Industrially viable synthesis of 3-[3-(trifluoromethyl)phenyl]propionaldehyde. A key intermediate of cinacalcet

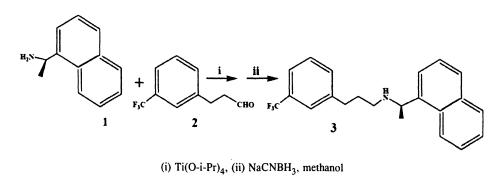
Ramadas Chavakula*, Narayana Rao Mutyala and Srinivasa Rao Chennupati

Tyche Industries Limited, H. No. C-21/A, Road No. 9, Film Nagar, Jubilee Hills, Hyderabad-500 093, India

E-mail : das.krishnac@gmail.com

Manuscript received online 15 June 2012, accepted 29 September 2012

Abstract : An improved synthesis of 3-[3-(trifluoromethyl)phenyl]propionaldehyde (2), a key intermediate of cinacalcet hydrochloride ((R)-alpha-methyl-N-[3-[3-(trifluoromethyl)phenyl]propyl]-1-naphthalene methane amine hydrochloride) has been described. The key step include the Corey-Kim oxidation under normal conditions.

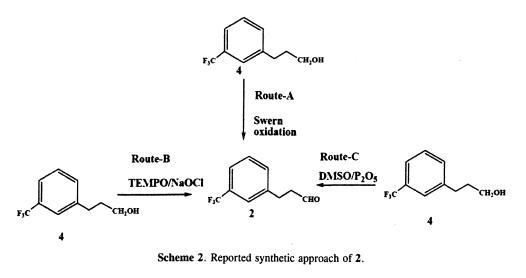

Keywords : Calcimimetics, cinacalcet, Corey-Kim oxidation, NCS, dimethyl sulfide.

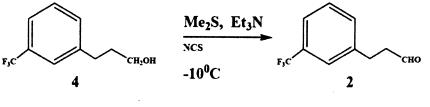
Introduction

Cinacalcet hydrochloride (3), an optically active calcimimetic drug, has been approved by the U.S. Food and Drug Administration as Sensiper for the treatment of secondary hyperparathyroidism. A condition characterized by the oversecretion of parathyroid hormone in patients with chronic kidney disease on dialysis¹, has been synthesized² by the reductive amination of (R)-(1-naphthyl)ethylamine (1) with 3-[3-(trifluoromethyl)-phenyl]propionaldehyde (2), followed by reduction of the double bond (Scheme 1).

of 3-[3-(trifluoromethyl)phenyl]propan-1-ol has been reported³. In route B, the preparation of **2** by reacting 3-[3-(trifluoromethyl)phenyl]propan-1-ol with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sodium hypochlorite in the presence of potassium bromide in methylene chloride has been reported in patent⁴. Route C, involves the oxidation of 3-[3-(trifluoromethyl)phenyl]propan-1-ol with dimethylsulfoxide and activated by phosphorous pentaoxide⁵ to afford compound **2**.

However, all these methods require expensive reagents, low temperature and tedious procedures and thus we set





There are three approaches for the preparation of 3-[3-(trifluoromethyl)phenyl]propionaldehyde (2), the key intermediate for the synthesis of cinacalcet hydrochloride (3). In route A, the preparation of 2 by Swern oxidation

out to find a more economical and efficient method for the preparation of bulk quantities of 2.

We now report the operationally simple, highly selective and efficient preparation of 2 from 3-[3-(trifluoro-

Scheme 3

methyl)phenyl]propan-1-ol by the Corey-Kim oxidation⁶ (Scheme 3). It is commercially available, easy to handle even at the production scale, and the reaction temperature reported was mild (e.g. brine-cooling). Overall, we optimized the reaction conditions and manufactured the key intermediate aldehyde 2 up to a 250 kg scale.

Experimental

General : Solvents were dried over sodium sulfate and freshly distilled prior to use. ¹H NMR spectra were recorded on a Brucker ADVANCE-400 MHz, using CDCl₃ as solvent and TMS as internal standard. Infrared spectra were obtained on a Perkin-Elmer spectrum 100 FT-IR spectrophotometer. Electrospray ionization mass spectroscopy was performed using an ion trap mass spectrometer (Model 6310 agilent).

Synthesis of 3-[3-(trifluoromethyl)phenyl]propionaldehyde (2):

To a solution of 3-[3-(trifluoromethyl)phenyl]propan-1-ol (4), (100 g, 0.49 mol) in toluene (2000 ml) at -10 °C to -15 °C, dimethyl sulfide (30 g, 0.48 mol) and triethylamine (62 g, 0.61 mol) were added in a single lot under

argon and stirred for 15-30 min. Then Nchlorosuccinimide (180 g, 1.35 mol) was added portionwise over 1 h while the internal temperature was maintained at -5 °C to -10 °C. The reaction mixture was stirred for 3 h at -5 °C to -10 °C. Completion of reaction was monitored by gas chromatography (GC). The reaction mixture was diluted with aqueous sodium hydroxide solution (40 g in 1200 ml of water) at -5 °C to -10 °C. After the addition, the mixture was allowed to warm to 20 °C and stirred for 1 h at 20 °C. The aqueous and organic layers were separated and the organic layer was extracted with aqueous sodium bisulfite solution (140 g in 1100 ml of water). Sodium carbonate solution (25% in water) was added to aqueous layer to adjust the pH to 9.5-9.8 and it was extracted with toluene (600 ml). The solvent was removed under reduced pressure to give the pure product 87.0 g (88.0%), as a yellowish oil. ¹H NMR (CDCl₃, δ ppm) : 9.83 (1H, t, J 0.9 Hz), 7.48–7.38 (4H, m), 3.02 (2H, t, J 7.2 Hz), 2.82 (2H, m).

Acknowledgement

The authors are thankful to Tyche Industries Ltd. for financial support.

Chavakula et al. : Industrially viable synthesis of 3-[3-(trifluoromethyl)phenyl]propionaldehyde etc.

References

- 1. N. Franceschini, M. S. Joy and A. Kshirsagar, *Expert Opin.* Invest. Drugs, 2003, 12, 1413.
- E. F. Nemeth, B. C. Van Wagenen, M. F. Balandrin, E. G. DelMar and S. T. Moe, US Pat 6011068/2000 (*Chem. Abstr.*, 1993, 119, 63054s).
- 3. X. Wang, Y. Chen, R. Crockett, J. Briones, T. Yan, C.

Orihuela, B. Zhi and J. Ng, Tetrahedron Lett., 2004, 45, 8355.

- T. Szekeres, J. Repasi, A. Szabo and B. Mangion, WO Pat 035212/2008 (Chem. Abstr., 2008, 148, 402864g).
- 5. P. Allegrini, E. Attolino and D. Rossi, Eur. Pat. Appl. Ep. 2327684/2011.
- 6. E. J Corey and C. U. Kim, J. Org. Chem., 1973, 38, 1233.