policy.

The meaning of the supported windowing policies will be detailed in semantic terms
(Section 5.3.1). Although the PiCo syntax only supports a limited class of window-
ing policies, the semantics we provide is general enough to express other policies
such as session windows [72].

As we will show in Section 5.2, we rely on tumbling windowing to extend bounded
operators3 and have them deal with unbounded collections; for instance, combine
operators are bounded and require windowing to extend them to unbounded collec-
tions.

Partitioning

Logically, partitioning operators take a collection, produces a set (one per group)
of sub-collections (with the same type as the input one) and applies the subsequent
operation to each sub-collection. Partitioning operators are defined according to
the following grammar, where π is a user-defined partitioning policy that maps
each item to the respective sub-collection:

〈p-operator〉 ::= p-〈core-operator〉 π

Operators in the combine, b-map and b-combine families support partitioning, so,
for instance, a p-combine produces a bag of values, each being the synthesis of one
group; also the natural join operator from the relational algebra is a particular case
of per-group joining.

The decomposition by both partitioning and windowing considers the former as the
external decomposition, thus it logically produces a set (one per group) of collections
of windows:

〈w-p-operator〉 ::= w-p-〈core-operator〉 π ω

5.2. Type System 75

Algorithm 1 A word-count Pipeline

f = λl.list-map (λw. (w, 1)) (split l)
tokenize = flatmap f

⊕ = λxy. (π1(x), π2(x) + π2(y))
keyed-sum = p-(reduce ⊕) π1

file-read = from-file input-file
file-write = to-file output-file

word-count = new tokenize | new keyed-sum

file-word-count = new file-read | word-count | new file-write

5.1.3 Running Example: The word-count Pipeline

We illustrate a simple word-count Pipeline in Algorithm 1. We assume an hy-
pothetical PiCo implementation where the host language provides some common
functions over basic types—such as strings and lists—and a syntax for defining and
naming functional transformations. In this setting, the functions f and ⊕ in the
example are user-defined kernels (i.e., functional transformations) and:

• split is a host function mapping a text line (i.e., a string) into the list of words
occurring in the line

• list-map is a classical host map over lists

• π1 is the left-projection partitioning policy (cf. example below, Section 5.3.1,
Definition 3)

The operators have the following meaning:

• tokenize is a flatmap operator that receives lines l of text and produces, for
each word w in each line, a pair (w, 1);

• keyed-sum is a p-reduce operator that partitions the pairs based on w (ob-
tained with π1, using group-by-word) and then sums up each group to (w, nw),
where w occurs nw times in the input text;

• file-read is an emit operator that reads from a text file and generates a
list of lines;

• file-write is a collect operator that writes a bag of pairs (w, nw) to a text
file.

5.2 Type System

Legal Pipelines are defined according to typing rules, described below. We denote
the typing relation as a : τ , if and only if there exists a legal inference assigning
type τ to the term a.

5.2.1 Collection Types

We mentioned earlier (Section 5.1) that collections are implicit entities that flow
across Pipelines through the DAG edges. A collection is either bounded or un-
bounded ; moreover, it is also either ordered or unordered. A combination of the

3We say an operator is bounded if it can only deal with bounded collections.

76 Chapter 5. PiCo Programming Model

Operator Type

Unary

map Tσ → Uσ,∀σ ∈ Σ
combine, p-combine Tσ → Uσ,∀σ ∈ Σb
w-combine, w-p-combine Tσ → Uσ, ∀σ ∈ Σo
emit ∅ → Uσ
collect Tσ → ∅

Binary

b-map, p-b-map Tσ × T ′σ → Uσ, ∀σ ∈ Σb
w-b-map, w-p-b-map Tσ × T ′σ → Uσ,∀σ ∈ Σo

Table 5.3: Operator types.

op : Tσ → Uσ, σ ∈ Σo

w-op ω : Tσ′ → Uσ′ , σ
′ ∈ Σo

w-

Figure 5.2: Unbounded extension provided by windowing

mentioned characteristics defines the structure type of a collection. We refer to each
structure type with a mnemonic name:

• a bounded, ordered collection is a list

• a bounded, unordered collection is a (bounded) bag

• an unbounded, ordered collection is a stream

A collection type is characterized by its structure type and its data type, namely the
type of the collection elements. Formally, a collection type has form Tσ where σ ∈ Σ
is the structure type, T is the data type—and where Σ = {bag, list, stream} is the
set of all structure types. We also partition Σ into Σb and Σu, defined as the sets of
bounded and unbounded structure types, respectively. Moreover, we define Σo as
the set of ordered structure types, thus Σb ∩ Σo = {list} and Σu ∩ Σo = {stream}.
Finally, we allow the void type ∅.

5.2.2 Operator Types

Operator types are defined in terms of input/output signatures. The typing of
operators is reported in Table 5.3. We do not show the type inference rules since
they are straightforward.

From the type specification, we say each operator is characterized by its input and
output degrees (i.e., the cardinality of left and right-hand side of the → symbol,
respectively). All operators but collect have output degree 1, while collect has
output degree 0. All binary operators have input degree 2, emit has input degree
0 and all the other operators have input degree 1.

All operators are polymorphic with respect to data types. Moreover, all operators
but emit and collect are polymorphic with respect to structure types. Conversely,
each emit and collect operator deals with one specific structure type.4

As we mentioned in Section 5.2.1, a windowing operator may behave as the un-
bounded extension of the respective bounded operator. This is formalized by the

4For example, an emitter for a finite text file would generate a bounded collection of
strings, whereas an emitter for stream of tweets would generate an unbounded collection
of tweet objects.

5.2. Type System 77

op : τ
new op : τ new

p : T ◦σ → Uσ pi : Uσ → (V ◦σ)i ∃i : (V ◦σ)i = Vσ
to p p1 . . . pn : T ◦σ → Vσ

to

p : T ◦σ → Uσ pi : Uσ → ∅
to p p1 . . . pn : T ◦σ → ∅

to∅

p : T ◦σ → Uσ p′ : ∅ → U ′σ a : Uσ × U ′σ → V ◦σ
pair p p′ a : T ◦σ → V ◦σ

pair

p : ∅ → Uσ p′ : T ◦σ → U ′σ a : Uσ × U ′σ → V ◦σ
pair p p′ a : T ◦σ → V ◦σ

pair′

p : T ◦σ → Uσ p′ : ∅ → Uσ

merge p p′ : T ◦σ → Uσ
merge

Figure 5.3: Pipeline typing

inference rule w- that is reported in Figure 5.2: given an operator op dealing with or-
dered structure types (bounded or unbounded), its windowing counterpart w-op can
operate on any ordered structure type, including stream. The analogous principle
underlies the inference rules for all the w- operators.

5.2.3 Pipeline Types

Pipeline types are defined according to the inference rules in Figure 5.3. For sim-
plicity, we use the meta-variable T ◦σ , which can be rewritten as either Tσ or ∅,
to represent the optional collection type5. The awkward rule to covers the case
in which, in a to Pipeline, at least one destination Pipeline pi has non-void out-
put type Vσ; in such case, all the destination Pipelines with non-void output type
must have the same output type Vσ, which is also the output type of the resulting
Pipeline.

Finally, we define the notion of top-level Pipelines, representing Pipelines that may
be executed.
Definition 1. A top-level Pipeline is a non-empty Pipeline of type ∅ → ∅.

Running Example: Typing of word-count

We present the types of the word-count components, defined in Section 5.1. We
omit full type derivations since they are straightforward applications of the typing
rules.

The operators are all unary and have the following types:

tokenize : Stringσ → (String× N)σ,∀σ ∈ Σ
keyed-sum : (String× N)σ → (String× N)σ,∀σ ∈ Σ
file-read : ∅bag → Stringbag

file-write : (String× N)bag → ∅bag

5We remark the optional collection type is a mere syntactic rewriting, thus it does not
represent any additional feature of the typing system.

78 Chapter 5. PiCo Programming Model

Pipelines have the following types:

word-count : Stringσ → (String× N)σ,∀σ ∈ Σ
file-word-count : ∅ → ∅

We remark that word-count is polymorphic whereas file-word-count is a top-
level Pipeline.

5.3 Semantics

We propose an interpretation of Pipelines in terms of semantic Dataflow graphs, as
defined in [120]. Namely, we propose the following mapping:

• Collections ⇒ Dataflow tokens

• Operators ⇒ Dataflow vertexes

• Pipelines ⇒ Dataflow graphs

Note that collections in semantic Dataflow graphs are treated as a whole, thus they
are mapped to single Dataflow tokens that flow through the graph of transforma-
tions. In this setting, semantic operators (i.e., Dataflow vertexes) map an input
collection to the respective output collection upon a single firing.

5.3.1 Semantic Collections

Dataflow tokens are data collections of T -typed elements, where T is the data type
of the collection. Unordered collections are semantically mapped to multi-sets,
whereas ordered collections are mapped to sequences.

We denote an unordered data collection of data type T with the following, “{ . . . }”
being interpreted as a multi-set (i.e., unordered collection with possible multiple
occurrences of elements):

m =
{
m0,m1, . . . ,m|m|−1

}
(5.1)

A sequence (i.e., semantic ordered collection) associates a numeric timestamp to
each item, representing its temporal coordinate, in time units, with respect to time
zero. Therefore, we denote the generic item of a sequence having data type T
as (ti, si) where i ∈ N is the position of the item in the sequence, ti ∈ N is the
timestamp and si ∈ T is the item value. We denote an ordered data collection of

data type T with the following, where
(b)
= holds only for bounded sequences (i.e.,

lists):
s = [(t0, s0), (t1, s1), (t2, s2), . . . • ti ∈ N, si ∈ T]

= [(t0, s0)] ++ [(t1, s1), (t2, s2), . . .]
= (t0, s0) :: [(t1, s1), (t2, s2), . . .]
(b)
=
[
(t0, s0), (t1, s1), . . . , (t|s|−1, s|s|−1)

] (5.2)

The symbol ++ represents the concatenation of sequence [(t0, s0)] (head sequence)
with the sequence [(t1, s1), (t2, s2), . . .] (tail sequence). The symbol :: represents the
concatenation of element (t0, s0) (head element) with the sequence [(t1, s1), (t2, s2), . . .]
(tail sequence).

We define the notion of time-ordered sequences.

5.3. Semantics 79

Definition 2. A sequence s = [(t0, s0), (t1, s1), (t2, s2), . . .] is time-ordered when the
following condition is satisfied for any i, j ∈ N:

i ≤ j ⇒ ti ≤ tj

We denote as −→s any time-ordered permutation of s. The ability of dealing with
non-time-ordered sequences, which is provided by PiCo, is sometimes referred as
out-of-order data processing [72].

Before proceeding to semantic operators and Pipelines, we define some preliminary
notions about the effect of partitioning and windowing over semantic collections.

Partitioned Collections

In Section 5.1.2, we introduced partitioning policies. In semantic terms, a parti-
tioning policy π defines how to group collection elements.
Definition 3. Given a multi-set m of data type T , a function π : T → K and a
key k ∈ K, we define the k-selection σπk (m) as follows:

σπk (m) = {mi • x ∈ mi ∧ π(mi) = k} (5.3)

Similarly, the k-selection σπk (s) of a sequence s is the sub-sequence of s such that
the following holds:

∀(ti, si) ∈ s, (ti, si) ∈ σπk (s) ⇐⇒ π(si) = k (5.4)

We define the partitioned collection as the set of all groups generated according to
a partitioning policy.
Definition 4. Given a collection c and a partitioning policy π, the partitioned
collection c according to π, noted c(π), is defined as follows:

c(π) = {σπk (c) • k ∈ K ∧ |σπk (c)| > 0} (5.5)

We remark that partitioning has no effect with respect to time-ordering.

Example: The group-by-key decomposition, with π1 being the left projection,6

uses a special case of selection where:

• the collection has data type K × V

• π = π1

Windowed Collections

Before proceeding further, we provide the preliminary notion of sequence splitting.
A splitting function f defines how to split a sequence into two possibly overlapping
sub-sequences, namely the head and the tail.
Definition 5. Given a sequence s and a splitting function f , the splitting of s
according to f is:

f(s) = (h(s), t(s)) (5.6)

where h(s) is a bounded prefix of s, t(s) is a proper suffix of s, and there is a prefix
p of h(s) and a suffix u of t(s) such that s = p++u.

6π1(x, y) = x

80 Chapter 5. PiCo Programming Model

In Section 5.1.2, we introduced windowing policies. In semantic terms, a windowing
policy ω identifies a splitting function f (ω). Considering a split sequence fω(s), the
head hω(s) represents the elements falling into the window, whereas the tail tω(s)
represents the remainder of the sequence.

We define the windowed sequence as the result of repeated applications of windowing
with time-reordering of the heads.
Definition 6. Given a sequence s and a windowing policy w, the windowed view of
s according to w is:

s(ω) = [−→s0 ,
−→s1 , . . . ,

−→si , . . .] (5.7)

where si = hω(tω(tω(. . . tω︸ ︷︷ ︸
i

(s) . . .)))

Example: The count-based policy ω = (5, 2, count) extracts the first 5 items from
the sequence at hand and discards the first 2 items of the sequence upon sliding,
whereas the tumbling policy ω = (5, 5, count) yields non-overlapping contiguous
windows spanning 5 items.

5.3.2 Semantic Operators

We define the semantics of each operator in terms of its behavior with respect to
token processing by following the structure of Table 5.3. We start from bounded
operators and then we show how they can be extended to their unbounded coun-
terparts by considering windowed streams.

Dataflow vertexes with one input edge and one output edge (i.e., unary operators
with both input and output degrees equal to 1) take as input a token (i.e., a data
collection), apply a transformation, and emit the resulting transformed token. Ver-
texes with no input edges (i.e., emit)/no output edges (i.e., collect) execute a
routine to produce/consume an output/input token, respectively.

Semantic Core Operators

The bounded map operator has the following semantics:

map f m = {f(mi) •mi ∈ m}
map f s =

[
(t0, f(s0)), . . . , (t|s|−1, f(s|s|−1))

] (5.8)

where m and s are input tokens (multi-set and list, respectively) whereas right-hand
side terms are output tokens. In the ordered case, we refer to the above definition as
strict semantic map, since it respects the global time-ordering of the input collection.

The bounded flatmap operator has the following semantics:

flatmap f m =
⋃
{f(mi) •mi ∈ m}

flatmap f s = [(t0, f(s0)0), (t0, f(s0)1), . . . , (t0, f(s0)n0
)] ++

[(t1, f(s1)0), . . . , (t1, f(s1)n1
)] ++ . . .++[

(t|s|−1, f(s|s|−1)0) . . . , (t|s|−1, f(s|s|−1)n|s|−1
)
] (5.9)

where f(si)j is the j-th item of the list f(si), that is, the output of the kernel
function f over the input si. Notice that the timestamp of each output item is the
same as the respective input item.

5.3. Semantics 81

The bounded reduce operator has the following semantics, where ⊕ is both asso-
ciative and commutative and, in the ordered variant, t′ = max

(ti,si)∈s
ti:

reduce ⊕ m = {
⊕
{mi ∈ m}}

reduce ⊕ s =
[
(t′, (. . . (s0 ⊕ s1)⊕ . . .)⊕ s|s|−1)

]
(a)
=
[
(t′, s0 ⊕ s1 ⊕ . . .⊕ s|s|−1)

]
(c)
= [(t′,

⊕
Π2(s))]

(5.10)

meaning that, in the ordered variant, the timestamp of the resulting value is the

same as the input item having the maximum timestamp. Equation
(a)
= holds since

⊕ is associative and equation
(c)
= holds since it is commutative.

The fold+reduce operator has a more complex semantics, defined with respect to
an arbitrary partitioning of the input data. Informally, given a partition P of the
input collection, each subset Pi ∈ P is mapped to a local accumulator ai, initialized
with value z; then:

1. Each subset Pi is folded into its local accumulator ai, using ⊕1;

2. The local accumulators ai are combined using ⊕2, producing a reduced value
r;

The formal definition—that we omit for the sake of simplicity—is similar to the
semantic of reduce, with the same distinction between ordered and unordered pro-
cessing and similar considerations about associativity and commutativity of user
functions. We assume, without loss of generality, that the user parameters z and
⊕1 are always defined such that the resulting fold+reduce operator is partition-
independent, meaning that the result is independent from the choice of the partition
P .

Semantic Decomposition

Given a bounded combine operator op and a selection function π : T → K, the
partitioning operator p-op has the following semantics over a generic collection c:

p-op π c =
{
op c′ • c′ ∈ c(π)

}
For instance, the group-by-key processing is obtained by using the by-key partition-
ing policy (cf. example below definition 3).

Similarly, given a bounded combine operator op and a windowing policy ω, the
windowing operator w-op has the following semantics:

w-op ω s = op s
(ω)
0 ++ . . .++ op s

(ω)

|s(ω)|−1
(5.11)

where s
(ω)
i is the i-th list in s(ω) (cf. Definition 6).

As for the combination of the two partitioning mechanisms, w-p-op, it has the
following semantics:

w-p-op π ω s =
{
w-op ω s′ • s′ ∈ s(π)

}
Thus, as mentioned in Section 5.1.2, partitioning first performs the decomposition,
and then processes each group on a per-window basis.

82 Chapter 5. PiCo Programming Model

Unbounded Operators

We remark that none of the semantic operators defined so far can deal with un-
bounded collections. As mentioned in Section 5.1.2, we rely on windowing for
extending them to the unbounded case.

Given a (bounded) windowing combine operator op, the semantics of its unbounded
variant is a trivial extension of the bounded case:

w-op ω s = op s
(ω)
0 ++ . . .++ c s

(ω)
i ++ . . . (5.12)

The above incidentally also defines the semantics of unbounded windowing and
partitioning combine operators.

We rely on the analogous approach to define the semantics of unbounded operators
in the map family, but in this case the windowing policy is introduced at the seman-
tic rather than syntactic level, since map operators do not support decomposition.
Moreover, the windowing policy is forced to be batching (cf. Example below Defini-
tion 5). We illustrate this concept on map operators, but the same holds for flatmap
ones. Given a bounded map operator, the semantics of its unbounded extension is
as follows, where ω is a tumbling windowing policy:

Jmap f sKω = map f s
(ω)
0 ++ . . .++ map f s

(ω)
i ++ . . . (5.13)

We refer to the above definition as weak semantic map (cf. strict semantic map in
Equation 5.8), since the time-ordering of the input collection is partially dropped. In
the following chapters, we provide a PiCo implementation based on weak semantic
operators for both bounded and unbounded processing.

Semantic Sources and Sinks

Finally, emit/collect operators do not have a functional semantics, since they
produce/consume collections by interacting with the system state (e.g., read/write
from/to a text file, read/write from/to a network socket). From the semantic per-
spective, we consider each emit/collect operator as a Dataflow node able to pro-
duce/consume as output/input a collection of a given type, as shown in Table 5.3.
Moreover, emit operators of ordered type have the responsibility of tagging each
emitted item with a timestamp.

5.3.3 Semantic Pipelines

The semantics of a Pipeline maps it to a semantic Dataflow graph. We define
such mapping by induction on the Pipeline grammar defined in Section 5.1. The
following definitions are basically a formalization of the pictorial representation in
Figure 5.1.

We also define the notion of input, resp. output, vertex of a Dataflow graph G,
denoted as vI(G) and vO(G), respectively. Conceptually, an input node represents
a Pipeline source, whereas an output node represents a Pipeline sink.

The following formalization provides the semantics of any PiCo program.

• (new op) is mapped to the graph G = ({op}, ∅); moreover, one of the follow-
ing three cases hold:

– op is an emit operator, then vO(G) = op, while vI(G) is undefined

– op is a collect operator, then vI(G) = op, while vO(G) is undefined

5.3. Semantics 83

– op is an unary operator with both input and output degree equal to 1,
then vI(G) = vO(G) = op

• (to p p1 . . . pn) is mapped to the graph G = (V,E) with:

V = V (Gp) ∪ V (Gp1) ∪ . . . ∪ V (Gpn) ∪ {µ}
E = E(Gp) ∪

⋃n
i=1E(Gpi) ∪

⋃n
i=1 {(vO(Gp), vI(Gpi))}∪⋃|G′|

i=1 {(vO(G′i), µ)}

where µ is a non-determinate merging node as defined in [91] and G′ =
{Gpi • dO(Gpi) = 1}; moreover, vI(G) = vI(Gp) if dI(Gp) = 1 and undefined
otherwise, while vO(G) = µ if |G′| > 0 and undefined otherwise.

• (pair p p′ op) is mapped to the graph G = (V,E) with:

V = V (Gp) ∪ V (Gp′) ∪ {o} p
E = E(Gp) ∪ E(Gp′) ∪ {(vO(Gp), op) , (vO(Gp′), op)}

moreover, vO(G) = op, while one of the following cases holds:

– vI(G) = vI(Gp) if the input degree of p is 1

– vI(G) = vI(Gp′) if the input degree of p′ is 1

– vI(G) is undefined if both p and p′ have output degree equal to 0

• (merge p p′) is mapped to the graph G = (V,E) with:

V = V (Gp) ∪ V (Gp′) ∪ {µ}
E = E(Gp) ∪ E(Gp′) ∪ {(vO(Gp), µ) , (vO(Gp′), µ)}

where µ is a non-determinate merging node; moreover, vO(G) = µ, while one
of the following cases holds:

– vI(G) = vI(Gp) if the input degree of p is 1

– vI(G) = vI(Gp′) if the input degree of p′ is 1

– vI(G) is undefined if both p and p′ have output degree equal to 0

Running Example: Semantics of word-count

The tokens (i.e., data collections) flowing through the semantic Dataflow graph
resulting from the word-count Pipeline are bags of strings (e.g., lines produced
by file-read and consumed by tokenize) or bags of string-N pairs (e.g., counts
produced by tokenize and consumed by keyed-sum). In this example, as usual,
string-N pairs are treated as key-value pairs, where keys are strings (i.e., words)
and values are numbers (i.e., counts).

By applying the semantic of flatmap, reduce and p-(reduce ⊕) to Algorithm 1,
the result obtained is that the token being emitted by the combine operator is a
bag of pairs (w, nw) for each word w in the input token of the flatmap operator.

The Dataflow graph resulting from the semantic interpretation of the word-count
Pipeline defined in Section 5.1 is G = (V,E), where:

V = {tokenize, keyed-sum}
E = {(tokenize, keyed-sum)}

Finally, the file-word-count Pipeline results in the graph G = (V,E) where:

V = {file-read, tokenize, keyed-sum, file-write}
E = {(file-read, tokenize) ,

(tokenize, keyed-sum) ,
(keyed-sum, file-write)}

84 Chapter 5. PiCo Programming Model

5.4 Programming Model Expressiveness

In this section, we provide a set of use cases adapted from examples in Flink’s
user guide [68]. Besides they are very simple examples, they exploit grouping,
partitioning, windowing and Pipelines merging. We aim to show the expressiveness
of our model without using any concrete API, to demonstrate that the model is
independent from its implementation.

5.4.1 Use Cases: Stock Market

The first use case is about analyzing stock market data streams. In this use case,
we:

1. read and merge two stock market data streams from two sockets (algorithm 2)

2. compute statistics on this market data stream, like rolling aggregations per
stock (algorithm 3)

3. emit price warning alerts when the prices change (algorithm 4)

4. compute correlations between the market data streams and a Twitter stream
with stock mentions (algorithm 5)

Algorithm 2 The read-price Pipeline

read-prices = new from-socket s1 + new from-socket s2

Read from multiple sources Algorithm 2 shows the stock-read Pipeline,
which reads and merges two stock market data streams from sockets s1 and s2.
Assuming StockName and Price are types representing stock names and prices, re-
spectively, then the type of each emit operator is the following (since emit operators
are polymorphic with respect to data type):

∅ → (StockName× Price){stream}

Therefore it is also the type of read-prices since it is a merge of two emit

operators of such type.

Algorithm 3 The stock-stats Pipeline

min = reduce (λxy.min(x, y))
max = reduce (λxy.max(x, y))
sum-count = fold+reduce (λax.((π1(a)) + 1, (π2(a)) + x)) (0, 0)

(λa1a2.(π1(s1) + π1(a2), π2(a1) + π2(a2)))
normalize = map (λx.π2(x)/π1(x))
ω = (10, 5, count)

stock-stats = to read-prices
new w-p-(min) π1 ω
new w-p-(max) π1 ω
(new w-p-(sum-count) π1 ω | new normalize)

Statistics on market data stream Algorithm 3 shows the stock-stats
Pipeline, that computes three different statistics—minimum, maximum and mean—
for each stock name, over the prices coming from the read-prices Pipeline. These

5.4. Programming Model Expressiveness 85

statistics are windowing based, since the data processed belongs to a stream possibly
unbound. The specified window policy ω = (10, 5, count) creates windows of 10
elements with sliding factor 5.

The type of stock-stats is ∅ → (StockName× Price){stream}, the same as read-
prices.

Algorithm 4 The price-warnings Pipeline

collect = fold+reduce (λsx.s ∪ {x}) ∅
(λs1s2.s1 ∪ s2)

fluctuation = map (λs.set-fluctuation(s))
high-pass = flatmap (λδ.if δ ≥ 0.05 then yield δ)
ω = (10, 5, count)

price-warnings = read-prices |
new w-p-(collect) π1 ω | new fluctuation

new high-pass

Generate price fluctuation warnings Algorithm 4 shows the Pipeline
price-warnings, that generates a warning each time the stock market data within
a window exhibits high price fluctuation for a certain stock name—yield is a host-
language method that produces an element.

In the example, the fold+reduce operator fluctuation just builds the sets, one
per window, of all items falling within the window, whereas the downstream map

computes the fluctuation over each set. This is a generic pattern that allows to
combine collection items by re-using available user functions defined over collective
data structures.

The type of price-warnings is again ∅ → (StockName× Price){stream}.

Algorithm 5 The correlate-stocks-tweets Pipeline

read-tweets = new from-twitter | new tokenize-tweets

ω = (10, 10, count)

correlate-stocks-tweets = pair price-warnings read-tweets
w-p-(correlate) π1 ω

Correlate warnings with tweets Algorithm 5 shows correlate-stocks-
tweets, a Pipeline that generates a correlation between warning generated by
price-warnings and tweets coming from a Twitter feed. The read-tweets
Pipeline generates a stream of (StockName×String) items, representing tweets each
mentioning a stock name. Stocks and tweets are paired according to a join-by-key
policy (cf. definition 3), where the key is the stock name.

In the example, correlate is a join-fold+reduce operator that computes the
correlation between two joined collections. As we mentioned in Section 5.1.2, we rely
on windowing to apply the (bounded) join-fold+reduce operator to unbounded
streams. In the example, we use a simple tumbling policy ω = (10, 10, count) in
order to correlate items from the two collections in a 10-by-10 fashion.

86 Chapter 5. PiCo Programming Model

5.5 Summary

In this chapter we proposed a new programming model based on Pipelines and
operators, which are the building blocks of PiCo programs, first defining the syntax
of programs, then providing a formalization of the type system and semantics.

The contribution of PiCo with respect to the state-of-the-art is also in the definition
and formalization of a programming model that is independent from the effective
API and runtime implementation. In the state-of-the-art tools for analytics, this
aspect is typically not considered and the user is left in some cases to its own
interpretation of the documentation. This happens particularly when the imple-
mentation of operators in state-of-the-art tools is conditioned in part or totally by
the runtime implementation itself.

87

Chapter 6

PiCo Parallel Execution
Graph

In this chapter, we show how a PiCo program is compiled into a graph of parallel
processing nodes. The compilation step takes as input the direct acyclic dataflow
(DAG) resulting from a PiCo program (the Semantic DAG) and transforms it,
with a set of rules, into a graph that we call the Parallel Execution (PE) Graph,
representing a possible parallelization of the Semantic DAG.

The resulting graph is a classical macro-Dataflow network [91], in which tokens
represent portions of data collections and nodes are persistent processing nodes
mapping input to output tokens, according to a pure functional behavior.

Dataflow networks naturally express some basic forms of parallelism. For instance,
non-connected nodes (i.e., independent nodes) may execute independently from each
other, exploiting embarrassing parallelism. Moreover, connected nodes (i.e., data-
dependent nodes) may process different tokens independently, exploiting pipeline
or task parallelism. Finally, each PiCo operator is compiled into a Dataflow (sub-)
graph of nodes, each processing different portions of the data collection at hand,
exploiting data parallelism.

We also provide a set of rewriting rules for optimizing the compiled graphs, similarly
to what is done by an optimizing compiler over intermediate representations.

In this chapter, we define the Parallel Execution layer of the Dataflow stack as it
has been defined in [120]. We remark, as stressed in the aforementioned work, that
the parallel execution model discussed in this chapter is abstract with respect to
any actual implementation. For instance, it may be implemented in shared memory
or through a distributed runtime. Moreover, a compiled (and optimized) Dataflow
graph may be directly mapped to an actual network of computing units (e.g., com-
municating threads or processes) or executed by a macro-Dataflow interpreter.

This chapter proceeds as follows. We first define the target language and show
the compilation of each single operator with respect to different compilation envi-
ronments. Then we show compilations of Pipelines constructors new, merge and
to. Finally, we show the optimization phase in which operators, while creating
Pipelines, are simplified into more compact and efficient target objects.

6.1 Compilation

In this section we describe how PiCo operators and Pipelines are compiled into
parallel execution (PE) graphs [120]. The target language is composed of Dataflow
graphs and it is inspired by the FastFlow library architecture.

The schema is the following: given a PiCo program, it is mapped to an intermediate
representation (IR) graph that expresses the available parallelism; then an IR graph

88 Chapter 6. PiCo Parallel Execution Graph

p1 · · · pn

(a) PE pipe

p1

E C

pn

(b) PE farm

w

(c) PE processing node

w1

E C

wn

(d) PE operator-farm

Figure 6.1: Grammar of PE graphs

optimization is performed, resulting into the actual parallel execution (PE) graph.
Both the IR and the PE graphs are expressed in terms of the target language.
Top-level terms (cf. definition 1) are compiled into executable PE graphs.

We only consider PiCo terms in the respective normal form, that is, the form induced
by applying all the structural equivalences reported in table 5.1. For the sake of
simplicity, we limit the discussion by considering the PiCo subset not including
binary operators, since they can be treated in an analogous way as unary operators.

We represent the compilation of a PiCo term p as the following, where ρ is a
compilation environment:

C JpKρ

We include such environments at this level to reflect the fact that operators and
Pipelines with the same syntax can be mapped to different PE graphs. We consider
simple compilation environments composed only by a set of structure types that
allow compilations depending from the collection structure types processed—PiCo
terms are polymorphic (cf. Section 5.2). Thus, a Pipeline p can be compiled into
two different PE graphs C JpKδ1 and C JpKδ2 , where δ1 ⊆ Σ and δ2 ⊆ Σ. The
selection of the actual compilation is unique when it comes to (sub-terms of) top-
level Pipelines, since the environment is propagated top-down by the compilation
process (i.e., through inherited attributes). Moreover, we omit the compilation
environment if it can be easily inferred from the context.

Figure 6.1 graphically represents the target language’s grammar. A PE graph is
one of the following symbols:

• PE operators (Figures 6.1c and 6.1d), representing PiCo operators and sin-
gleton Pipelines (i.e., new)

• PE farms (Figure 6.1b), representing branching to and merge Pipelines

• PE pipes (Figure 6.1a), representing linear to Pipelines

6.1. Compilation 89

In

(a)
C Jfrom-file fK{bag}
C Jfrom-socket sK{stream}

Out

(b)
C Jto-file fK{bag}
C Jto-socket sK{stream}

w1

E C

wn

(c)

C Jmap fKΣ

C Jflatmap fKΣ

C Jreduce ⊕KΣb
and decomposing variants

C Jfold+reduce ⊕1 z ⊕2KΣb
and decomposing variants

Figure 6.2: Operators compilation in the target language.

A PE operator can be either a processing node (Figure 6.1c) or a farm-composition
of n processing nodes and additional mediator nodes (Figure 6.1d). Processing
nodes are atomic processing units, whereas mediator nodes are generic entities
responsible for inter-node communication. For instance, a mediator can be a tree
composition of processing units.

6.1.1 Operators

Each operator defined in Section 5.1.2 is compiled into a single PE operator. The
compilation of any PE node has at least one input and one output port, since it
exchanges synchronization tokens in addition to data.

Figure 6.2 schematizes the compilation of PiCo operators into the target language.
All the PE operators have a single entry point and a single exit point in order to
be connected to other operators.

The compilation results are composed by the following entities:

• Processing nodes are executing user code. In figure 6.2c, they are the workers
in the PE graphs for map, flatmap and reduce; moreover, In and Out nodes
in Figures 6.2a and 6.2b are processing nodes that execute some host-language
routine (possibly taking some user code as parameter) to process input and
output collections.

• Emitters are mediator nodes, identified by E, dispatching collection elements
to processing nodes, possibly coming from upstream nodes. The dispatching
may have different policies with respect to windowing and/or partitioning.

• Collectors are mediator nodes, identified by C, collecting items from Workers
and possibly forwarding results to the downstream nodes. Collector nodes
may have to reorder items in case of ordered collections before forwarding.

90 Chapter 6. PiCo Parallel Execution Graph

PE nodes have varied flavors since they have varied roles. For instance, a PE node
can be stateless or stateful depending on the role it plays. We provide some exem-
plified specialization of various PE nodes, with respect to the respective compilation
subjects.

We consider two different compilation approaches: fine-grained and batching. The
former approach is the most naive, in which data collections are decomposed down to
their atomic components with respect to a specific operator; in the latter approach,
collections are decomposed into non-atomic portions (sometimes referred as batches
or micro-batches) to enable more efficient implementations.

Fine-grained PE graphs

In the naive fine-grained compilation approach, the tokens flowing through the PE
graph represent the smallest portions of the data collection at hand. For instance,
a multi-set is decomposed down to its single items—a token for each item—when
processed by a PE operator resulting from the compilation of a map operator; in

the case of windowing operators, a token represents an entire window s
(ω)
i (cf.

Equation 5.11).

• C Jmap fKΣ: the Emitter distributes tokens to the Workers that execute the
function f over each input token (i.e., a single item from the input collec-
tion). Workers and Emitter are stateless. In the simplest case of unordered
processing, also the Collector is stateless and it simply gathers and forwards
the tokens coming from the workers. In the case of ordered processing, the
Collector is deputed to item reordering and it may rely on buffering—in which
case it is stateful. As we discuss later, this approach poses relevant challenges
in the case of stream processing.

• C Jreduce ⊕KΣb
: the Emitter is analogous to the previous case. The Work-

ers calculate partial results and send them to the Collector that computes
the final result. All computations apply the ⊕ function on the collected
data. Therefore, Workers are stateful since they need to store locally the
collected data. Notice that, from the semantic reduction in Equation 5.10,
time-ordering is irrelevant in this case.

• C Jp-(reduce ⊕) πKΣb
: the partitioning policy π is encoded into the Emitter,

that distributes items to Workers by mapping a given key k to a specific
Worker. This is not required in principle, but it simplifies the implementation
since only the Emitter needs to be aware of the partitioning policy; moreover,
since all the processing for a given key k is localized in the same Worker, the
Collector is a simple forwarding node and kernels relying on partitioned state
are supported without any need for coordination control.1 Workers apply the
⊕ function to compute the reduce of each group and emit the results to the
Collector, that simply gathers and forwards the results. Also in this case,
time-ordering can be safely ignored.

• C Jw-(reduce ⊕) ωKΣo
: as discussed in [60], windowing stream processing

can be regarded as a form of stateful processing, since each computation
depends on some recent stream history. In the aforementioned work, sev-
eral patterns for sliding-windows stream processing are proposed in terms of
Dataflow farms. In the Window Farming (WF) pattern, each window can
be processed independently by any worker. We consider the PE operator at
hand as an instance of the WF pattern, since each window can be reduced
independently. The main issue with this scenario is that, since windows may
overlap, each stream item may be needed by more than one worker. In the
proposed approach, windows are statically mapped to Workers, therefore the

1Although the current PiCo formulation does not support this feature.

6.1. Compilation 91

(stateless) Emitter simply computes the set of windows that will contain a
certain item and sends each item to all the workers that need it. Each Worker
maintains an internal state to produce the windows and applies the (sequen-
tial) reduction over each window once it is complete. The Collector relies
on buffering to reconstruct the time-ordering between windows. We remark
only parallelism among different windows is exploited, whereas each Worker
processes each input window sequentially.

• C Jw-p-(reduce ⊕) π ωKΣo
: in the Key Partitioning (KP) pattern [60], the

stream is logically partitioned into disjoint sub-streams and the time-ordering
must be respected only within each sub-stream. Thus it is natural to consider
the PE operator at hand as an instance of the KP pattern, where sub-streams
are constructed according to the partitioning policy π. The resulting PE
operator-farm is analogous to the previous case, except from the Collector
that in this case is simpler since no time-reordering is required.

As we show in Figure 6.2, all the PE graphs resulting from the compilation of
data-parallel operators (cf. Section 5.1.2) are structurally identical.

Batching PE graphs

The first problem with the fine-grained compilation approach is related to the com-
putational granularity, which is a well-known issue in the domain of parallel pro-
cessing performance. Setting the Workers to process data at the finest granularity
induces a high communication traffic between the computational units of any un-
derlying implementation. Therefore, the fine-grained approach increases the ratio
of communication over computation, which is one of the main factors of inefficiency
when it comes to parallel processing. In particular, the discussed issue would have
a relevant impact in any distributed implementation, in which the communication
between processing nodes is expensive.

The second problem with the fine-grained approach is more subtle and is related
to the semantics of PiCo operators as defined in Section 5.3.2. Let us consider
the compilation of a map operator over lists (i.e., bounded sequences) with strict
semantics (cf. Equation 5.8). In the PE operator resulting from its compilation,
the Collector has to restore the time-ordering among all the collection items, thus
in the worst case it has to buffer all the results from the Workers before starting
to emit any token. Moreover, it is not possible to implement an unbounded strict
semantic map. For instance, in the fine-grained compilation setting, this would
require infinite buffering by the Collector. Conversely, if we consider the weak
semantics (cf. Equation 5.13), the relative service times of the Workers for each
item determine the order in which the Collector receives the items to be reordered.
Therefore, it is impossible to implement the weak semantic map without passing all
the information about the original time-ordering from the Emitter to the Collector.

The aspects discussed above make an eventual implementation of the fine-grained
approach cumbersome and inherently inefficient. To overcome such difficulties, we
propose to use instead a batching compilation approach. The idea is simple: the
stream is sliced according to a tumbling windowing policy and the processing is
carried on a per-slice setting. Therefore all the data is processed on a per-window
basis, such that the tokens flowing through PE graphs represent portions of data
collections rather than single items.

We already introduced per-window processing in the fine-grained compilation of
windowing operators w-(reduce ⊕) and w-p-(reduce ⊕), which we retain in the
batching approach.

The batching compilation of a reduce operator is a simplified version of the com-
pilation of a w-reduce operator (i.e., an instance WF pattern). The simplification

92 Chapter 6. PiCo Parallel Execution Graph

comes from the windowing policy is a tumbling one (cf. Example above Defini-
tion 5), thus each stream item falls into exactly one window. Moreover there is
no need for time-reordering by the Collector due to the semantics of the reduce

operator. The Workers perform the reduction at two levels: over the elements of an
input window (i.e., an input token) and over such reduced values—one per window.
Partial results are sent to the Collector that performs the final reduction.

In the same line, the batching compilation of a p-reduce operator is analogous to
the compilation of a w-p-reduce operator (i.e., an instance of the KP pattern).

The batching compilation of a map operator is based on the weak semantic map. It
follows the same schema as the batching reduce, but the Emitter keeps an internal

buffer to build the time-ordered permutations s
(ω)
i (cf. Equation 5.11) prior to send-

ing the items to the Workers. This enforces the time-ordering within each window,
while the time-ordering between different windows is guaranteed by the reordering
Collector.

Finally, the batching compilation of a flatmap operator is analogous to the map

case, where tokens emitted by each Worker includes all the items produced while
processing the respective input window, in order to respect the weak semantics in
Equation 5.13.

Compilation environments

We introduced compilation environments ρ in order to allow parametric compilation
of executable PiCo terms into executable PE graphs, depending for instance on
the structure type accepted by the subject term. As a use case for compilation
environments, we combine parametric batching compilation with the distinction
between so-called batch and stream processing.

We define the compilation of a map operator over unbounded streams (i.e., ρ =
{stream}) to result into a PE farm, in which the Emitter iteratively waits for
an incoming data token—namely, a window, since we are considering batching
compilation—and dispatches it to the proper farm Worker. This schema is com-
monly referred as stream processing. The idea underlying stream processing is that
processing nodes are somehow reactive, in order to process incoming data and syn-
chronization tokens and minimize latency.

Conversely, the compilation of a map operator over bounded collections (e.g., ρ =
{bag}) could result into a farm in which the Emitter waits for a collective data
token (i.e., a whole data bag), distributes bag portions to the farm Workers (i.e.,
scattering) and then suspends itself to avoid consuming computational resources;
it may be eventually waken up again to distribute another bag. Both the non-
free waking mechanism and the data buffering induced by such batch processing
schema introduce some delay, but in the meanwhile the emitter avoids consuming
computational resources.

We provide more details about stream processing in Section 6.3.

6.1.2 Pipelines

In this section we show the compilation of PiCo Pipelines into PE graphs. The
new constructor creates a new Pipeline starting from a single unary operator,
thus its compilation coincides with operators compilations previously defined in
Section 6.1.1, so we will only consider merge and to constructors.

6.1. Compilation 93

Merging Pipelines

The merge operator unifies n Pipelines producing a single output collection that
is the union of the inputs. This operator is both associative and commutative as
reported in Table 5.1.

C Jp1K

E C

C JpnK

Figure 6.3: Compilation of a merge Pipeline

Figure 6.3 shows the compilation of C Jp1 + . . .+ pnK, a Pipeline that merges n
Pipelines. In this case, the Emitter is simply managing synchronization messages
and it is used as a connection point if the resulting pipe is to be composed with
another one. The Collector is performing the actual merging, reading input items
according to a from-any policy and producing a single output. Namely, the Collector
node is a classical non-determinate merge, as defined in [91].

Notice that it never happens for a merge-farm to be nested into another merge-
farm since this is precluded by the associativity of merge.

Connecting Pipelines

The to constructor connects a Pipeline to one or more different Pipelines by broad-
casting its output values. This operator is both associative and commutative as
reported in Table 5.1.

C Jp1K

C JpK E C

C JpnK

(a) C Jto p p1 . . . pnK

C Jp1K · · · C JpnK

(b) C Jp1 | . . . | pnK = C Jp1K ◦ . . . ◦ C JpnK

Figure 6.4: Compilation of to Pipelines

Figure 6.4 shows the compilation of a branching one-to-n Pipeline (Fig. 6.4a) and a
sequence of n linear one-to-one Pipelines (Fig. 6.4b). In the case shown in Fig. 6.4a,

94 Chapter 6. PiCo Parallel Execution Graph

the Emitter node is broadcasting input to all Pipelines. Results produced by P1

and P2 in Fig. 6.4a are merged by the Collector.

Notice that it never happens for a linear pipe to be nested into another linear pipe
since this is precluded by the associativity of to.

6.2 Compilation optimizations

We now provide a set of optimizations that demonstrates how compositions of oper-
ators can be reduced in a more compact and efficient form by removing redundancies
and centralization points. We refer to an optimization from a PE graph g1 to an-
other PE graph g2 with the following notation, meaning that g1 can be rewritten
into the (optimized) PE graph g2:

g1 ⇒ g2

In the following, we use the standard notation ⇒∗ to indicate the application of a
number of optimizations.

We remark all the proposed optimizations do not break the correctness of the com-
pilation with respect to the semantics of the subject program. Although we do not
provide formal proofs, it can be shown that all the proposed rewriting corresponds
to a semantic equivalence.

6.2.1 Composition and Shuffle

We identify two kinds of PE operator compositions, that is, those that generate a
shuffle and those that do not. A shuffle is a phase of the running application in
which data need to be repartitioned among processing nodes following some criteria
(e.g. key-based shuffle induced by key-based partitioning). This schema is generally
implemented by letting nodes establish a point-to-point communication among each
other to exchange data needed to proceed with the computation. In general, it is
possible to say that PE graphs that generate a shuffle are those that include a data
partitioning or re-partitioning, such as p-combine and w-p-combine.

6.2.2 Common patterns

C E ⇒ F

Figure 6.5: Forwarding Simplification

The first pattern of reduction we propose is the Forwarding Simplification, in which
two consecutive nodes that simply forward tokens are fused to a single node, as
shown in Figure 6.5. For instance, Figure 6.6a shows the starting configuration for
a forwarding simplification, in which C1 and E2 are collapsed into F1, acting as a
forwarder node (Fig. 6.6b).

The Worker-to-Worker reduction removes the intermediate Emitter or Collector
between two set of Workers of two consecutive farms. Given two pools of n workers
u and v, the Worker-to-Worker optimization directly connects Workers with the
same index (ui and vi) into n independent 2-stage Pipelines, thus creating a farm
of pipes. This optimization can be applied if and only if the node in between

6.2. Compilation optimizations 95

the two pools is only forwarding data or synchronization tokens. For instance, a
Worker-to-Worker optimization is applied in the optimization of Figure 6.6b into
Figure 6.6c.

It is also possible to apply a further optimization to the Worker-to-Worker scenario,
that we call Workers Fusion. It consists in fusing two connected workers (as the
result of a Worker-to-Worker optimization) into a single node, thus eliminating any
intermediate communication. However for simplicity we do not show the Workers
Fusion in the following sections even where it is applicable.

The All-to-All optimization is valid when a shuffle is required. The starting con-
figuration of nodes is the same as for the Worker-to-Worker optimization. The
centralization point is defined by an emitting node partitioning data following a π
policy. This centralization can be dropped by connecting all worker nodes with an
all-to-all pattern and moving the partitioning logic to each upstream worker ui. For
instance, this optimization is applied in Figure 6.8. When optimizing Figure 6.8b
into Figure 6.8c, the partitioning policy is moved to each map node, that are deputed
to send data to the correct destination Worker.

If the Emitter node is also preparing data for windowing (as in Figure 6.10), this
role has to be moved to the downstream workers. Since each downstream worker
receives data from any upstream peer, some protocol is needed in order to guarantee
the time-ordering is preserved within each partition.

96 Chapter 6. PiCo Parallel Execution Graph

6.2.3 Operators compositions

Following, we show some applications of the optimization patterns defined above.

Composition of map and flatmap

u1 v1

E1 C1 E2 C2

un vn

(a)
C Jmap fK ◦ C Jmap gK
C Jflatmap fK ◦ C Jflatmap gK

⇓

u1 v1

E1 F1 C2

un vn

(b) Result of Forwarding Simplification optimization

⇓

u1 v1

E1 C2

un vn

(c) Final network resulting from the Worker-to-Worker optimization.

Figure 6.6: Compilation of map-to-map and flatmap-to-
flatmap composition.

In Figure 6.6 we describe the compilation of a composition of two consecutive map

or flatmap operators—compiling the to composition of two Pipelines having as
map and flatmap operators that produces the same outcome. In this example, both
Worker-to-Worker and Forwarding Simplification optimizations are applied.

6.2. Compilation optimizations 97

Composition of map and reduce

u1 v1

E1 C1 E2 C2

un vn

(a) C Jmap fK ◦ C Jreduce ⊕K

⇓∗

u1 v1

E1 C2

un vn

(b) Final network resulting from Worker-to-Worker and Forwarding Simplification.

Figure 6.7: Compilation of map-reduce composition.

The optimization of a map-reduce composition, shown in Figure 6.7, is analogous
to the map-map case. This is possible since the flat reduce (i.e. neither windowing
nor partitioning) poses no requirement on ordering of data items.

98 Chapter 6. PiCo Parallel Execution Graph

Composition of map and p-reduce

u1 v1

E1 C1 p-E2 C2

un vn

(a) C Jmap fK ◦ C Jp-(reduce ⊕) πK

⇓

u1 v1

E1 p-F1 C2

un vn

(b) Result of a Forwarding Simplification optimization

⇓

p-u1 v1

E1 C2

p-un vn

(c) Optimized shuffle by All-to-All optimization

Figure 6.8: Compilation of map-to-p-reduce composition.

Figure 6.8 shows the compilation of a map-to-p-reduce composition. This case
introduces the concept of shuffle: between the map and p-reduce operators, the
data is said to be shuffled (sometimes referred as parallel-sorted), meaning that
data is moved from the map workers (i.e., the producers) to the reduce workers
(i.e., the consumers) in which data will be reduced by following a partitioning
criteria. By shuffling data, it is possible to assign, to each worker, data belonging
to a given partition, and the reduce operator produces a single value for each
partition. In general, data shuffling produces an all-to-all communication pattern

6.2. Compilation optimizations 99

among map and reduce workers. The all-to-all shuffle is highlighted by the dotted
box in Fig. 6.8c. As an optimization, it is possible to move part of the reducing
phase into the map workers, so that each reduce worker computes the final result
for each key by combining partial results coming from map workers.

Composition of map and w-reduce

u1 w-v1

E1 w-F1 C2

un w-vn

Figure 6.9: Compilation of map-to-w-reduce composition.
Centralization in w-F1 for data reordering before w-reduce

workers.

Figure 6.9 shows the compilation of a map-to-w-reduce composition. The first opti-
mization step is the same as the one for map-to-w-reduce optimization (Fig. 6.8a),
thus this step is not described for simplicity since it shows the forwarding nodes
reduction. The centralization point w-F1 is required to reorder items of the stream
before windowing. The final reordering or the reduce value for each window is
guaranteed by the C2 Collector.

100 Chapter 6. PiCo Parallel Execution Graph

Composition of map and w-p-reduce

u1 w-v1

E1 w-p-F1 C2

un w-vn

(a) Centralization in w-p-F1 for data reordering before w-p-reduce workers

⇓

p-u1 w-v1

E1 C2

p-un w-vn

(b) Final network resulting from All-to-All simplification, where partitioning is done
by map workers and windowing (for each partition) is done by reduce workers.

Figure 6.10: Compilation of map-to-w-p-reduce composi-
tion.

Figure 6.10 shows the compilation of a map-to-w-p-reduce composition. Again we
omit the Forwarding Simplification optimization for simplicity. As resulting from
the first Forwarding Simplification optimization, a centralization point w-p-F1 is
needed to reorder stream items. By applying the All-to-All optimization, it is
possible to make the map operator partition data among downstream nodes. Hence
the reducers reorder incoming data according to time-ordering, apply windowing on
each partition and produce a reduced value for each window.

By comparing the optimized graphs in Figures 6.9 and 6.10, it can be noticed that
adding a partitioning nature to windowed processing enables further optimization.
This is not surprising since, as is discussed in [60], the KP pattern is inherently
simpler than WF. The former can be implemented in such a way that each stream
item is statically mapped to a single Worker, thus reducing both data traffic and
coordination between processing units.

6.3. Stream Processing 101

6.3 Stream Processing

In this section, we discuss some aspects of the proposed execution model from a
stream processing perspective. In our setting, streams are defined as unbounded
ordered sequences (cf. Section 5.3.1), thus we consider Dataflow graphs in which
nodes process infinite sequences of tokens.

Historically, all the data-parallel operators we included in the PiCo syntax (e.g.,
map, reduce) are defined only for bounded data structures. Although at the syn-
tactic level we allow the application of data-parallel operators to streams (e.g., by
composing an unbounded emit to a map operator), this ambiguity is resolved at the
semantic level, since the semantics of each unbounded operator is defined in terms
of its bounded counterpart. For instance, the operators in the combine family are
defined for unbounded collections only if they are endowed with a windowing policy.
The semantics of the resulting windowing operator processes each window (i.e., a
bounded list) by means of the respective bounded semantics (cf. Equation 5.12).

Let us consider the semantic map over streams. As we showed in Section 6.1.1, it is
not possible to implement a strict unbounded semantic map since this would require
reordering all the (infinite) collection at hand. For this reason, we introduced the
weak semantic map that can be easily extended to the unbounded case. The resulting
semantics is defined in terms of its bounded counterpart and exploits a batching
mechanism (cf. Equation 5.13).

This approach immediately exposes a trade-off: the width of the batching windows is
directly proportional to the amount of time-ordering enforced, but it is also directly
proportional to the latency for processing a single item. If a stream is time-ordered
(cf. Definition 2), there is no need for reordering, thus the minimum batching (i.e.,
width = 1) can be exploited to achieve the lowest latency. Conversely, if the stream
is highly time-disordered and we want to restore the ordering as much as possible,
we have to pay a price in terms of latency.

We remark that all the frameworks for data processing we consider for compari-
son expose similar trade-offs in terms of operational parameters, such as window
triggering policies [72, 67]. We propose a symmetric approach, in which this as-
pect is embedded into the abstract semantics of PiCo programs—rather than the
operational semantics of the underlying runtime.

6.4 Summary

In this Chapter we discussed how a PiCo Pipelines and operators are compiled into a
directed acyclic graph representing the parallelization of a given application, namely
the parallel execution dataflow. We showed how each operator is compiled into its
corresponding parallel version, providing a set of optimization applicable when com-
posing parallel operators. DAG optimization is present in all analytics frameworks
presented previously in this thesis, and it is done at runtime. Once the application
is executed, the execution DAG can be optimized by applying some heuristics that
create the best execution plan or by applying some pipelining (i.e., in Spark stages)
among subsequent operators - thus a strategy similar to optimizations proposed
in PiCo. The main strength in PiCo approach is that all proposed optimizations
are statically predefined and they can be provided as pre-built DAG implemented
directly in the host language. Furthermore, optimizations do not involve operators
and pipelines only, but it is also specific with respect to the structure type of the
Pipeline.

103

Chapter 7

PiCo API and
Implementation

In this chapter, we provide a comprehensive description of the actual PiCo imple-
mentation, both at user API level and at runtime level. We also present a complete
source code example (Word Count), which is used to describe how a PiCo program
is compiled and executed.

7.1 C++ API

In this section, we present a C++ API for writing programs that can be statically
mapped to PiCo Pipelines, defined in Sect. 5.1. By construction, this approach
provides a C++ framework for data processing applications, each endowed with a
well-defined functional semantics (cf. Sect. 5.3) and a clear parallel execution model
(cf. Chap. 6).

We opted for a fluent interface, exploiting method cascading (aka. method chaining)
to relay the instruction context to a subsequent call. PiCo design exposed in previ-
ous chapters makes it independent from the choice of the implementation language.
We decided to implement PiCo runtime and API entirely in C++, so that we can
exploit explicit memory management, a more efficient runtime in terms of resources
utilization, and it is possible to take advantage compile time optimizations. Fur-
thermore, with C++ it is possible to easily exploit hardware accelerators, making
it more suitable for high-performance applications. Besides this choice can affect
portability, we think that the advantages carried by a C++ runtime can overcome
the advantages of having a compile-once-run-everywhere paradigm provided by the
JVM. On the other hand, C++ poses some limitations in terms of compatibility
with well established software for data management used in analytics stacks (Kafka,
Flume, Hadoop HDFS), which in some cases provide a limited or no C++ frontend.
Consider for instance access to HDFS: besides it exposes a C++ library for read and
write operations, it is very limited and provides a strongly reduced set of operations
with respect to the Java API.

In the remainder of this section, we provide a full description of all entities in a C++
PiCo program, providing also some source code extracts. The current implementa-
tion is only for shared memory applications. In the future, an implementation of
the FastFlow runtime for distributed execution by mean of a Global Asynchronous
Memory(GAM) system model. A GAM system consists in a network of executors
(i.e., FastFlow workers as well as PiCo operators) accessing a global dynamic mem-
ory with weak sharing semantics. With this model, the programming model, the
semantics DAG and its compilation in the parallel execution DAG in PiCo will not
change.

104 Chapter 7. PiCo API and Implementation

7.1.1 Pipe

A C++ PiCo program is a set of operator objects composed into a Pipeline object,
processing bounded or unbounded data. A Pipeline can be:

• created as the empty Pipeline, as in the first constructor

• created as a Pipeline consisting of a single operator, as in the second and
third constructors

• modified by adding an operator, as in the add member function

• modified by appending other Pipelines, as in the to member functions

• merged with another Pipeline, as in the merge member function

• paired with another Pipeline by means of a binary operator, as in the pair

member function

Pipe API

Pipe() Create an empty Pipe

template<typename T>

Pipe(const T& op) Create a Pipe from an initial operator

template<typename T>

Pipe(T&& op) Create a Pipe from an initial operator (move)

template<typename T>

Pipe& add(const T& op) Add a new stage to the Pipe

template <typename T>

Pipe& add(T&& op) Add a new stage to the Pipe (move)

Pipe& to(const Pipe& pipe) Append a Pipe to the current one

Pipe& to(std::vector<Pipe*>

pipes)

Append a set of independent Pipes taking input
from the current one

template<typename In1,

typename In2, typename Out>
Pipe& pair(

const BinaryOperator

<In1, In2> out& a,

const Pipe& pipe)

Pair the current Pipe with a second pipe by a Bi-
naryOperator that combines the two input items
(a pair) with the function specified by the user

Pipe& merge(const Pipe& pipe) Merge data coming from the current Pipe and the
one passed as argument. The resulting collection
is the union of the collection of the two Pipes

void print DAG() Print the DAG as adjacency list and by a BFS
visit

void run() Execute the Pipe

void to dotfile(std::string

filename)

Encode the DAG into a dot file

void pipe time() Return the execution time in milliseconds

Table 7.1: the Pipe class API.

Table 7.1 summarizes the Pipeline class API.

7.1. C++ API 105

In addition to the member functions for creating, modifying and combining Pipeline
objects, the last four member functions may only be called on executable Pipelines,
namely those representing top-level PiCo Pipelines (cf. Definition 1). For a Pipeline
object, to be executable is a property that can be inferred from its type. We discuss
the typing of Pipeline objects in Sect. 7.1.3.

7.1.2 Operators

The second part of the C++ PiCo API represents the PiCo operators. By following
the grammar in Sect. 5.1.2, we organize the API in a hierarchical structure of
unary and binary operator classes. The design of the operators API is based on
inheritance in order to follow in an easy way the grammar describing all operators,
nevertheless we recognize that the use of template programming without inheritance
would improve runtime performance. The implementation makes use of dynamic
polymorphism when building the semantics DAG, where virtual member functions
are invoked to determine the kind of operator currently processed.

UnaryOperator is the base class representing PiCo unary operators, those with no
more than one input and/or output collection. For instance, a Map object takes
a C++ callable value (i.e., the kernel) as parameter and represents a PiCo oper-
ator map, which processes a collection by applying the kernel to each item. Also
ReadFromFile is a sub-class of UnaryOperator and it represents those PiCo op-
erators that produce a (bounded) unordered collection of text lines, read from an
input file.

BinaryOperator is the base class representing operators with two input collections
and one output collection. For instance a BinaryMap object represents a PiCo
operator b-map, that processes pairs of elements coming from two different input
collections and produces a single output for each pair. A BinaryMap object is
passed as parameter to Pipeline objects built by calling the pair member function
(cf. Table 7.1).

106 Chapter 7. PiCo API and Implementation

Operator Constructors

template<typename In, typename Out>

Map(std::function<Out(In&)> mapf)
Map constructor by defining its ker-
nel function mapf : In→ Out

template<typename In, typename Out>

FlatMap(std::function<void(In&,

FlatMapCollector<Out>& flatmapf)

FlatMap constructor by defin-
ing its kernel function flatmapf :
〈In, F latMapCollector〈Out〉 〉 →
void

template<typename In>

Reduce(std::function<In(In&, In&)>

reducef)

Reduce constructor by defin-
ing its kernel function reducef :
〈In, In〉 → In

template<typename In>

PReduce(std::function<In(In&, In&)>

preducef)

PReduce constructor by defin-
ing its kernel function preducef :
〈In, In〉 → In on partitioned in-
put (i.e., reduce by key)

template<typename In1, typename In2>

BinaryMap(std::function<Out(In1&, In2&)>

bmapf)

BinaryMap constructor by defin-
ing its kernel function bmapf :
〈In1, In2〉 → Out

ReadFromFile()
ReadFromFile constructor to read
input data from file, each line is re-
turned to the user as std::string

template<typename Out>

ReadFromSocket(char delimiter)
ReadFromSocket constructor to
read input data from Socket, lines
are separated by a user-defined de-
limiter and returned to the user as
std::string

template<typename In>

WriteToDisk(std::function<std::string(In&)>

func)

WriteToDisk constructor to write
to the specified textfile by defining
its kernel function: In→ void

template<typename In>

WriteToStdOut(std::function<std::string(In&)>

func)

WriteToStdOut constructor to
write to the standard output
by defining its kernel function:
In→ void

Table 7.2: Operator constructors.

Table 7.2 summarizes the constructors of C++ PiCo operators. In the following
sections, we describe all the implemented classes, showing also their inheritance
class diagrams.

The map family

Map is a UnaryOperator. As we anticipated above, it represents the PiCo operator
map, which process an input collection by applying a user-defined kernel (a C++
callable value) to each item.

Similarly, FlatMap represents the flatmap operator, which produces zero, one or
more elements upon processing each item from the input collection. A FlatMap

object takes as input a FlatMapCollector object, representing the storage for the
items produced by each execution of the kernel. An example of the resulting inter-
face is reported in Listing 7.1.

7.1. C++ API 107

Operator

UnaryOperator<In, Out>

FlatMap<In,Collector<Out>> Map<In, Out>

Figure 7.1: Inheritance class diagram for map and flatmap.

Operator

UnaryOperator<In, In>

Reduce<In> PReduce<In>

Figure 7.2: Inheritance class diagram for reduce and
p-reduce.

In case of ordered collections, we opted for implementing the above classes in their
weak semantic version (defined in Sect. 5.3.2, Eq. 5.13 for map operator) for both
bounded and unbounded processing. This allows to design a simpler and more
efficient runtime, as we will discuss later.

Fig. 7.1 reports the inheritance class diagram for Map and FlatMap classes.

The combine family

Reduce is the UnaryOperator representing the PiCo operator reduce. It synthesizes
all the elements in the input collection into an atomic value, according to a user-
defined binary kernel (a C++ callable value).

PReduce represents the PiCo operator p-reduce, thus it produces one synthesized
value for each partition extracted from the input collection by the partitioning
policy.

Fig. 7.2 reports the inheritance class diagram for Reduce and PReduce classes.

A windowing policy can be added to Reduce and PReduce objects by invoking the
window member function. A windowing Reduce (or PReduce) logically splits the
input collections into windows, according to the user-provided policy, and produces
one synthesized value for each window.

Since we only provide a prototypical implementation, we only support the common
by-key partitioning policy, thus only supporting reduction of key-value collections.
Moreover, we only provide count-based tumbling windows.

Listing 7.1 illustrates a Pipeline using the partitioning and windowing variant of
Reduce. In the example, the windowing policy is tumbling and count-based with
width 8.

108 Chapter 7. PiCo API and Implementation

1 // define batch windowing

2 size_t size = 8;

3

4 // define a generic word-count pipeline

5 Pipe countWords;

6 countWords

7 .add(FlatMap<std::string, std::string>(tokenizer))

8 .add(Map<std::string, KV>([&](std::string in)

9 {return KV(in,1);}))

10 .add(PReduce<KV>([&](KV v1, KV v2)

11 {return v1+v2;}).window(size));

Listing 7.1: creating a simple Pipeline in the C++
PiCo API.

Sources and Sinks

As we will discuss in Sect. 7.1.3, source and sink objects play the crucial role of
specifying the type of the collections processed by the Pipeline they belong to.

ReadFromFile and ReadFromSocket are sub-classes of InputOperator, a class rep-
resenting PiCo sources, that produce the collections to be processed by the down-
stream Pipeline objects. The data populating the collections is read from either a
text file, as for ReadFromFile, or a TCP/IP socket, as for ReadFromSocket.

Operator

UnaryOperator<void, Out>

InputOperator<Out>

ReadFromFile<Out> ReadFromSocket<Out>

Figure 7.3: Inheritance class diagram for ReadFromFile

and ReadFromSocket.

Figure 7.3 reports the inheritance class diagram for the InputOperator classes.

WriteToDisk and WriteToStdOut are sub-classes of OutputOperator, a class rep-
resenting PiCo sinks, which consume the collections produced by the upstream
Pipeline objects. The data is written to either a text file, as for WriteToDisk, or
the standard output, as for WriteToStdOut. Moreover, a user-defined kernel (a
C++ callable value) is used to process the data prior to writing them to the proper
destination.

7.1. C++ API 109

Operator

UnaryOperator<In, void>

OutputOperator<In>

WriteToDisk<In> WriteToStdOut<In>

Figure 7.4: Inheritance class diagram for WriteToDisk and
WriteToStdOut.

Figure 7.4 reports the inheritance class diagram for the OutputOperator classes.

Input file, output file, server name and port are passed to the application as argu-
ments of the executable: -i and -o for the input and output file respectively, -s to
define server address and -p to define the listening port.

We remark the presented API is a prototypical implementation, therefore a limited
set of source and sink objects are provided only for exemplification.

7.1.3 Polymorphism

One distinguishing feature of the PiCo programming model, differently from state-
of-the-art frameworks, is that the same syntactic object (e.g., a Pipeline or an
operator) can be used to process data collections having different types. For exam-
ple, the word-count Pipeline in Algorithm 1 can be used to process bags, streams
and lists once combined with proper sources and sinks. This feature is enabled
by the type system we defined in Sect. 5.2 that allows polymorphic Pipelines and
operators. More precisely, Pipelines and operators are polymorphic with respect to
both the data type (the type of the collection items) and the structure type (the
“shape” of the collection, such as bag or stream).

In the proposed C++ API, the data type polymorphism is expressed at compile-
time by implementing operators as template classes. As reported in Table 7.2, each
operator takes a template parameter representing the data type of the collections
processed by the operator. Moreover, each Pipeline object is decorated by the set
of the supported structure type s.

We recall that all the polymorphism is dropped in top-level Pipelines. Therefore,
executable Pipeline objects have an unique type. By construction, InputOperators
play the important role of specifying the unique structure type processed by the ex-
ecutable Pipeline they belong to. For instance, a Pipeline starting with an operator
of ReadFromFile type will only process multi-sets, whereas a Pipeline starting with
an operator of ReadFromSocket type will only process streams.

In the following paragraphs we provide some insight about the type checking and
inference processes, which are an implementation of the type system discussed in
Sect. 5.2.

Although Pipeline types are not fully exposed by the C++ API, they are exploited
by the runtime to ensure only legal PiCo Pipelines are built, thus they are part of
the API specification.

When a member function is called on a Pipeline object, the runtime performs the
two following actions on the subject Pipeline:

110 Chapter 7. PiCo API and Implementation

1. it checks the legality of the call by inspecting the type of both the subject
Pipeline and the call arguments (type checking)

2. it updates the type of the subject Pipeline (type inference)

We recall that each PiCo Pipeline has an input and output cardinality, either 0 or
1. For instance, top-level Pipelines have both input and output cardinality equal
to zero. We say a Pipeline with non-zero input cardinality is a consumer since it
consumes a collection, thus it needs to be prefixed by a source operator in order
to be executed. Similarly, we say a Pipeline with non-zero output cardinality is a
producer. For instance, the simple Pipe in Listing 7.1 is a producer.

When calling a member function on a Pipeline p object causing the addition of an
operator a (i.e., add or pair), the invocation fails if any of the following conditions
holds (i.e. type checking fails):

1. p is neither empty nor a producer, that is, it has already a sink operator (e.g.,
a WriteToDisk)

2. data type compatibility check fails, for instance because the output data type
of p (i.e., the output data type of p’s last operator) differs from the the input
data type of a

3. structure type s are incompatible, for instance a is a windowing operator and
p only processes bags

Furthermore, after adding the operator a, the type of p is updated as follows:

1. p takes the a’s input or output degree if a is an input or output operator

2. the new p’s structure type is defined as the intersection of the structure type
s of p and a

When modifying p by appending another Pipeline q, the to member function fails
if any of the following conditions holds:

1. p is neither empty nor a producer

2. p is not empty and q is not a consumer

3. data type or structure type compatibility check fails

When appending multiple Pipelines (resulting into a branching Pipeline), the pre-
vious constraints are still checked for each Pipeline to be added.

In case of merging or pairing, in addition to the above conditions, it is also checked
that at least one of the two Pipelines to be combined is a non-producer one. This
way it is guaranteed that any Pipeline has 0 or 1 entry and exit points and therefore
it can be attached to other Pipelines and operators.

7.2. Runtime Implementation 111

7.1.4 Running Example: Word Count in C++ PiCo

Listing 7.2 shows a complete example of the Word Count benchmark.

1 typedef KeyValue<std::string, int> KV;

2

3 static auto tokenizer = [](std::string& in,FlatMapCollector<KV>& collector) {

4 std::istringstream f(in);

5 std::string s;

6 while (std::getline(f, s, ’ ’)) {

7 collector.add(KV(s,1));

8 }

9 };

10

11 int main(int argc, char** argv) {

12 // parse command line

13 parse_PiCo_args(argc, argv);

14

15 /* define a generic word-count pipeline */

16 Pipe countWords;

17 countWords

18 .add(FlatMap<std::string, std::string>(tokenizer)) //

19 .add(Map<std::string, KV>([&](std::string in)

20 {return KV(in,1);}))

21 .add(PReduce<KV>([&](KV v1, KV v2)

22 {return v1+v2;}));

23

24 /* define i/o operators from/to file */

25 ReadFromFile reader();

26 WriteToDisk<KV> writer([&](KV in) {

27 return in.to_string();

28 });

29

30 /* compose the pipeline */

31 Pipe p2;

32 p2 //the empty pipeline

33 .add(reader) // add single operator

34 .to(countWords) // append a pipeline

35 .add(writer); // add single operator

36

37 /* execute the pipeline */

38 p2.run();

39

40 return 0;

41 }

Listing 7.2: Word Count example in PiCo.

7.2 Runtime Implementation

The runtime of PiCo is implemented on top of the FastFlow library, so that we
use ff node, ff pipeline and ff farm as building blocks for the representa-
tion of the parallel execution graph (as described in Chap. 6). In this section, we
describe how each component of PiCo is effectively mapped to a FastFlow node
or pattern. We recall that by exploiting the FastFlow runtime, it is possible to
move only pointers to data among ff nodes, using these pointers as capabilities
for synchronizations (see Sect. 2.4.1).

Pipe The Pipe class in the user API represents the main entity in a PiCo ap-
plication. When the run() member function is invoked on a Pipe, the empty
ff pipeline corresponding to the Pipe is created. After that, the semantics
DAG (Sect. 5) representing the application is visited and, recursively, ff farms
and ff nodes are added as stages to the ff pipeline, depending on the current
visited node. We recall that, in FastFlow, each ff node is a thread.

112 Chapter 7. PiCo API and Implementation

Map, Flatmap, Reduce and PReduce operators are implemented as
ff farms. A parallelism parameter defines how many workers are created in each
farm. The total number of threads per ff farm is one for the Emitter node, one
for the Collector node and parallelism number of threads for workers. Worker nodes
execute the kernel code specified at API level on each item received. The Collector
node receives data from workers in a from-any policy and forwards them to the next
stage of the Pipe.

A different implementation for Emitter and Collector is provided for the p-reduce

farm. In this case, the Emitter node has to take care of partitioning items on their
group basis (i.e., by key). More precisely, the Emitter partitions the key space
among workers, forwarding elements belonging to the same group always to the
same worker (of course, it is possible for one worker to receive more than one key
to process). The Collector will start gathering results only when workers are done
with partitioned reduce.

Input and output operators are implemented as single ff nodes. These nodes
have specialized code performing input and output operations. Moreover, input
nodes are instructed to send an End Of Stream (EOS) when the input generation
completes. The EOS is implemented into two distinct tokens: the FF EOS is
internal to the FastFlow runtime and it instructs ff nodes to terminate after its
reception. The PICO EOS is internal to PiCo and processed by all ff nodes,
and it does not cause the termination of ff nodes. It is used, for instance, by the
p-reduce Emitter node to instruct workers that the end of stream/file is reached
and to forward their reduce results to the Collector before terminating with the
FF EOS.

To and Merge are Pipe member functions for appending and merging pipes,
respectively. In this paragraph, we consider the merge member function having sig-
nature Pipe& merge(const Pipe& pipe). The merging invocation results in the
instantiation of a ff farm where the two Pipes to be merged are added as a work-
ers as new ff pipelines—this is possible thanks to the FastFlow composability
property (see Sect. 2.4.1).

Figure 7.5 shows an example of the DAG resulting from merging three pipelines.
EntryPointMERGE is the ff farm Emitter node, while the Merge node is its Col-
lector receiving all results to be forwarded to subsequent stages (in this case, a
write-to-disk ff node writing to void.txt file). The EntryPointMERGE broad-
casts a PICO SYNC token to the Pipes to be merged in order to start generating
input items (read from nopunct.txt file). Further information about the PICO -
SYNC token are reported in Section 7.3.4. We recall that the order of items is
respected only locally to each Pipe, while there exists an interleaving order in the
output from the Collector.

Figure 7.5: Semantics DAG resulting from merging three
Pipes.

7.3. Anatomy of a PiCo Application 113

We recall that the order of items is respected only locally to each Pipe, while there
exists a certain interleaving order in output from the Collector. When merging
pipelines, the Emitter is always the first stage of the PiCo pipeline.

7.3 Anatomy of a PiCo Application

In this section, we provide a description of the PiCo execution model. For the sake
of simplicity and completeness, we start from the source code of a PiCo application
and we explain each step taken to reach the result.

7.3.1 User level

As a concrete example, shown in Listing 7.3, we use an application in which two
Pipes are merged. These two Pipes take as input data from two files and map each
line into a <string, int> pair. Then, each pair is written to a file.

1 typedef KeyValue<std::string, int> KV;

2 parse_PiCo_args(argc, argv);

3 /* define the operators */

4

5 auto map1=Map<std::string, KV>([](std::string in)

6 {return KV(in, 1);});

7

8 auto map2=Map<std::string, KV>([](std::string in)

9 {return KV(in, 2);});

10

11 auto reader=ReadFromFile<std::string>();

12

13 auto wtd=WriteToDisk<KV>([](KV in) {

14 std::string value = "<";

15 value.append(in.Key())

16 .append(", ")

17 .append(std::to_string(in.Value()))

18 .append(">");

19 return value;

20 });

21

22 /* p1 read from file and process it by map1 */

23 Pipe p1(reader);

24 p1.add(map1);

25

26 /* p2 read from file and process it by map2 */

27 Pipe p2(reader);

28 p2.add(map2);

29

30 /* now merge p1 with p2 and write to file */

31 p1.merge(p2);

32 p1.add(wtd);

33

34 /* execute the pipeline */

35 p1.run();

Listing 7.3: Merging example in PiCo.

The input reader operator reads lines from a text file and simply returns each line
read unmodified. Since data is read from disk, the structure type determined by
the input operator is a bag (bounded, unordered). The output wtd operator takes
all pairs of the type KeyValue KV and processes them with the user defined lambda
expression.

Operators map1 and map2 take as input a line from their reader operator and pro-
duce a KeyValue KV pair: the input line is the key and the C++ lambda auto

114 Chapter 7. PiCo API and Implementation

map1 = Map<std::string, KV>([](std::string in){return KV(in, 1)}) pro-
duces key-value pairs having input lines as key and value 1 as value, whereas map2

gives value 2 to each pair. A copy of reader is used to compose the second pipe
Pipe p2(reader), which is then merged to the p1 by p1.merge(p2). We recall
that compatibility check on structure type and the type check on last output type
and new operator’s input type is performed if the Pipe is not empty (Sect. 7.1.1).

7.3.2 Semantics dataflow

While composing the Pipe, the semantics dataflow graph is also created, that is, the
dataflow representing the semantics of the (sequential) application in the form of a
directed acyclic graph (see Chapter 4), where vertexes represent operators and edges
represent data dependencies. This step is done while calling Pipe modifiers, thus
no further Pipe preprocessing is needed to build the semantics DAG, represented
as an adjacency list and implemented by a std::map. It is possible to visualize the
DAG by invoking the to dotfile() member function on the Pipe. The resulting
DAG of the example application is shown in Figure 7.3.

Figure 7.6: Semantics DAG resulting from the application
in listing 7.3.

The class representing each node holds the information about its role in the seman-
tics DAG. The role determines if the node is a processing node (i.e., an operator) or
an auxiliary node that does not process data (i.e., the EntryPointMERGE node).

The role can have three different values: 1) Processing, representing an operator
with user-defined code; 2) EntryPoint/ExitPoint, as the EntryPointMERGE and
Merge nodes in Fig. 7.6 when merging Pipes (as well as Merge node in Fig. 7.7);
3) BCast node representing the starting point resulting from the invocation of the
to(std::vector<Pipe*> pipes) member function as shown in Figure 7.7.

Figure 7.7: Semantics DAG resulting from connecting mul-
tiple Pipes.

7.3.3 Parallel execution dataflow

When the run() member function is called on p1, the semantics dataflow is pro-
cessed to create the parallel execution dataflow. This graph represents the applica-
tion in terms of processing elements (i.e., actors) connected by data channels (i.e.,
edges), where operators can be replicated to express data parallelism. This can be
an intermediate representation of the possible parallelism exploitation, as shown in
Sect. 6.1, where we provided the compilation of each operator in terms of patterns
(e.g., farm). We implemented this intermediate representation directly in FastFlow
by using nodes, farms and pipelines patterns.

7.3. Anatomy of a PiCo Application 115

The creation of the parallel execution dataflow is straightforward. Having an empty
ff pipeline picoDAG that will be executed, we then start visiting the first node of
the semantics dataflow, which can be an input or an entry point node. On the basis
of its role, a new ff node or ff farm is instantiated and added to picoDAG. The
semantics DAG is recursively visited and the following operations are performed:

1. A single ff node is added in case of input/output operators;

2. The corresponding ff farm is added in case of operators different from I/O
operators;

3. If an entry point is encountered, a new ff farm is created and added to
picoDAG;

(a) a new ff pipeline is created for each entry point’s adjacent node;

(b) these ff pipelines are built with new ff nodes created by recursively
visiting the input Pipe’s graph, until reaching the last node of each Pipe
visited.

At the end, the resulting picoDAG is always a composition of ff pipelines and
ff farms. Figure 7.8 shows the FastFlow network resulting from the example
application with no optimization having been performed.

Each circle is a ff node. Blue circles represent ff nodes executing user-defined
code: read from file (Rff), the two map (w1, wn) and write to disk (Wtd). Green
circles represent emitter and collector ff nodes: Emap and Cmap respectively for
map1 and map2 ff farms, and EPm and Cmerge respectively for the merge ff farm.

EPm

Rff

Rff

w1

wn

Emap

Emap

w1

wn

Cmap

Cmap

Cmerge Wtd

Figure 7.8: Parallel execution DAG resulting from the ap-
plication in listing 7.3.

The figure represents the corresponding FastFlow network without any of the op-
timization proposed in Section 6.2. In this case, for instance, it would be possible
to apply a forwarding simplification to unify Cmerge and Cmaps as well as unifying
Emap and Rff ff nodes in each branch of the EPm ff node.

7.3.4 FastFlow network execution

In this section, we provide the description of the execution of the picoDAG pipeline,
starting from a brief summary of the FastFlow runtime.

116 Chapter 7. PiCo API and Implementation

From the orchestration viewpoint, the process model to be employed is a Communi-
cating Sequential Processes CSP1/Actor hybrid model where processes (ff nodes)
are named and the data paths between processes are explicitly identified (differently
from the Actor model). The abstract units of communication and synchronization
are known as channels and represent a stream of data exchanged between two pro-
cesses. Each ff node is a C++ class entering an infinite loop through its svc()

member function where:

1. it gets a task from input channel (i.e., a pointer);

2. it executes business code on the task;

3. it puts a task into the output channel (i.e., a pointer)

Representing communication and synchronization by a channel ensures that syn-
chronization is tied to communication and allows layers of abstraction at higher
levels to compose parallel programs where synchronization is implicit. For a more
complete review of FastFlow, please refer to Section 2.4.1.

Patterns to build a graph of ff nodes, such as farms, are defined in the core patterns
level of FastFlow stack reported in Figure 2.8. Since the graph of ff nodes is a
streaming network, any FastFlow graph is built using two streaming patterns (farm
and pipeline) and one pattern-modifier (loopback, to build cyclic networks). These
patterns can be nested to build arbitrarily large and complex graphs. Each ff node

in a ff pipeline or ff farm corresponds to a thread.

In a PiCo application, as the one in Fig. 7.8, a compiled DAG can start with an
input node or with an entry point obtained by the compilation of a merge operator.
In the case of an entry point (such as the first stage of the ff pipeline in the
example), this node is instructed to send to all its neighbor nodes a token (specific
to the PiCo runtime, called PICO SYNC), using a round-robin policy.

This token makes the computation start on input nodes Rff shown in Figure 7.8.
When the input tokens generation ends, the ff node corresponding to the Rff

operator sends a PICO EOS token and exits from the svc() member function2.
On exit, it terminates its life-cycle by emitting the FastFlow FF EOS token. Dif-
ferently from all other operators ff nodes, which are executed as many times as
the number of input data they process (i.e., on a stream of microbatches), an input
node’s svc() is executed only once and stops on input termination.

In the running example, both Rff nodes read lines from a file that are then forwarded
to their following node of the pipeline. Tokens are sent out at microbatch granularity
(in this case, a microbatch is a fixed size array of lines read from the input file).

Following our example, the next stages of both Rffs are the Emitters of the map

farms. Since we implemented PiCo’s parallel operators following the weak seman-
tic map (defined in Sect. 5.3.2, eq. 5.13 for map operator) on both bounded or
unbounded processing, the map ff farms process microbatches instead of single
tokens.

Each worker of the map ff farm processes the received microbatch by applying
the user-defined function. Then each worker allocates a new microbatch to store
the result of the user-defined function, and then deleting the received microbatch.
The new microbatch is forwarded to the next node. The general behavior of a
worker during its svc() call is that it deletes each input microbatch (allocated
by the Emitter) after it has been processed and the results of the kernel function
(applied to all elements of the microbatch) are stored into a new microbatch. When

1The CSP model describes a systems in terms of component processes operating inde-
pendently, which interact with each other through message-passing communication.

2We recall that the svc() member function of a ff node executes the kernel code of
the operator.

7.4. Summary 117

received, PICO EOS or PICO SYNC tokens are forwarded as well. When the
Collector receives PICO EOS tokens from all workers, it then forwards the PiCo
end of stream token to the next stage, namely the Cmerge node.

The Cmerge ff node implements a from-any policy to collect results. Then it
forwards results to the next stage, in this case the output operator Wtd. This last
node is a single sequential ff node (we recall that input and output processing
nodes are always sequential), writing the received data to a specified file. When
Wtd receives PICO EOS, the file is closed and the computation terminates.

At this point, the FastFlow runtime manages ff nodes destruction and runtime
cleanup.

7.4 Summary

In this Chapter we provided a description of the actual PiCo implementation, both
at user API level and at runtime level. PiCo API implementation follows a fluent
interface, exploiting method cascading (aka. method chaining) to relay the instruc-
tion context to a subsequent call. It is implemented entirely in C++, so that we can
exploit explicit memory management, a more efficient runtime in terms of resources
utilization, and it is possible to take advantage compile time optimizations. The
design of the operators API is based on inheritance in order to follow in an easy
way the grammar describing all operators, nevertheless we recognize that the use
of template programming without inheritance would improve runtime performance.
The implementation makes use of dynamic polymorphism when building the se-
mantics DAG, where virtual member functions are invoked to determine the kind
of operator currently processed.

We described the anatomy of PiCo runtime starting from a complete source code
example (Word Count). The Pipeline described in the source code is first provided
as the semantics DAG, then we went through the compilation step, in which the
Pipeline is compiled into the parallel execution graph (namely, the parallel exe-
cution DAG). The parallel execution graph, which is agnostic with respect to the
implementation, is converted to a FastFlow network of patterns that results from
the composition of ff pipeline and ff farms. Finally, the effective execution
is described, which is available in shared memory only. In the future, an imple-
mentation of the FastFlow runtime for distributed execution by mean of a Global
Asynchronous Memory(GAM) system model. A GAM system consists in a network
of executors (i.e., FastFlow workers as well as PiCo operators) accessing a global
dynamic memory with weak sharing semantics.

119

Chapter 8

Case Studies and
Experiments

This chapter provides a set of experiments based on examples defined in Sect. 5.4.
We compare PiCo to Flink and Spark, focusing on expressiveness of the program-
ming model and on performances in shared memory.

8.1 Use Cases

We tested PiCo with both batch and stream applications. A first set of experiments
comprehends the word count and stock market analysis. We now describe each use
case, also providing source code snapshots reporting classes related to the core of
each application. All listings are reported in Appendix A.

8.1.1 Word Count

Considered as the “Hello, World!” of Big Data analytics, a word count application
typically belongs to batch processing.

The input is a text file, which is split into lines. Then, each line is tokenized into
words: this operation is implemented as a flatmap, which outputs a number of
items depending on the input line. Each of these items, namely the words of the
input file, are processed by a map operator which produces a key-value pair < w, 1 >
for each word w. After each word has been processed, all pairs are grouped by the
values of each pair are reduced by a sum. The final result is a single pair for each
word, where the value represents the number of occurrences of a word in the text.

A PiCo word count application can be found in listing 7.2.

The source code for Flink and Spark Word Count are shown in listings A.3 and A.6
respectively.

8.1.2 Stock Market

The following examples implements the use cases reported in Sect. 5.4. The first use
case implements the “Stock Pricing” program that computes a price for each option
read from a text file. Each line is parsed to extract stock names followed by stock
option data. A map operator then computes prices by means of the Black & Scholes
algorithm for each option and, finally, a reducer extracts the maximum price for
each stock name. In the following sections, we provide source codes extracts for
implementation in PiCo (listing A.1), Flink (listing A.4) and Spark (listing A.7).

120 Chapter 8. Case Studies and Experiments

8.2 Experiments

The architecture used for experiments is the Occam Supercomputer (Open Com-
puting Cluster for Advanced data Manipulation) [127, 8], designed and managed
by the University of Torino and the National Institute for Nuclear Physics.

Occam has the following technical characteristics:

• 2 Management Nodes: CPU - 2x Intel R© XeonR© Processor E5-2640 v3
8 core 2.6GHz, RAM - 64GB/2133MHz, Disk - 2x HDD 1Tb Raid0, Net -
IB 56Gb + 2x10Gb + 4x1GB, FormFactor - 1U

• 4 Fat Nodes: CPU - 4x IntelR© XeonR© Processor E7-4830 v3 12 core/2.1Ghz,
RAM - 768GB/1666MHz (48 x 16Gb) DDR4, Disk - 1 SSD 800GB + 1 HDD
2TB 7200rpm, Net - IB 56Gb + 2x10Gb

• 32 Light Nodes: CPU - 2x IntelR© XeonR© Processor E5-2680 v3, 12 core
2.5Ghz, RAM - 128GB/2133 (8x16 Gb), Disk - SSD 400GB SATA 1.8 inch,
Net - IB 56Gb + 2x10Gb, FormFactor - high density (4 nodes x RU)

• 4 GPU Nodes: CPU - 2x IntelR© XeonR© Processor E5-2680 v3, 12 core
2.1Ghz, RAM - 128GB/2133 (8x16Gb) DDR4, Disk - 1 x SSD 800GB sas 6
Gbps 2.5 inch, Net - IB 56Gb + 2x10Gb, GPU - 2 x NVIDIA K40 on PCI-E
Gen3 x16

• Scratch Disk: Disk - HDD 4 TB SAS 7200 rpm, Capacity - 320 TB RAW
+ 256 TB usable, Net - 2 x IB 56Gb FDR + 2 x 10Gb, File System - Lustre
Parallel Filesystem

• Storage: Disk - 180 x 6 TB 7200 rpm SAS 6Gbps, Capacity - 1080 TB raw
768 TB usable, Net - 2 x IB 56Gb + 4 x 10GbE, File System - NFS export,
Fault Tolerance - RAID 6 Equivalent with Dynamic Disk Pools

• Network: IB layer - 56 Gbps, ETH10G layer - 10 Gbps, IB topology -
FAT-TREE, ETH10G topology - FLAT

We performed tests on scalability and best execution time comparing PiCo to Spark
and Flink on batch and stream applications. The current experimentation is only on
shared memory applications. In the future, an implementation of the FastFlow run-
time for distributed execution by mean of a Global Asynchronous Memory(GAM)
system model1, so that we will be able to have a performance evaluation also in a
distributed memory model.

8.2.1 Batch Applications

In the first set of experiments, we run the Word Count and Stock Pricing examples
reported in the previous section. First, we show scalability obtained by PiCo with
respect to the number of parallel threads used for parallel operators.

We compute the scalability factor as the relation between the execution time with
parallelism 1 (i.e., sequential operators) and the execution time obtained by exploit-
ing more parallelism. It is defined as T1/Ti ∀ i ∈ {1, . . . , nc} with nc representing
the number physical cores of the machine. The maximum number of physical cores
is 48 on Fat Nodes (4 x IntelR© XeonR© Processor E7-4830 v3 12 core/2.1Ghz).

1A GAM system consists in a network of executors (i.e., FastFlow workers as well as
PiCo operators) accessing a global dynamic memory with weak sharing semantics.

8.2. Experiments 121

PiCo

By default, PiCo allocates a single worker thread in each farm corresponding to
an operator, and allocates microbatches with size 8 to collect computed data (see
Sect. 6.1.1 for batch semantics). We tested PiCo with different microbatch sizes
to measure its scalability also with respect to number of microbatches allocations.
The best size for microbatch is 512 elements, which naturally leads to a reduction
of dynamic memory allocations.

To increase performance, we also used two different threads pinning strategy. The
default pinning strategy in Occam is interleaved on physical cores first, so that each
consecutive operator of the pipeline is mapped to a different socket of the node. In
this scenario, a linear mapping using physical cores first helped in reducing memory
access time to data, since allocations are done mainly in the memory near the thread
that is accessing that data.

Figure 8.1 shows scalability and execution times for the Word Count application:
each value represents the average of 20 runs for each number of workers, the micro-
batch size is 512, and the thread pinning strategy is physical cores first. The size
of the input file is 600MB. It a text file of random words taken from a dictionary of
1K words. In the Word Count pipeline, PiCo instantiates a total of 5 fixed threads
(corresponding to sequential operators), plus the main thread, plus a user-defined
number of workers for the flatmap operator. To exploit at most 48 physical cores,
we can run at most 42 worker threads.

 0

 5

 10

 15

 20

 25

 1 2 4 8 12 16 32 42 48
 0

 5

 10

 15

 20

 25

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
c
a

la
b

ili
ty

 F
a

c
to

r

Parallelism

Pico Scalability and Execution Time on WordCount

Scalability Factor
Time (s)

Figure 8.1: Scalability and execution times for Word Count
application in PiCo.

With 16 and 32 workers for the map operator, mapped on physical cores, PiCo
obtains similar average execution times: the best average execution time obtained
is 1.61 seconds with 16 workers and a scalability factor of 13.60.

Figure 8.2 shows scalability and execution times for the Stock Pricing application:
each value represents the average of 20 runs for each number of workers, the micro-
batch size is 512, and the thread pinning strategy is linear on physical cores first. In

122 Chapter 8. Case Studies and Experiments

the Stock Pricing pipeline, PiCo instantiates a total of 4 fixed threads (correspond-
ing to sequential operators), plus the main thread, plus a user-defined number of
workers for the map +p-reduce operator.

 0

 5

 10

 15

 20

 25

 1 2 4 8 12 16 32 42 48
 0

 5

 10

 15

 20

 25

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
c
a

la
b

ili
ty

 F
a

c
to

r

Parallelism

Pico Scalability and Execution Time on StockPricing

Scalability Factor
Time (s)

Figure 8.2: Scalability and execution times for Stock Pric-
ing application in PiCo.

With 8 workers for the map + p-reduce operator, mapped on physical cores, PiCo
obtains the best average execution time of 3.26 seconds and a scalability factor
of 6.68.

Limitations on scalability. The applications tested in PiCo showed a com-
mon behavior on the first node of each Pipeline—the Read From File (RFF) op-
erator. As the number of workers increases, it increases also the execution time of
the read from file, making it the application’s bottleneck. The RFF’s kernel code
is the following: each line of the input file is read in a std::string and stored into
a fixed-size microbatch. Once the microbatch is full, it is forwarded to the next
operator and a new microbatch is allocated. This is repeated until the end of file is
reached. As the microbatch size increases, the number of their allocation decreases
but RFF still represents the bottleneck. In tables 8.2 and 8.1, we report execution
times of a single run of Word Count and Stock Pricing with two different microbatch
sizes (8 and 512), showing how the scalability on workers is still increasing despite
the bottleneck on RFF, giving room for improvement on the total execution time.

8.2. Experiments 123

Microbatch size 8 (execution time in ms)

workers exec. time read from file worker worker scalability
1 21874.50 901.98 21685.10 1.00
2 10807.80 915.61 10786.20 2.01
8 2916.80 1016.87 2753.39 7.87

16 1718.20 1711.02 1535.38 14.12
32 1755.85 1743.04 924.14 23.46

Microbatch size 512 (execution time in ms)

workers exec. time read from file worker worker scalability
1 22091.60 869.07 22087.20 1.00
2 11030.70 861.86 11026.50 2.00
8 2841.45 932.27 2799.31 7.89

16 1635.55 1595.28 1607.74 13.74
32 1603.78 1589.13 917.44 24.07

Table 8.1: Decomposition of execution times and scalabil-
ity highlighting the bottleneck on ReadFromFile operator in

the Word Count benchmark.

Microbatch size 8 (execution time in ms)

workers exec. time read from file worker worker scalability
1 22286.70 2391.62 22048.00 1.00
2 11549.10 2524.72 11430.20 1.93
8 3588.49 3586.57 3131.49 7.04

16 5135.71 5133.08 1730.37 12.74
32 6096.26 6092.02 934.54 23.59

Microbatch size 512 (execution time in ms)

workers exec. time read from file worker worker scalability
1 21775.10 2123.27 21766.70 1
2 11289.20 2201.70 10946.40 1.99
8 3328.80 3326.84 2967.67 7.33

16 3370.84 3768.64 2510.13 8.67
32 4707.89 4704.69 868.11 25.07

Table 8.2: Decomposition of execution times and scalabil-
ity highlighting the bottleneck on ReadFromFile operator in

the Stock Pricing benchmark.

Tables 8.1 and 8.2 show that, despite the high scalability reached by workers, the
total execution time is limited by the execution time of the read from file. Times
for read from file in table 8.2 are higher than in table 8.1 and this is due to the
number of lines read in the Stock Pricing benchmark (10M lines with respect to
2M in Word Count): this reflects to a 5x higher number of allocations. Worker
scalability is still not affected by the bottleneck in RFF operator.

We believe that this behavior comes from allocation contention, which could be
relaxed by using an appropriate allocator. For instance, FastFlow provides a spe-
cialized allocator that allocates only large chunks of memory, slicing them up into
little chunks all with the same size that can be reused once freed. Only one thread
can perform allocation operations while any number of threads may perform deal-
locations using the allocator. An extension of the FastFlow allocator might be used
by any number of threads to dynamically allocate/deallocate memory. Both are
based on the idea of the Slab Allocator [38].

Comparison with other frameworks

We compared PiCo to Flink and Spark on both Word Count and Stock Pricing
batch applications. In this section, we provide a comparison on minimum execution

124 Chapter 8. Case Studies and Experiments

time obtained by each tool as the average of 20 runs for each application, a study on
execution times variability, and metrics on resources utilization. Table 8.3 reports
all configuration used to run the various tools.

PiCo
Parallelism Microbatch Size Other Conf

1-48 512 -

Flink
Parallelism Task Slots Other Conf

1-32 48 Default

Spark
Parallelism Other Conf

1-48 - Default

Table 8.3: Execution configurations for tested tools.

In Flink, each process has one or more task slots, each of which runs one pipeline
of parallel tasks, namely, multiple successive tasks such as, for instance, the n-th
parallel instance of a map operator. It is suggested to set this value to the number
of physical cores of the machine. In Flink programs, the parallelism parameter
determines how operations are split into individual tasks, which are assigned to
task slots; that is, it defines parallelism degree for data parallel operators. By
setting the parallelism to N , Flink tries to divide an operation into N parallel tasks
computed concurrently using the available task slots. The number of task slots
should be equal to the parallelism to ensure that all tasks can be computed in a
task slot concurrently but, unfortunately, by setting parallelism to a value greater
than 32 the program crashes because of insufficient internal resource availability.

It is also possible to run Spark on a single node in parallel, by defining the number
of threads exploited by data parallel operators.

 0

 5

 10

 15

 20

WordCount StockPricing

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Benchmark

Minimum Execution Time (seconds)

Flink
Spark
PiCo

Figure 8.3: Comparison on best execution times for Word
Count and Stock Pricing reached by Spark, Flink and Pico.

8.2. Experiments 125

Figure 8.3 shows that PiCo reaches in both cases the best execution time. Table 8.4
also shows the average and the variability of execution times obtained by all the
executions, showing that all the frameworks suffer from limited scalability after 32
cores. We remark that “parallelism” has different meanings for each tool that is
described in above in this paragraph. PiCo shows a lower coefficient of variation with
respect to Flink and Spark in almost all cases. To determine if any of the differences
between the means of all collected execution times are statistically significant, we
run the ANOVA test on the execution times obtained with the configuration used
to obtain the best execution time. The test reported very low p-value even if
coefficient of variation and standard deviations reported by Flink are very high.
Therefore, according to the ANOVA test, the differences between the means are
statistically significant. Table 8.4 shows that Flink is generally less stable than
Spark, reaching a peak of 18.25% for the coefficient of variation. This behavior can
be associated to different task scheduling to different executors at runtime, causing
unbalanced workload (we recall that, in Flink, a task is a pipeline containing a
subset of consecutive operators of the application graph). In Spark, the whole
graph representing an application is replicated on all executors, so the probability
of causing an unbalance is mitigated.

126 Chapter 8. Case Studies and Experiments

Spark

Word Count
Parallelism 1 2 4 8 16 32 48

avg (ms) 20983.24 12769.16 8846.12 5231.34 4159.26 3617.80 4211.80
sd (s) 0.35 0.16 0.22 0.42 0.35 0.13 0.22

cv (%) 1.66 1.29 2.49 8.04 8.34 3.59 5.33
avg Scal. 1 1.64 2.37 4.01 5.04 5.80 4.98

Stock Pricing
Parallelism 1 2 4 8 16 32 48

avg (ms) 32970.27 20836.11 14719.28 6970.84 5158.77 4773.17 4983.87
sd (s) 0.21 0.30 0.25 0.14 0.11 0.14 0.19

cv (%) 0.63 1.43 1.70 2.00 2.23 2.87 3.79
avg Scal. 1 1.58 2.24 4.73 6.39 6.91 6.61

Flink

Word Count
Parallelism 1 2 4 8 16 32 48

avg (ms) 80095.40 44129.10 26043.35 16765.25 13622.20 12179.00 -
sd (s) 571.17 1368.31 1718.55 1939.74 1702.42 2222.3 -

cv (%) 0.71 3.10 6.60 11.57 12.50 18.25 -
avg Scal. 1 1.81 3.07 4.78 5.88 6.58 -

Stock Pricing
Parallelism 1 2 4 8 16 32 48

avg (ms) 36513.6 19638.85 10807.9 6846.6 4787.2 4048.35 -
sd (s) 450.67 317.02 179.88 108.35 153.46 154.05 -

cv (%) 1.23 1.61 1.66 1.58 3.20 3.80 -
avg Scal. 1 1.86 3.38 5.33 7.63 9.02 -

PiCo

Word Count
Parallelism 1 2 4 8 16 32 48

avg (ms) 21938.15 10991.91 5510.19 2838.84 1612.42 1676.11 2135.24
sd (s) 57.51 45.73 24.09 23.95 20.74 31.82 60.51

cv (%) 0.26 0.42 0.44 0.84 1.29 1.90 2.83
avg Scal. 1 1.20 3.98 7.73 13.60 13.09 10.27

Stock Pricing
Parallelism 1 2 4 8 16 32 48

avg (ms) 21807.41 11166.00 5673.48 3261.60 3865.59 4852.38 6305.70
sd (s) 176.56 335.43 126.50 66.29 44.62 63.53 55.83

cv (%) 0.81 3.00 2.23 2.03 1.15 1.30 0.88
avg Scal. 1 1.95 3.84 6.69 5.64 4.49 3.46

Table 8.4: Average, standard deviation and coefficient of
variation on 20 runs for each benchmark. Best execution

times are highlighted.

To examine resource consumptions, we measured CPU and memory utilization using
the sar tool, which collects and displays all system activities statistics. The sar tool
is part of the global system performance analysis sysstat package on Unix systems.
We executed 10 runs for each configuration of the examined tools: results obtained
show a low variability, so that we do not report average and variance of collected
results. Table 8.5 shows CPU utilization percentages throughout the total execution
time only for best execution times.

8.2. Experiments 127

Word Count (execution time in ms)

Best exec. time Parallelism CPU (%) RAM (MB)
Flink 12179.00 32 21.39% 3538.94
Spark 3617.80 32 12.94% 1494.22
PiCo 1612.42 16 19.38% 157.29

Stock Pricing (execution time in ms)

Best exec. time Parallelism CPU (%) RAM (MB)
Flink 4048.35 32 22.06% 3460.30
Spark 4773.17 32 12.83% 1494.22
PiCo 3261.61 8 13.59% 78.64

Table 8.5: User’s percentage usage of all CPUs and RAM
used in MB, referred to best execution times.

Interesting results refer to the in RAM memory footprint, in which PiCo outper-
forms the other tools. Table 8.5 shows RAM MegaBytes used by each tool for each
application. This confirms that both Spark and Flink maintain a constant amount
of allocated resources in memory This is due to the fact that there is a resource
preallocation managed by an internal allocator, which is in charge of reducing the
overhead induced by the Garbage Collector. Hence, independently from the input
size that, (about 600MB and 650MB in Word Count and Stock Pricing respectively)
it is not possible to evaluate a correlation between input size and global memory
footprint. For instance, Spark’s Project Tungsten [59] introduces an explicit mem-
ory manager based on the sun.misc.Unsafe package, exposing C-style memory
access (i.e., explicit allocation, deallocation, pointer arithmetic, etc.) in order to
bypass the JVM garbage collection. As for Flink, it implements a Memory Man-
ager pool, that is, a large collection of buffers (allocated at the beginning of the
application) that are used by all runtime algorithms in which records are stored in
serialized form. The Memory Manager allocates these buffers at startup and gives
access to them to entities requesting memory. Once released, the memory is given
back to the Memory Manager. PiCo does not yet rely on any allocator, so there is
still room for improvement in its memory footprint.

8.2.2 Stream Applications

In this set of experiments, we compare PiCo to Flink and Spark when executing
stream applications.

Spark implements its stream processing runtime over the batch processing one, thus
exploiting the BSP runtime on stream microbatches, without providing a concrete
form of pipelining and reducing the real-time processing feature. Flink and PiCo
implements the same runtime for batch and streaming.

The application we test is the Stock Pricing (the same as for batch experiment), to
which we added two more option pricing algorithms: Binomial Tree and Explicit
Finite Difference. The Binomial Tree pricing model traces the evolution of the
option’s key by means of a binomial lattice (tree), for a number of time steps
between the valuation and expiration dates. The Explicit Finite Difference pricing
model is used to price options by approximating the continuous-time differential
equation describing how an option price evolves over time by a set of (discrete-
time) difference equations. The final result of the Stock Pricing use case is, for
each stock, the maximum price variance obtained by the three algorithms (Black &
Scholes, Binomial Tree, and Explicit Finite Difference). The input stream is of 10M
stock options: each item is composed by a stock name and a fixed number of option
values

128 Chapter 8. Case Studies and Experiments

In Appendix A, we present the partial source code for streaming Stock Pricing in
Flink (listing A.5), Spark (listing A.8) and PiCo (listing A.2), so that it is possible
also to show which are the difficulties in moving from a batch to a stream processing
program in each case.

PiCo

Figure 8.4 shows scalability and execution times for the Stock Pricing streaming
application: each value represents the average of 20 runs for each number of workers,
and the thread pinning strategy is linear on physical cores first.

In the Stock Pricing pipeline, PiCo first instantiates 6 threads corresponding to
sequential operators, such as read from socket and write to standard output, plus
Emitter and Collector threads for map and p-reduce operators. Then, there is the
main thread, plus k — a user-defined number — workers for the map and k for the
w-p-reduce operators.

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 12 16 21
 0

 5

 10

 15

 20

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
c
a

la
b

ili
ty

 F
a

c
to

r

Parallelism

Pico Scalability and Execution Time on Stream StockPricing

Scalability Factor
Time (s)

Figure 8.4: Scalability and execution times for Stream
Stock Pricing application in PiCo.

With 16 workers for the map and 16 workers w-p-reduce operator, mapped on
physical cores, PiCo obtains the best average execution time of 7.348 seconds and
a scalability factor of 14.87.

Limitations on scalability. This use case also shows the slow down on the
first node of the Pipeline—the ReadFromSocket (RFS) operator. As the number
of workers increases, this increases also the execution time of the read from socket,
making it the application’s bottleneck, as was shown in the batch use cases reported
in Table 8.6. The RFS’s kernel code is the following: each line read from the socket
is stored into a std::string when the delimiter is reached (in this example, “\n”)
and stored into a fixed-size microbatch. Once the microbatch is full, it is forwarded
to the next operator and a new microbatch is allocated. This is repeated until the
end of stream is reached. As the microbatch size increases, the number of their
allocation decreases but RFS still represents the bottleneck. In the following table,

8.2. Experiments 129

we report execution times of a single run of Stock Pricing with microbatch size
512, since previous tests showed that it represents the best granularity for good
performance. We then compare execution times obtained with the two pinning
strategy (interleaved and linear). The table shows how the scalability on workers
is still increasing despite the bottleneck on RFS and how the two different pinning
strategy help in reducing this effect, giving room for improvement on the total
execution time. We show execution times for a number of workers up to a maximum
of 21 for the map and w-p-reduce each, in order to exploit all physical cores of the
node (48).

Interleaved Pinning Strategy (execution time in ms)

workers exec. time read from socket map worker map scalability
1 100966.00 3882.59 100966.00 1.00
2 50870.60 4315.00 50870.00 1.98
4 28093.00 4576.83 28023.50 3.60

16 8855.81 8847.47 8848.53 11.41
21 8753.42 8745.43 8750.95 11.54

Linear Pinning Strategy (execution time in ms)

workers exec. time read from socket map worker map scalability
1 109184.00 3962.74 109184.00 1.00
2 54747.90 3979.72 54747.50 1.99
4 27426.10 4064.94 27423.40 3.98
8 13927.80 4245.09 13926.20 7.84

16 7386.69 6341.60 7277.45 15.00
21 7548.15 7539.83 7545.49 14.47

Table 8.6: Decomposition of execution times and scalabil-
ity highlighting the bottleneck on ReadFromSocket operator.

Comparison with other tools

We compared PiCo to Flink and Spark on the Stock Pricing streaming application.
In this section, we provide a comparison on minimum execution time obtained by
each tool as the average of 20 runs for each application, a study on execution times
variability, and metrics on resources utilization. Configuration used for all tools are
the reported in Table 8.3. We executed PiCo with a maximum of 21 worker threads
for each data parallel operator (map and w-p-reduce), as previously defined, in
order to exploit the maximum number of physical threads of the node. The window
is count-based (or tumbling) and has size 8 in Flink and PiCo. In Spark, it is not
possible to create count-based windows since only time-based ones are available, so
we created tumbling windows with duration of 10 seconds, by which the execution
time with one thread is similar to PiCo’s one. We have to remark that comparison
with Spark is not completely fair, since the windowing is not performed in a count-
based fashion. To the best of our knowledge, it is not possible to implement such
windowing policy in Spark.

We briefly recall some aspects of Flink’s and Spark’s runtime. In Flink, each process
has one or more task slots, each of which runs one pipeline of parallel tasks (i.e., the
nth instance of a map operator on the n-th partition of the input). The parallelism
parameter determines how operations are split into individual tasks, which are as-
signed to task slots, that is, it defines parallelism degree for data parallel operators.
By setting the parallelism to N , Flink tries to divide an operation into N parallel
tasks computed concurrently using the available task slots. The number of task
slots should be equal to the parallelism to ensure that all tasks can be computed in
a task slot concurrently but, unfortunately, by setting parallelism to a value greater
than 32, the program crashes because of insufficient internal resource availability.
Due to this limitation, we run Flink with up to 21 worker threads, in order to be
aligned with PiCo. We used the same maximum number of threads also in Spark,

130 Chapter 8. Case Studies and Experiments

even though it would be possible to exploit more parallelism: since Spark scalabil-
ity in this use case is limited, it is not unfair to be aligned with PiCo’s parallelism
exploitation.

For stream processing, Spark implements an extension through the Spark Streaming
module, providing a high-level abstraction called discretized stream or DStream.
Such streams represent results in continuous sequences of RDDs of the same type,
called micro-batches. Operations over DStreams are “forwarded” to each RDD in
the DStream, thus the semantics of operations over streams is defined in terms of
batch processing. All RDDs in a DStream are processed in order, whereas data
items inside an RDD are processed in parallel without any ordering guarantees.
Hence, Spark implements its stream processing runtime over the batch processing
one, thus exploiting the BSP runtime on stream microbatches, without providing a
concrete form of pipelining and reducing the real-time processing feature.

Stream Stock Pricing Best Execution Time (ms)

Best exec. time Parallelism Scalability
Flink 24784.60 16 9.21
Spark 42216.21 16 2.24
PiCo 7348.58 16 14.87

Table 8.7: Flink, Spark and PiCo best average execution
times, showing also the scalability with respect to the aver-

age execution time with one thread.

Table 8.7 shows in a summarized manner the best execution times obtained by each
tool, extracted from Table 8.8.

The table shows that PiCo reaches the best execution time with a higher scalability
with respect to other tools, with a scalability of 14.87 in PiCo while 9.21 in Flink
and 2.24 Spark.

Table 8.8 also shows the average and the variability of execution times obtained by
all the executions. We remark that “parallelism” has different meanings for each
tool, as described in the paragraph above. It shows that, also in this use case, Flink
is slightly less predictable2 than PiCo, reaching a peak of 2.06% for the coefficient
of variation.

A strong variability is reported for Spark. We have seen, from the web user in-
terface provided by Spark that the input rate from sockets has a great variability,
introducing latencies that lead to a reported average of 5 seconds of task schedul-
ing delay. Furthermore, it can be noticed that the best average execution time in
Spark has a coefficient of variation of 38.90%, with a minimum execution time of 24
seconds and a maximum of 74 seconds (values not reported) and that, in all cases,
Spark and Flink suffer from scalability issues. PiCo outperforms both Spark and
Flink in terms of standard deviation, and outperforms Spark in terms of coefficient
of variation. We again validated results with the ANOVA test, which validated our
results.

2We consider predictability of execution times since the execution happened to fail, as
we reported above in this section.

8.2. Experiments 131

Flink Stream Stock Pricing

Parallelism 1 2 4 8 16 21
avg (ms) 228383.40 119669.30 65031.35 36786.20 24784.60 27000.85

sd (s) 1721.24 975.84 525.27 273.85 270.51 556.52
cv (%) 0.75 0.81 0.81 0.74 1.09 2.06

avg Scal. 1.00 1.91 3.51 6.21 9.21 8.46

Spark Stream Stock Pricing

Parallelism 1 2 4 8 16 21
avg (ms) 94400.00 74059.67 50886.67 52929.17 42216.21 85479.30

sd (s) 8961.03 20207.12 10037.38 5664.81 16424.54 77601.40
cv (%) 9.49 27.28 19.72 10.70 38.90 90.78

avg Scal. 1 1.27 1.85 1.78 2.24 1.10

PiCo Stream Stock Pricing

Parallelism 1 2 4 8 16 21
avg (ms) 109273.35 54789.40 27532.85 13914.29 7348.58 7536.46

sd (s) 54.96 49.16 147.78 31.68 74.67 45.89
cv (%) 0.05 0.09 0.54 0.23 1.02 0.61

avg Scal. 1.00 1.99 3.97 7.85 14.87 14.50

Table 8.8: Average, standard deviation and coefficient of
variation on 20 runs of the stream Stock Pricing benchmark.

Best execution times are highlighted.

We again measured CPU and memory utilization using the sar tool. We executed
10 runs for each configuration: results obtained show a low variability, so that
we do not report average and variance of collected results. Table 8.9 shows CPU
utilization percentages only for average best execution times reported in table 8.8.

Stream Stock Pricing (execution time in ms)

Best exec. time Parallelism CPU (%) RAM (MB)
Flink 24784.60 16 14.31% 4875.88
Spark 42216.21 16 10.23% 3169.32
PiCo 7348.58 16 38.85% 314.57

Table 8.9: User’s percentage usage of all CPUs and RAM
used in MB, referred to best execution times.

Flink and Spark show a memory utilization of 4 and 3 GB respectively, that is, one
order of magnitude greater than PiCo, using only 314 MB and outperforming other
tools in resource utilization.

Throughput Values for 10M Stock Options

Best exec. time (s) Parallelism Stocks per Second
Flink 24.78 16 403476.35
Spark 42.22 16 236875.81
PiCo 7.35 16 1360806.94

Table 8.10: Stream Stock Pricing: Throughput values
computed as the number of input stock options with respect

to the best execution time.

Finally, we provide throughput values computed with respect to the number of
stock options in the input stream in the best execution time scenario reported in
Table 8.8. We remark that the comparison with Spark is not completely fair since
windowing is not performed in a count-based fashion. Table 8.10 shows that PiCo

132 Chapter 8. Case Studies and Experiments

processes more than 1.3M stock options per second, outperforming Flink and Spark,
which processes about 400K and 200K stock options per second respectively.

8.3 Summary

In this Chapter we provided a set of experiments based on examples defined in
Sect. 5.4, comprehending both batch and stream applications. We compared PiCo
to Flink and Spark, focusing on expressiveness of the programming model and
on performances in shared memory. The current experiments are run on shared
memory only. By comparing execution times in both batch and stream applications,
we reached the best execution time when comparing to state-of-the-art frameworks
Spark and Flink. Nevertheless, results showed high dynamic allocation contention in
input generation nodes, which limits PiCo scalability. An extension of PiCo using
the FastFlow allocator might be used by any number of threads to dynamically
allocate/deallocate memory. We also measured RAM and CPU utilization with the
sar tool, which confirmed a lower memory consumption by PiCo with respect to
the other frameworks when compared on batch application (Word Count and Stock
Pricing) and stream application (Stock Pricing streaming): these results rely on the
stability of a lightweight C++ runtime, in contrast to Java. What we reported in
this Chapter is a preliminary experimental phase. We re working on providing more
relevant benchmark, such as the Sort/Terasort, and support for HDFS is needed
for such benchmarks.

133

Chapter 9

Conclusions

In this thesis, we presented PiCo, a new C++ DSL for data analytics pipelines. We
started by studying and analyzing a large number of Big Data analytics tools, among
which we identified the most representative ones: Spark [131], Storm [97], Flink [67]
and Google Dataflow [5]. By analyzing in depth these frameworks, we identified the
Dataflow model as the common model that better describes all levels of abstraction,
from the user-level API to the execution model. Being all realized under the same
common idea, we showed how various Big Data analytics tools share almost the
same base concepts, differing mostly in their implementation choices. We then
instantiated the Dataflow model into a stack of layers where each layer represents
a dataflow graph/model with a different meaning, describing a program from what
the programmer sees down to the underlying, lower-level, execution model layer
(Chapter 4).

This study led to the specification and formalization of the minimum kernel of op-
erations needed to create a pipeline for data analytics. As one of the strength of
PiCo, we implemented a framework in which the data model is also hidden to the
programmer, thus allowing the possibility to create a model that is polymorphic
with respect to data model and processing model (i.e., stream or batch processing).
This make it possible to 1) re-use the same algorithms and pipelines on different
data models (e.g., stream, lists, sets, etc.); 2) reuse the same operators in different
contexts, and 3) update operators without affecting the calling context. These as-
pects are fundamental for PiCo, since they differentiate it from all other frameworks
exposing different data types to be used in the same application, forcing the user to
re-think the whole application when moving from one operation to another. Fur-
thermore, another goal reached, which is missing in other frameworks which usually
provide the API description, is the one of formally defining the syntax of a program
based on Pipelines and operators, hiding the data structures produced and gener-
ated by the program as well as providing a semantic interpretation that maps any
PiCo program to a functional Dataflow graph — graph that represents the transfor-
mation flow followed by the processed collections (Chapter 5). This is in complete
contrast with the unclear approach used by implementors of commercial-oriented
Big Data analytics tools.

The formalization step concludes by showing how a PiCo program is compiled into
a graph of parallel processing nodes. The compilation step takes as input the direct
acyclic dataflow graph (DAG) resulting from a PiCo program (the Semantic DAG)
and transforms it, using a set of rules, into a graph that we call the Parallel Execu-
tion (PE) Graph, representing a possible parallelization of the Semantic DAG. We
provided this compilation step in a way that is abstract with respect to any actual
implementation. For instance, it may be implemented in shared memory or through
a distributed runtime. Moreover, a compiled (and optimized) Dataflow graph may
be directly mapped to an actual network of computing units (e.g., communicating
threads or processes) or executed by a macro-Dataflow interpreter (Chapter 6).

We succeed to implement our model into a C++14 compliant DSL whose aim is to
focus on ease of programming with a clear and simple API, exposing to the user

134 Chapter 9. Conclusions

a set of operator objects composed into a Pipeline object, processing bounded or
unbounded data. This API was designed to exhibit a functional style over C++14
standard by defining a library of purely functional data transformation operators
exhibiting 1) a well-defined functional and parallel semantics because of our formal-
ization and 2) a fluent interface based on method chaining to improve code writing
and readability (Chapter 7). Moreover, our API is data-model agnostic, that is, a
PiCo program can address both batch and stream processing with a unique API and
a unique runtime simply by having the user specify the data source as the first node
of the Pipeline in a PiCo application. The type system described and implemented
will check if the Pipeline built is compliant with respect to the kind of data being
processed.

The current version of PiCo is built to run on shared memory only, but it will be
possible to easily exploit distributed memory platforms thanks to its runtime level
implemented on top of FastFlow which already supports execution on distributed
systems. Furthermore, we remark that choosing FastFlow as the runtime for PiCo
gives us almost for free the capability to realize a distributed memory implementa-
tion by still maintaining the very same implementation, only by changing communi-
cation among processes. To achieve this goal, we will provide an implementation of
the FastFlow runtime for distributed execution by mean of a Global Asynchronous
Memory(GAM) system model. The GAM system consists in a network of execu-
tors (i.e., FastFlow workers as well as PiCo operators) accessing a global dynamic
memory with weak sharing semantics, allowing operators to communicate to each
other in predefined communicators where they can exchange C++ smart pointers.

It is also possible to envision exploiting an underlying memory model such as PGAS
or DSM: since FastFlow moves pointers and not data in communication channels
among nodes, the same approach can be used to avoid data movement in a dis-
tributed scenario with an ad hoc relaxed consistency model. Another goal reach-
able by PiCo is the easily offloading of kernels to external devices such as GPU,
FPGA, etc. This is possible for two reasons: the first is because of the C++ lan-
guage, which naturally targets libraries and API for heterogeneous programming.
The second is within the FastFlow runtime and API, which provides support for
easily offloading tasks to GPUs. This is obviously a strength in the choice of imple-
menting PiCo in C++ instead of Java/Scala, which also provide libraries for GPU
offloading that are basically wrapper or extension for OpenCL or CUDA, based on
auto-generated low-level bindings, but no such library is yet officially recognized as
a Java extension.

From the actual performance viewpoint, we aim to solve dynamic allocation con-
tention problems we are facing in input generation nodes, as showed in Chapter 8,
which limits PiCo scalability. As future work, we could provide PiCo with the
FastFlow allocator: this is a specialized allocator that allocates only large chunks of
memory, slicing them up into little chunks of the same size which can be reused once
freed. The FastFlow allocator relies on malloc and free, which makes it unfeasible
to be used with C++ Standard Containers and with modern C++ in general. An
extension of the FastFlow allocator in this direction might be used by any number
of threads to dynamically allocate/deallocate memory.

In PiCo, we rely on the stability of a lightweight C++ runtime, in contrast to
Java. We measured RAM and CPU utilization with the sar tool, which confirmed
a lower memory consumption by PiCo with respect to the other frameworks when
compared on batch application (Word Count and Stock Pricing) and stream ap-
plication (Stock Pricing streaming). As another future work, we will provide PiCo
with fault tolerance capabilities for automatic restore in case of failures. Another
improvement for PiCo implementation on distributed systems would be to exploit
the very same runtime on PGAS or DSMs, in order to still be able to use FastFlow’s
characteristic of moving pointers instead of data, thus allowing a high portability

Chapter 9. Conclusions 135

at the cost of just managing communication among actors in a different memory
model, which is left to the runtime.

In the experiments chapter, we showed that we achieved the goal of having a
lightweight runtime able to better exploit resources (outperforming in memory uti-
lization), obtaining a better execution time on benchmarks we tested with respect
to Flink and Spark, which are two the most used tools nowadays. PiCo obtained
good results even though it is still in a prototype phase, ensuring that it will be
possible for us to still improve performances by providing special allocators to re-
duce dynamic memory allocation contentions, one the current performance issue in
PiCo (Chapter 8).

With this thesis we aimed at bringing some order to the confused world of Big Data
analytics, and we hope the readers will agree that we have reached our goal—at
least in part. We believe that PiCo makes a step forward by giving C++ a chance
of entering into a world almost completely Java-dominated—often considered more
user-friendly. Starting from our preliminary work, we can envision a complete C++
framework that will provide all expected features of a fully equipped environment
and that can be easily used by the data analytics scientists community.

137

Appendix A

Source Code

In this Appendix we provide source code snapshots reporting classes related to the
core operations of each application.

PiCo

Stock Pricing

1 Pipe stockPricing((ReadFromFile()));

2 stockPricing

3 .to(blackScholes).add(PReduce<StockAndPrice>([]

4 (StockAndPrice p1, StockAndPrice p2){

5 return std::max(p1,p2);}))

6 .add(WriteToDisk<StockAndPrice>([](StockAndPrice kv){

7 return kv.to_string();

8 }));

9

10 /* execute the pipeline */

11 stockPricing.run();

Listing A.1: Batch Stock Pricing C++ pipeline in
PiCo.

1 size_t window_size = 8;

2 Pipe stockPricing(ReadFromSocket(’\n’));

3 stockPricing

4 .to(varianceMap).add(PReduce<StockAndPrice>([]

5 (StockAndPrice p1, StockAndPrice p2) {

6 return std::max(p1,p2);

7 })

8 .window(window_size))

9 .add(WriteToStdOut<StockAndPrice>([](StockAndPrice kv)

10 {return kv.to_string();}

11));

12

13 /* execute the pipeline */

14 stockPricing.run();

15

Listing A.2: Stream Stock Pricing C++ pipeline in
PiCo.

138 Appendix A. Source Code

Flink

Word Count

1 public class WordCount {

2 // set up the execution environment

3 final ExecutionEnvironment env =

4 ExecutionEnvironment.getExecutionEnvironment();

5 // get input data

6 DataSet<String> text = env.readTextFile(params.get("input"));

7

8 DataSet<Tuple2<String, Integer>> counts =

9 // split up the lines in pairs (2-tuples) containing: (word,1)

10 text.flatMap(new Tokenizer())

11 // group by the tuple field "0" and sum up tuple field "1"

12 .groupBy(0)

13 .sum(1);

14

15 // emit result

16 if (params.has("output")) {

17 counts.writeAsCsv(params.get("output"), "\n", " ");

18 env.execute("WordCount Example");

19 } else {

20 System.out.println("Printing result to stdout. Use --output to specify

output path.");

21 counts.print();

22 }

23

24 /**

25 * Implements the string tokenizer that splits sentences into words as a user-

defined

26 * FlatMapFunction. The function takes a line (String) and splits it into

27 * multiple pairs in the form of "(word,1)" ({@code Tuple2<String, Integer>}).

28 */

29 public static final class Tokenizer

30 implements FlatMapFunction<String, Tuple2<String, Integer>> {

31 @Override

32 public void flatMap(String value, Collector<Tuple2<String, Integer>> out)

33 {

34 // normalize and split the line

35 String[] tokens = value.toLowerCase().split("\\W+");

36 // emit the pairs

37 for (String token : tokens) {

38 if (token.length() > 0) {

39 out.collect(new Tuple2<String, Integer>(token, 1));

40 }

41 }

42 }

43 }

44 }

Listing A.3: Word Count Java class in Flink.

Appendix A. Source Code 139

Stock Pricing

1 public class StockPricing {

2 // set up the execution environment

3 final ExecutionEnvironment env =

4 ExecutionEnvironment.getExecutionEnvironment();

5 DataSet<String> text = env.readTextFile(params.get("input"));

6 DataSet<Tuple2<String, Double>> max_prices =

7 // parse the lines in pairs containing: (stock,option)

8 text.map(new OptionParser())

9 // compute the price of each stock option

10 .map(new BlackScholes())

11 // group by the tuple field "0" and extracts max on tuple field "1"

12 .groupBy(0).max(1);

13

14 // emit result

15 if (params.has("output")) {

16 max_prices.writeAsCsv(params.get("output"), "\n", " ");

17 env.execute("StockPricing Example");

18 } else {

19 System.out.println("Printing result to stdout. Use --output to specify

output path.");

20 max_prices.print();

21 }

22 }

Listing A.4: Batch Stock Pricing Java class in Flink.

1 // get the execution environment

2 final StreamExecutionEnvironment env = StreamExecutionEnvironment.

getExecutionEnvironment();

3 env.setBufferTimeout(20);

4

5 // get input data by connecting to the socket

6 DataStream<String> text = env.socketTextStream("localhost", port, "\n");

7

8 DataStream<Tuple2<String, Double>> max_prices =

9 // parse the lines in pairs containing: (stock,option)

10 text.map(new OptionParser())

11 // compute the price of each stock option

12 .map(new varianceMap())

13 // group by the tuple field "0" and extracts max on

14 // tuple field "1"

15 .keyBy(0).countWindow(8).max(1);

16

17 // print the results with a single thread, rather than in parallel

18 max_prices.print().setParallelism(1);

Listing A.5: Stream Stock Pricing Java class in Flink.

140 Appendix A. Source Code

Spark

Word Count

1 public final class WordCount {

2 JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD();

3 JavaPairRDD<String, Integer> words =

4 lines.flatMapToPair(new PairFlatMapFunction<String, String, Integer>() {

5 public Iterator<Tuple2<String, Integer>> call(String s) {

6 List<Tuple2<String, Integer>> tokens =

7 new ArrayList<Tuple2<String, Integer>>();

8 for (String t : SPACE.split(s)) {

9 tokens.add(new Tuple2<String, Integer>(t, 1));

10 }

11 return tokens.iterator();

12 }

13 });

14

15 JavaPairRDD<String, Integer> counts =

16 words.reduceByKey(new Function2<Integer, Integer, Integer>() {

17 public Integer call(Integer i1, Integer i2) {

18 return i1 + i2;

19 }});

20

21 List<Tuple2<String, Integer>> output = counts.collect();

22 for (Tuple2<?, ?> tuple : output) {

23 System.out.println(tuple._1() + ": " + tuple._2());

24 }

25 }

Listing A.6: Word Count Java class in Spark.

Appendix A. Source Code 141

Stock Pricing

1 JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD();

2

3 JavaPairRDD<String, OptionData> stock_options =

4 lines.mapToPair(new PairFunction<String, String, OptionData>() {

5 public Tuple2<String, OptionData> call(String value) {

6 // tokenize the line

7 String[] tokens = value.split("[\t]");

8 int i = 0;

9 // parse stock name

10 String name = tokens[i++];

11 // parse option data

12 OptionData opt = new OptionData();

13 // parsing options..

14 return new Tuple2<String, OptionData>(name, opt);

15 }

16 });

17

18 JavaPairRDD<String, Double> stock_prices=stock_options.mapToPair(new

BlackScholes());

19

20 JavaPairRDD<String, Double> counts =

21 stock_prices.reduceByKey(new Function2<Double, Double, Double>() {

22 public Double call(Double i1, Double i2) {

23 return i1 + i2;

24 }

25 });

26

27 List<Tuple2<String, Double>> output = counts.collect();

28 for (Tuple2<?,?> tuple : output) {

29 System.out.println(tuple._1() + ": " + tuple._2());

30 }

31

Listing A.7: Batch Stock Pricing Java class in Spark.

1 // Create a DStream that will connect to hostname:port

2 JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost",

4000, StorageLevels.MEMORY_AND_DISK_SER);

3

4

5 @SuppressWarnings("serial")

6 JavaPairDStream<String, OptionData> stock_options = lines //

7 .mapToPair(new PairFunction<String, String, OptionData>() {

8 public Tuple2<String, OptionData> call(String value) {

9 // tokenize the line

10 String[] tokens = value.split("[\t]");

11 int i = 0;

12

13 // parse stock name

14 String name = tokens[i++];

15

16 OptionData opt = new OptionData();

17 // parse option data ...

18 return new Tuple2<String, OptionData>(name, opt);

19 }

20 });

21

22 JavaPairDStream<String, Double> stock_prices = stock_options //

23 .mapToPair(new varianceMap());

24

25 JavaPairDStream<String, Double> counts = stock_prices.reduceByKey(new Function2<

Double, Double, Double>() {

26 public Double call(Double i1, Double i2) {

27 return Math.max(i1, i2);

28 }

29 });

Listing A.8: Stream Stock Pricing Java class in Spark.

143

Bibliography

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70,
Aug 2008.

[2] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. http://tensorflow.org/, 2015.

[3] M. Abadi and M. Isard. Timely dataflow: A model. In FORTE, pages 131–
145, 2015.

[4] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A
tutorial. Computer, 29(12):66–76, Dec. 1996.

[5] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernàndez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whit-
tle. The dataflow model: A practical approach to balancing correctness, la-
tency, and cost in massive-scale, unbounded, out-of-order data processing.
Proc. VLDB Endow., 8(12):1792–1803, Aug. 2015.

[6] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernàndez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whit-
tle. The dataflow model: A practical approach to balancing correctness, la-
tency, and cost in massive-scale, unbounded, out-of-order data processing.
Proceedings of the VLDB Endowment, 8:1792–1803, 2015.

[7] M. Aldinucci. eskimo: experimenting with skeletons in the shared address
model. Parallel Processing Letters, 13(3):449–460, Sept. 2003.

[8] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, and S. Rabellino. The Open
Computing Cluster for Advanced data Manipulation (occam). In The 22nd
International Conference on Computing in High Energy and Nuclear Physics
(CHEP), San Francisco, USA, Oct. 2016.

[9] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi,
L. Potiti, R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The
implementation of ASSIST, an environment for parallel and distributed pro-
gramming. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc.
of 9th Intl Euro-Par 2003 Parallel Processing, volume 2790 of LNCS, pages
712–721, Klagenfurt, Austria, Aug. 2003. Springer.

[10] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. AS-
SIST as a research framework for high-performance grid programming envi-
ronments. In J. C. Cunha and O. F. Rana, editors, Grid Computing: Software
environments and Tools, chapter 10, pages 230–256. Springer, Jan. 2006.

[11] M. Aldinucci and M. Danelutto. Skeleton based parallel programming: func-
tional and parallel semantic in a single shot. Computer Languages, Systems
and Structures, 33(3-4):179–192, Oct. 2007.

[12] M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, Claudia Misale,
G. Peretti Pezzi, and M. Torquati. A parallel pattern for iterative stencil +
reduce. Journal of Supercomputing, pages 1–16, 2016.

[13] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Towards hierarchical manage-
ment of autonomic components: a case study. In D. E. Baz, T. Gross, and

http://tensorflow.org/

144 BIBLIOGRAPHY

F. Spies, editors, Proc. of Intl. Euromicro PDP 2009: Parallel Distributed and
network-based Processing, pages 3–10, Weimar, Germany, Feb. 2009. IEEE.

[14] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati.
An efficient unbounded lock-free queue for multi-core systems. In Proc. of
18th Intl. Euro-Par 2012 Parallel Processing, volume 7484 of LNCS, pages
662–673, Rhodes Island, Greece, Aug. 2012. Springer.

[15] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Fastflow: high-
level and efficient streaming on multi-core. In S. Pllana and F. Xhafa, ed-
itors, Programming Multi-core and Many-core Computing Systems, Parallel
and Distributed Computing, chapter 13. Wiley, Oct. 2014.

[16] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment support-
ing structured parallel programming in Java. Future Generation Computer
Systems, 19(5):611–626, July 2003.

[17] M. Aldinucci, M. Drocco, G. Peretti Pezzi, Claudia Misale, F. Tordini,
and M. Torquati. Exercising high-level parallel programming on streams: a
systems biology use case. In Proc. of the 2014 IEEE 34th Intl. Conference on
Distributed Computing Systems Workshops (ICDCS), Madrid, Spain, 2014.
IEEE.

[18] M. Aldinucci, M. Meneghin, and M. Torquati. Efficient Smith-Waterman on
multi-core with fastflow. In M. Danelutto, T. Gross, and J. Bourgeois, editors,
Proc. of Intl. Euromicro PDP 2010: Parallel Distributed and network-based
Processing, pages 195–199, Pisa, Italy, Feb. 2010. IEEE.

[19] M. Aldinucci and M. Torquati. FastFlow website, 2009. http://

mc-fastflow.sourceforge.net/.

[20] M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, Claudia Misale,
C. Calcagno, and M. Coppo. Parallel stochastic systems biology in the cloud.
Briefings in Bioinformatics, 15(5):798–813, 2014.

[21] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise,
O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters,
A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke. The stratosphere platform for big data analytics. The VLDB
Journal, 23(6):939–964, Dec. 2014.

[22] Apache Software Foundation. Hadoop, 2013. http://hadoop.apache.org/.

[23] Apache Software Foundation. HDFS, 2013. http://hadoop.apache.org/

docs/r1.2.1/hdfs_user_guide.html.

[24] Apache Software Foundation. Cassandra, 2016. http://cassandra.apache.
org.

[25] Apache Software Foundation. HBase, 2016. http://hbase.apache.org/.

[26] Apache Software Foundation. Yarn, 2016. https://hadoop.apache.org/

docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html.

[27] Apache Software Foundation. ZooKeeper, 2016. http://zookeeper.apache.
org/.

[28] K. Arvind and R. S. Nikhil. Executing a program on the MIT tagged-token
dataflow architecture. IEEE Trans. Comput., 39(3):300–318, Mar. 1990.

[29] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick.
A view of the parallel computing landscape. Communications of the ACM,
52(10):56–67, 2009.

http://mc-fastflow.sourceforge.net/
http://mc-fastflow.sourceforge.net/
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html
http://cassandra.apache.org
http://cassandra.apache.org
http://hbase.apache.org/
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
http://zookeeper.apache.org/
http://zookeeper.apache.org/

BIBLIOGRAPHY 145

[30] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah. Compara-
tive study of caffe, neon, theano, and torch for deep learning. CoRR,
abs/1511.06435, 2015.

[31] Basho. Riak, 2016. http://basho.com/riak/.

[32] M. A. Beyer and D. Laney. The importance of big data: A definition. Tech-
nical report, Stamford, CT: Gartner, June 2012.

[33] R. Bhardwaj, A. Sethi, and R. Nambiar. Big data in genomics: An overview.
In 2014 IEEE International Conference on Big Data (Big Data), pages 45–49,
Oct 2014.

[34] T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C. Nguyen, A. Noe,
S. Schlag, M. Stumpp, T. Sturm, and P. Sanders. Thrill: High-
performance algorithmic distributed batch data processing with C++. CoRR,
abs/1608.05634, 2016.

[35] H. Bischof, S. Gorlatch, and R. Leshchinskiy. DatTel: A data-parallel C++
template library. Parallel Processing Letters, 13(3):461–472, 2003.

[36] H.-J. Boehm. Threads cannot be implemented as a library. SIGPLAN Not.,
40(6):261–268, June 2005.

[37] H.-J. Boehm and S. V. Adve. Foundations of the c++ concurrency memory
model. In Proceedings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’08, pages 68–78, New
York, NY, USA, 2008. ACM.

[38] J. Bonwick and S. Microsystems. The slab allocator: An object-caching kernel
memory allocator. In In USENIX Summer, pages 87–98, 1994.

[39] E. A. Brewer. Towards robust distributed systems (abstract). In Proceed-
ings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’00, pages 7–, New York, NY, USA, 2000. ACM.

[40] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1997.

[41] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on IBM SP for the
NAS benchmarks. In Proc. of the 2000 ACM/IEEE conference on Supercom-
puting (CDROM), Supercomputing ’00. IEEE Computer Society, 2000.

[42] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. Lightweight
asynchronous snapshots for distributed dataflows. CoRR, abs/1506.08603,
2015.

[43] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, R. Bradshaw,
and Nathan. FlumeJava: Easy, efficient data-parallel pipelines. In ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 363–375, 2 Penn Plaza, Suite 701 New York, NY 10121-0701,
2010.

[44] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, Feb.
1985.

[45] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve,
V. S. Adve, N. P. Carter, and C.-T. Chou. Denovo: Rethinking the memory
hierarchy for disciplined parallelism. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, PACT ’11,
pages 155–166, Washington, DC, USA, 2011. IEEE Computer Society.

http://basho.com/riak/

146 BIBLIOGRAPHY

[46] P. Ciechanowicz, M. Poldner, and H. Kuchen. The Munster skeleton library
Muesli — a comprehensive overview. In ERCIS Working paper, number 7.
ERCIS – European Research Center for Information Systems, 2009.

[47] C. Cole and M. Herlihy. Snapshots and software transactional memory. Sci.
Comput. Program., 58(3):310–324, 2005.

[48] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. MIT Press, 1991.

[49] M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for
skeletal parallel programming. Parallel Computing, 30(3):389–406, 2004.

[50] M. Cole. Skeletal Parallelism home page, 2009. http://homepages.inf.ed.
ac.uk/mic/Skeletons/.

[51] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like envi-
ronment for machine learning. In BigLearn, NIPS Workshop, 2011.

[52] Crunch. Apache Crunch website. http://crunch.apache.org/.

[53] M. Danelutto, R. D. Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi.
A methodology for the development and the support of massively parallel
programs. Future Generation Compututer Systems, 8(1-3):205–220, 1992.

[54] M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons
in C. In A. Bode, T. Ludwing, W. Karl, and R. Wismüller, editors, Proc.
of 6th Intl. Euro-Par 2000 Parallel Processing, volume 1900 of LNCS, pages
1175–1184, Munich, Germany, Aug. 2000. Springer.

[55] M. Danelutto and M. Torquati. Loop parallelism: a new skeleton perspective
on data parallel patterns. In M. Aldinucci, D. D’Agostino, and P. Kilpatrick,
editors, Proc. of Intl. Euromicro PDP 2014: Parallel Distributed and network-
based Processing, Torino, Italy, 2014. IEEE.

[56] M. Danelutto and M. Torquati. Structured parallel programming with “core”
fastflow. In V. Zsók, Z. Horváth, and L. Csató, editors, Central European
Functional Programming School, volume 8606 of LNCS, pages 29–75. Springer,
2015.

[57] J. Darlington, A. J. Field, P. Harrison, P. H. J. Kelly, D. W. N. Sharp, R. L.
While, and Q. Wu. Parallel programming using skeleton functions. In Proc.
of Parallel Architectures and Langauges Europe (PARLE’93), volume 694 of
LNCS, pages 146–160, Munich, Germany, June 1993. Springer.

[58] J. Darlington, Y.-k. Guo, H. W. To, and J. Yang. Parallel skeletons for struc-
tured composition. In Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP ’95, pages 19–28,
New York, NY, USA, 1995. ACM.

[59] Databricks. Spark Tungsten website. https://databricks.com/blog/2015/
04/28/project-tungsten-bringing-spark-closer-to-bare-metal.

html.

[60] T. De Matteis and G. Mencagli. Parallel patterns for window-based stateful
operators on data streams: an algorithmic skeleton approach. International
Journal of Parallel Programming, pages 1–20, 2016.

[61] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Usenix OSDI ’04, pages 137–150, Dec. 2004.

http://homepages.inf.ed.ac.uk/mic/Skeletons/
http://homepages.inf.ed.ac.uk/mic/Skeletons/
http://crunch.apache.org/
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

BIBLIOGRAPHY 147

[62] D. del Rio Astorga, M. F. Dolz, L. M. Sánchez, J. G. Blas, and J. D. Garćıa.
A C++ generic parallel pattern interface for stream processing. In Algo-
rithms and Architectures for Parallel Processing - 16th International Con-
ference, ICA3PP 2016, Granada, Spain, December 14-16, 2016, Proceedings,
pages 74–87, 2016.

[63] M. Drocco, Claudia Misale, and M. Aldinucci. A cluster-as-accelerator ap-
proach for SPMD-free data parallelism. In Proc. of Intl. Euromicro PDP 2016:
Parallel Distributed and network-based Processing, pages 350–353, Crete,
Greece, 2016. IEEE.

[64] M. Drocco, Claudia Misale, G. Peretti Pezzi, F. Tordini, and M. Aldinucci.
Memory-optimised parallel processing of Hi-C data. In Proc. of Intl. Euromi-
cro PDP 2015: Parallel Distributed and network-based Processing, pages 1–8.
IEEE, Mar. 2015.

[65] M. Drocco, Misale, Claudia, G. Tremblay, and M. Aldinucci. A formal se-
mantics for data analytics pipelines. https://arxiv.org/abs/1705.01629, May
2017.

[66] J. Enmyren and C. W. Kessler. Skepu: A multi-backend skeleton program-
ming library for multi-GPU systems. In Proceedings of the Fourth Interna-
tional Workshop on High-level Parallel Programming and Applications, HLPP
’10, pages 5–14, New York, NY, USA, 2010. ACM.

[67] Flink. Apache Flink website. https://flink.apache.org/.

[68] Flink. Flink streaming examples, 2015. [Online; accessed 16-November-2016].

[69] M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901–1909, 1966.

[70] M. Fowler. Kappa-Architecture website. https://www.martinfowler.com/

bliki/FluentInterface.html.

[71] H. González-Vélez and M. Leyton. A survey of algorithmic skeleton frame-
works: High-level structured parallel programming enablers. Software: Prac-
tice and Experience, 40(12):1135–1160, Nov. 2010.

[72] Google. Google Cloud Dataflow, 2015. https://cloud.google.com/

dataflow/.

[73] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Elsevier, fifth edition, 2011.

[74] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[75] IBM. What is big data? http://www-01.ibm.com/software/data/

bigdata/what-is-big-data.html, 2013.

[76] Intel. Intel R© C++ Intrinsics Reference, 2010.

[77] Intel. Intel R© AVX-512 instructions, 2013. https://software.intel.com/

en-us/blogs/2013/avx-512-instructions.

[78] Intel Corp. Threading Building Blocks, 2011.

[79] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In Proceedings of
the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, EuroSys ’07, pages 59–72, New York, NY, USA, 2007. ACM.

https://flink.apache.org/
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/2013/avx-512-instructions

148 BIBLIOGRAPHY

[80] J. Jeffers and J. Reinders. Front-matter. In J. Jeffers and J. Reinders, editors,
Intel Xeon Phi Coprocessor High Performance Programming, pages i – iii.
Morgan Kaufmann, Boston, 2013.

[81] D. R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–
425, July 1985.

[82] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[83] G. Kahn. The semantics of a simple language for parallel programming. In
J. L. Rosenfeld, editor, Information processing, pages 471–475, Stockholm,
Sweden, 1974. North Holland, Amsterdam.

[84] Kappa-Architecture. Kappa-Architecture website. http://milinda.

pathirage.org/kappa-architecture.com/.

[85] Khronos Compute Working Group. OpenCL, Nov. 2009. http://www.

khronos.org/opencl/.

[86] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja. Lambda ar-
chitecture for cost-effective batch and speed big data processing. In 2015
IEEE International Conference on Big Data (Big Data), pages 2785–2792,
Oct 2015.

[87] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging system for
log processing. In Proceedings of 6th International Workshop on Networking
Meets Databases (NetDB), Athens, Greece, 2011.

[88] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28(9):690–691, Sept. 1979.

[89] L. Lamport. Specifying concurrent program modules. ACM Trans. Program.
Lang. Syst., 5(2):190–222, 1983.

[90] D. Laney. 3D data management: Controlling data volume, velocity, and
variety. Technical report, META Group, February 2001.

[91] E. A. Lee and T. M. Parks. Dataflow process networks. Proc. of the IEEE,
83(5):773–801, 1995.

[92] H. Li. Introduction to Big Data. http://haifengl.github.io/bigdata/,
2016.

[93] B. C. Libraries. Boost Serialization documentation webpage.
http://www.boost.org/doc/libs/1_63_0/libs/serialization/doc/

serialization.html.

[94] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[95] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A library of constructive
skeletons for sequential style of parallel programming. In Proc. of the 1st
Inter. conference on Scalable information systems, InfoScale ’06, New York,
NY, USA, 2006. ACM.

[96] D. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi.
Naiad: A timely dataflow system. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP). ACM, November 2013.

http://milinda.pathirage.org/kappa-architecture.com/
http://milinda.pathirage.org/kappa-architecture.com/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://haifengl.github.io/bigdata/
http://www.boost.org/doc/libs/1_63_0/libs/serialization/doc/serialization.html
http://www.boost.org/doc/libs/1_63_0/libs/serialization/doc/serialization.html

BIBLIOGRAPHY 149

[97] M. A. U. Nasir, G. D. F. Morales, D. Garćıa-Soriano, N. Kourtellis, and
M. Serafini. The power of both choices: Practical load balancing for dis-
tributed stream processing engines. CoRR, abs/1504.00788, 2015.

[98] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin.
Latency-tolerant software distributed shared memory. In Proceedings of the
2015 USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’15, pages 291–305, Berkeley, CA, USA, 2015. USENIX Association.

[99] A. Y. Ng, G. Bradski, C.-T. Chu, K. Olukotun, S. K. Kim, Y.-A. Lin, and
Y. Yu. Map-reduce for machine learning on multicore. In NIPS, 12/2006
2006.

[100] B. Nicolae, C. H. A. Costa, Claudia Misale, K. Katrinis, and Y. Park.
Leveraging adaptative I/O to optimize collective data shuffling patterns for
big data analytics. IEEE Transactions on Parallel and Distributed Systems,
PP(99), 2016.

[101] B. Nicolae, C. H. A. Costa, Claudia Misale, K. Katrinis, and Y. Park.
Towards memory-optimized data shuffling patterns for big data analytics. In
IEEE/ACM 16th Intl. Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2016, Cartagena, Colombia, 2016. IEEE.

[102] NVIDIA Corp. CUDA website, June 2013 (last accessed). http://www.

nvidia.com/object/cuda_home_new.html.

[103] S. Oaks and H. Wong. Java Threads. Nutshell handbooks. O’Reilly Media,
2004.

[104] Oracle. NoSQL, 2016. http://nosql-database.org/.

[105] P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996.

[106] I. Park, M. J. Voss, S. W. Kim, and R. Eigenmann. Parallel programming
environment for OpenMP. Scientific Programming, 9:143–161, 2001.

[107] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, 2007.

[108] M. Poldner and H. Kuchen. Scalable farms. In Proc. of Intl. PARCO 2005:
Parallel Computing, Malaga, Spain, Sept. 2005.

[109] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. In Proceed-
ings of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, HPCA ’07, pages 13–24, Washington, DC, USA, 2007.
IEEE Computer Society.

[110] J. H. Rutgers. Programming models for many-core architectures: a co-design
approach. 2014.

[111] L. M. Sanchez, J. Fernandez, R. Sotomayor, and J. D. Garcia. A comparative
evaluation of parallel programming models for shared-memory architectures.
In Proceedings of the 2012 IEEE 10th International Symposium on Paral-
lel and Distributed Processing with Applications, ISPA ’12, pages 363–370,
Washington, DC, USA, 2012. IEEE Computer Society.

[112] A. Secco, I. Uddin, G. Peretti Pezzi, and M. Torquati. Message pass-
ing on infiniband RDMA for parallel run-time supports. In M. Aldinucci,
D. D’Agostino, and P. Kilpatrick, editors, Proc. of Intl. Euromicro PDP 2014:
Parallel Distributed and network-based Processing, Torino, Italy, 2014. IEEE.

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://nosql-database.org/

150 BIBLIOGRAPHY

[113] J. Serot. Tagged-token data-flow for skeletons. Parallel Processing Letters,
11(4):377–392, 2001.

[114] D. B. Skillicorn and D. Talia. Models and languages for parallel computation.
ACM Comput. Surv., 30(2):123–169, June 1998.

[115] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency
and Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

[116] M. Steuwer and S. Gorlatch. Skelcl: Enhancing opencl for high-level pro-
gramming of multi-GPU systems. In Proceedings of the 12th International
Conference on Parallel Computing Technologies, pages 258–272, St. Peters-
burg, Russia, Oct. 2013.

[117] Storm. Apache Storm website. http://storm.apache.org/.

[118] Claudia Misale. Accelerating bowtie2 with a lock-less concurrency approach
and memory affinity. In Proc. of Intl. Euromicro PDP 2014: Parallel Dis-
tributed and network-based Processing, Torino, Italy, 2014. IEEE. (Best paper
award).

[119] Claudia Misale, M. Aldinucci, and M. Torquati. Memory affinity in multi-
threading: the bowtie2 case study. In Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES)
– Poster Abstracts, Fiuggi, Italy, 2013. HiPEAC.

[120] Claudia Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison
of big data frameworks on a layered dataflow model. In Proc. of HLPP2016:
Intl. Workshop on High-Level Parallel Programming, pages 1–19, Muenster,
Germany, July 2016. arXiv.org.

[121] Claudia Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison
of big data frameworks on a layered dataflow model. Parallel Processing
Letters, 27(01):1740003, 2017.

[122] Claudia Misale, G. Ferrero, M. Torquati, and M. Aldinucci. Sequence align-
ment tools: one parallel pattern to rule them all? BioMed Research Interna-
tional, 2014.

[123] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688, May
2016.

[124] F. Tordini, M. Drocco, Claudia Misale, L. Milanesi, P. Liò, I. Merelli, and
M. Aldinucci. Parallel exploration of the nuclear chromosome conformation
with NuChart-II. In Proc. of Intl. Euromicro PDP 2015: Parallel Distributed
and network-based Processing. IEEE, Mar. 2015.

[125] F. Tordini, M. Drocco, Claudia Misale, L. Milanesi, P. Liò, I. Merelli,
M. Torquati, and M. Aldinucci. NuChart-II: the road to a fast and scal-
able tool for Hi-C data analysis. International Journal of High Performance
Computing Applications (IJHPCA), 2016.

[126] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy. Storm@twitter. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’14, pages 147–156,
New York, NY, USA, 2014. ACM.

[127] UniTo-INFN. Occam Supercomputer website. http://c3s.unito.it/

index.php/super-computer.

[128] L. G. Valiant. A bridging model for parallel computation. CACM, 33(8):103–
111, Aug. 1990.

http://storm.apache.org/
http://c3s.unito.it/index.php/super-computer
http://c3s.unito.it/index.php/super-computer

BIBLIOGRAPHY 151

[129] O. Villa, V. Gurumoorthi, A. Márquez, and S. Krishnamoorthy. Effects of
floating-point non-associativity on numerical computations on massively mul-
tithreaded systems. In In Cray User Group meeting, CUG’09, 2009.

[130] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition,
2009.

[131] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-
tolerant Abstraction for In-memory Cluster Computing. In Proc. of the
9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, Berkeley, CA, USA, 2012. USENIX.

[132] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

[133] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
streams: Fault-tolerant streaming computation at scale. In Proc. of the 24th
ACM Symposium on Operating Systems Principles, SOSP, pages 423–438,
New York, NY, USA, 2013. ACM.

[134] ZeroMQ. website, 2012. http://www.zeromq.org/.

http://www.zeromq.org/

	Abstract
	Acknowledgements
	Introduction
	Results and Contributions
	Limitations and Future Work
	Plan of the Thesis
	List of Papers
	Funding

	Technical Background
	Parallel Computing
	Platforms
	SIMD computers
	Symmetric shared-memory multiprocessors
	Memory consistency model
	Cache coherence and false sharing

	Manycore processors
	Distributed Systems, Clusters and Clouds

	Parallel Programming Models
	Types of parallelism
	Data parallelism
	Map
	Reduce

	The Dataflow Model
	Actors
	Input channels
	Output channels
	Stateful actors

	Low-level approaches
	High-level approaches
	Skeleton-based approaches
	Literature review of skeleton-based approaches

	Skeletons for stream parallelism

	Programming multicore clusters
	FastFlow
	Distributed FastFlow

	Summary

	Overview of Big Data Analytics Tools
	A Definition for Big Data
	Big Data Management
	Tools for Big Data Analytics
	Google MapReduce
	The five steps of a MapReduce job

	Microsoft Dryad
	A Dryad application DAG

	Microsoft Naiad
	Timely Dataflow and Naiad programming model

	Apache Spark
	Resilient Distributed Datasets
	Spark Streaming

	Apache Flink
	Flink Programming and Execution Model

	Apache Storm
	Tasks and Grouping

	FlumeJava
	Data Model and Transformations

	Google Dataflow
	Data Model and Transformations

	Thrill
	Distributed Immutable Arrays

	Kafka
	Producer-Consumer Distributed Coordination

	Google TensorFlow
	A TensorFlow application

	Machine Learning and Deep Learning Frameworks

	Fault Tolerance
	Summary

	High-Level Model for Big Data Frameworks
	The Dataflow Layered Model
	The Dataflow Stack

	Programming Models
	Declarative Data Processing
	Topological Data Processing
	State, Windowing and Iterative Computations

	Program Semantics Dataflow
	Semantic Dataflow Graphs
	Tokens and Actors Semantics
	Semantics of State, Windowing and Iterations

	Parallel Execution Dataflow
	Execution Models
	Scheduling-based Execution
	Process-based Execution

	Limitations of the Dataflow Model
	Summary

	PiCo Programming Model
	Syntax
	Pipelines
	Operators
	Data-Parallel Operators
	Pairing
	Sources and Sinks
	Windowing
	Partitioning

	Running Example: The word-count Pipeline

	Type System
	Collection Types
	Operator Types
	Pipeline Types

	Semantics
	Semantic Collections
	Partitioned Collections
	Windowed Collections

	Semantic Operators
	Semantic Core Operators
	Semantic Decomposition
	Unbounded Operators
	Semantic Sources and Sinks

	Semantic Pipelines

	Programming Model Expressiveness
	Use Cases: Stock Market

	Summary

	PiCo Parallel Execution Graph
	Compilation
	Operators
	Fine-grained PE graphs
	Batching PE graphs
	Compilation environments

	Pipelines
	Merging Pipelines
	Connecting Pipelines

	Compilation optimizations
	Composition and Shuffle
	Common patterns
	Operators compositions
	Composition of map and flatmap
	Composition of map and reduce
	Composition of map and p-reduce
	Composition of map and w-reduce
	Composition of map and w-p-reduce

	Stream Processing
	Summary

	PiCo API and Implementation
	C++ API
	Pipe
	Operators
	The map family
	The combine family
	Sources and Sinks

	Polymorphism
	Running Example: Word Count in C++ p

	Runtime Implementation
	Anatomy of a PiCo Application
	User level
	Semantics dataflow
	Parallel execution dataflow
	FastFlow network execution

	Summary

	Case Studies and Experiments
	Use Cases
	Word Count
	Stock Market

	Experiments
	Batch Applications
	PiCo
	Comparison with other frameworks

	Stream Applications
	PiCo
	Comparison with other tools

	Summary

	Conclusions
	Source Code

