
On the Consistency of Heterogeneous Composite Objects

Alysson Bessani Ricardo Mendes Tiago Oliveira
Faculdade de Ciências/LaSIGE, Universidade de Lisboa – Portugal

anbessani@ciencias.ulisboa.pt , {rmendes, toliveria}@lasige.di.fc.ul.pt

1. Introduction
Several recent cloud-backed storage systems advocates the
composition of a number of cloud services for improving
performance and fault tolerance (e.g., [1, 3, 4]). An inter-
esting aspect of these compositions is that the consistency
guarantees they provide depend on the consistency of such
base services, which are normally different.

In this short paper we discuss two ways in which these
services can be composed and the implications in terms
of the consistency of the composed object. Although these
techniques were devised (or observed) when solving prac-
tical problems in dealing with the eventual consistency
guarantees of current cloud storage services (e.g., Amazon
S3 [6], Windows Azure Blob Storage [7]), we believe they
might be of general interest, and deserve the attention of the
community. In particular, we want to discuss some initial
ideas about the theoretical underpinnings of object compo-
sitions in which base objects provide different consistency
guarantees.

2. Model
We consider an asynchronous distributed system composed
by a number of processes interacting through a number of
shared memory objects (e.g., rw-registers, key-value stores).
Furthermore, we consider two types of objects: base objects
and composite objects. The latter are built on top of the
former, by aggregating them. For the sake of simplicity,
we assume all operations provided by the objects are wait-
free. However, the objects may provide different consistency
guarantees.

In our discussion we consider an hierarchy of consistency
models. More specifically, let c1, c2, ..., cn be different con-
sistency models, we assume c1 ⊂ c2 ⊂ ... ⊂ cn, mean-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21-24, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3537-9/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2746687

ing that the guarantees provided by ci are also provided by
ci+1, i.e., ci+1 provides the same guarantees of ci plus some
others. Notice that not all consistency models can be orga-
nized as an hierarchy, however, several important models
employed in practical system do, e.g., eventual ⊂ FIFO ⊂
causal ⊂ sequential consistency.

3. Consistency proportionality
First, we consider the composition of a set of fail-prone base
objects for implementing a fault-tolerant one. The simplest
case is the use of several fail-prone base registers to imple-
ment a t-tolerant register. There are many works that study
such compositions (e.g., [1, 2]). In this scenario, we consider
the following question: assuming that base objects provide
different consistency guarantees, what will be the consis-
tency provided by the composite object?

To the best of our knowledge, the only work that con-
siders such consistency diversity is DepSky [1]. This work
defines the notion of consistency proportionality in the fol-
lowing sense: if the underlying base objects support at least a
consistency model C , the composite object provides a con-
sistency model C . This means that if the underlying base
objects are heterogeneous in terms of consistency guaran-
tees, the composite object provides the weakest consistency
among those provided. As shown in the paper, this holds for
several consistency models.

Figure 1 illustrates the notion of consistency proportion-
ality for two popular quorum systems.

S W S S S W S

write read readwrite

(a) Dissemination Byzantine Quorum

S W S S S W S

write read readwrite

(b) Majority quorum

Figure 1. Composite object write and read quorums for both
Byzantine and crash fault-tolerant systems.

Figure 1(a) represents the write and read quorums of a
dissemination Byzantine quorum system [5] that tests the
integrity and authenticity of the data through the use of
authenticated data (e.g., by using signatures). In the figure
we consider n = 4 base objects, tolerating one fault (f = 1).

As can be seen, these systems use read and write quorums
with at least f +1 base objects in their intersections. In such
scenario, in the worst case where f objects fail and f up-
to-date objects are not accessed in the read, the read value
will depend on the single correct object of the intersection,
which may be the one providing the weakest consistency
in the system. Consequently, the consistency model of the
composite object will be defined by this base object. An
analogous approach happens in majority quorum systems
(Figure 1(b)), where in the worst case f up-to-date objects
do not respond to a read (because they fail crashing).

4. Consistency anchors
Cloud storage services such as Amazon S3 [6] are broadly
used nowadays due to their (almost) infinite scalability and
pay-as-you-go model. However, most of these systems are
constrained by a key-value REST interface and only en-
sure eventual consistency. Recently, the SCFS cloud-backed
file-system introduced the notion of consistency anchor to
increase the consistency guarantees of weakly-consistent
cloud storage services [3]. A similar idea was independently
devised for the Hybris key-value store [4].

The technique works by composing a strongly-consistent
base object (with limited storage capacity) with one or more
weakly-consistent base objects, making the consistency of
the composed object similar to the strongly-consistent one,
called consistency anchor. In SCFS, a strongly-consistent
metadata service is composed with cloud storage services
to ensure Linearizability [3].

write

write

read

read

Composite
Object

Base Object

Base Object
weak

consistency

strong
consistency

write

read

strong
consistency

Figure 2. Strong consistent composite object resulting of a con-
sistency anchor and a weak consistent base object.

Figure 2 depicts a composite object integrating two base
objects, one providing strong semantics and another with
weak consistency. The main objective is to implement the
operations of the composite object in such a way that it can
take advantage of the base object with strong consistency
semantics to increase the consistency guarantees provided
by the composite object itself. In this way, besides the weak
semantics provided by one of its objects, the composite
object is able to provide strong consistency semantics.

This idea become even more interesting when we en-
capsulate a weakly-consistent composition of objects (that

uses, for instance, several fail-prone objects to create a fault-
tolerant one) as the weakly-consistent base object of this
technique.

5. Open Questions
This paper describe some initial ideas that have been applied
to practical cloud-backed storage systems for dealing with
the consistency-heterogeneity of cloud services. We believe
these ideas open a number of interesting questions that re-
quire further investigation, namely:

• What would be the consistency model satisfied by a com-
posite object based on a set of objects satisfying consis-
tency models that cannot be organized in an hierarchy?

• We have already some preliminary results for two pop-
ular quorum systems (dissemination Byzantine quorums
and majority quorums), but what would be the consis-
tency provided by other types of quorum systems using
heterogeneous objects?

• Would it be possible to define more efficient consistency-
proportional algorithms for implementing read/write-
registers objects? What about other object types?

• Can the notion of consistency anchor be used for in-
creasing the consistency of other object types, beside
read/write registers?

Acknowledgments
This work was supported by FCT through the LaSIGE Re-
search Unit, ref. UID/CEC/00408/2013 and by EU H2020
Program, through the SUPERCLOUD project (643964).

References
[1] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando

Andre, and Paulo Sousa. DepSky: Dependable and secure
storage in cloud-of-clouds. ACM Transactions on Storage, 9(4),
2013.

[2] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia
Malkhi. Byzantine disk paxos: optimal resilience with byzantine
shared memory. Distributed Computing, 18(5), 2006.

[3] Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno
Neves, Miguel Correia, Marcelo Pasin, and Paulo Verissimo.
SCFS: a shared cloud-backed file system. Proc. of the 2014
USENIX Annual Technical Conference (ATC’14), 2014.

[4] Dan Dobre, Paolo Viotti, and Marko Vukolic. Hybris: Robust
hybrid cloud storage. Proc. of the 5th ACM Symposium on Cloud
Computing (SoCC’14), 2014.

[5] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems.
Distributed Computing, 11(4), 1998.

[6] Amazon S3. http://aws.amazon.com/s3/

[7] Microsoft Azure Storage. http://azure.microsoft.com/en-
us/services/storage/

