N habitica

by Andrea Lorenzo Pallini, Philipp Kogelnik, David van Es, Jaroslav Sevéik
Delft University of Technology

Abstract

Habitica is an open-source, cross-platform, role-playing game. It is designed to
gamify reality to help build positive habits and organize daily personal activities.
The goal of this project is to analyze the architecture of the software from different
viewpoints. At first, we give an analysis of the stakeholders involved and the
context view of the system. Next we analyze the development and information
view and identify technical debt. Then we perform a feature analysis and from
this describe the variability. Lastly we look at the level of Internationalization
present in Habitica. In conclusion, we share our experiences with contributing
to the project and look to the future of Habitica.

Table of Contents

Introduction

Stakeholder Analysis

Context View

Development View

Information View
Internationalization Perspective
Contributions

Conclusion

References

© 0N WD

1. Introduction

In February 2012 Tyler Renell wanted to limit his personal consumption of
cigarettes, beer, coffee, junk food and excessive internet use. As a gamer, he felt

that he could combine his struggle to curb his bad habits and his love of video
games. He started working on a program that would allow him to track his daily
tasks, build good habits, and reward him for good behavior by treating life as
a video game: thus Habitica was born. An early open-source version went live
on GitHub at the beginning of 2013. Over time, as interest accumulated, the
project grew and Tyler was joined by several other enthusiasts to form the core
of Habitica’s staff. To boost the project further, Tyler started a crowdfunding
campaign and raised almost $50K - twice the target amount. Nowadays Tyler has
accepted the CTO role, leaving the coding to others. Habitica is still going strong
and growing, with an active developer community and hundreds of thousands of
players.

Habitica is inspired by the popular fantasy role-playing game genre. When they
first start the game, a new player creates an avatar, a virtual representation of
themselves. By fulfilling user defined tasks, they are rewarded with gold and
experience. This allows them to improve their avatar with new specializations,
abilities, equipment or buy a cute pet. They can also form a party with other
players to co-operate with them to fight terrifying monsters, like the infamous
Basi-List, together. There are also many guilds which players can join to debate
with like-minded Habiticans or get advice from more experienced players or even
the staff members themselves. For a more exhausting list of game features visit
their web page [10].

2. Stakeholder Analysis

In this section we take a look at the people, systems and organizations involved in
Habitica and categorize them according to the Rozanski & Woods book Software
Systems Architecture [1], with some additions. This book serves as the basis for
most of the analysis we have done. The stakeholder’s names we use throughout
the document refer to their in-game or GitHub nicknames.

The staff

The staff is the main organ of the Habitica project. They are responsible for
decisions about the present and future, solving legal issues and raising the money
for the survival of the game. The staff consists of the six people in the table
above: Lefnire, Lemoness, Redphoenix, SabreCat, Paglias and Viirus. The
particular relationships of the members to the types of stakeholders can be found
in the next section.

& 5

Lefnire Lemoness Redphoenix SabreCat Paglias Viirus
Original Community CEO, legal developer developer mobile
creator, manager, developer
CTO runs social
media

Stakeholders

Role Stakeholders

Acquirers Lefnire (Tyler Renelle), Redpheonix (Vicky

Hsu)

Assessors Redpheonix

Communicators Lemoness (Siena Leslie), Breadstrings, Alys

Support Lemoness, Redpheonix, Alys, SabreCat (Sabe

Jones), Viirus aka vliRuS (Phillip Thelen),
Blade aka Crookedneighbour (Blade Barringer)

Moderators Lemoness, Redpheonix, Alys, beffymaroo,
Breadstrings, Cantras, deilann, Megan
Suppliers MongoDB, ExpressJS, AngularJS, Heroku,

Amazon Web Services
Developers, Maintainers Lefnire, SabreCat, Paglias (Matteo Pagliazzi),
Viirus, Blade, Alys, Lemoness
Users General public, Companies, Premium users
Funders Kickstarter backers, Donators, Premium users

Acquirers oversee the procurement of the system or product. As the original
creator of Habitica and founder of the Kickstarter campaign Lefnire can be
classified as an acquirer. He was responsible for raising the funds required to
make the entire project possible. When Lefnire became CTO of the project
Redpheonix took up the mantle of main CEO.

Besides being the CEO Redpheonix is also the main assessor of Habitica.
Assessors oversee the system’s conformance to standards and legal regulation.

Redpheonix is the legal advisor who ‘handles all of the terrifying paperwork and
business planning’.

A very important group of stakeholders for satisfying existing user and the
acquisition of new users are the communicators. They explain the system
to other stakeholders via its documentation and training materials. There are
several communication channels like wiki, Facebook, Twitter or email. The wiki
page is the main channel used by Habitica for learning about the gameplay and
introduce the project to new users and developers. Habitica is also a game with
an emphasis on friendly social interaction. For this purpose, the in-game Tavern
and the Newbies Guild in particular are also top learning resources, where new
players can ask all the questions they want without fear of being ridiculed. The
administrators of the wiki are the main communicators, as is the Habitica staff
and all players who actively participate in the guilds.

The group of communicators is partially coupled with the support staff of
Habitica. This group provides support to users for the product or system when
it is running. Some of them are helping mainly with in-game content - Lemoness,
Redphoenix, whereas others are focusing on technical issues - Alys, SabreCat,
Blade, Viirus. It can be seen that Lemoness and Alys are reponsible for giving
support to existing users and communicating the game to the outside. They use
many different channels for communication like GitHub, in-game chat or email.

Another type of stakeholders related to the communication in the game are the
moderators. This group supervises the communication in Habitica. They have
the right to delete inappropriate posts. They are also recognized persons and
their advice can have an influence on many staff decisions.

Suppliers for this project build and/or supply the hardware, software, or
infrastructure on which the system will run. The software and technologies used
to build Habitica are roughly divided into five sections: Server-side, Client-side,
Testing, Services, and Other (mobile developing and GitHub). External services
like the hosting provider apply some constraints regarding availability to the
project. Habitica has no internal hardware resources. For this reason, they
highly rely on those external services. If there are downtimes at these services
the Habitica system is not able to run any more.

Then there are the stakeholders who are responsible for implementing the features
which should excite the users. The role of the developer is to construct and
deploy the system from specifications and maintainers manage the evolution
of the system once it is operational. Habitica is an open source project and the
lines between the developers and maintainers are blurred. There is a core staff
who is ultimately responsible for all these issues with their roles overlapping.
Habitica is based on a concept which potentially allows everyone to contribute
to it and become a developer. However, some of the staff members and few
others are the ones who do most of the work from designing, coding, testing to
acceptance (merging of pull requests)[4][6]. The team also manages the main
evolution of the system, for this reason they also belong to the maintainers group.

The staff members are not the only “good stakeholders”[1] in the system, there
are also a few very active contributors who support the staff in development and
maintenance. They acquired information and experience during the collaboration
period (“informed”), and have also acquired the responsibility to make important
and difficult decisions with the right to speak on behalf of Habitica or merge
pull requests (“committed” and “authorized”).[7][8] The developers responsible
for accepting new contributions are the first five people in the table. Lemoness
is the main pixel artist responsible for the appearance of the game.

Very important stakeholders for an exciting game are the users themselves.
They are the people making use of the system, so the functionalities are designed
to satisfy their needs. They also have the opportunity to request new features.
The users come from the following groups: The public: people who may have
problems with daily tasks, time management, bad habits and like fantasy RPG.
Companies: They can encourage(force) employees to use Habitica in order to
increase their motivation and productivity. Families, health and wellness groups:
leaders of these groups want to help their members change their behaviors.
Premium users: users that want to support Habitica in exchange for in game
currency.

The group of users highly overlaps with the funders of the project. Funders
are users who support Habitica with spending money on the project. This
includes all the people who backed Habitica through the Kickstarter campaign,
the premium users and the donators.

Power /Interest Graph

Each and every stakeholder has a different level of interest in the project, and a
certain amount of power to influence it. The stakeholders can be categorized
into the following four groups:

e Low power and low interest
— The power of common users is limited but still they can convince
the staff (through in-game chat or GitHub issue) to change or add
functionalities.
e Low power and high interest
— Premium users are very interested in Habitica, they are strictly
involved in the game. Developers are active in discussions but they
still need the staff approval.
e High power and high interest
— The staff is part of this group.

3. Context View

Habitica is reliant on and communicates with many different systems. The
context view model gives an overview of the most important systems that

DEVELOPERS

POWER

</>

—

PREMIUM USERS

WV Os QU

INTEREST

Figure 1: Power/Interest graph

Habitica interacts with. The purpose of this view is to see the big picture: how
does Habitica fit in to the larger universe around it.

A major platform for the development process is GitHub. It is used for code
management, solving issues and merging pull requests for updates or bug fixes.
GitHub is also used as a customer support platform: users with problems are
encouraged to create an issue for any bugs or defects they may encounter while
playing. TravisCI complements the functionalities of GitHub. It is used as a
continuous integration platform and is the main platform for performing tests.

In addition to the GitHub issues a big part of the communication with the
community goes through either in-game chat rooms, the wiki, or through their
social media pages. Habitica has pages on Facebook, Twitter and Tumblr. In
addition, Facebook is also used as a login provider, allowing users to use their
facebook accounts.

Habitica uses Heroku and Amazon Web Service (AWS) as hosting service
providers for the whole project to handle all 1,000,000 players. In the be-
ginning they just used Heroku, but in the moment they are moving the project
towards AWS. For tracking the performance of the system and the user interac-
tion there are two service providers which are used in this project: New Relic
and Amplitude.

Habitica also provides public API for the creation of external extensions. There-
fore, there can be many external applications (like the Data Display Tool)

Ei Code managment

Solve issues
Staff Merge PRs

Automated testing
Solve |ss|.e545[®} @ Travis Cl

Propose issues —r
- 1 Platforms
Development Web browser Hosting
Developers Heroki
08 eroku
Is implemented for Android Amazon Web Service
Buy gems Payment system . g Uses
SV EETE
Paypal 0 I I C 0 l
Pramium usar Amazon payments
se Community ftics
spe ¥ Analytics
Facebook New relic
Twitler Amplitude
Tumbir
Play Gul
Interact

Wikia
B —— Ask question
1 r iscussion
Game-chat rooms Create discussio

Player

Maintain

Leslie Followers
WikiAdministrator

Figure 2: Context Diagram

interacting with the system. The exact nature of these interactions depends on
the nature of the extension itself.

4. Development View
Module structure model

The Development view attempts to capture all aspects of the system relevant to
the development of the project. Habitica is composed of two main components:
the client-side and the server-side. These components communicate via an API
provided by the server-side.

The code on the server-side is divided into several layers and modules in accor-
dance with the framework used (Express JS). In the “controllers® layer there
are mainly modules dealing with routing. In the “middlewares” layer there are
modules dealing with preprocessing of requests and responses. In the third layer,
“models”; there are the business logic, utility libraries, handling of database
access and some shared resources useful for the multiple Habitica repositories.
All the dependencies go in the direction controllers -> middlewares -> models.

The code on the client-side is divided as a pure MVC in accordance with the

«components
client-side

«layers
views

index

EA

1

main

options

shared < static

social

filters

AV

alayers
controllers

habitrpg

controllers

directives

W

<layers
madels

1

services

scomponents
server-side

zlayers
controllers

1

server

.......... > routes

1

controllers

«layers
middlewares

1

middiewares

1 1

«layers
models

maodels

common

Figure 3: Development view structure model

Angular JS framework. This pattern separates the view from the business logic,
which increases the reusability of code. The “view” layer contains the Jade
files. These files are compiled into the HTML code. We also added the filters
scripts here, because they only transform the displayed data a little (for example
displaying the date properly). The “controllers” layer contains one explicitly
declared Angular JS module called habitrpg. All the other “modules” are defined
as an extensions of it. These dependencies are omitted from the diagram for
clarity. These modules are responsible for routing and dynamic rendering of
the parts of the view. The services represent the “model” layer here. They are
substitutable objects used to share code across the application and they handle
the communication with server-side.

Common design model

There are some parts of the system where common processing rules are imposed.
The first and probably one of the most important points from the perspective
of the system users is the internationalization. All strings in the system must
be localized and stored in the locale files in the directory “common/locales/”.
Another principle of the project that can be seen after a closer look at the source
files, is to use an existing framework whenever possible. If this principle is
satisfied the developers can fully concentrate on the core features which cannot
be covered with external libraries. For the database there should be model
classes which are able to hold the data, store it and retrieve it.

The concrete implementation of external libraries should be hidden to the
developers. In the project this is done with the facade pattern [12]. This ensures
that the developer can use the functionalities of external libraries without having
to care for changes of the interfaces if one of the libraries gets exchanged by
another one. The logging part of the software is done with different logging
providers. For this reason the common interface is not implemented as a facade,
but as a mediator [12]. The mediator aggregates the functionality of different
logging providers and makes it easier to add new ones without influencing other
parts of the code.

The most important design approach for the whole project is the usage of the
model-view-controller (MVC) pattern.

There are also some parts of common software used in this project. For the
separation of the layers on the client side the framework AngularJS is used. The
database interaction with MongoDB is done with an object data mapper (ODM)
called Mongoose. For the internal logging the Winston framework is used, which
can be extended to log to many different destinations (database, plain text file,
xml file, ...). For the internationalization part the self-written i18n functionality
should be used. It parses the translations directory and stores the translations
for the user language in the memory. This component ensures a fast retrieval
time for the needed texts.

Configuration strategy

There are several different approaches to configure the application. The more
technical configurations like logging or choosing an analytics provider, that serves
particularly to developers and operators, are managed via a configuration file or
by commenting parts of code. The setting of user preferences is handled through
a database variable that points to a relevant file on a disk. Then there are various
intrinsic or third party extensions that are installed separately from the game,
as a browser add-on, web page widget, bookmarklet or desktop application, and
cooperate with it via provided API. Other types of extensions just amend the
appearance of the web site without any direct interaction with it. They usually
need the Stylish[11] web browser add-on. To differentiate the appearance of
the web application on desktop and mobile devices, CSS media queries and
JavaScript conditions are used. Lastly, for some mobile devices (Android, iOS)
there are native applications replacing the client side of the system completely.
However, they lack many features of the web application (as of 3rd of March
2016).

As identified above, a variety of different mechanisms is used to add variability to
Habitica. After a closer analysis of pull requests and issues on GitHub, we found
that the variability mechanism didn’t change over time, but it differs among
different developers. Some configuration possibilities were not part of the initial
versions, but were added in later stages of the development.

5. Information View

The purpose of any information system is to manipulate data in some form.
Habitica stores data persistently in a database managment system using Mon-
goDB. MongoDB is one of the most popular NoSQL databases.

The diagram presented in Figure 4 shows the logical relationship between the
principal entities in the game. The two main entities are the user and the task.

The user is personalized by the equipment chosen, the skills developed during
the game and his own pets/mounts. Moreover, the user can create or participate
in parties and guilds with their friends.

The tasks are the most important element in Habitica. Every user must complete
them in order to increment his own game-level and earn gold. Each task is
associated with a single user. Habitica gives the possibility to create challenges
among the players. A challenge is a collection of tasks which are automatically
assigned to all the participants.

However, the logical view mentioned above doesn’t directly map to the database
structure. It is partially because of the use of the NoSQL DB, which doesn’t have
a fixed structure. Another reason is the use of a second storage - a JavaScript

10

zcollections

. zcollections Challenge
Equipmentf
skl p User Task
PetMount
«collections
Guild

Figure 4: Static information structure model

file. We will explain the persistent representation of the main entities and the
relationships among them.

In the database there are three core document types: User, Group and Challenge.
The User document contains all of the information related to a concrete player. It
contains the user information, tasks, customization references, gold, equipment,
pet references, Ul preferences, private messages, etc. The Group document
represents all the parties and guilds with their chat logs and quests. The
Challenge represents a group of tasks for the participants to fulfill, the list of
participants themselves and the prize for the winners.

In addition to the database storage there is information stored in JavaScript
files. In these files all of the various items and appearances you can have as a
player are stored. For example, the equipment, spells, haircuts, etc. These items
are then referenced from the database document.

Notable Characteristics

How Habitica deals with old data

With the increasing number of users the staff of Habitica worked a lot on the
improvement of server’s performance. One key issue is the reduction of database
storage requirement. This is the main reason why Habitica does not keep all

11

historical data for all tasks. Instead, older data are averaged and only the average
is included in the data exports (data export is a feature which allows players to
retrieve data about completed Habits and Dailies, as well as personal user data).
The further back in time the data goes, the more data is combined together into
a single average. For example, a data export might include several data points
for the current week, one data point for each of the previous few weeks, one data
point for each of the previous few months, and only one data point per year for
previous years. As a (probable) side effect of this, when players examine their
exported data for Habits, they will see at most one data point for each Habit
per day, i.e. they will not see every click they made on the Habits’ plus and
minus buttons. This has been logged as issue 3079 but it is not currently known
whether this behavior is deliberate or a bug. In addition, for non-subscribers,
completed To-Dos are automatically deleted after 30 days to regain database
storage space. For subscribers, completed To-Dos are automatically deleted
after 90 days. If a player uses the “Delete Completed” button in the To-Dos’
Completed tab, all completed To-Dos will be permanently removed. Because
older task history is severely limited, players who want to keep a full history of
tasks should export their data regularly.

Static Information Storage

One of the most interesting parts in the information flow is the transfer of static
information to the database. All information about equipment, quests, pets
and spells is stored as JSON objects in JavaScript files which are located in
/common/script/content/. When a user buys equipment, the information from
the file is set as a reference in the user’s document in the database. For example
if a user buys a new instance of a shield, the information of the shield is looked
in the related JavaScript file. Then the identifier of the shield is copied to the
database entry of the user. The identifier includes the class of the user (rogue,
warrior etc.), the type of the equipment and a sequential number. The attributes
of the equipment, like strength boost, are still looked up in the JavaScript file.

A similar process where the data is copied to the database entry of the user is the
challenge system. A user can create a challenge which consists of different habits,
dailies, todos and rewards. Other users can join these challenges and get the
included tasks transferred to their personal task list. The challenges are stored
in a separate document collection in MongoDB and include all the information
which is needed. When a new user joins the challenge, the information from
the challenge is copied to the database entry of the user. This means that the
personal task is independent from the challenge task. There is just a reference
to the challenge kept to keep track of the challenge progress.

12

6. Internationalization Perspective

In order for a system to become truly international it must not overly depend
on any one language, country, or cultural group. Habitica is a game that could
potentially be enjoyed by people from all cultures or different parts of the world.
To make sure that the absolute widest range of people is targeted there are some
common concerns that need to be looked at.

A place where a person interacts with the system is called a touch point. To
obtain a good level of internationalization it is first necessary to go through the
system and locate all the touch points. Then, for each touch point each concern
can be checked. This gives a good indication of what the current level is and
also how much work is yet to be done.

The concerns we will address are the support for the following items:

e Multiple character sets

o Differently oriented text presentation

o Multiple languages

o Different cultural norms (i.e. units of measurement)
¢ Financial differences

¢ Cultural neutrality

% habitica mm

GitHub

WIKI

Figure 5: Touch Points

Touch Point Analysis

Habitica’s main touch points are the game itself, the wiki, GitHub and Trello.
For the game this would include all screens, buttons, pictures, dialog boxes etc.

13

The Wiki is available in six different languages: English, German, Spanish,
French, Polish, Brazilian Portugese, and Russian. However, the English version
contains much more information than the wiki versions offered in other languages.
A lot of new users will come into contact with the Wiki and will use it to learn
game basics. Therefore the most important pages, such as how to play guides
etc., are given priority.

Language Pages
English 576
German 91
Spanish 206
French 141
Polish 3
Brazilian Portugese 34
Russian 143

The game itself offers support for a lot more languages. There are translations
in 24 languages (including the much overlooked Pirate English), in various states
of completion. In some cases the translators have not yet completely finished
their work and the American English version overrules the translation. Also,
as Habitica has frequent updates and on top of this also has seasonal in-game
events, it is unlikely that the newest content will have been translated when it is
just released.

The game and wiki all support multiple character sets and has no problem
representing symbols such as icons or chinese texts. Habitica tries to take into
account different cultural norms. For example, the way dates are represented
vary across the world and this can be customized to match the players preference.

The financial differences are not completely taken into account. The prices
for gems are still all listed in American Dollars. However, these differences
are mostly resolved through the use of the external payment providers PayPal,
Amazon or Stripe which will automatically give the conversion.

For the developer side of things there are two main touch points: GitHub and
Trello. Historically, English has been the go-to language in computer science
related fields with the most popular programming languages using English
naming conventions for keywords and the like. Likewise, in Habitica all the
code is in English. Furthermore, all discussions, issues, bug reports and feature
reviews are typically done in English.

Like with many open source projects getting things done essentially relies on
enthousiastic hobbyists to put in the required effort. Such is also the case with
all of Habitica’s translations. That means that there is somewhat of a chicken
and egg problem in that users of Habitica who would like to see it in their native
language must first help to translate it.

14

7. Contributions

Habitica is a project which relies on help from external contributors. The
manpower in the staff is limited, and they rely mainly on volunteers. For this
reason, the staff is very welcoming when new people want to contribute. Work
can be done in numerous different ways. Writers can update the wiki entries or
translate the game in new languages. Designers can create new images for new
equipment or pets. Software developers are able to create new features, fix bugs
or contribute to the test coverage. But also people without knowledge in those
areas can contribute to the project in suggesting new features or reporting bugs.

The main focus of our team is the software development part of Habitica. In the
beginning it can be very hard to find a starting point for contributions in such a
big project. Fortunately, the staff and main contributors of Habitica label all
features according to their importance and complexity. With these labels we
found some issues on which we could work on. We provided a pull request which
got updated some days later (#6736). We were added to the Hall of Heroes
of Habitica and got the Tier 1 contributor award. This is a very interesting
approach for motivating contributors and reward them for their work.

Our confidence grew after this first pull request and luckily we found our own
bug in the project just a few days later. We opened the issues and started
working on it by ourselves. A few days later our second pull request got merged
(#6740).

One big problem of the Habitica project is the low test coverage for client side
code. According to coveralls.io, just 52% (as of 30th of March) of the code is
covered by different tests. This could be a serious problem when new features
are introduced, because nobody knows if the old features are still functional. For
this reason, we wanted to create new unit tests for the project, to increase this
metric. After a closer investigation of the project, we found some rudimentary
experiments with end to end tests with the Protractor framework. Our focus
switched a bit and we wanted to focus on creating a test suite which is based on
the page object pattern [9]. As of 26th of March we are still working on the test
suite to make it compliant to the testing strategy of the Habitica team. (#6868
and #6876)

8. Conclusion

In this project we have analyzed Habitica from a Software Architecture per-
spective. We have found that Habitica is built and maintained by a core set
of staff who fulfill multiple roles and are largely responsible for overseeing the
whole project. Like many open source projects, they rely heavily on external
contributors: enthusiastic volunteers who are willing to help them fix bugs, add
features, and help out in general.

15

https://github.com/HabitRPG/habitrpg/issues/6736
https://github.com/HabitRPG/habitrpg/issues/6740
https://github.com/HabitRPG/habitrpg/pull/6868
https://github.com/HabitRPG/habitrpg/pull/6876

The architecture is stuctured nicely into different layers with a single page
application for the client side and backend services accessible through an API.
They develop the project using very flexible technologies that allow the developers
to quickly make changes to existing features. For example the use of MongoDB
and JavaScript. They also put great effort into making the process of getting
involved as easy as possible for new developers by using popular technologies
and providing “Getting Started” guides. This was especially helpful to us as it
allowed us to jump in without too much effort.

The biggest issue that we encountered was the low test coverage. Our group
tried to improve this by adding our own end to end tests for the tasks page and
the user customization features.

The future looks bright for Habitica. They are currently at the next stage of
developement with the imminent introduction of the API v3. With this, and
the increased focus on improving testing and code quality the overall quality of
the application will likely become even better.

We are glad to have been able to get some insight into a big open source project
and are very happy to have contributed to Habitica. We hope that Habitica
continues growing and that thousands of players keep getting the most out of
the gamification of life!

9. References

1. Nick Rozanski and Eoin Woods. (2011). Software Systems Architecture:
Working with Stakeholders Using Viewpoints and Perspectives. Addison-
Wesley Professional.

2. Habitica staff. Guidance for Blacksmiths. http://habitica.wikia.com/wiki/Guidance_for_ Blacksmiths,
2016

Wikipedia. Habitica. https://en.wikipedia.org/wiki/Habitica, 2016
Habitica staff. Staff presentation. http://blog.habitrpg.com/who, 2016
Habitica staff. User plans. https://habitica.com/static/plans, 2016
Habitica staff. Staff. http://habitica.wikia.com/wiki/Staff, 2016

N

Habitica staff. Community guidelines. https://habitica.com/static/community-
guidelines, 2016

8. Habitica staff. Moderators. http://habitica.wikia.com/wiki/Moderators,
2016

9. Arie van Deursen. Beyond page objects. http://avandeursen.com/2015/06/25/beyond-
page-objects/, 2016

10. Habitica staff. Habitica. https://habitica.com, 2016

16

11. Jason Barnabe. userstyles.org. https://userstyles.org/, 2016

12. Gamma, E. , Helm, R., Johnson, R., Vlissides J.: Design Patterns: Ele-
ments of ReusableObject-Oriented Software. Addison-Wesley, 1996

17

	Abstract
	Table of Contents
	1. Introduction
	2. Stakeholder Analysis
	The staff
	Stakeholders
	Power/Interest Graph

	3. Context View
	4. Development View
	Module structure model
	Common design model
	Configuration strategy

	5. Information View
	Notable Characteristics

	6. Internationalization Perspective
	Touch Point Analysis

	7. Contributions
	8. Conclusion
	9. References

