
17th International Conference on Digital Preservation

iPRES 2021, Beijing, China.

Copyright held by the author(s). The text of this paper is published

under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

DOI: 10.1145/nnnnnnn.nnnnnnn

BACK TO BASICS: THE MINIMUM PRESERVATION

TOOL

Maureen Pennock John Beaman

The British Library

United Kingdom

maureen.pennock@bl.uk

https://orcid.org/0000-

0002-7521-8536

The British Library

United Kingdom

john.beaman@bl.uk

https://orcid.org/0000-

0002-0357-1154

Peter May Kevin Davies

The British Library

United Kingdom

peter.may@bl.uk

https://orcid.org/0000-

0001-8625-9176

The British Library

United Kingdom

kevin.davies@bl.uk

https://orcid.org/0000-

0001-6522-9568

Abstract – This paper presents the Minimum

Preservation Tool (MPT), designed and developed by the

British Library to provide a basic and local technical digital

preservation environment for collections awaiting ingest

to a more formal digital preservation repository. The MPT

can satisfy fundamental preservation storage

requirements that are not typically otherwise supported

in a standard corporate technical environment more

focused on cyber-security. Replication, checksum

generation and validation, and regular reporting are all

key features of the MPT, written as a set of Python Utilities

and freely available on Github. MPT is an entry-level tool

that lowers the bar for early participation in preservation

endeavors, in contrast with larger scale and more

expensive, complex end-to-end technical solutions.

Keywords – minimum preservation tool, checksum,

integrity, replication, accessibility, open source, file

preservation, risk reduction, assurance

Conference Topics – Building the Capacity &

Capability

I. INTRODUCTION

Digital preservation is an ambitious discipline: we

seek to maintain long-term access to authentic digital

content that is inherently intangible and otherwise

prone to damage or loss from a multitude of different

sources. Standards such as ISO 16363 clearly infer that

‘trustworthy’ and reliable digital preservation requires a

fully functioning digital repository system. [1] Yet

repositories are only one part of a larger picture within

the discipline and across the digital preservation

community. Our experience over the past two decades

is there is often a delay between initial creation of

content and ingest of content into a preservation

repository system. Content files may be damaged or lost

if not maintained properly during this time, with varying

consequences to the content’s demonstrable

provenance and integrity (which may or may not be

noticed prior to ingest into a costly preservation

system). Moreover, as Langley noted at the iPres

conference in 2017, whilst many national libraries and

archives have built up their capacity and proficiency for

managing and preserving digital collections, smaller

organisations, particularly those situated outside of

memory institution contexts or those in developing

countries, are often still ‘struggling with the basics of

managing their digital materials’. [2] Fully functioning

digital preservation repositories in those contexts may

still be many years off.

This paper introduces the Minimum Preservation

Tool as a response to these challenges, developed at the

British Library to go back to basics with a bit-level

solution for locally safeguarding and ensuring the

iPRES 2021 - 17th International Conference on Digital Preservation 2

October 19 - 22, Beijing, China.

technical integrity of content files prior to more

substantial preservation activities.1

II. A (BRIEF) LITERATURE REVIEW

What is minimum preservation, and what does it

comprise? A search through the literature does not

reveal widespread use of the term, though the

underlying concept (i.e. that there is a basic yet

adequate way to support preservation) is evident in

some notable works. The Jisc co-funded LIFE project of

the 2000’s provides one such example. [3] The project

identified two different preservation stages of the

lifecycle: bit-stream preservation, including such

activities as backup, storage, and fixity audits, and

content preservation, which focused on more complex

processes such as preservation planning, preservation

action, and preservation watch. The former, with a focus

on bit-level file maintenance, is arguably a minimal level

of preservation when compared to the latter’s objective

to ensure access to the intellectual object over time.2

Another example is the concept of Parsimonious

Preservation. [4] This aims to ensure economy of action

and intervention by avoiding expenditure of effort on

threats considered unlikely to manifest within the

current generation of IT systems. Parsimonious

Preservation relies on ‘the measures already taken by a

good IT services department’ to manage and support

bit-level storage, and argues that preservation activities

should focus primarily on ‘knowing your collection’; this

requires such things as an inventory of content,

metadata on file formats and file modification dates,

and fixity information.

Tiers of maturity models offer another glimpse into

what might be considered ‘minimum preservation’. The

lowest tier of the NDSA ‘Levels of Digital Preservation’,

for example, requires at least two copies of files in at

least two locations, alongside integrity information,

control processes to limit access and alternations, an

inventory of the content with some metadata, and

documentation of file formats and essential content

characteristics. [5] Similarly to Parsimonious

Preservation, this lower tier is also defined as ‘knowing’

your content; protecting and monitoring it requires

additional activities. The Minimum Viable Preservation

concept on the other hand, discussed in ‘apres-ipres

2018’ and subsequently explored on the Digital

Preservation Coalition blog by Matthew Addis, takes a

1 An earlier brief introduction to the MPT can also be found at

https://www.dpconline.org/blog/minimum-preservation-tool-mpt
2 It should be noted that bit-level preservation in the LIFE project

model was nonetheless considered as a post-ingest, repository level
function, not as a lifecycle stage independent of a repository system.

different approach and includes not just knowing your

content but also having access to an independent

means of rendering the content. [6] There is no precise

consensus across these sources on what exactly

minimum preservation entails, but multiple copies and

fixity data are common characteristics in all of these

examples. Evidence on the fundamental nature of these

for preservation (as well as optimized strategies for

implementation) can be found in the excellent paper by

Micah Altman and Richard Landau (Massachusetts

Institute of Technology) presented at IDCC 2019,

‘‘Selecting Efficient and Reliable Preservation

Strategies’. [7]

The value of ‘minimum’ is also evident in the

concept of the ‘Minimal Effort Ingest’ project promoted

by and implemented at the Royal Danish Library. [8] This

pushes certain widely-accepted yet time-consuming

ingest activities such as format validation into a post-

ingest stage of repository data management; as a result,

incoming content files can be ingested more quickly

and a base level of preservation more swiftly achieved

for a greater number of items.3

What then does the solutions landscape look like for

minimum preservation? The preservation goal for many

organizations is a comprehensive, ‘content-level’ (to

paraphrase the LIFE project term) digital preservation

repository system, licensed or otherwise supported by a

commercial vendor. These certainly offer more than

minimum preservation, though arguably most can be

configured to do as little as a customer wishes.

Nonetheless, the overhead associated with commercial

repository licensing, implementation and management,

can still be prohibitively high. Whilst repository

solutions both commercial and open source certainly

support a minimum level of preservation, they are

typically designed to support additional use cases

beyond replication and fixity management, such as

storage of object metadata or end user access. This is

the case across the board, including with the highly

regarded LOCKSS (Lots of Copies Keeps Stuff Safe)

framework. [9]

Outside of such a commercial repository setting, a

plethora of different tools exists to support different

preservation functions. The Community Owned digital

Preservation Tool Registry COPTR, for example,

identifies over 500 different tools that support a range

of preservation functions from format identification,

3 This submission won the Best Poster Award of the conference,

indicating a good level of acceptance for the concept.

iPRES 2021 - 17th International Conference on Digital Preservation 3

October 19 - 22, Beijing, China.

validation, migration, and disc imaging, to costing, de-

duplication, file re-naming and version control. [10]

Within the context of minimum preservation functions,

Bagit and AVP Fixity, for example, are two widely used

tools that support checksum generation and validation.

[11] [12] Content replication for multiple identical

copies is supported by other tools and utilities, such as

rsync and Robocopy. [13] [14] Yet we found little within

the tools landscape that simply, clearly and primarily

targeted the core functions of replication and fixity

checking within a single tool. It seems almost to be a

case of ‘repository or bust’.

III. REQUIREMENTS FOR A MINIMUM PRESERVATION

SOLUTION

Our literature and tool review indicated that none of

the existing tools we surveyed satisfactorily matched

with all of our requirements or in the way in which we

sought to deploy and use a minimum preservation

solution. MPT was therefore developed to address this

gap and provide an internal, bit-level, minimum

preservation environment for collections awaiting

processing or content preservation in an enhanced

preservation repository system.

Requirements for the MPT were purposefully few

and minimal, in line with the overall goal of the initiative:

 The solution must be economical;

 The solution must be realistically achievable and

maintainable with limited effort and budget;

 The solution must support at least three

synchronized copies of each item, stored in at

least two different physical locations;

 The solution must carry out checksum

generation and validation with reports on a

regular basis, ideally on all copies, but at the

very least on two active (readily accessible)

copies;

 There must be a fully-tested, robust and reliable

recovery process in place which can restore

known good copies of corrupted files from one

of the data store copies, and can be invoked

when file fixity issues are detected via the

checksum validation process;

 The solution architecture should focus primarily

on preservation of small to medium sized

collections (i.e. <20TB each).4

4 This requirement was defined primarily in line with our expected

internal use of the tool.

These requirements are open to a certain amount of

interpretation. For example, avoidance of classic terms

like ‘preservation masters’ and ‘backups’ and using

instead the term ‘synchronized copies’ allowed for

different potential designs in the storage architecture.

Requiring ‘regular’ checksumming, rather than (for

example) rolling or quarterly fixity checking, provisioned

a similar flexibility that could be tailored as the design

took shape and our experience developed. The tool that

was ultimately developed reflects this.

IV. DESIGN & DEVELOPMENT

The Library’s digital preservation team structure

includes flexible R&D resource so that it has some

capacity to respond to issues and challenges as they

arise; this was used to provide the staff time and effort

needed to develop the concept further and build the

MPT as a set of Python Utilities. The resulting toolset

makes use of pre-existing network storage, read/write

protocols, and compute resources already available at

the Library, and simply provides additional functionality

to turn existing network space into a basic preservation-

acceptable environment.

The tool supports four main functions:

Staging: The MPT Staging function collects files

from a pre-defined temporary holding location and

moves them into designated preservation storage areas,

preserving their directory structure. Additionally, the

process also creates a ‘tree’ of checksum files that

matches the original directory structure and which is

transferred into each designated preservation storage

area, alongside the files it represents. The default

algorithm is sha256, though other algorithms are also

supported. Optionally, the process can also create or

update a manifest file that contains checksums for all

files in the storage location.5 If staging of a file fails for

any of its destinations, then staging is aborted for that

file and its failure is logged. Results are summarized in

an email distributed once the staging process for a

given collection is complete.

Creation: The MPT Creation function can be used to

create and save checksums for files that may already be

held in a preservation storage location, without going

through the staging process. Checksums are saved in a

checksum tree that mirrors the directory structure of the

original files and optionally in a manifest file. A summary

of activities is generated and sent by email once the

Creation process for a given collection is complete.

5 A number of different checksum algorithms are supported and

can be selected from during instalation. The default algorithm is
sha256.

iPRES 2021 - 17th International Conference on Digital Preservation 4

October 19 - 22, Beijing, China.

Validation: The MPT Validation function checks the

fixity of all files in a storage location by comparing their

current checksum value to one previously calculated.

The stored checksum value can be read from the

checksum tree or manifest file. As with other functions,

results are summarized in an email distributed once the

process has completed for a given collection.

Comparison: The MPT Comparison function

compares one set of checksum values against one or

more other sets in different locations. The set can be a

checksum tree or a manifest file. Any discrepancies are

highlighted and again included in a summary

distributed via email at the end of the comparison

process.

The recovery process for corrupted files is currently

manual and has not been automated. Whilst it remains

a valid requirement, we have not to date experienced

sufficient corruption to justify allocation of

development effort to this task.

V. THE PROCESS

 Files can be added to the MPT either via a one-off

batch upload from an existing network share, or via a

dedicated ‘staging area’ that can be created in advance.

Our experience is that staging areas are particularly

appropriate for organizations wishing to add content to

the MPT on a regular basis, as any new content

subsequently copied into the staging folder by the user

is transferred automatically into the MPT by a staging

process that runs at regular intervals.

Once a job is initiated, the MPT scripts generate

checksums for content held in the upload location or

staging area and stores them either in a manifest file or

in a checksum tree. If checksums are already available,

these can added to the upload location or staging area

prior to job initiation so they can be re-used so long as

they are structured consistently with the way MPT

expects. Content is subsequently replicated across the

designated MPT storage nodes, after which the MPT

‘Validate’ and ‘Compare’ functions are used. These

validate files against the checksum values stored in

either the checksum tree or checksum manifest file, and

compare the checksum tree or checksum manifest

across the storage nodes to demonstrate that they are

in sync (a significantly faster process than comparing

the data files themselves). Re-validation of checksums

can take place whenever required and a report emailed

to designated recipients detailing any discrepancies.

6 The GUI is still in an experimental stage so has not yet been

incorporated into the main MPT codebase.

VI. DEPLOYMENT

The MPT is freely available on Github under an

Apache license v2.0, with full instructions to support

installation and configuration. [15] The interface is

primarily command line so usage therefore requires a

level of technical competency, though a colleague at the

Library (Andrew Jackson of the UK Web Archive) also

produced and shared an experimental graphical user

interface for running MPT on World Digital Preservation

Day 2020.6 [16]

The MPT works best when deployed within a Virtual

Environment and the implementation can be tailored to

suit the size of a collection. For example, although the

MPT was designed primarily with small collections in

mind, larger collections may benefit from their own

virtual machines (VMs) to facilitate processing. Any one

MPT instance can also be parallelized within a VM to

make use of multi-cores.

The upper threshold for the MPT has yet to be

identified, as actual thresholds are dependent on a

range of factors. Our deployment at the Library has to

date successfully supported in excess of 6 million files

and over 16TB of data, dispersed across five distinct

collections. We have configured two main storage

locations with a VM running on each. Each location is

backed up and backups are retained for 30 days; our

checksum validation process is scheduled to run once a

month within this window so that content can be

recovered from a backup should both of our main

copies become corrupted within this short period.7 A

member of our team generates assurance reports in

Power BI, using data from the MPT’s emailed results

summary.

The tool relies upon the administrator to define the

number and location of storage areas that will be used.

This allows each deployment to vary according to

organizational requirements. We acknowledge that for

external users, this may mean that some deployments

do not satisfy our internal requirement for at least three

copies of files and therefore not achieve our definition

of minimum preservation. Our installation notes on

Github will soon be updated to provide some guidance

on this so that potential users take this into

consideration.

VII. CONCLUSION

The MPT is a pragmatic way to safeguard content

and ensure file-level integrity in the absence of a fully-

7 Note that backups are separate from MPT function and part of

our standard IT infrastructure processes when provisioning network
storage.

iPRES 2021 - 17th International Conference on Digital Preservation 5

October 19 - 22, Beijing, China.

fledged repository system. It fills a clear gap between an

all-or-nothing approach in technical digital preservation

storage management solutions. We encourage re-use

of the code, and welcome feedback, engagement, and

questions from the wider community about the MPT’s

use and development going forwards. We observe also

that the MPT has potential to generate sharable and

directly comparable data around storage arrangements

and integrity checking results that will help grow the

evidence base for future best practice.

The lasting value of the MPT comes from its

simplicity and re-usability, and its availability as a new

technical tool for the digital preservation community

toolkit. Moreover it serves as a reminder that whilst

preservation is often focused on large scale solutions,

basic safeguarding actions can be taken without need

of a monolithic (and potentially expensive) digital

preservation system.

VIII. ACKNOWLEDGEMENTS

Our thanks go to Simon Whibley and Akiko Kimura

for MPT coordination and reports generation in our live

environment, David Russo for technical development

and deployment support, and to Andy Jackson for his

support of the MPT and production of the experimental

GUI.

REFERENCES

[1] International Standards Organization, ‘ISO 16363:2010 Space data

and information transfer systems — Audit and certification of

trustworthy digital repositories’, 2012

https://www.iso.org/standard/56510.html

[2] Langley, Somaya, et al, ‘Operational Pragmatism in Digital

Preservation: establishing context-aware minimum viable

baselines’, in the Proceedings of the iPres 2017 Conference, Kyoto,

Japan, 2017 http://www-archive.cseas.kyoto-

u.ac.jp/ipres2017.jp/wp-content/uploads/69Somaya-Langley.pdf

[3] Ayris, Paul et al, ‘The LIFE2 final project report’, 2008

https://www.researchgate.net/publication/32894761_The_LIFE2_fi

nal_project_report

[4] Gollins, Tim ‘Parsimonious Preservation’, in the ‘Online

Information 2009 Conference proceedings’, 2009,

https://www.nationalarchives.gov.uk/documents/information-

management/parsimonious-preservation.pdf

[5] NDSA Levels of Digital Preservation website, first published in

2013 and revised in 2019, https://ndsa.org/publications/levels-of-

digital-preservation/

[6] Addis, Matthew ‘Minimum Viable Preservation’, DPC Blog,

November 2018, https://www.dpconline.org/blog/minimum-

viable-preservation

[7] Altman, Micah & Landau, Richard, ‘Selecting efficient and reliable

preservation strategies: modeling long-term information integrity

using large-scale hierarchical discrete event simulation’,

International Digital Curation Conference 2019, Dublin,

https://arxiv.org/ftp/arxiv/papers/1912/1912.07908.pdf

[8] Ammitzbøll Jurik, Bolette; Blekinge, Asger Askov & Christiansen,

Kåre Fiedler ‘Minimal Effort Ingest’, in the Proceedings of the iPres

2015 Conference, Chapel Hill, USA,

https://en.statsbiblioteket.dk/about-the-library/projects-

1/MinEffortIngest_iPRES2015.pdf

[9] Lots of Copies Keeps Stuff Safe (LOCKSS), https://www.lockss.org/

[10] Community Owned digital Preservation Tool Registry COPTR,

https://coptr.digipres.org/index.php/Main_Page

[11] Bagit, https://metacpan.org/pod/Archive::BagIt

[12] AVP Fixity, https://www.weareavp.com/fixity/

[13] rsync https://linux.die.net/man/1/rsync

[14] Robocopy https://docs.microsoft.com/en-us/windows-

server/administration/windows-commands/robocopy

[15] Davies, Kevin; May, Peter; & Russo, David, Minimum Preservation

Tool MPT on Github https://github.com/britishlibrary/mpt

[16] Jackson, Andrew, Experimental MPT User Interface on Github

https://github.com/anjackson/mpt/releases/tag/v1.1.6-UI

https://www.iso.org/standard/56510.html
http://www-archive.cseas.kyoto-u.ac.jp/ipres2017.jp/wp-content/uploads/69Somaya-Langley.pdf
http://www-archive.cseas.kyoto-u.ac.jp/ipres2017.jp/wp-content/uploads/69Somaya-Langley.pdf
https://www.researchgate.net/publication/32894761_The_LIFE2_final_project_report
https://www.researchgate.net/publication/32894761_The_LIFE2_final_project_report
https://www.nationalarchives.gov.uk/documents/information-management/parsimonious-preservation.pdf
https://www.nationalarchives.gov.uk/documents/information-management/parsimonious-preservation.pdf
https://ndsa.org/publications/levels-of-digital-preservation/
https://ndsa.org/publications/levels-of-digital-preservation/
https://www.dpconline.org/blog/minimum-viable-preservation
https://www.dpconline.org/blog/minimum-viable-preservation
https://arxiv.org/ftp/arxiv/papers/1912/1912.07908.pdf
https://en.statsbiblioteket.dk/about-the-library/projects-1/MinEffortIngest_iPRES2015.pdf
https://en.statsbiblioteket.dk/about-the-library/projects-1/MinEffortIngest_iPRES2015.pdf
https://www.lockss.org/
https://coptr.digipres.org/index.php/Main_Page
https://metacpan.org/pod/Archive::BagIt
https://www.weareavp.com/fixity/
https://linux.die.net/man/1/rsync
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy
https://github.com/britishlibrary/mpt
https://github.com/anjackson/mpt/releases/tag/v1.1.6-UI

