The Legacy of High-precision Asteroseismology for Chemical Clock Dating and Galactic Archaeology

Thibault Boulet: thibault.boulet@astro.up.pt Supervisors: Tiago Campante, Vardan Adibekyan, Aldo Serenelli

Introduction

• What is a chemical clock ?

Why looking for chemical clocks?

- Sources in GAIA DR1: 1,142,679,769
- Sources in GAIA DR2: 1,692,919,135
- Sources in GAIA EDR3: 1,811,709,771

Introduction

Casamiquela 2021 et al: [Y/Al] relation

Age [Gyr

OCs (d < 1 kpc)Fit: OCs (d < 1 kpc)

 $-0.070 \pm 0.007 \,\mathrm{dex}\,\mathrm{Gyr}^-$

 $-0.061 \pm 0.005 \,\mathrm{dex}\,\mathrm{Gyr}^{-1}$ -0.4

0.4

-0.0 X/Y

-0.2

-0.4

-0.4

-0.2

-0.0

[X/AI]

All OCs

Fit: All OCs Fit: Spina et al. 2018

Other works: Feltzing et al 2017, Casali et al 2020, Spina et al 2020

The potential of small samples of seismic giants : Good calibrators

Why Giants ?

- Probes of Galactic Stellar populations
 - Most stars go through that phase
 - \circ Intrinsically bright, so observable up to the kiloparsec regime (Hayden et al 2015)

Why Seismic Giants ?

Example of a stellar oscillation mode

• Low fractional uncertainties on Ages

- ~20% (Rendle, B. M., et al. 2019, Silva Aguirre, V., et al. 2020, Mackereth, J. T., et al. 2021, Zinn, J. C et al 2021)
- Tight age-initial mass seismic constraints
- For a given brightness, the red giant will have higher mode amplitude than a solar-type star.
- O Previous exploratory work with K2 giants and GALAH abundances : Zinn, J. C. et al 2021

Description of the sample

- TESS SCVZ Mackereth et al 2021
- Gaia magnitude < 11
- Sub- sample of 227 giants

Age histogram

Uncertainty histogram on ages

Current and Past locations

Kinematics and Chemistry

Chemical Dissection Plot

Toomre Diagram

APOGEE 2 DR16

- Sample Size ~ 430 000 stars
- H band : <u>1.51-1.70 μm</u>
- Spectral resolution ~ 22500
- Abundance precision: ~ 0.1 dex

Overview of the APOGEE survey

Jönsson et al 2020

APOGEE 2 DR16 internal uncertainties for the case S/N =125

Computation of the correlations with Age

Spearman Correlations

Retained chemical elements

Analysis of the sample: Trends with log(Age)

Odd-Z

heavy-s proc

Fe-Peak

Analysis of the sample : Trends with [Fe/H]

-1.5

-2.0

-1.0

-0.8

-0.6

-0.4

-0.2

[Fe/H] (dex)

0.0

0.2

0.4

0.6

Fe-Peak

heavy-s proc

Summary of the [X/Fe] trends

Novel [X/Y] chemical clocks

[X/Y]	<u>Adj-R2</u>	Best-Fit
[Co/Na]	0.3522	2p-AT
[O/Na]	0.3386	2p-AM
[Al/Na]	0.3293	2p-AM
[Co/Ce]	0.3281	2p-AM
[Mg/Na]	0.3168	2p-AM
[Ni/Na]	0.2472	2p-AM
[S/Na]	0.2392	2p-AM
[Cu/Ce]	0.2389	2p-AM
[Si/Na]	0.2194	2p-AM

Analysis of trends with Birth-Radius

Casamiquela et al 2021 [Y/Al] relation

Minchev et al 2018

Birth-Radius = f (Age, [Fe/H])

Summary and Conclusion

- Sample
 - 227 field seismic red giant stars
 - volume up to 2kpc
 - Mean fractional uncertainty on Age : 22 %
- Eighteen chemical abundances with low uncertainties: ~0.1 dex from APOGEE
- Several new potential chemical clocks implying Na and Ce ratios
- [Co/Na] and [Cu/Na] insensitive to [Fe/H]
- Dependence on birth radius implicitly taken into account
- Work in progress:
 - Calibration to benchmark samples
 - Comparing precisions of my estimates with previous works on chemical clocks
 - Adoption of RGB stars when calibrating these relations (since the RC age uncertainties are likely underestimated).