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Why machine learning now?
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*OpenAI project

**IDC’s Data age 2025 study
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Decades of training data available

We now have the computing power and datasets to train our models.
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Where does machine learning excel?
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Learning complex direct mappings:  

Learning complex inverse mappings:  

Learning decision rules for complex mappings:  

Use neural networks to learn         and 
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Machine learning in photonics
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• Enhancing measurement accuracy

– Bayesian filter for reducing measurement noise 

• Inverse system design

– Optimizing Raman amplifiers

• End-to-end learning and equalization for communication systems

– Autoencoders for joint transmitter-receiver optimization



DTU Fotonik27 October 2021 FOAN 2021

Characterization of photonic components
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Device 

under

Test

Input probe Measurement

Affected by noise

• Thorough calibration of measurement systems  not always easy

• Advance post-processing of the measurements

Post-

processing
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Characterization of laser noise
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Laser

under test
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RIN: relative intensity noise, FN: frequency noise, PD: photodetector, ADC: analog-to-digital converter



DTU Fotonik27 October 2021 FOAN 2021

Conventional heterodyne phase measurement
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Bayesian filtering framework
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D. Zibar, PTL 2019

𝑦𝑘
𝑖 = 𝐴 cos Δ𝜔𝑘𝑇𝑠 + 𝜙𝑘 + 𝑟𝑘

𝜙𝑘 = 𝜙𝑘−1 + 𝑞𝑘
𝜙

State-space model

MH: Metropolis Hasting

UKF: unscented Kalman filtering
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conventional

bayesian

Impact of amplification on laser phase noise
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Bayesian filtering allows to approach a MAP phase detector, minimizing the impact of amplification noise.

D. Zibar, Optica 2021 MAP: maximum a posteriori

Laser

under test
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Extension of the framework
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Relative Intensity 
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Amplitude and phase 
noise correlation matrix

Frequency

Frequency

G. Brajato, Opt. Expr. 2020

Extending the state-space model, amplitude and phase noise can be jointly estimated over all comb lines

State-space model
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Machine learning in photonics
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• Enhancing measurement accuracy

– Bayesian filter for reducing measurement noise 

• Inverse system design

– Optimizing Raman amplifiers

• End-to-end learning and equalization for communication systems

– Autoencoders for joint transmitter-receiver optimization
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Direct and inverse models of photonic subsystems
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System output (𝐘)Input parameters (𝐗) Subsystem

𝑓 X = 𝐘

Target 𝐘

𝑓−1(𝐘) = 𝐗

Inverse mapping

Predicted 𝐗Initial 𝐗

Direct mapping

Predicted 𝐘

𝑓 X = 𝐘

Input 𝐗
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Why using NN models?
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Output (𝐘)Input parameters (𝐗) Subsystem

𝑓 X = 𝐘

• Sometimes the physical system has an accurate representation but that is difficult to model efficiently

• Sometimes the physical system is too complex to have an accurate representation

• Neural networks can be trained directly from experimental data

• Neural networks are differentiable  take gradient through them and optimize efficiently

If simple and accurate analytical 

models exist, NNs are an overkill!
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The Raman amplifiers example
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Theoretical model:

Raman 
solver

Parameter 
optimization

Repeat N times

- Restart optimization for new target gain

- Rather long convergence time

Optical fiber

P1

Incoming

signal

P2 … PN

Conventional optimization methods
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Inverse design of Raman amplifiers
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Performance (𝐘)Design parameters (𝐗)

𝐗: Pump lasers configuration 𝐘: Raman gain

𝑓 X = 𝐘

D. Zibar OFC 2019, M1J.1,  D.. Zibar, JLT, vol. 38, no. 4, 2019, U. de Moura, OFC 2020, T4B.2.
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Experimental data-driven Raman models
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U.C. de Moura JLT 2021

Gain

Highly-accurate gain-programmable 

Raman amplifier covering > 17 THz 

of bandwidth 
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U.C. de Moura OL 2021

Simultaneous amplifier design and 

noise figure prediction

F. Da Ros OFC 2021

Replacing GFFs with 

Raman pre-amplification

GFF: gain flattening filter
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Machine learning in photonics
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• Enhancing measurement accuracy

– Bayesian filter for reducing measurement noise 

• Inverse system design

– Optimizing Raman amplifiers

• End-to-end learning and equalization for communication systems

– Autoencoders for joint transmitter-receiver optimization
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Improve the information rate by optimizing the signalling scheme for the desired channel.

Communication systems
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 nonlinear channel
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Full system (end-to-end) learning
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Receiver

(Rx)

Transmitter

(Tx)

Encoder

Generate a signal robust to channel 

impairments

Decoder

Reconstruct the original signal from 

the received data with high fidelity

T. O’Shea, Trans. on Cognitive Comm. and Networking, 2017

Replace (part of) Tx and Rx and learn the optimum signalling scheme by jointly optimizing encoder and decoder

Autoencoder
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Autoencoders for end-to-end learning
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Input Space: Output Space:
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O. Jovanovic, ECOC 2021 

LW: linewidth

RPN: residual phase noise

Shaping robust to system 

uncertainties, enabling interoperability

Symbol-based constellation shaping

21

R. T. Jones, ECOC 2018

Shaping trained over NLIN and GN

fiber model

NLIN: nonlinear interference noise

GN: Gaussian noise

S. Gaiairin, JLT 2020

NFDM: nonlinear frequency division multiplexing

SSFM: split-step Fourier method

Shaping for NFDM-based transmission 

over SSFM channel
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• The Machine learning toolbox brings significant advantages to optics

• Machine learning is effective in learning complex mappings

– Improve measurements’ accuracy

– Design/optimization of optical components (amplifiers, photonic chips, etc.)

– Enhance communication over the fiber-optic channel

• A lot of room for interesting research problems

Conclusions and outlook
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Understanding both machine learning and optics is required to advance the field.
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Questions?
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