
Survey of Special Purpose Code Generators

Marco Craveiro <marco.craveiro@gmail.com>

Abstract

MDE is an approach to software engineering cen-
tred around modeling. Code generators are an im-
portant component of the MDE toolset because
they bridge the gap between models and their im-
plementation. Studies have demonstrated that de-
�ciencies in MDE tooling are a common cause of
failure in MDE adoption, highlighting the need for
research to identify and address inadequacies.
This paper has two contributions. First, it per-

forms a survey of Open Source tools dedicated to
special purpose code generation. Second, it identi-
�es a core set of properties that characterise their
approach, which we argue have application to code
generation in MDE. These properties can be lever-
aged to guide new tool development as well as for
evaluating existing tooling.

1 Introduction

Model Driven Engineering (MDE) is an approach
to software development that places an emphasis on
modeling and models.1 One of the main tenets of
MDE is a focus on automation, which is thought to
increase development speed and enhance software
quality, amongst other bene�ts [Völ+13]. These
are claims supported by empirical evidence.2

Code generators are a key tool in this regard,
since, as Jörges et al. state, they "[. . .] automat-

1MDE is member of a family of closely related approaches
that share a model-driven focus, leading Völter to group
them under the moniker of MD* [Völ09]. The present pa-
per refers only to MDE for the sake of simplicity, but the
argument made is believed to be relevant to MD* in gen-
eral. The interested reader is directed to Brambilla et al.
[BCW12] for a broader treatment of MD*.

2As an example, whilst performing an assessment of MDE
in industry [Hut+11], Hutchinson et al. reported a positive
impact in maintainability and productivity, which, accord-
ing to their respondents, was attributable to code genera-
tion. However, the study also elaborated on the di�culty of
performing a clear and unambiguous impact assessment.

ically derive an implementation from the model,
and which thus relate to models in the same way
in which compilers relate to high-level languages."
[JMS08] Correspondingly, a great deal of research
has been carried out with regards to their devel-
opment and, in particular, their place within the
MDE domain.3

Nonetheless, adoption studies point out that
MDE has yet to move away from its niche status
in Software Engineering [Mus+14], implying that
more remains to be done in order to gain industry
acceptance. Whilst appropriating responsibility for
the current state of a�airs, Whittle et al. uncov-
ered a variety of complex factors impacting MDE
adoption [Whi+17] � many of which non-technical
� but con�rmed that tooling has had a key part
to play. The situation is perhaps best summarised
by their dictum: "[m]atch tools to people, not the
other way around" � spelling out a need to under-
stand how MDE tools should work from the view-
point of prospective users rather than the experts
in the �eld who are developing them, and revealing
a de�cit in usability and Human-Computer Inter-
action (HCI) research. Where usability e�orts have
been made, they typically have focused on graphi-
cal modeling tools and the Uni�ed Modeling Lan-
guage (UML).4 Clearly, from a usability perspec-
tive, the requirements of a modeling tool are very
di�erent from those of a code generator, so this pa-
per argues instead for a corresponding separation
of concerns between code generation and modeling.
If this separation is accepted, then the established
practices in the wider �eld of code generation � i.e.
outside of MDE � become available as a source of
lessons and best practices for MDE tooling. Start-

3Jörges et al. provide a good overview of the state of the
art of code generation in [JMS08]. For an understanding
of how it �ts in the wider map of model transformations,
see the feature model developed by Czarnecki and Helsen
[CH06].

4The reader is directed to Yosser et al. [EA+15] and
Harald [Stö14] for a sample of these e�orts.

1

ing from this premise, the objective of the present
study is to identify and analyse one such source �
"special purpose code generators".
From an MDE point of view, the primary con-

tribution of this paper is towards identifying a set
of themes that can guide the development of fu-
ture MDE tools � speci�cally code generators, but
some of its elements may �nd application elsewhere
� or act as a "checklist" for the evaluation of ex-
isting tools. A secondary contribution, which may
be of use outside MDE, is the surveying of a set of
special purpose code generators, as well as de�ning
the terminology more precisely.
The remainder of the paper is structured as fol-

lows. Section 2 contains a literature review of re-
lated topics and their relationship with the present
work. Section 3 describes the code generation land-
scape and de�nes special purpose code generators.
It is followed by Section 4, which details the meth-
ods used in the survey and its limitations. Section 5
presents the tools that are the subject of our study.
Section 6 identi�es the core themes that emanated
from the surveyed tooling and, �nally, Section 7
summarises the paper and proposes areas for fu-
ture work.

2 Related Work

Several studies have pointed out the importance
of tooling to the outcome of MDE adoption. Of
these, two are of particular relevance to this paper
as they identify usability as an important direction
of future research, as well as contextualising its sig-
ni�cance within the broader challenges of adoption.
In [Mus+14], Mussbacher et al. outline a list

of major current problems in MDE, where they in-
clude "Obstacles for Tool Usability and Adoption",
stating: "Even after a suitable language and tool
have been identi�ed, the users face signi�cant us-
ability challenges, e.g., steep learning curves, ar-
duous user interfaces, and di�culty with migrat-
ing models from one version of a tool to the next."
The paper then goes on to analyse � and propose
solutions to � the broader problems with MDE,
curtailing its relevance to the present work.
These di�culties are echoed by Whittle et al. in

the aforementioned study [Whi+17]. As part of
their intriguing diagnostic of usability and tool de-
sign, they state: "Most MDE tools are developed

by those with a technical background but without
in-depth experience of human-computer interaction
or business issues. This can lead to a situation
where good tools force people to think in a cer-
tain way." In addition to this call to arms towards
usability research, the paper also de�nes a taxon-
omy of tool-related issues, a subset of which is used
by this paper.
Finally, a number of experience reports related to

MDE tooling development were analysed, and these
did contain brief incursions on the topic but lacked
su�cient focus on usability for the needs of this
paper. In [PV12], Paige and Varró perform a de-
tailed study of the lessons learned building model-
driven tools but provided only allusions to usabil-
ity concerns rather than direct analysis.5 A sim-
ilar pattern emerged with other reports [And+14;
SKSG07].
In summary, this study is motivated by our �nd-

ings in the literature. On one hand there is a clear
need for more research on usability within MDE
tooling, as pointed out by the adoption studies. On
the other hand, code generation has been bundled
together with more general modeling activities even
though they have di�erent usability requirements.
The present paper addresses this gap by focusing
exclusively on code generation, and attempts to
identify and analyse the approaches of tools which
may have applicability for MDE tooling.

3 Context

Code generation has historically been associated
with automatic programming, and both have a
long recorded history in Computer Science [Par85].
Whilst the term "code generator" lacks formal def-
inition in Computer Science, informally, it is used
to describe any tool that processes a well-de�ned
input and generates "code".
"Code" may itself have di�erent meanings, de-

pending on context: within compiler engineering,
it typically represents the binary machine code,
whereas in the broader context of programming, it

5As an example: "In particular, the collaborators re-
quired a textual interface to any tools (the intended users
preferred a textual interface instead of a graphical one). It
was also perceived that a textual interface, and textual MDD
languages, were preferred for �ne-grained tasks such as spec-
ifying how models were navigated, evaluating expressions,
etc." [PV12]

2

usually represents the textual source code, conform-
ing to the grammar of a programming language.
The present paper is only concerned with a subset
of the latter: special purpose code generators. The
next sections describe what is meant by this term
by contrasting it with the more general notion of
code generation in MDE.

3.1 Narrow Focus

MDE research expanded and generalised informal
notions by framing code generation as an instance
of a class of Model-to-Text (M2T) transforms6,
leading Brambilla et al. to state [BCW12] that,
"[. . .] in MDE, code generation is the process of
transforming models into source code". From this
perspective, code generation is one of potentially
several steps of a chain of model transformations re-
quired to produce a running system, and the design
and implementation of code generators exist as part
of the broader development activities that include
the creation of Domain Speci�c Languages (DSLs)
and the re�nement of models at di�erent levels of
abstraction � from platform independent to plat-
form speci�c representations. Thus, the MDE prac-
titioner makes use of a plethora of code generation
technologies and techniques7 and integrates those
with other modeling tools to meet speci�c code
generation requirements. These tools and tech-
niques provide the �exibility required for model-
driven software development � at the expense of
increased complexity � and so we categorise them
as general purpose code generation tooling because
they are designed to be adapted to open-ended re-
quirements.
A very di�erent use of code generation is made

by a class of special purpose tools, typically de-
signed for a single, well-de�ned objective. These
tools tend to focus on domains such as XML se-
rialisation support, generation of ORM for rela-
tional databases, binary serialisation of data struc-
tures and the like, all of which are functions of a
structural de�nition. In contrast to the open-ended

6See Czarnecki and Helsen [CH03; CH06] for a detailed
treatment of M2T transforms. Note that these were origi-
nally known as Model-to-Code (M2C) transforms, but the
word "text" was preferred over "code" because the output
of a M2T transform need not be source code � e.g. JSON,
XML, etc.

7Many of which are detailed in Rose et al.'s feature model
[Ros+12].

approach promoted by MDE tooling, these special
purpose tools usually generate code not meant for
modi�cation � in cases, not even inspection � and
with a limited and well-de�ned use.

As a representative example, Protocol Bu�ers8

� a serialisation framework for structured data �
states in its documentation (emphasis theirs):

Protocol bu�er classes are basically dumb
data holders (like structs in C); they don't
make good �rst class citizens in an ob-
ject model. If you want to add richer be-
haviour to a generated class, the best way
to do this is to wrap the generated proto-
col bu�er class in an application-speci�c
class. [. . .] You should never add be-
haviour to the generated classes by inher-
iting from them. This will break inter-
nal mechanisms and is not good object-
oriented practice anyway." [Goo18a]

Thus, these special purpose tools are designed to
satisfy the requirements of one use case only.

It is important to note that the ideas ascribed
above to special purpose code generators are not
entirely new within MDE � though the packaging
may be. As an example, the term cartridge has
been used to denote a similar concept though, ar-
guably, a lack of a formal de�nition hindered its
spread.9

3.2 Constrained Variability

Another viewpoint from which to contrast these
two approaches is that of variability, where we
can make use of Groher and Völter's work [GV07].
Though not a necessary condition, special purpose
code generators typically support structural vari-
ability � that is, the creative construction of ar-
bitrary data structures � but are often designed

8https://developers.google.com/protocol-buffers
9In [Völ+13], Völter et al. states that "a cartridge is a

'piece of generator' for a certain architectural aspect". How-
ever, in [Völ09], Völter elaborates on his concerns for the
term, and these are quite damning: "[I]t's not clear to me
what it [a cartridge] really is. A cartridge is generally de-
scribed as a 'generator module', but how do you combine
them? How do you de�ne the interfaces of such modules?
How do you handle the situation where to cartridges have
implicit dependencies through the code they generate?"

3

https://developers.google.com/protocol-buffers

to restrict variants of structural models quite ag-
gressively, when at all allowed.10 MDE takes the
opposing view by treating it as an important con-
cern, giving rise to concepts such as negative and
positive variability and to techniques for handling
them. [GV07; GV09]

In practice, these are not binary opposite views.
A more suitable way to describe the code genera-
tion landscape is as a spectrum of possibilities with
regards to their purpose and take on variability, as
Figure 1 illustrates, with each approach represent-
ing di�erent kinds of trade-o�s over factors such as
complexity and �exibility.11 Whilst a clear simpli�-
cation, the visualisation nonetheless helps the intu-
ition that there are choices to be made and alludes
to the existence of useful traits of special purpose
code generators which may be worth taking into
account when developing MDE tooling.

Figure 1: Expressive power of code generation.

3.3 Black Box

Special purpose code generators are command line
tools with textual input, and are delivered to users
as executables. Whilst they can be extended �
particularly those that are Free and Open Source
Software (FOSS) � the common use case is as a o�-
the-shelf black box, where users are not required to
peer inside in order to use the tool.

In contrast, general purpose code generators are
typically frameworks or libraries � building blocks
to be assembled by expert users and tailored for

10As an example of a special purpose code generator that
can eschew structural variability, consider a build �le gener-
ator that needs only a �xed structural input � i.e. one or
more sets of �les.

11An idea inspired from Groher and Völter's analysis on
the expressive power of DSLs [GV07].

their speci�c domain in a bespoke and, ideally, it-
erative manner. They evolve with the practitioner's
understanding of the domain.

3.4 Audience

The users of special purpose code generators are
software engineers, as they generate one very spe-
ci�c aspect of a larger software system and thus
must integrate with traditional development.

On the other hand, MDE users may span a large
set of engineering roles � from architects, to ana-
lysts to developers � depending on the speci�cs of
a particular application.

3.5 Commonalities

From all that has been stated, it may appear there
is a gulf between the role of code generation as un-
derstood by MDE and special purpose code gener-
ators. Whilst there are di�erences in objectives, it
is important not to lose sight of what they have in
common.

Applications of MDE that do not target full code
generation will ultimately require a degree of inte-
gration with "traditional" � i.e. non-MDE� soft-
ware engineering practices, in a fashion very similar
to special purpose code generators. Hence, there is
value in learning about their approach.

4 Study Method

This section explains the criteria used to select the
special purpose code generators, the format of the
description for each tool, and the dimensions used
for evaluation.

4.1 Selection Criteria

Our criteria for tool selection was as follows:

� Openness: FOSS is developed out in the open
amongst a community of developers, and thus
bene�ts from a wide range of views. In ad-
dition, Open Source projects provide visibility
of the health of their development community
and development processes, making them the
ideal candidates for our research.

4

� Maturity: The chosen tools must have ex-
isted for �ve years or more and are known to
be used in industry. This ensures the approach
has been validated and is production ready.

� Activity: Projects were required to have been
continuously maintained during their lifetime,
with a cadence of releases and/or recent com-
mits to their Version Control System (VCS).
Both major and minor releases were included
in the release count, as per tagging in the
project's VCS repository.

� Diversity: In the interest of variety, we only
selected a project for each given domain in or-
der to obtain better coverage.

From a preliminary list of tools that matched our
selection criteria, we selected four tools. The �-
nal selection was based on our familiarity with the
programming language (C++) and with the tools
themselves, in order to facilitate the analysis. It
is important to note that the selection is not in-
tended to be exhaustive. Instead, the objective was
to survey a small sample set in search of interest-
ing insights. See Section 4.4 for more details on
limitations.

4.2 Tool Description

Each surveyed tool has four dedicated sections:

� Overview: Brief summary of the generator
and its domain, including a summary with
items from the selection criteria as outlined in
Section 4.1 and a trivial example of the tool's
input.

� Usage: A walk-through of a typical use of the
tool.

� DSL: A short description of the DSLs used by
the tool, with usage examples where available.

� Variability Strategy: A description of the
approach to variability taken by the tool.

� Evaluation: An evaluation of the tool accord-
ing to the dimensions de�ned in the next sec-
tion.

4.3 Evaluation

The starting point for our evaluation was Whittle
et al.'s "Taxonomy of MDE Tool Considerations"
[Whi+17]. The taxonomy was adapted for the
needs of the present study by removing categories
and sub-categories which were not deemed appli-
cable, and renaming or merging others for clarity.
The �nal result is the following set of categories:

� Usability: General commentary on usability
concerns for the tool.

� Tooling Integration: How well does the tool
integrate with existing development environ-
ments and build systems.

� Code Integration: How well does the gen-
erated code integrate with existing code and
build systems.

� Variability: Analysis of the trade-o�s made
between variability and complexity.

� Dependencies: Is the generated code self-
contained or does it introduce additional de-
pendencies.

� Generated Code: Comments on the subjec-
tive qualities of the generated code.

� Error Reporting: Describes how errors are
reported to users.

As with Whittle et al.'s taxonomy, its important
to note that these categories are not entirely or-
thogonal � meaning they interact with each other
and, in some cases, classi�cation may be ambigu-
ous. However, they are believed to be su�cient for
the purposes of the present evaluation.

4.4 Limitations

A survey of this nature is not without its limita-
tions, which must be taken into account in order
to ensure applicability. First and foremost, there is
a risk in overreaching when using analogies. MDE
and special purpose code generators have very dif-
ferent roles in software engineering, leading us to
limit our analysis to areas where the overlap is most
evident.
Secondly, the focus of the present work was on

FOSS as it is more amenable to analysis; however,

5

proprietary tooling may have a very di�erent set of
characteristics due to its development model.
Thirdly, due to familiarity, our focus is skewed

towards C++, a compiled language with no re-
�ection support. Given its current focus on per-
formance and systems programming, patterns ob-
served in C++ may not necessarily extend to more
modern languages like Java and C# or to inter-
preted languages.
Fourthly, the chosen sample size was kept de-

liberately small, mainly in order to allow delving
deeper into the functionality of each tool but also
because many of the FOSS code generators target
similar domains � in particular, cross-language se-
rialisation. Therefore, patterns present in this sam-
ple may not be representative of the wider land-
scape of special purpose code generation, though
in our personal experience, we believe they are.
Nevertheless, even taking into account these lim-

itations, we believe the present paper still presents
valid suggestions for the development of code gen-
erators under MDE. The onus is on the practitioner
to ensure applicability and to take into account the
listed limitations.

5 Survey

This section introduces all the tools that are part
of the survey.

5.1 ODB

ODB12 is a command line tool that generates
Object-Relational mappings for the C++ program-
ming language. It uses suitably annotated C++
source code as its input, and has the ability to
generate mappings for a number of Relational
Database Management Systems (RDBMSs).
As per the project's website [Syn18b], "[ODB]

allows you to persist C++ objects to a rela-
tional database without having to deal with ta-
bles, columns, or SQL and without manually writ-
ing any mapping code." ODB outputs both C++
mapping code and SQL statements to create the
relational database schema as well as querying, in-
serting, deleting or updating mapped entities.
ODB makes use of a set of handcrafted libraries

which are referenced by generated code. These pro-

12https://www.codesynthesis.com/products/odb

Table 1: Fact sheet for ODB.
Domain ORM
First Release v1.0, September 2010
Latest Release v2.4, May 2015
Total Releases 20
Latest Commit May 2018
License GPL, NCUEL
Input C++ ODB Pragma Lang.
Output C++, SQL

vide high-level interfaces for database access, as
well as implementations for RDBMS speci�c func-
tionality.
Finally, an important aspect of ODB is its imple-

mentation as a GCC plugin. Due to this, it is has
the same level of compliance with the C++ stan-
dard as the compiler, which is very advantageous
as the language is very complex and changes fre-
quently.

5.1.1 Usage

ODB is designed to be called as part of the build
process in a fashion similar to C++ compilers. It
makes very few requirements of the build system,
other than the ability to call external programs.
Typically, each invocation of the tool contains

one or more target header �les which are decorated
with ODB pragmas, as exempli�ed in Listing 13.

#include <str ing >

#pragma db ob j ec t
c lass person {
public :

person () {}

public :
#pragma db id
std : : s t r i n g name_;
unsigned int age_ ;

} ;

Listing 1: C++ class with ODB pragma annota-
tions.

Users are expected to generate build system rules
for each �le that requires mappings, as well as
rules to compile the generated code into object
�les. They must also install the ODB supporting
libraries, and con�gure the build system to locate
and link the generated code against them.

5.1.2 DSL

ODB de�nes two internal DSLs, hosted within the
C++ programming language. The �rst is the ODB

6

https://www.codesynthesis.com/products/odb

Pragma Language, as demonstrated in Listing 13.
Pragma directives are an extensibility mechanism
for the C and C++ languages, and are often used to
control implementation speci�c behaviours of com-
pilers. ODB makes use of it to de�ne ORM related
constructs.
According to the manual, the ODB Pragma Lan-

guage

[. . .] is used to communicate various prop-
erties of persistent classes to the ODB
compiler by means of special #pragma di-
rectives embedded in the C++ header
�les. It controls aspects of the object-
relational mapping such as names of ta-
bles and columns that are used for persis-
tent classes and their members or map-
ping between C++ types and database
types. [Syn18a]

The second Domain Speci�c Language (DSL) is
the ODB Query Language, described as

[. . .] an object-oriented database query
language that can be used to search for
objects matching certain criteria. It is
modeled after and is integrated into C++
allowing you to write expressive and safe
queries that look and feel like ordinary
C++." [Syn18a]

5.1.3 Variability Strategy

ODB o�ers variability support at two levels:

� Global: Invocations of the ODB tool can in-
line all command line parameters or instead
supply an external text �le with the con�gu-
ration. These parameters will a�ect all appli-
cable entities.

� Local: In the source code, each mapped entity
can be annotated with pragmas that con�gure
code generation.

When combined, these result in a large con�g-
uration surface to control ODB's behaviour. Pa-
rameters can be grouped into the following broad
categories:

� Customisation of Relational Entities:
Supply or override names (database name,

schema name, index name, table name and so
forth), add a pre�x or post-�x to relational
names, etc.

� Mapping Customisation: Manually over-
ride the default mappings of C++ types to
SQL types, or supply a di�erent mapping pro-
�le; users can choose a pro�le that is most suit-
able for their C++ programming environment
� e.g. standard C++, Boost or Qt.

� Customisation of Generated Code: Add
user supplied epilogues and prologues, place
generated code in a user-de�ned namespaces,
change the extension and/or names of gener-
ated �les, con�gure the version of the C++
standard, the export of symbols, de�nition of
macros, omit the generation of some aspects
� e.g. do not generate SQL insert statements,
queries, etc.

� Database Speci�c Parameters: A number
of parameters are speci�c to a given RDBMS,
such as the client tool versions, warnings, etc.

� Tracing and Debugging: Provide debug
information of the code generation process,
stop generation if the size of generated code
is greater than N lines of code, etc.

ODB's �exible approach to variability does not
preclude a minimalist use case due to its judicious
use of default values. The only mandatory param-
eters are local pragmas in source code to identify
entities to map and global command line arguments
to point to the target �le.

5.1.4 Evaluation

ODB can be characterised across the following di-
mensions.

� Usability: Due to its command line interface
mimicking a compiler, ODB has a very shal-
low learning curve for developers. In addition,
by making use of internal DSLs hosted within
C++, it requires little learning for a typical
C++ developer.

� Tooling Integration: By making very few
demands of the build system and using C++
source code with few modi�cations as its input,

7

ODB is able to integrate with any development
environment and build system. Users need not
change their setup in order to use ODB.

� Code Integration: ODB uses a forward-
engineering approach, imposing a strict sep-
aration between handcrafted code and gener-
ated code. Generated code is not intended to
be modi�ed by its users; changes must be ex-
clusively made to the handcrafted source code
via the ODB Pragma Language followed by re-
generation.

� Variability: ODB supports a high-degree of
variability but requires very little con�guration
in order to produce code. This lowers the bar-
rier of entry to new users.

� Dependencies: Generated code requires
ODB speci�c libraries. Whilst producing
smaller and simpler code, this also means hav-
ing to install the libraries and con�gure the
build system to �nd them, as well as adding
dependencies to the deployment.

� Generated Code: Samples of the generated
code produced by ODB were manually in-
spected and found to be of a standard com-
parable to the handcrafted code of the ODB
libraries. This is very advantageous when de-
bugging and troubleshooting problems. In ad-
dition, ODB o�ers a number of options dedi-
cated to customisation of generated code, eas-
ing the integration into existing code bases.

� Error Reporting: Error messages are re-
ported to the command line using the format-
ting de�ned by the GCC compiler. This is less
convenient for users of other compilers � such
as Microsoft Visual C++ � as their develop-
ment environment may not able to interpret
error messages.

5.2 Protocol Bu�ers

Protocol Bu�ers are a cross-platform serialisation
mechanism for structured data, allowing the ex-
change of messages in possibly heterogeneous envi-
ronments such as di�erent hardware platforms and
programming languages. Protocol Bu�ers has four
main components: a language for the de�nition of
messages, a so-called "compiler" that transforms

the message de�nition into source code, a wire-
format that speci�es its binary representation and
helper libraries that are referenced by the generated
code.

Table 2: Fact sheet for Protocol Bu�ers.
Domain Structured data serialisation
First Release v2.0, July 2008
Latest Release v3.5 November 2017
Total Releases 19
Latest Commit June 2018
License BSD
Input Protocol Bu�ers Language
Output Multiple languages

Whilst there are multiple implementations avail-
able, our survey focuses on the default protocol
bu�er compiler protoc as supplied by the Protocol
Bu�ers project. The compiler has out of the box
support for several programming languages such as
C++, C# and Java.
In addition to code generation, protoc also has

the ability to encode and decode messages, but,
this functionality is out of the scope of the present
analysis.

5.2.1 Usage

Users de�ne one or more structured data types in a
text �le, written in conformance with the Protocol
Bu�ers Language [Goo18b]. Input �les typically
have the extension .proto. Listing 7 provides an
example message.

syntax = "proto3 " ;

message person {
s t r i n g name = 1 ;
int32 age = 2 ;

}

Listing 2: Message using Protocol Bu�ers IDL.

Each invocation of the tool is made against one or
more .proto �les and must supply command line
parameters to determine the set of programming
languages to generate. Other than the ability of
calling external binaries, the compiler makes very
few demands from the build system � thus sup-
porting all modern build systems.
Users are responsible for creating build system

rules to transform the .proto �les, as well as rules
to compile the generated code into object �les as
required by the target language. However, the

8

tool supports the automated generation of rules for
make-like build systems. Finally, generated code
depends on handcrafted libraries supplied by the
Protocol Bu�ers project, so these must be installed
and made visible to the build system.

5.2.2 DSL

As described previously, .proto �les must conform
to the Protocol Bu�ers Language [Goo18b], cur-
rently at version 3. The language has a C-like syn-
tax, and provides a set of constructs from the do-
main of message serialisation such as:

� Message de�nition;

� Ordering of �elds in a message;

� Optional, mandatory and reserved �elds;

� Primitive types with well-speci�ed machine-
level representation, independent of target
platform.

The parsing and validation of .proto �les is per-
formed by protoc as part of the generation process.

5.2.3 Variability Strategy

Outside of the structural variability enabled by the
creative construction nature of the Protocol Bu�ers
Language, protoc has very limited support for vari-
ability. All of its parameters are global, and fall
under the following categories:

� Output: Determines if an output language
is enabled, the location for its �les, whether
to concatenate output �les, user-created plug-
ins to add support for additional programming
languages, etc.

� Tracing and Debugging: Format of error
messages, list available free �elds, etc.

5.2.4 Evaluation

The protoc compiler can be characterised across
the following dimensions.

� Usability: The Protocol Bu�ers DSL is very
similar to typical programming language con-
structs and other Interface Description Lan-
guages (IDLs) such as CORBA, which greatly

facilitates learning. The Protocol Bu�ers com-
piler has a very simple command line interface,
allowing users to generate code with minimal
knowledge of the infrastructure.

� Tooling Integration: The compiler is de-
signed to �t in the existing build systems and
development environments, needing very little
support in order to do so. It also behaves in
a fashion similar to other development tools
such as linkers and compilers, facilitating inte-
gration.

� Code Integration: protoc uses a forward-
engineering approach, so users are not allowed
to modify generated code. The generated code
is expected to be integrated with the remain-
ing code for the system via rules in the build
system.

� Variability: The constrained variability ap-
proach taken by protoc reduces the learning
curve, but as a consequence it is not possible to
customise generated code to handle speci�c use
cases such as adding epilogues or prologues,
changing namespaces, etc.

� Dependencies: Generated code requires Pro-
tocol Bu�ers speci�c libraries. These help keep
generated code small, but demand additional
setup from the build system in terms of locat-
ing dependencies and additional artefacts to
deploy.

� Generated Code: Upon inspection, we
found that the quality of the generated code
for C++ is not at the same level as the hand-
crafted code in supporting libraries. Neverthe-
less, the code is simple enough to enable users
to debug it.

� Error Reporting: protoc provides the abil-
ity to report errors using either GCC or Mi-
crosoft's Visual Studio formats, thus integrat-
ing with two of the major development envi-
ronments for C++. However, other program-
ming languages may have di�erent notations
for the reporting of errors, and thus do not
bene�t from the same level of integration.

9

5.3 SWIG

Simpli�ed Wrapper and Interface Generator
(SWIG)13 reads C and C++ code and generates the
infrastructure necessary to allow calling the origi-
nal code from a di�erent programming language.
SWIG originally targeted scripting languages but
over time it has been extended to support compiled
languages as well such as Java and C#.

Table 3: Fact sheet for SWIG.
Domain Language interoperability
First Release v1.0 September 1996
Latest Release v3.0.12 January 2017
Total Releases 68
Latest Commit June 2018
License GPL
Input C/C++, SWIG interface
Output Multiple languages

The SWIG website states that

[i]t works by taking the declarations found
in C/C++ header �les and using them to
generate the wrapper code that scripting
languages need to access the underlying
C/C++ code. In addition, SWIG pro-
vides a variety of customization features
that let you tailor the wrapping process
to suit your application. [Pro18]

An important area where SWIG has limitations
is in the parsing of C++ code, as it uses an internal
C/C++ parser. Due to the complexity of the C++
language, as well as its fast pace of change, the
parser is not able to parse all compliant C++ code
� particularly code that makes use of features in
the latest standards, e.g. C++ 14, C++ 17.

5.3.1 Usage

Whilst SWIG is able to parse C and C++ code
directly, the recommended usage is to create a sep-
arate SWIG interface �le that explicitly de�nes the
Application Programming Interface (API) to ex-
port. This is done so as to avoid exporting types
inadvertently and also to stop polluting general
source code with SWIG annotations. Interface �les

13http://www.swig.org

typically have a .i or .swg extension and con-
tain C/C++ code interspersed with SWIG inter-
face commands, as exempli�ed in Listing 14.

%module people
%{
#include <str ing >
%}

c lass person {
public :

person () {}

public :
std : : s t r i n g name_;
unsigned int age_ ;

} ;

Listing 3: C++ class with SWIG macros.

Once de�ned, the interface �les can be processed
by the command line tool swig. Users can choose
to generate wrappers for one or more languages by
supplying command line arguments.
SWIG does not make any demands on the build

tool, other than the ability to call external pro-
cesses, so it integrates with most build systems. It
is the responsibility of the user to create appropri-
ate build system rules to generate the wrapper code
and to build the shared objects that ultimately will
be used in the target language.

5.3.2 DSL

The DSL used by SWIG in its interface �les is based
on the C pre-processor, itself a simple text process-
ing language. The SWIG pre-processor adds its
own set of commands, escaped with %. The main
objective of the SWIG commands is to allow a �ne
grained control over the exported API.
The following is a sample of the available com-

mands:

� %include: Includes a �le into the interface.
The original pre-processor #include is ignored
to avoid including �les into the API unneces-
sarily such as library headers and other third
party code.

� %import: Includes a �le to satisfy dependen-
cies, but does not add its contents to the ex-
ported interface.

� %define, %inline, %enddef: Provides a
more convenient interface for macro de�nition
at the SWIG level.

� %extend: Extends an existing class interface
with additional code.

10

http://www.swig.org

� %typemap: Provides a way to override the de-
fault mapping of types.

� %module: De�nes a containing module for the
exported code. The notion of "module" is
mapped to the adequate construct in the tar-
get language such as namespace in C# and
package in Java.

The pre-processor commands have evolved over
the years to cater for a large range of use cases in
interoperability, and thus addresses the majority of
requirements.

5.3.3 Variability Strategy

The SWIG DSL produces transformations on the
original C and C++ source code, and thus it is
a creative construction DSL focused on structural
variability.
The remaining support for variability in the swig

tool is very limited, and falls under the following
categories:

� Input: Add support for C++ (only C is sup-
ported by default), change the behaviour of the
C pre-processor, etc.

� Output: Con�guration of the languages to
generate, directories in which to output the
�les, etc.

� Tracing and Debugging: Dump informa-
tion on the API to generate, dump symbol
tables, dump type mapping, show code after
pre-processing, set the warning level, etc.

5.3.4 Evaluation

SWIG can be characterised across the following di-
mensions.

� Usability: The swig tool itself requires a
shallow learning curve, since it uses a com-
mand line interface similar to that of a com-
piler and has a small the number of con�gura-
tion options � most of which are common to
a compiler. However, the SWIG DSL does not
share these properties. SWIG interface �les
� with its two-stage pre-processing pipeline
and two sets of pre-processing commands �

can become very large and complex and re-
quire developers that are knowledgeable about
SWIG.

� Tooling Integration: The swig tool is de-
signed to �t in the existing build systems
and development environments by following a
work�ow similar to a compiler.

� Code Integration: SWIG uses a forward en-
gineering approach, thus generated code is not
modi�able. Users are expected to design build
system rules to build and link the generated
code in the same manner as for other hand-
crafted code.

� Variability: On one hand, the structural vari-
ability promoted by the SWIG DSL makes the
tool highly con�gurable and able to handle a
variety of very complex use cases. On the other
hand, outside of simple scenarios, SWIG has a
very steep learning curve due to this support
for variability.

� Dependencies: Generated code does not
have any third-party dependencies, which
makes it easier to integrate.

� Generated Code: SWIG generates thou-
sands of lines of C++ code even for trivial ex-
amples, making it di�cult to understand. The
authors of SWIG state this clearly in the gen-
erated code via the following comment: "This
�le is not intended to be easily readable and
contains a number of coding conventions de-
signed to improve portability and e�ciency."
Unsurprisingly, the quality of generated code
is lower than handcrafted code, but it is well-
structured and simple enough to make debug-
ging possible.

� Error Reporting: The swig tool reports er-
rors using the GCC output formatting, which
makes integration with environments using
GCC straightforward. However, it does not
support Microsoft's Visual Studio format.

11

5.4 XSD

XSD14 is a tool that receives an XML schema15

as input and outputs C++ classes representing the
entities in the schema, as well as XML serialisation
code for those classes.
As per the project's website,

the biggest advantage of this approach is
that you can "[. . .] access the data stored
in XML using types and functions that
semantically correspond to your applica-
tion domain rather that dealing with the
intricacies of reading and writing XML.
[Syn18c]

Table 4: Fact sheet for the XSD tool.
Domain XML mapping
First Release v1.0, August 2005
Latest Release v4.0, September 2014
Total Releases 19
Latest Commit November 2017
License GPL, NCUEL (proprietary)
Input XML Schema
Output C++

XSD provides two backends for the generated
code: parser and tree. The parser backend uses
streaming for document processing, which is more
suitable when handling large documents, or for sim-
pler access patterns. The tree backend loads docu-
ments in its entirety to an in-memory tree, and is
designed for for smaller documents and more com-
plex access patterns. Backends are selectable via
command line options.

5.4.1 Usage

Users create XML schemas using their XML editing
tool of choice. Once de�ned, the XML schema is
supplied to the command line tool xsd-4.16 Listing
13 provides an example XML schema that can be
used as input to XSD.

14https://www.codesynthesis.com/products/xsd
15XML schemas are also known as XSDs, giving the name

to the tool. However, in the interest of clarity, we will only
refer to them as XML schemas in this paper.

16The tool name may vary depending on your installation.

<?xml version=" 1.0 "?>
<xs:schema xmlns:xs=
" ht tp : //www.w3 . org /2001/XMLSchema">
<xs:complexType name="person ">
<x s : a t t r i b u t e

name="name"
type=" x s : s t r i n g "/>

<x s : a t t r i b u t e
name="age"
type=" x s : i n t e g e r "/>

</xs:complexType>
</xs:schema>

Listing 4: XML Schema input for XSD tool.

The command line tool generates the C++
classes and the XML mapping code; the user must
then integrate the generated code into the build
system by creating the required build system rules.
However, if the build system is a variant of make,
the tool can also be used to code generate the rules.
In addition, the generated code depends on hand-

crafted libraries, so the onus is on the user to install
these and to make them visible to the build system.

5.4.2 DSL

XML is a mature, standardised language for de-
scribing structured data [W3C08]. There are a va-
riety of tools for editing and processing XML doc-
uments and schemas. Due to this, the DSL is com-
pletely decoupled from the XSD tool.

5.4.3 Variability Strategy

In addition to the structural variability enabled by
XML schemas, the XSD tool has a number of pa-
rameters to con�gure the generation of code. These
can be classi�ed into the following broad categories:

� Backend: As discussed above, the type of
XML processing to generate code for. Some
of the options are only applicable to a speci�c
backend.

� Output: Directory in which to place the out-
put, whether to generate one �le per type, etc.

� Mapping Customisation: Override the de-
fault type mapping between C++ types and
XML types.

� Customisation of Generated Code:
Which C++ standard to target, what char-
acter encoding to use, whether to inline
functions, override �lenames and extensions,
modify include paths with regular expressions,
header guards, etc.

12

https://www.codesynthesis.com/products/xsd

� Build System: Options related to the gen-
eration of build system targets for generated
code.

� Tracing and Debugging: Limit generation
to a given number of lines of code, tracing of
regular expressions, etc.

Whilst there are a large number of command line
parameters, the XSD tool is able to generate code
with very little con�guration supplied, due to the
use of defaults. The only mandatory parameter is
the backend.

5.4.4 Evaluation

The XSD tool can be characterised across the fol-
lowing dimensions.

� Usability: The command line interface pro-
vided by the tool is similar to other command
line tools such as compilers, thus lowering the
learning curve for new users. In addition, users
can use their XML editing tool of choice to cre-
ate and validate the input XML schema.

� Tooling Integration: The tool integrates
with any modern build system and develop-
ment environment that supports calling exter-
nal tools.

� Code Integration: The XSD tool uses a for-
ward engineering approach, meaning that gen-
erated code should not be modi�ed and is sep-
arated from handcrafted code. Changes are
made to the XML schema and code is regen-
erated.

� Variability: Outside of the creative construc-
tion of XML schemas, the XSD tool supports a
high-degree of variability which enables users
to customise the generated code for their par-
ticular use case. However, due to defaulting,
the tool requires very little customisation in or-
der to generate code, resulting in a low barrier
of entry for new users.

� Dependencies: By requiring the installation
of dependencies in order to build the gener-
ated code, the XSD tool made the setup pro-
cess more complex than it would have other-
wise been without dependencies.

� Generated Code: The code generated by the
XSD tool is of a standard comparable to the
handcrafted code in their core libraries. It is
well-commented and succinct, largely due to
its reliance on external libraries.

� Error Reporting: Errors are reported using
the GCC formatting, enabling an easy integra-
tion to environments which use this compiler.
However, given that the input is in standard
XML, users can ensure the document is valid
via their XML tool of choice before code gen-
eration.

6 Best Practices and Lessons

Learned

Whilst covering four di�erent domains, all the four
tools under analysis nevertheless presented a num-
ber of commonalities, which can be broadly cate-
gorised under the following themes.

6.1 Low Barrier to Entry

In all four cases, the tooling presented a low barrier
to entry to new users by trying to keep complexity
low. This results emerges from a number of deci-
sions:

� Simple Work�ow: All tools under analysis
had a very similar work�ow, roughly mimick-
ing a typical C++ compiler. The work�ow
is kept simple due to a reliance on forward-
engineering, therefore bypassing complex inte-
gration issues with handcrafted code.17

� Ease of Integration: The surveyed tools
make very little demands in terms of integra-
tion in a wider environment, and thus can be
used by any build system. The ease of integra-
tion extends to error reporting, though here
most tools only supported the GCC error for-
matting. In addition, users are not required
to change their project structure in order to
cater for generated code, which further eases
integration. In some cases its even possible
to make generated code look like handcrafted

17For a good description of integration issues see Greifen-
berg et al. [Gre+15].

13

code by adding epilogues and prologues � use-
ful for comments, licences and related boiler-
plate.

� Ease of Use: All tools can be used with a
very small number of mandatory con�guration
parameters, making it easy to get started. In
general, tools required minimal understanding
of the underlying domain of the tool and no
experience with the modeling and code gener-
ation domains.

� Ease of Troubleshooting: Whilst the qual-
ity of generated code varied from tool to tool,
in general all of them produced code that
is suitable for debugging. A subset of the
tools produced high-quality code, comparable
to handcrafted code.

6.2 Input Decoupling

All surveyed tools have a command line interface
with textual input, which is a characteristic of spe-
cial purpose code generators. This architecture has
a number of advantages:

� The audience of the tool becomes more fo-
cused. The code generator can be speci�cally
designed for software engineers without any
need to accommodate other types of users.

� Users need not change their development envi-
ronment to manage the input �les � though,
if the input is a DSL speci�c to the tool, there
may be a need for additional plugins in order
to obtain a rich editing environment.

� Input �les can reuse the same VCS as source
code, the same process of code reviews, etc.
From a process perspective, they are treated
like ordinary source code.

� If the input is de�ned by an external speci-
�cation such as XML, users bene�t from the
existing tooling ecosystem.

� Textual input does not preclude graphical edit-
ing; external tools can provide graphical ma-
nipulation, as long as they are able to generate
the textual input. However, this is not a code
generator concern.

� Input �les can be pre-processed by other tools,
including pipelines via the chaining of tools.
For example, post-processing scripts can be
applied for pretty-printing, �ltering, etc. As
before, these are not a code generator concern,
which makes the process �exible.

Most of these items are corollaries of the Unix
Philosophy, which McIlroy succintly describes as
follows:

Write programs that do one thing and
do it well. Write programs to work to-
gether. Write programs to handle text
streams, because that is a universal inter-
face. [Sal94]

6.3 Incremental Complexity

Most tools require very little theoretical under-
standing when getting started. A subset of the
surveyed tools have a large variability surface that
can be deployed by advanced users to handle spe-
ci�c use cases, but which is hidden from beginners
and intermediate users via defaulting mechanisms.
Users can explore the surface incrementally, as they
become pro�cient with the tool. However, in some
cases such as SWIG, advanced use cases result in
very complex input �les.

7 Conclusion

The present study performed a survey of four spe-
cial purpose code generators across four distinct do-
mains, and extracted a set of best practices and
lessons learned from their approach. The conclu-
sions of this work take the form of recommenda-
tions, which should be considered only when not
making use of full code generation.
The recommendations are as follows:

� MDE tools should decouple the modeling func-
tionality from code generation, and consider
using a textual DSL to communicate between
modeling and code generation.

� The code generator should be a command line
tool with an interface similar to that of a com-
piler � including error reporting � in order
to integrate seamlessly with most build tools

14

and to better focus on its audience � software
engineers.

With regards to future work, an interesting di-
rection of research may be to perform a broader
but shallower survey, spanning across a large num-
ber of special purpose code generators, with several
tools per domain and covering multiple program-
ming languages. In addition, the categories used
for tool evaluation may also provide material for
an extension of Whittle et al.'s "Taxonomy of MDE
Tool Considerations" [Whi+17].

References

[And+14] Luigi Andolfato et al. �Experiences in
Applying Model Driven Engineering
to the Telescope and Instrument Con-
trol System Domain�. In: International
Conference on Model Driven Engineer-
ing Languages and Systems. Springer.
2014, pp. 403�419 (cit. on p. 2).

[BCW12] Marco Brambilla, Jordi Cabot, and
Manuel Wimmer. Model-driven soft-
ware engineering in practice. Vol. 1. 1.
Morgan & Claypool Publishers, 2012,
pp. 1�182 (cit. on pp. 1, 3).

[CH03] Krzysztof Czarnecki and Simon Helsen.
�Classi�cation of model transforma-
tion approaches�. In: Proceedings of the
2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model
Driven Architecture. Vol. 45. 3. USA.
2003, pp. 1�17 (cit. on p. 3).

[CH06] Krzysztof Czarnecki and Simon Helsen.
�Feature-based survey of model trans-
formation approaches�. In: IBM Sys-
tems Journal 45.3 (2006), pp. 621�645
(cit. on pp. 1, 3).

[EA+15] Yosser El Ahmar et al. �Enhancing
the communication value of UML
models with graphical layers�. In:
Model Driven Engineering Lan-
guages and Systems (MODELS),
2015 ACM/IEEE 18th International
Conference on. IEEE. 2015, pp. 64�69
(cit. on p. 1).

[GV07] Iris Groher and Markus Voelter. �Ex-
pressing feature-based variability in
structural models�. In: In Workshop
on Managing Variability for Software
Product Lines. Citeseer. 2007 (cit. on
pp. 3, 4).

[GV09] Iris Groher and Markus Voelter.
�Aspect-oriented model-driven soft-
ware product line engineering�. In:
Transactions on aspect-oriented soft-
ware development VI. Springer, 2009,
pp. 111�152 (cit. on p. 4).

[Goo18a] Google. Protocol Bu�er Basics: Java.
2018. url: https : / / developers .

google . com / protocol - buffers /

docs / javatutorial (visited on
05/22/2018) (cit. on p. 3).

[Goo18b] Google. Protocol Bu�ers Language
Guide (proto3). 2018. url: https://
developers.google.com/protocol-

buffers / docs / proto3 (visited on
05/22/2018) (cit. on pp. 8, 9).

[Gre+15] Timo Greifenberg et al. �Integration
of handwritten and generated object-
oriented code�. In: International Con-
ference on Model-Driven Engineering
and Software Development. Springer.
2015, pp. 112�132 (cit. on p. 13).

[Hut+11] John Hutchinson et al. �Empirical as-
sessment of MDE in industry�. In: Soft-
ware Engineering (ICSE), 2011 33rd
International Conference on. IEEE.
2011, pp. 471�480 (cit. on p. 1).

[JMS08] Sven Jörges, Tiziana Margaria, and
Bernhard Ste�en. �Genesys: service-
oriented construction of property con-
form code generators�. In: Innovations
in Systems and Software Engineering
4.4 (2008), pp. 361�384 (cit. on p. 1).

[Mus+14] Gunter Mussbacher et al. �The rel-
evance of model-driven engineering
thirty years from now�. In: Interna-
tional Conference on Model Driven
Engineering Languages and Systems.
Springer. 2014, pp. 183�200 (cit. on
pp. 1, 2).

15

https://developers.google.com/protocol-buffers/docs/javatutorial
https://developers.google.com/protocol-buffers/docs/javatutorial
https://developers.google.com/protocol-buffers/docs/javatutorial
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3

[PV12] Richard F Paige and Dániel Varró.
�Lessons learned from building model-
driven development tools�. In: Soft-
ware & Systems Modeling 11.4 (2012),
pp. 527�539 (cit. on p. 2).

[Par85] David Lorge Parnas. �Software aspects
of strategic defense systems�. In: Com-
munications of the ACM 28.12 (1985),
pp. 1326�1335 (cit. on p. 2).

[Pro18] The SWIG Project. SWIG - Execu-
tive Summary. 2018. url: http : / /

www.swig.org/exec.html (visited on
06/06/2018) (cit. on p. 10).

[Ros+12] Louis M Rose et al. �A feature model
for model-to-text transformation lan-
guages�. In:Modeling in Software Engi-
neering (MISE), 2012 ICSE Workshop
on. IEEE. 2012, pp. 57�63 (cit. on p. 3).

[SKSG07] Dov Shirtz, Michael Kazakov, and
Yael Shaham-Gafni. �Adopting
model driven development in a large
�nancial organization�. In: Euro-
pean Conference on Model Driven
Architecture-Foundations and Appli-
cations. Springer. 2007, pp. 172�183
(cit. on p. 2).

[Sal94] Peter H Salus. A quarter century of
UNIX. Addison-Wesley Reading, MA,
1994 (cit. on p. 14).

[Stö14] Harald Störrle. �On the impact of lay-
out quality to understanding UML di-
agrams: size matters�. In: International
Conference on Model Driven Engineer-
ing Languages and Systems. Springer.
2014, pp. 518�534 (cit. on p. 1).

[Syn18a] Code Synthesis. C++ Object Persis-
tence with ODB. 2018. url: https://
www.codesynthesis.com/products/

odb / doc / manual . xhtml (visited on
06/04/2018) (cit. on p. 7).

[Syn18b] Code Synthesis. ODB Website. 2018.
url: https://www.codesynthesis.
com / products / odb (visited on
06/08/2018) (cit. on p. 6).

[Syn18c] Code Synthesis. XSD Website. 2018.
url: https://www.codesynthesis.
com / products / xsd (visited on
06/08/2018) (cit. on p. 12).

[Völ09] Markus Völter. �MD* Best Practices�.
In: Journal of Object Technology 8
(2009), pp. 79�102 (cit. on pp. 1, 3).

[Völ+13] Markus Völter et al.Model-driven soft-
ware development: technology, engi-
neering, management. John Wiley &
Sons, 2013 (cit. on pp. 1, 3).

[W3C08] W3C. Extensible Markup Language
(XML). 2008. url: https://www.w3.
org/TR/xml/ (visited on 06/06/2018)
(cit. on p. 12).

[Whi+17] Jon Whittle et al. �A taxonomy of tool-
related issues a�ecting the adoption
of model-driven engineering�. In: Soft-
ware & Systems Modeling 16.2 (2017),
pp. 313�331 (cit. on pp. 1, 2, 5, 15).

16

http://www.swig.org/exec.html
http://www.swig.org/exec.html
https://www.codesynthesis.com/products/odb/doc/manual.xhtml
https://www.codesynthesis.com/products/odb/doc/manual.xhtml
https://www.codesynthesis.com/products/odb/doc/manual.xhtml
https://www.codesynthesis.com/products/odb
https://www.codesynthesis.com/products/odb
https://www.codesynthesis.com/products/xsd
https://www.codesynthesis.com/products/xsd
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/

	Introduction
	Related Work
	Context
	Narrow Focus
	Constrained Variability
	Black Box
	Audience
	Commonalities

	Study Method
	Selection Criteria
	Tool Description
	Evaluation
	Limitations

	Survey
	ODB
	Usage
	DSL
	Variability Strategy
	Evaluation

	Protocol Buffers
	Usage
	DSL
	Variability Strategy
	Evaluation

	SWIG
	Usage
	DSL
	Variability Strategy
	Evaluation

	XSD
	Usage
	DSL
	Variability Strategy
	Evaluation

	Best Practices and Lessons Learned
	Low Barrier to Entry
	Input Decoupling
	Incremental Complexity

	Conclusion

