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Abstract—Artificial Neural Network (ANN) has been exten-
sively applied to microwave device modeling, design and simula-
tions. In the present paper, the prediction of concrete embedded
antenna performance using ANN is presented. The ANN model
takes antenna embedded depth and concrete dielectric constant
as inputs and gives antenna radiation efficiency, gain and input
impedance as outputs. The Particle Swarm Optimisation (PSO)
is employed to search the global optimal weights and bias for
ANN, then Bayesian Regularisation (BR) is used to train the
ANN for overcoming the overfitting issue. It is found that the
PSO computation iteration for optimal network weights and
bias searching is less than gradient descent algorithm. A PSO-
BR neural network (PSO-BRNN) and back-propagation neural
network (BPNN) are trained to compute and predict the antenna
performance. The PSO-BRNN performance is better than BPNN
in terms of accuracy and generalisation.

Index Terms—Artificial neural network, Bayesian Regularisa-
tion, concrete embedded antenna, particle swarm optimisation.

I. INTRODUCTION

Mobile operators have experienced an exponential traffic
growth in their network in the last decade. Ultra dense cell
deployment is considered as a promising way to fulfil the
large amount of traffic demand that takes place indoors, and
the dense deployment of small cells in buildings facilitates
the improvement of throughput in the next generation of
cellular communication [1]. However, the physical dimension
of indoor small cells can lead to the extra space occupation
and disfunction of the building [2]. A feasible solution for
these issues is to integrate antennas with the building materials,
such as embedding antennas into concrete walls. In fact, due
to the strong coupling between antennas and concrete, it is
challenging to calculate and predict the antenna performance
once antennas are embedded. The numerical method based on
full-wave simulations (e.g. method of moments, finite element
analysis) can provide rigorous solution to the antenna perfor-
mance in concrete wall. However, the full-wave simulations
are computation-intensive, and requiring a large amount of
computation time and computer memory. As a result, time-
saving and fast surrogate models are required to address high-
dimensional and nonlinear electromagnetic problems.

Artificial neural network (ANN) has already been recog-
nised as a feasible tool for microwave modelling and sim-
ulation in recent years [3], which can learn and solve the
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Fig. 1. Antenna model geometry. The parameters of antenna unit are A=60
mm, W=33.85 mm, L=28.39 mm, x=8 mm, y=2.69 mm, w=3.12 mm, and
l=23.805 mm

complex and nonlinear problems in a relative short time. To
a certain extent, ANN could be used as a surrogate model
that substitutes the computationally intensive EM simulation
solver. By far, ANN have been successfully applied to various
antenna applications, such as antenna optimisation [4][5] and
antenna analysis and synthesis [6]. In [7], the ANN based
models were presented to compute the resonant frequency
of antenna with lower error. Generally, the gradient based
training algorithm such as back-propagation (BP) algorithm is
used in ANN training process. However, the slow convergence
ratio and local optimum issues are the main drawbacks of
gradient based algorithm [8]. As a result, the optimisation
algorithm such as particle swarm optimisation (PSO) [9] and
genetic algorithm (GA) [10] are combined with ANN and can
significantly improve the performance of ANN. In addition,
the PSO could also be applied to optimise the topology and
parameters in the ANN [8]. On the other hand, the overfitting
issue and generalisation capability are main concerns for ANN
model. In order to improve the accuracy of ANN, Early-
Stopping strategy and Bayesian Regularisation (BR) [11] are
introduced to address these issues, which prevents the over-
training occurring and effectively improves the generalisation
capability of network.

In the present work, ANN is utilised to compute and predict
the performance of a concrete embedded antenna for indoor



TABLE I
ELECTRICAL PROPERTIES AND THICKNESS FOR EACH LAYER
Layer Material εr tanσ Thickness (mm)

UF Roger 3003 3 0.001 d1 = 0.25mm
HC Air 1 0 d2 = 10mm

Substrate Roger 5880 2.2 0.0009 d3 = 1mm
LF Roger 3003 3 0.001 d4 = 0.25mm

communications. A hybrid ANN model with PSO, BP and
Bayesian Regularisation (PSO-BRNN) and a classic back-
propagation neural network (BPNN) are developed for the
computation and prediction. The performance of PSO-BRNN
in terms of accuracy and computational savings are compared
with BPNN, and the generalisation capabilities of PSO-BRNN
and BPNN are tested.

II. ANTENNA SYSTEM MODEL

An structurally integrated antenna with multi-layer configu-
ration that proposed in [12] is selected because of its excellent
mechanical and electrical performances. The antenna is fully
embedded in a solid concrete slab as shown in Fig. 1, and the
concrete has a dimension of 1000mm× 1000mm× 200mm.
The embedding depth d of antenna is measured as the distance
between the top concrete-air interface and the top surface
of the antenna. The effect embedding depth d and concrete
dielectric constant εr on antenna performance are going to
be investigated, thus other electrical property such as loss
tangent is fixed to 0.03 (tan δ = 0.03). The proposed antenna
is optimised to operate at 3.5 GHz, and it is sandwiched
among lower facesheet (LF), a honeycomb (HC) structure and
an upper facesheet (UF) for obtaining better electrical and
mechanical characteristics in the concrete wall, the electrical
properties and thickness of each layer are listed in Table I.

III. ANN ARCHITECTURE AND TRAINING

A. ANN construction and data preparing

Neural network is a powerful tool to map the nonlinear
and complicated relationship between inputs and outputs. In
the present work, ANN model is used for the prediction of
proposed antenna performance while embedded in the concrete
wall. For the concerned input variables, the antenna embedding
depth d and the concrete dielectric constant εr are selected,
while the antenna’s radiation efficiency ηrad, gain G, input
resistance Rin and input reactance Xin are considered as
outputs. Therefore, the suggested network architecture consists
of one hidden layer, 2 input neurons and 4 output neurons as
shown in Fig. 2. The hidden layer consists of 75 neurons which
are fully connected to the output layer that gives the desired
values of antenna performance. The activation function used in
hidden layer is tangent sigmoid, while simple linear function
is used in the output layer.

Given a data set D = [xj , yj ]T consists of inputs vector xj
and outputs vector yj , a supervised nonlinear regression task
is going to be solved by ANN. The relationship between the
inputs vector and the outputs vector could be written as:

yj = f(xj), (1)

…
 …

d

εr

ηrad

G

Rin

Xin

Input

Output
Bias

Bias

Hidden layer

Fig. 2. Architecture of neural network model

where the corresponding inputs and outputs of ANN model
are:

xj = [d, εr]
T , (2)

yj = [ηrad, G,Rin, Xin]
T . (3)

The range of inputs are 0.001 m to 0.189 m with step width
of 0.002 m for the embedding depth d, and 4 to 9 with step
width of 1 for the concrete dielectric constant εr. The data set
D is generated using Computer Simulation Technology (CST)
Studio. The length of D is 570, all the obtained data have
been normalised between 0 and 1 for avoiding the error caused
by different order of magnitude. The data set D is randomly
divided as training set and testing set, wherein, 85% data are
classified as training set and the rest of 15% are testing set.
All the optimisations and ANN trainings are performed on an
Intel Xeon W2135 3.70 GHz machine with 32 GB RAM.

B. PSO and ANN

The conventional ANN utilises the gradient based method to
train generally, and the convergence of ANN strongly depends
on the initial guess of weights and bias. BP algorithm is a well
known training method for neural networks, it is based on the
gradient descent algorithm. Hence, the initial point of weights
and bias is essential for the BP training, if the weights and
bias are not initialised properly, the results are likely to get
stuck in a local optimum and consequently the solution is not
the best.

PSO is a random search algorithm based on group cooper-
ation, which is developed by emulating the foraging behavior
of birds. It is an effective evolutionary algorithm that can find
the global maximum or minimum of target function. In this
study, the mean square error of neural network is taken as the
evaluated fitness in PSO, which is calculated as:

E =
1

N

N∑
1

k∑
1

(ŷj − yj)
2, (4)

where ŷj is the network outputs vector, yj is the outputs vector
of data set D, N is the total number of data, k is the total
number of output. In the present work, the N and k are 570
and 4, respectively.

(4) is the target function that needs to be optimised in PSO.
Since the neural network learning process is mainly to update
the weights and bias, thus the location of the particles in PSO
are corresponding to all weights and bias in the network. E



TABLE II
PSO PARAMETERS

Parameter value
Number of particle 500
Position boundry [-1,1]
Velocity boundry [-0.8,0.8]

inertial weight [0.2,1]
learning factor c1 2
learning factor c2 2

Maximum iteration 700

is taken as the fitness function of the PSO algorithm, and all
the weights and bias are optimised by PSO algorithm in order
to obtain the global minimum of the fitness function. In each
iteration, the fitness function of each particle is calculated,
and the corresponding position Pi and velocity Vi are updated
according to the calculated value of fitness function, personal
best pbest and global best gbest, and the updated regulations
are:

Vi = ωVi + c1φ1(pbest − Pi) + c2φ2(gbest − Pi), (5)

Pi = Pi + Vi, (6)

where c1 and c2 are acceleration coefficients, φ1 and φ2 are
random and positive number with uniform distribution ranged
between 0 and 1, pbest is the personal best position of particle,
and gbest is the global optimum position of particle. ω is the
inertial weight, the linear decline weight (LDW) strategy is
used to manipulate ω for the optimum solution search. The
larger ω facilitates global searching, while the smaller ω is
beneficial to precise local searching. The LDW strategy is
expressed as:

ω = ωmax −
t× (ωmax − ωmin)

tmax
, (7)

where ωmax is the maximum inertial weight, ωmin is the
minimum inertial weight, t is current iteration, and tmax is
the maximum iteration of PSO.

At the beginning, the ANN is building with specific topol-
ogy, thus the dimension of particle can be determined. The
dimension of each particle equals to the total number of
weights and bias in the network, in this work we implement a
PSO to optimise 529 weights and bias in total. 500 particles are
employed and the computation iterates 700 times. Firstly, the
number of particle is selected, then the particle positions and
velocities are randomly initialised, each particle i is charac-
terised by its position vectors Xi and velocity Vi. The position
boundry [−Xmax, Xmax], velocity boundry [−Vmax, Vmax],
inertial weight range [ωmin, ωmax], acceleration coefficients
c1 and c2, and the maximum iteration are defined, and these
parameters are presented in Table II.

In each iteration of PSO, the value of fitness function of
individual particle is calculated, and the velocity and position
of all particles is updated using (5) and (6). Once the op-
timisation criteria meets, the PSO iteration terminates. gbest
stores the global optimum solution for the network weights
and bias, then the gbest is reshaped and assigned according to
the topology of network which is prepared to be trained.

StartCode weights and bias as 
particles

Determine the number of 
initial weights and bias

Initialise weights and bias in 
ANN

ANN training error as fitness 
value

Find pbest and gbest

Update the particle velocities 
and positions using (5) (6)

Calculate fitness of particles 
using ANN feedforward 

computation 

Update pbest and gbest

Minimum 
fitness?

No

Initialise particles with 
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Calculate the training 
errors ED
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ANN feedforward 
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End
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Update ANN weights and 
bias

Calculate MSE of weights Ew

Fig. 3. The training process of PSO-BRNN

C. Bayesian regularisation of ANN

The Bayesian regularisation (BR) is used to mitigate the
potential overfitting problem that may occurs in ANN training
process. The overfitting and overtraining can lead to the loss
of regression accuracy and generalisation of the network. For
the purpose of overcoming overfitting issue, the BR adds an
addition regularisation term to the object function as:

F = βED + αEw, (8)

where the F is the objective fucntion, ED is the sum of
squared errors of network, Eω = 1

m

∑m
i=1 w

2
i is the sum

of squared errors of the weights in network, m is the total
number of weights. α and β are the hyperparameters that need
to be estimated in the training process. Network weights ω are
regarded as random variables and the density function could
be written as:

P (w|D,α, β,M) =
P (D|w, β,M)P (w|α,M)

P (D|α, β,M)
, (9)

where D represents data set, and M is the ANN topol-
ogy; P (w|D,α, β,M) is the posterior distribution of ANN
weights, P (D|w, β,M) is the likelihood function represents
the training data occurrence probability with given weights,
P (w|α,M) is the prior density of weights before data is fed.
The BR algorithm is explained in detail in [10]. In general, all
the noise in data is assumed to be Gaussian additive noise, with
this assumption the probability density function of weights
in (9) could be estimated. Then the hyperparameters α and
β are determined by solving the Hessian matrix of F at the
minimum point. Gauss-Newton approximation is used to solve
Hessian matrix while the Levenburg-Marquardt (LM) training
algorithm is used to search the minimum point, the training
process terminates once the training goal is met. The flow chart
summarizing major step of PSO-BRNN training is shown in
Fig. 3.
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TABLE III
TRAINING METRICS OF THE DIFFERENT ALGORITHM

Algorithm MSE MAPE (%) Iteration Time (s)
BPNN 0.15 3.92 1984 270

PSO-BRNN 0.0002 1.79 1076 151

IV. RESULT AND DISCUSSION

PSO are used for ANN learning process, weights and bias
are adjusted in order to reach the minimum of the error
between ANN estimation and actual values. The training effect
of PSO is compared with the BP algorithm, the comparisons
of convergence and regression accuracy are exhibited. Fig. 4
presents the comparison of PSO and BP algorithm in terms
of convergence rate. It can be observed that PSO performs
better than the BP algorithm. PSO converges faster than
BP algorithm, and the iteration is terminated with a lower
mean square error (MSE) and mean absolute percentage error
(MAPE) which is calculated in (10). The training metrics such
as performance, accuracy and training time are illustrated in
Table III. It apparently shows that the MSE of PSO-BRNN
is much lower than the classic BPNN, with 0.0002 to 0.15,
as well as the error ratio, 1.79% to 3.92%. In addition, by
applying the PSO and Bayesian regularisation, the iteration
times of convergence is lower than BPNN, thus result in the
reduction of training time of PSO-BRNN (151 seconds) than
BPNN (270 seconds).

MAPE =
1

N

N∑
1

k∑
1

|
ŷj − yj

yj
| × 100%, (10)

Fig. 5 presents the antenna performance prediction results
of PSO-BRNN and BPNN with the actual value as reference.
It can be observed that the learning accuracy of PSO-BRNN is
better than the BPNN, the BPNN cannot map the fluctuation
as the embedded depth increases. This problem is caused
by the local minima issue, once a network is trained with
gradient descent based algorithm, the local minima is likely
to be considered as the best result by network. Therefore the
error between network estimation and actual value cannot be
further minimised, then the weights and bias in the network
stop adjusting and maintain in a plateau. While the PSO-
BRNN is trained with optimum weights and bias, so it can map
the nuanced fluctuation of the antenna performance, which
indicates the learning ability of PSO-BRNN is better.

The generalisation capability is essential for networks, and
the performance of network is mainly measured by its gener-
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Fig. 5. Comparision of BPNN prediction, PSO-BRNN prediction and actual
value for the antenna performances
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Fig. 6. Generalisation capability comparision of BPNN and PSO-BRNN

alisation capability. For testing the generalisation capability
of trained ANN model, the data other than that used in
training process is introduced. The selected embedded depth
d and dielectric constant εr are exclusive from the data set
D, the d is sampled with step width of 0.004 m and ranged
from 0.001 m to 0.189 m, and the εr is 4.5. The outputs of
different networks are obtained and depicted in Fig. 6. The
PSO-BRNN gives rational responses to the new inputs vector,
the antenna performance curve tendency is agree with the
actual values. The BPNN performs poorly when a novel inputs
is fed, the regression curves of BPNN are diverged beyond
the point where d approximates to 0.07 m, and its MSE of
generalisation is larger than PSO-BRNN, which are 30.46 and
12.64, respectively.

V. CONCLUSION

In this paper, the ANN-based method has been presented
to predict the performance of concrete embedded antenna.
A hybrid ANN (PSO-BRNN) is trained to predict the per-
formance of concrete embedded antenna, and the training
metrics are compared to the BPNN. The PSO algorithm is
utilised to search for the global optimum weights and bias
for ANN, and the BR algorithm is employed to overcome the
overfitting issue of ANN. Compared to BPNN, PSO-BRNN



exhibits an more accurate and efficient manner in computation
and prediction, and leads to a reduction in MSE and iteration
times. The generalisation capability of different networks is
tested with the new inputs vector, the outputs of PSO-BRNN
reveals an excellent generalisation capability, and its learning
ability excels BPNN. The result indicates that the PSO-BRNN
is an effective method for the concrete embedded antenna
performance prediction for indoor communication.
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