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Abstract

The nokton theory is an attempt to construct a theory adapted to every physical phe-

nomenon. Space and time have been discretized. Its laws are iterative and precise. Probability

plays an important role here.

At �rst I de�ned the notion of image function and its mathematical framework. The notion

of nokton and its state are the basis of several de�nitions. I later de�ned the canonical image

function and the canonical contribution.

Two constants have been necessary to de�ne the dynamics of this theory. With its combi-

natorial complexity, the theory has at present given no result which seems to me interesting.

The document is only a foundation.

Among the merits of this theory the absence of the in�nites and its interpretation that is

contrary to the quantum mechanics or the general relativity does not strike the common sense

of the physicist.

Contents

1 Introduction 1

2 Image function 1

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Image function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Image function with canonical contribution 4

3.1 Canonical image function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Canonical contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Observable 7

5 Conclusion 8

1 Introduction

Physical theories that seem to be contradictory describe the same nature. For a physicist it is an
indication that there is a deeper physical theory. The most established theories, quantum mechanics
and general relativity, su�er from what I call the disease of in�nity. Indeed high energy in�nites
on both sides appear and the calculations no longer hold. The tracking of the origin leads us to
suppose a discrete space and iterative laws where the moments succeed one another. In this context
it is no longer possible for in�nity to appear. If the movements are governed by probabilities then
the calculation can only be done on a statistical basis. Nature �xes the following motion, to us to
predict with what probability.

2 Image function

2.1 Preliminaries

De�nition 1. A window is an element of the set N∗ × N∗.

De�nition 2. We note V the subset of K = Q6 such as the sum of the terms of an element is less
than or equal to 1.
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De�nition 3. Let the set ∆ = {∆−x,∆+x,∆−y,∆+y,∆−z,∆+z,∆0} such as ∆−x = (−1, 0, 0),
∆+x = (1, 0, 0), ∆−y = (0,−1, 0), ∆+y = (0, 1, 0), ∆−z = (0, 0,−1) , ∆+z = (0, 0, 1) and ∆0 =
(0, 0, 0). ∆−x, ∆+x, ∆−y, ∆+y, ∆−z , ∆+z and ∆0 are elements of Z3. An element of the set ∆ is
called displacement.

De�nition 4. A status is couple of the set S = V ×∆.

De�nition 5. For n ∈ N∗, let E a set, e an element of En et 1 ≤ i ≤ n. We note [1, e]E = e and
∀ 2 ≤ i ≤ n [i, e]En is the i-th term of e.

De�nition 6. For m ∈ N∗ et n ∈ N∗, let E a set, e an element of (Em)n, 1 ≤ i ≤ m and 1 ≤ j ≤ n.
We note [i, j, e](Em)n = [i, [j, e](Em)n ]Em .

De�nition 7. For m ∈ N∗ et n ∈ N∗, let E a set and e an element of (Em)n. We note e∗ the
element of (En)m such as ∀ 1 ≤ i ≤ m, ∀ 1 ≤ j ≤ n [j, i, e](En)m = [i, j, e](Em)n .

De�nition 8. The function probability of displacement ρ is the function de�ned as follows :

ρ : S → Q

(v, δ) →



[1, v]V if δ = ∆−x

[2, v]V if δ = ∆+x

[3, v]V if δ = ∆−y

[4, v]V if δ = ∆+y

[5, v]V if δ = ∆−z

[6, v]V if δ = ∆+z

1−
∑6
i=1[i, v]V otherwise

Proposition 1. If v an element of V, then∑
δ∈∆

ρ((v, δ)) = 1 (1)

Proof.

∑
δ∈∆

ρ((v, δ)) = ρ((v,∆−x)) + ρ((v,∆+x)) +

ρ((v,∆−y)) + ρ((v,∆+y)) +

ρ((v,∆−z)) + ρ((v,∆+z)) +

ρ((v,∆0))

= [1, v]V + [2, v]V + [3, v]V + [4, v]V + v[5, v]V + [6, v]V + 1−
6∑
i=1

[i, v]V

= 1

De�nition 9.

• For N ∈ N∗, a pulse of width N is an element of the set V N .

• For a window (T,N), a pulse of width (T,N) is an element of the set VT,N = (V T )N .

• For a window (T,N), a path of width (T,N) is an element of the set ΩT,N = (∆T )N .
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2.2 Image function

De�nition 10. For a window (T,N), an image function of width (T,N) is a function from ΩT,N to
VT,N .

De�nition 11. For a window (T,N), let f a image function of width (T,N). The probability
function of f noted pf is the function de�ned as follows :

pf : ΩT,N → Q

Ω →
N∏
i=1

T∏
t=1

ρ(([t, i, f(Ω)]VT,N
, [t, i,Ω]CT,N

))

Proposition 2. If n ∈ N∗, E a set and (gi)1≤i≤n a family of functions from E to Q such as ∀
1 ≤ i ≤ n

∑
e∈E gi(e) = 1 then ∑

x∈En

n∏
i=1

gi([i, x]En) = 1 (2)

Proof.
For n = 1

∑
x∈E

1∏
i=1

gi([i, x]E) =
∑
x∈E

g1([1, x]E)

=
∑
x∈E

g1(x)

= 1

For n ≥ 1, we de�ne the operator | which for an element y ∈ En and z ∈ E, gives the element
x ∈ En+1 result of the concatenation at right of elements y and z.

∑
x∈En+1

n+1∏
i=1

gi([i, x]En+1) =
∑

y|z∈En+1

n+1∏
i=1

gi([i, y|z]En+1)

=
∑
y∈En

∑
z∈E

n+1∏
i=1

gi([i, y|z]En+1)

=
∑
z∈E

∑
y∈En

n+1∏
i=1

gi([i, y|z]En+1)

=
∑
z∈E

∑
y∈En

gn+1([n+ 1, y|z]En+1)

n∏
i=1

gi([i, y|z]En+1)

=
∑
z∈E

∑
y∈En

gn+1([1, z]E)

n∏
i=1

gi([i, y]En)

=
∑
z∈E

gn+1([1, z]E)
∑
y∈En

n∏
i=1

gi([i, y]En)

=
∑
z∈E

gn+1([1, z]E)

=
∑
z∈E

gn+1(z)

= 1

3



Proposition 3. For a window (T,N), if f a image function of width (T,N) and pf the probability
function of f then ∑

Ω∈ΩT,N

pf (Ω) = 1 (3)

Proof. Let Ω ∈ ΩT,N . According to 1 ∀ 1 ≤ i ≤ N , ∀ 1 ≤ t ≤ T
∑
δ∈∆ ρ(([t, i, f(Ω)]VT,N

, δ) = 1
using 2 we deduce that∑N

i=1

∏T
t=1 ρ(([t, i, f(Ω)]VT,N

, [t, i,Ω]CT,N
)) = 1 and∑

Ω∈ΩT,N

∏N
i=1

∏T
t=1 ρ(([t, i, f(Ω)]VT,N

, [t, i,Ω]CT,N
)) = 1

so
∑

Ω∈ΩT,N
pf (Ω) = 1.

De�nition 12. For a window (T,N), let 1 ≤ t ≤ T and (Ω,Ω′) ∈ Ω2
T,N checking ∀ 1 ≤ i ≤ N , ∀

1 ≤ j ≤ t [j, i,Ω]CT,N
= [j, i,Ω′]CT,N

. f is a causal image function 1 of width (T,N) if f is an image
function of width (T,N) such as ∀ 1 ≤ i ≤ N , ∀ 1 ≤ j ≤ t [j, i, f(Ω)]VT,N

= [j, i, f(Ω′)]VT,N
.

De�nition 13. For a window (T,N), let v a pulse of width N, E a non empty set and k a function
from ΩT,N to (ET )N . fE is a natural image function 2 of v over width (T,N) if fE a causal image
function of width (T,N) as if ∃e ∈ E checking ∀ Ω ∈ ΩT,N , ∀ 1 ≤ i ≤ N and ∀ 2 ≤ t ≤ T if
[t, i, k(Ω)](ET )N = e then [t, i, fE(Ω)]VT,N

= [t− 1, i, fE(Ω)]VT,N
.

De�nition 14. For a window (T,N), let f and f ′ two image functions of width (T,N). f and f ′

are symmetric if ∃µ a permutation of ΩT,N such as ∀ Ω ∈ ΩT,N pf (Ω) = pf ′(µ(Ω)).

3 Image function with canonical contribution

3.1 Canonical image function

De�nition 15. For a window (T,N), let 1 ≤ t ≤ T , (Ω,Ω′) ∈ Ω2
T,N checking ∀ 1 ≤ i ≤ N , ∀

1 ≤ j ≤ t [j, i,Ω]CT,N
= [j, i,Ω′]CT,N

and k a function from ΩT,N to KT,N = (KT )N . k is a
contribution of width (T,N) if ∀ 1 ≤ i ≤ N , ∀ 1 ≤ j ≤ t [j, i, k(Ω)]KT,N

= [j, i, k(Ω′)]KT,N
.

De�nition 16. For a window (T,N), let v a pulse of width N and k a contribution of width (T,N).
ω is the function from ΩT,N to KT,N such as ∀ Ω ∈ ΩT,N , ∀ 1 ≤ i ≤ N :

• [1, i, ω(Ω)]KT,N
= [i, v]V N .

• ∀ 2 ≤ t ≤ T , [t, i, ω(Ω)]KT,N
= 1

1+
∑6

j=1[j,[t−1,i,k(Ω)]KT,N
]K
.([t−1, i, ω(Ω)]KT,N

+[t−1, i, k(Ω)]KT,N
).

Proposition 4. ω is an image function.

Proof.
For t = 1,

∑6
j=1[j, [1, i, ω(Ω)]KT,N

]K =
∑6
j=1[j, [i, v]V N ]K ≤ 1.

For t ≥ 1

6∑
j=1

[j, [t, i, ω(Ω)]KT,N
]K =

6∑
j=1

[j,
1

1 +
∑6
l=1[l, [t− 1, i, k(Ω)]KT,N

]K
.([t− 1, i, ω(Ω)]KT,N

+ [t− 1, i, k(Ω)]KT,N
)]K

=
1

1 +
∑6
l=1[l, [t− 1, i, k(Ω)]KT,N

]K
.

(

6∑
j=1

[j, [t− 1, i, ω(Ω)]KT,N
]K +

6∑
j=1

[j, [t− 1, i, k(Ω)]KT,N
]K)

Since
∑6
j=1[j, [t− 1, i, ω(Ω)]KT,N

]K ≤ 1

1Principle of causality dear to physicists.
2Principle of inertia.
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then
∑6
j=1[j, [t−1, i, ω(Ω)]KT,N

]K+
∑6
j=1[j, [t−1, i, k(Ω)]KT,N

]K ≤ 1+
∑6
j=1[j, [t−1, i, k(Ω)]KT,N

]K

so
∑6
j=1[j, [t, i, ω(Ω)]KT,N

]K ≤ 1
ω is called the canonical image function of (v,k) over width (T,N)

Proposition 5. For a window (T,N), if v a pulse of width N and k a contribution of width (T,N)
then the canonical image function of (v,k) over width (T,N) is a causal image function of width
(T,N).

Proof. Let 1 ≤ t ≤ T . We note ϕ this canonical image function.
For t = 1, [1, i, ϕ(Ω)]VT,N

= [i, v]V N = [1, i, ϕ(Ω′)]VT,N
.

For t ≥ 1, let (Ω,Ω′) ∈ Ω2
T,N checking ∀ 1 ≤ i ≤ N , ∀ 1 ≤ j ≤ t+ 1 [j, i,Ω]CT,N

= [j, i,Ω′]CT,N

then ∀ 1 ≤ i ≤ N [1, i, ϕ(Ω)]VT,N
= [i, v]V N = [1, i, ϕ(Ω′)]VT,N

and ∀ 1 ≤ i ≤ N , ∀ 2 ≤ j ≤ t+ 1

[j, i, ϕ(Ω)]VT,N
=

1

1 +
∑6
l=1[l, [j − 1, i, k(Ω)]KT,N

]K
.([j − 1, i, ϕ(Ω)]VT,N

+ [j − 1, i, k(Ω)]KT,N
)

=
1

1 +
∑6
l=1[l, [j − 1, i, k(Ω′)]KT,N

]K
.([j − 1, i, ϕ(Ω)]VT,N

+ [j − 1, i, k(Ω′)]KT,N
)

=
1

1 +
∑6
l=1[l, [j − 1, i, k(Ω′)]KT,N

]K
.([j − 1, i, ϕ(Ω′)]VT,N

+ [j − 1, i, k(Ω′)]KT,N
)

= [j, i, ϕ(Ω′)]VT,N

Proposition 6. For a window (T,N), if v a pulse of width N and k a contribution of width (T,N)
then the canonical image function of (v,k) over width (T,N) is natural image function of v over
width (T,N).

Proof. We note ϕ this canonical image function and e the element (0, 0, 0, 0, 0, 0) ∈ K. According
to the proposition 5 ϕ is a causal image function of width (T,N). If ∀ Ω ∈ ΩT,N , ∀ 1 ≤ i ≤ N , ∀
2 ≤ t ≤ T [t, i, k(Ω)]KT,N

= e then

[t, i, ϕ(Ω)]VT,N
=

1

1 +
∑6
j=1[j, [t− 1, i, k(Ω)]KT,N

]K
.([t− 1, i, ϕ(Ω)]VT,N

+ [t− 1, i, k(Ω)]KT,N
)

=
1

1 +
∑6
j=1[j, e]K

.([t− 1, i, ϕ(Ω)]VT,N
+ e)

=
1

1 + 0
.([t− 1, i, ϕ(Ω)]VT,N

)

= [t− 1, i, ϕ(Ω)]VT,N

De�nition 17. Let v a element of V. v is complete if
∑6
j=1[j, v]V = 1.

Proposition 7. For a window (T,N), if 1 ≤ i ≤ N , v a pulse of width N such as [i, v]V N is
complete, k a contribution of width (T,N) and ϕ the canonical image function of (v,k) over width
(T,N) then ∀ 1 ≤ t ≤ T [t, i, ϕ(Ω)]VT,N

is complete.

Proof.
For t = 1,

∑6
j=1[j, [1, i, ϕ(Ω)]VT,N

]V =
∑6
j=1[j, [i, v]V N ]V = 1.

For t ≥ 1

6∑
j=1

[j, [t, i, ϕ(Ω)]VT,N
]V =

6∑
j=1

[j,
1

1 +
∑6
l=1[l, [t− 1, i, k(Ω)]KT,N

]K
.([t− 1, i, ϕ(Ω)]VT,N

+ [t− 1, i, k(Ω)]KT,N
)]K

=
1

1 +
∑6
l=1[l, [t− 1, i, k(Ω)]KT,N

]K
.

(

6∑
j=1

[j, [t− 1, i, ϕ(Ω)]VT,N
]V +

6∑
j=1

[j, [t− 1, i, k(Ω)]KT,N
]K)

=
1 +

∑6
j=1[j, [t− 1, i, k(Ω)]KT,N

]K

1 +
∑6
l=1[l, [t− 1, i, k(Ω)]KT,N

]K
= 1
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3.2 Canonical contribution

De�nition 18.

• A position is an element of the set R = Z3.

• For a window (T,N), a position of width N is an element of the set RN .

• For a window (T,N), a position of width (T,N) is an element of the set RT,N = (RT )N

De�nition 19. For a window (T,N), let r a position of width N. The function position of r over
width (T,N) noted r̂ is the function from ΩT,N to RT,N such as ∀ Ω ∈ ΩT,N , ∀ 1 ≤ i ≤ N and ∀
1 ≤ t ≤ T [t, i, r̂(Ω)]RT,N

= [i, r]RN +
∑t
j=1[j, i,Ω]ΩT,N

.

De�nition 20. η is the function de�ned as follows :

η : Q → Q

x →

{
1 if x = 0

x otherwise

De�nition 21. ε is the function de�ned as follows :

ε : Q → Q

x →

{
x if x ≥ 0

0 otherwise

De�nition 22. For i ∈ N,

ī =


2 if i ∈ {3, 4}
3 if i ∈ {5, 6}
1 otherwise

ĩ =

{
1 if i ∈ {1, 2, 3}
−1 otherwise

De�nition 23. For Hg ∈ Q and N ∈ N∗. The canonical gravitational interaction of width N noted
γg is the function from RN to KN such as ∀ r ∈ RN , ∀ 1 ≤ i ≤ N and ∀ 1 ≤ j ≤ 6

[j, i, γg(r)]KN = Hg

N∑
l=1

ε(j̃.([j̄, l, r]RN − [j̄, i, r]RN ))2 + ε(j̃.([j̄, i, r]RN − [j̄, l, r]RN ))2

η(
∑3
m=1([m, l, r]RN − [j̄, i, r]RN )2)2

De�nition 24.

• A charge is an element of the set of integers Q = {−1, 0, 1}.

• For N ∈ N∗, a charge of width N is an element of the QN .

De�nition 25. For He ∈ Q and N ∈ N∗, let q a charge of width N. The canonical electric
interaction of q over width N noted γe is the function from RN to KN such as ∀ r ∈ RN , ∀
1 ≤ i ≤ N and ∀ 1 ≤ j ≤ 6

[j, i, γe(r)]KN = He

N∑
l=1

ε(j̃.[l, q]QN .[i, q]QN .([j̄, l, r]RN − [j̄, i, r]RN ))2 + ε(j̃.[l, q]QN .[i, q]QN .([j̄, i, r]RN − [j̄, l, r]RN ))2

η(
∑3
m=1([m, l, r]RN − [j̄, i, r]RN )2)2
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De�nition 26. For Hg ∈ Q, He ∈ Q and a window (T,N), let r a position of width N and q
a charge of width N. The canonical interaction of (r,q) over width (T,N) noted γ is the function
from ΩT,N to KT,N such as ∀ Ω ∈ ΩT,N , ∀ 1 ≤ i ≤ N and ∀ 1 ≤ t ≤ T [t, i, γ(Ω)]KT,N

=

[i, γg([t, r̂(Ω)∗]RN,T
)]KN + [i, γe([t, r̂(Ω)∗]RN,T

)]KN .

Proposition 8. For Hg ∈ Q, He ∈ Q and a window (T,N), if r a position of width N, q a charge
of width N and γ the canonical interaction of (r,q) over width (T,N) then γ is a contribution.

Proof. Let 1 ≤ t ≤ T , (Ω,Ω′) ∈ Ω2
T,N checking ∀ 1 ≤ i ≤ N , ∀ 1 ≤ j ≤ t [j, i,Ω]CT,N

= [j, i,Ω′]CT,N

then ∀ 1 ≤ i ≤ N , ∀ 1 ≤ j ≤ t [j, i, r̂(Ω)]RT,N
= [i, r]RN +

∑j
l=1[l, i,Ω]ΩT,N

= [j, i, r̂(Ω′)]RT,N
so ∀

1 ≤ j ≤ t [j, r̂(Ω)∗]RN,T
= [j, r̂(Ω′)∗]RN,T

so ∀ 1 ≤ i ≤ N , ∀ 1 ≤ j ≤ t [i, γg([j, r̂(Ω)∗]RN,T
)]KN =

[i, γg([j, r̂(Ω
′)∗]RN,T

)]KN and [i, γe([j, r̂(Ω)∗]RN,T
)]KN = [i, γe([j, r̂(Ω

′)∗]RN,T
)]KN . Finally ∀ 1 ≤

i ≤ N , ∀ 1 ≤ j ≤ t [j, i, γ(Ω)]KT,N
= [j, i, γ(Ω)]KT,N

so γ is a contribution.
γ is called the canonical contribution of (r,q) over width (T,N).

De�nition 27. For Hg ∈ Q, He ∈ Q and a window (T,N), let v a pulse of width N, r a position
of width N, q a charge of width N and γ the canonical contribution of (r,q) over width (T,N).
The canonical image function of (v,γ) over width (T,N) is called the image function with canonical
contribution of (v,r,q) over width (T,N).

4 Observable

De�nition 28. For a window (T,N), let A a non empty set. A observable function of A over width
(T,N) is a function from ΩT,N to A. If Â an observable function of A over width (T,N) then Im(Â)

is called spectrum of Â .

De�nition 29. Let A a non empty set, the unitary function of A noted UA is the function de�ned
as follows :

UA : A2 → N

(a1, a2) →

{
1 if a1 = a2

0 otherwise

De�nition 30. For a window (T,N), let A a non empty set, Â the observable function of A over
width (T,N) and f an image function of width (T,N). The probability function of Â noted p̂A is
the function de�ned as follows :

p̂A : A → Q
a →

∑
Ω∈ΩT,N

UA(Â(Ω), a).pf (Ω)

Proposition 9. For a window (T,N), if A a non empty set, Â an observable function of A over
width (T,N) and f an image function of width (T,N) then ∀a ∈ A \ Im(Â) p̂A(a) = 0.

Proof. ∀a ∈ A \ Im(Â) UA(Â(Ω), a) = 0 so ∀a ∈ A \ Im(Â) p̂A(a) = 0.

Proposition 10. For a window (T,N), if A a non empty set, Â an observable function of A over
width (T,N) and f an image function of width (T,N) then

∑
a∈A p̂A(a) = 1.
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Proof. ∀Ω ∈ ΩT,N ,
∑
a∈A UA(Â(Ω), a) = UA(Â(Ω), Â(Ω)) +

∑
a∈A\{Â(Ω)} UA(Â(Ω), a) = 1 + 0 = 1.∑

a∈A
p̂A(a) =

∑
a∈A

∑
Ω∈ΩT,N

UA(Â(Ω), a).pf (Ω)

=
∑

Ω∈ΩT,N

∑
a∈A

UA(Â(Ω), a).pf (Ω)

=
∑

Ω∈ΩT,N

pf (Ω).(
∑
a∈A

UA(Â(Ω), a))

=
∑

Ω∈ΩT,N

pf (Ω)

According to 3
∑

Ω∈ΩT,N
pf (Ω) = 1, we deduce that

∑
a∈A p̂A(a) = 1.

5 Conclusion

The theory contains a set of de�nitions that seemed necessary to me as a starting point. Currently, it
does not give any important results due to its complexity. Additional de�nitions must be introduced
such as the de�nition of mass, energy and particle. The determination of the values of the constants
Hg andHe would be the bridge between my approach and the other approaches. An important e�ort
must be made to have the status of an acceptable physical theory and thus get out of speculation.
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