Advanced data analytics for system
dynamics models using PySD

James Houghton, Michael Siegel

Abstract

The emerging field of data science has potential for great synergy with system
dynamics modeling: system dynamics providing a causal structure for the
interpretation of increasingly available social data, and this data helping to anchor
and improve system dynamics practice and extend its applicability.

PySD is a tool designed to facilitate the integration of system dynamics models and
data science by bringing models created with traditional SD modeling platforms into
the rapidly developing ecosystem of Python data science tools. This paper gives an
overview of PySD’s purpose and capabilities, describes its technical construction,
documents its primary functionality, and illustrates several use cases with simple
examples.

Motivation: The (coming of) age of Big Data

The last few years have witnessed a massive growth in the collection of social and
business datal, and a corresponding boom of interest in learning about the behavior
of social and business systems using this data. The field of ‘data science’ is
developing a host of new techniques for dealing with and analyzing data, responding
to an increase in demand for insights and the increased power of computing
resources.

So far, however, these new techniques are largely confined to variants of statistical
summary, categorization, and inference; and if causal models are used, they are
generally static in nature, ignoring the dynamic complexity and feedback structures
of the systems in question.? As the field of data science matures, there will be
increasing demand for insights beyond those available through analysis
unstructured by causal understanding. At that point data scientists may seek to add
dynamic models of system structure to their toolbox.

The field of system dynamics has always been interested in learning about social
systems, and specializes in understanding dynamic complexity. There is likewise a
long tradition of incorporating various forms of data into system dynamics models.
While system dynamics practice has much to gain from the emergence of new
volumes of social data, the community has yet to benefit fully from the data science
revolution.34

There are a variety of reasons for this, the largest likely being that the two
communities have yet to commingle to a great extent. A further, and ultimately more
tractable reason is that the tools of system dynamics and the tools of data analytics
are not tightly integrated, making joint method analysis unwieldy. There is a rich
problem space that depends upon the ability of these fields to support one another,
and so there is a need for tools that help the two methodologies work together.
PySD is designed to meet this need.

General approaches for integrating system dynamic models and data analytics
Before considering how system dynamics techniques can be used in data science
applications, we should consider the variety of ways in which the system dynamics
community has traditionally dealt with integration of data and models.

The first paradigm for using numerical data in support of modeling efforts is to
import data into system dynamics modeling software. Algorithms for comparing
models with data are built into the tool itself, and are usable through a graphical
front-end interface as with model fitting in Vensim, or through a programming
environment unique to the tool. When new techniques such as Markov chain Monte
Carlo analysis become relevant to the system dynamics community, they are often
brought into the SD tool.

SD Model Building and Simulation Engine:
- Interface for CLD’s, Stock and Flow Diagrams
.) - Equation editing) .
Timeseries BESIETY _Timeseries

Data k- Result plotting 8 Plots

Markov
Optimization Chain Monte
Carlo

Monte Carlo Subscripted
Simulation Models

This approach appropriately caters to system dynamics modelers who want to take
advantage of well-established data science techniques without needing to learn a
programming language, and extends the functionality of system dynamics to the
basics of integrated model analysis.

A second category of tools uses a standard system dynamics tool as a computation
engine for analysis performed in a coding environment. This is the approach taken
by the Exploratory Modeling Analysis (EMA) Workbench?, or the Behavior Analysis
and Testing Software (BATS)®. This first step towards bringing system dynamics to a
more inclusive analysis environment enables many new types of model
understanding, but imposes limits on the depth of interaction with models and the
ability to scale simulation to support large analysis.

SD Model Building and
Simulation Engine:
Interface for CLD’s, Stock and
Flow Diagrams
- Equation editing
- Simulation

Dynamic Link

Full Featured Programming Environment

Statistical
Inference

Plotting
Tools

Processing

Statistical
Result

A third category of tools imports the models created by traditional tools to perform
analyses independently of the original modeling tool. An example of this is SDM-
Doc’, a model documentation tool, or Abdel-Gawad et. al.’s eigenvector analysis

tool8. It is this third category to which PySD belongs.

Data InDUt 1 Collection] Connection
Statistical
Geographic Machine Data
Web-Based Learning | Processingl Tools Inference
Streaming
Textual Collaboration Natural Web
Raw Sample and Version Language Development

SD Model
Building
Environment

Full Featured Programming En

Data Database

Control Processing Frameworks

Network
Mapping and
Analysis

Alternate
Simulation
Methods

Parallelization

and Cloud
Computing

Plotting i
Tools

—¥ Display

Live-Result
Interactive
Web-Based

¥ Output

Decision-
Support
Project

Management

The central paradigm of PySD is that it is more efficient to bring the mature
capabilities of system dynamics into an environment in use for active development

in data science, than to attempt to bring each new development in inference and
machine learning into the system dynamics enclave.

PySD reads a model file - the product of a modeling program such as Vensim?® or
Stella/iThink!? - and cross compiles it into Python, providing a simulation engine
that can run these models natively in the Python environment. It is not a substitute
for these tools, and cannot be used to replace a visual model construction
environment.

How this paper is structured

This paper makes the assumption that readers are more interested in the use of
PySD than in its inner workings, and so after briefly discussing the structure and
mechanics of the tool itself, we focus on demonstration and applications.

Structure of the PySD module

PySD provides a set of translators that interpret a Vensim or XMILE!! format model
into a Python native class. The model components object represents the state of the
system, and contains methods that compute auxiliary and flow variables based upon
the current state.

The components object is wrapped within a Python class that provides methods for
modifying and executing the model. These three pieces constitute the core
functionality of the PySD module, and allow it to interact with the Python data
analytics stack.

Translation

The PySD module is capable of importing models from a Vensim model file (*.mdl)
or an XMILE format xml file. Translation makes use of a Parsing Expression
Grammar parser, using the third party Python library Parsimonious!? to construct
an abstract syntax tree based upon the full model file (in the case of Vensim) or
individual expressions (in the case of XMILE).

The translators then crawl the tree, using a dictionary to translate Vensim or Xmile
syntax into its appropriate Python equivalent. The use of a translation dictionary for
all syntactic and programmatic components prevents execution of arbitrary code
from unverified model files, and ensures that we only translate commands that
PySD is equipped to handle. Any unsupported model functionality should therefore
be discovered at import, instead of at runtime.

The use of a one-to-one dictionary in translation means that the breadth of
functionality is inherently limited. In the case where no direct Python equivalent is
available, PySD provides a library of functions such as pulse, step, etc. that are
specific to dynamic model behavior.

In addition to translating individual commands between Vensim/XMILE and Python,
PySD reworks component identifiers to be Python-safe by replacing spaces with
underscores. The translator allows source identifiers to make use of alphanumeric
characters, spaces, or the $ symbol.

The model class

The translator constructs a Python class that represents the system dynamics
model. The class maintains a dictionary representing the current values of each of
the system stocks, and the current simulation time, making it a ‘statefull’ model in
much the same way that the system itself has a specific state at any point in time.

The model class also contains a function for each of the model components,
representing the essential model equations. The docstring for each function
contains the model documentation and units as translated from the original model
file. A query to any of the model functions will calculate and return its value
according to the stored state of the system.

The model class maintains only a single state of the system in memory, meaning that
all functions must obey the Markov property - that the future state of the system can
be calculated entirely based upon its current state. In addition to simplifying
integration, this requirement enables analyses that interact with the model at a
step-by-step level. The downside to this design choice is that several components of
Vensim or XMILE functionality - the most significant being the infinite order delay -
are intentionally not supported. In many cases similar behavior can be
approximated through other constructs.

Lastly, the model class provides a set of methods that are used to facilitate
simulation. PySD uses the standard ordinary differential equations solver provided
in the well-established Python library Scipy, which expects the state and its
derivative to be represented as an ordered list. The model class provides the
function .d_dt () that takes a state vector from the integrator and uses it to update
the model state, and then calculates the derivative of each stock, returning them in a
corresponding vector. A complementary function . state_vector () creates an
ordered vector of states for use in initializing the integrator.

The PySD class

The PySD class provides the machinery to get the model moving, supply it with data,
or modify its parameters. In addition, this class is the primary way that users
interact with the PySD module.

The basic function for executing a model is appropriately named. run (). This
function passes the model into scipy’s odeint () ordinary differential equations
solver. The scipy integrator is itself utilizing the Isoda integrator from the Fortran
library odepack!3, and so integration takes advantage of highly optimized low-level
routines to improve speed. We use the model’s timestep to set the maximum step

size for the integrator’s adaptive solver to ensure that the integrator properly
accounts for discontinuities.

The . run () function returns to the user a Pandas dataframe!# representing the
output of their simulation run. A variety of options allow the user to specify which
components of the model they would like returned, and the timestamps at which
they would like those measurements. Additional parameters make parameter
changes to the model, modify its starting conditions, or specify how simulation
results should be logged.

Basic usage

This module is written for a user with basic familiarity of the Python programming
language, and the most popular components of the Python data analytics ecosystem.
This seems to be a reasonable prerequisite, as in-depth data analytics tends to
require familiarity with general programming and database constructs. For those
wishing to develop their knowledge of data analysis, or learn the specific tools
present in the Python ecosystem, a resource list is available in the appendix.

Installation
To install the PySD package from the Python package index into an established
Python environment, use the pip!®> command:

| pip install pysd

To install from the source, download the latest version from the project webpage:
https://github.com/JamesPHoughton/pysd and in the subsequent directory use the
Python command:

| python setup.py install

Dependencies

In addition to Python standard libraries, PySD builds on the core Python data
analytics stack: Numpy?é, Scipyl’, Pandas!4, and Matplotlib18. In addition, it calls on
Parsimonious!? to handle translation.

Additional Python libraries that integrate well with PySD and bring additional data
analytics capabilities to the analysis of SD models include PyMC1?, a library for
performing Markov chain Monte Carlo analysis; Scikit-learn?9, a library for
performing machine learning in Python; NetworkX?1, a library for constructing
networks; and GeoPandas??, a library for manipulating geographic data.

Additionally, the System Dynamics Translator utility developed by Robert Ward is
useful for translating models from other system dynamics formats into the XMILE
standard, to be read by PySD.

Importing a model and getting started
To begin, we must first load the PySD module, and use it to import a supported
model file:

import pysd

model = pysd.read_vensim(‘Teacup.mdl’)
This code creates an instance of the PySD class loaded with an example model that
we will use as the system dynamics Characteristic Time
equivalent of ‘Hello World’: a cup of tea
cooling to room temperature, as seen in
the figure to the right.

Teacup

Temperature = >Q

To view a synopsis of the model Heat Loss to Room
equations and documentation, print the
model’s components object:

| print model.components

Room Temperature
This will generate a listing of all the

model elements, their documentation comments, units, equations, and initial values,
where appropriate. Here is a sample from the teacup model:

Import of Teacup.mdl

characteristic_time
Units: minutes
Equation: 10

dteacup_temperature_dt

Units: degrees

Equation: -heat_loss_to_room()
Init: 180

final_time

the final time for the simulation.
Units: minute

Equation: 30

Running the Model
The simplest way to simulate the model is to use the . run () command with no
options:

| stocks = model.run()

This runs the model with the default parameters supplied by the model file, and
returns a Pandas dataframe of the values of the stocks at every timestamp. In this
case, the model has a single stock, and PySD returns a single data column:

t teacup_temperature
0.000 180.000000
0.125 178.633556
0.250 177.284091
0.375 175.951387

Pandas gives us simple plotting capability, so we can see how the cup of tea behaves:

stocks.plot()
plt.ylabel('Degrees F')
plt.xlabel('Minutes"')

180 1 1] Ll 1] LI
— teacup_temperature

=

(o))

o
T

1

£

o
||

!

Degrees F
[l B =
o N

o o

1 1

1 1

=

3

10 15 20 25
Minutes

(=]
v

Outputting various run information

The . run () command has a few options that make it more useful. In many
situations we want to access components of the model other than merely the stocks
- we can specify which components of the model should be included in the returned
dataframe by including them in a list that we pass to the . run () command, using
the return_columns keyword argument.

values = model.run(return_columns=['teacup_temperature',
'room_temperature'])

180 1] 1] L] | 1]
teacup_temperature
room_temperature

—

(=2}

(=)
T

1

1

Degrees F

e kb &
8 o o o
1 1 1 1
1 1 1

3

0 5 10 15 20 25
Minutes

If the measured data that we are comparing with our model comes in at irregular
timestamps, we may want to sample the model at timestamps to match. The . run ()
function gives us this ability with the return_timestamps keyword argument.

|model.run(return_timestamps=[@,1,3,7,9.5,13.178,21,25,3@])

180 L] 1] 1] 1] 1)
]

160 | o ® o feacup_temperature |
w140 - -
o i L ,]
g 120 a
& 100 : = |

80 |- b) i

w 1 1 1 1 1

0 5 10 15 20 25 30

Minutes

Setting parameter values

In many cases, we want to modify the parameters of the model to investigate its
behavior under different assumptions. There are several ways to do this in PySD,
but the . run () function gives us a convenient method in the params keyword
argument.

This argument expects a dictionary whose keys correspond to the components of
the model. The associated values can either be a constant, or a Pandas series whose
indices are timestamps and whose values are the values that the model component
should take on at the corresponding time. For instance, in our model we can set the
room temperature to a constant value:

|model.run(params={'room_temperature':20})

180 , - , I y
160 — teacup_temperature |
140 : — .
120 -
100 L : : : : : |
80 | -
&0 |- : : : : |
a0} |

20
0

1

|

|

Degrees F

-

1 1 1

5 10 15 20 25
Minutes

Alternately, if we believe the room temperature is changing over the course of the
simulation, we can give the run function a set of time-series values in the form of a

Pandas series, and PySD will linearly interpolate between the given values in the
course of its integration.

import pandas as pd
temp = pd.Series(index=range(30), data=range(20,80,2))

model.run(params={'room_temperature':temp})

180 . T T T T

160 |- — teacup_temperature]
E gg i — room_temperature
@ 100 -
o 80| Sa—
O el —— —)
40 | _______,_..—-—""' i
20 | 1 | | 1
0 5 10 15 20 25
Minutes

Note that once parameters are set by the run command, they are permanently
changed within the model. We can also change model parameters without running
the model, using PySD’s set_components (params={}) method, which takes the
same params dictionary as the run function. We might choose to do this in
situations where we’ll be running the model many times, and only want to spend
time setting the parameters once.

Setting simulation initial conditions

Finally, we can set the initial conditions of our model in several ways. We'll get into
why this is helpful in the next section. So far, we’ve been using the default value for
theinitial_condition keyword argument, whichis ‘original’. This value
runs the model from the initial conditions that were specified originally by the
model file. We can alternately specify a tuple containing the start time and a
dictionary of values for the system’s stocks. Here we start the model with the tea at
just above freezing:

| model.run(initial_condition=(0, {'teacup_temperature':33}))

75 T T T |

Degrees F
t)

35 : : — teacup_temperature |]

&

1 | 1

0 5 10 15 20 25
Minutes

Additionally we can run the model forward from its current position, by passing the
initial_condition argument the keyword ‘current’. After having run the
model from time zero to thirty, we can ask the model to continue running forward
for another chunk of time:

model.run(initial_condition="current',
return_timestamps=range(31,45))

745 N Ll | | L L Ll N
— teacup_temperature
“- 740
wv
v
-
> 735
(]
73.0
32 34 36 38 40 42 =4
Minutes

The integration picks up at the last value returned in the previous run condition,
and returns values at the requested timestamps.

Querying current values

We can easily access the current value of a model component by calling its
associated method in the components subclass. For instance, to find the
temperature of the teacup, we simply call:

|model.components.teacup_temperature()

Collecting a history of returned values

The . run () function provides a flag named col1ect thatinstructs PySD to collect
all output from a series of run commands into a record. This can be helpful when
running the model forwards for a period of time, then returning control to the user,
who will specify changes to the model, and continue the integration forwards.

The record is stored as a list of Pandas dataframes, one from each run. To access this
record in its raw form, the user can access the . record attribute of the PySD class.
It is usually more helpful to have a single dataframe which stitches together all of
these pieces. We can access this viathe . get_record () method.

Advanced Usage

The power of PySD, and its motivation for existence, is its ability to tie in to other
models and analysis packages in the Python environment. In this section we’ll
discuss how those connections happen.

Replacing model components with more complex objects

In the last section we saw that a parameter could take on a single value, or a series
of values over time, with PySD linearly interpolating between the supplied time-
series values. Behind the scenes, PySD is translating that constant or time-series
into a function that then goes on to replace the original component in the model. For
instance, in the teacup example, the room temperature was originally a function
defined through parsing the model file as something similar to:

def room_temperature():
return 75

However, when we made the room temperature something that varied with time,
PySD replaced this function with something like:

def room_temperature():
return np.interp(t, series.index, serijes.values)

This drew on the internal state of the system, namely the time t, and the time-series
data series that that we wanted to variable to represent. This process of
substitution is available to the user, and we can replace functions ourselves, if we
are careful.

Because PySD assumes that all components in a model are represented as functions
taking no arguments, any component that we wish to modify must be replaced with
a function taking no arguments. As the state of the system and all auxiliary or flow
methods are public, our replacement function can call these methods as part of its
internal structure.

In our teacup example, suppose we didn’t know the functional form for calculating
the heat lost to the room, but instead had a lot of data of teacup temperatures and
heat flow rates. We could use a regression model (here a support vector regression
from Scikit-Learn??) in place of the analytic function.

from sklearn.svm import SVR

regression = SVR()
regression.fit(X_training, Y_training)

Once the regression model is fit, we write a wrapper function for its predict method
that accesses the input components of the model and formats the prediction for
PySD.

def new heatflow_ function():
""" Replaces the original flowrate equation
with a regression model"""

tea_temp = model.components.teacup temperature()
room_temp = model.components.room_temperature()
return regression.predict([room_temp, tea temp])[0]

We can substitute this function directly for the heat_loss_to_room model
component.

|model.components.heat_loss_to_room = new_heatflow_function

Examples of PySD in action

In this section we’ll cover some examples that use PySD to bring system dynamics
models together with data. For detailed code for each of these examples, see the
project homepage: https://github.com/JamesPHoughton/pysd

Estimating the number of pennies in circulation using Markov Chain Monte

Carlo, system dynamics, and a jar of pennies

In this example we'll use a System Dynamics model to estimate the total number of
pennies in circulation, based upon the number of pennies produced in a given year,
and the number of pennies in a coin jar.

We start with a simple aging model for pennies, in essence a second order delay.
Pennies are minted each year, and go into a stock of 'post production' pennies that
are distributed to banks, etc. After this they go into general circulation, from which
they are eventually lost.

_ Production
Production Year Volume Entry Rate Loss Rate
PON p| I
. X . .
Production ~ LProduction Entering Circulation Loss
Circulation

In this analysis we'll try and infer the parameters for entry into circulation and loss
based upon the number of pennies produced in each year, and a random sample of
pennies taken from circulation over a four-year period. An interesting component of
this analysis is that it requires a whole suite of models (one for each model year) but
these models don't interact with one another except through the sampling and
statistical analysis we perform.

To get a sense for how the model behaves, we'll run it with arbitrary parameter
values. We see that pennies enter the 'post production’ stock quickly, and the 'in
circulation' stock grows, peaks, and decays as the pennies get lost.

10000 : : : : : ‘ 1]
8000 |- l : : : : — In_circulation
| — post_production

6000

4000
2000

I

—

0 1 1 | " 5 I
1930 1940 1950 1960 1970 1980 1990 2000 2010

We'll start with some data about the number of coins produced in each year. We
have production data for both the Denver and Philadelphia mints:

Pennies Produced Per Year

12 1el0 , , : i :
10} — Denver |
08 H{ — Philadelphia
0.6 |-
04|
02}

-;;20 1940 19160 1960 20100

Year

We'll also use 'data’ (pennies) collected in a penny jar over the last few years:

Pennies in my Jar
| | |

/\/ i ‘

\

1

50 \ \

ao || — Al_Marks
— Denver

30 - . :
— Philadelphia

20

10 +

0 pr— P 1

1930 1940 1950 1960

1970 1980 1990 2000 2010

Year

For this analysis we’ll focus just on the Philadelphia mint. We set up models for each
year that pennies are produced, and initialize them with production data. We can

store our models in a Pandas dataframe for convenience, along with the data. Here’s
a sample from the middle of the set:

Year | model Philadelphia Production | Philadelphia Samples
1983 | Import of penny_jar.mdl | 77523.55000 24
1984 | Import of penny_jar.mdl | 81510.79000 19
1985 | Import of penny_jar.mdl | 56484.89887 26
1986 | Import of penny_jar.mdl | 44913.95493 22
1987 | Import of penny_jar.mdl| | 46824.66931 14

With our models established, we are now ready to construct a Markov chain Monte
Carlo simulation (MCMC). MCMC works by choosing an arbitrary value from a

distribution of input parameters, running the simulation, and asking what the
likelihood of the data is given those parameters. It then decides whether to keep the
selected parameters to display in an output distribution based upon this likelihood.
In this demo, we'll use 'PyMC' to handle the MCMC algorithms. For an excellent
primer on the use of this package, see Cam Davidson-Pilon’s executable textbook
‘Probabilistic Programming and Bayesian Methods for Hackers'23.

We start then by setting up a 'prior’ distribution for the loss rate and entry rate
parameters that will be applied to each of the mint year models.

entry rate = mc.Uniform('entry rate', lower=0, upper=.99)

loss_rate = mc.Uniform('loss_rate', lower=0, upper=.3)

We'll ask our models for the population of coins from which the sample was drawn,
and as this happened over a period of time, not all in the same time-step, we'll
assume that there is equal likelihood that a sample was drawn (or a penny
collected) any time during that window.

def get population(model, entry rate, loss rate):

in_circulation =
model.run(params={'entry rate':entry_rate,
'loss_rate':loss_rate},
return_columns=["in_circulation'],
return_timestamps=range(2011,2015))

return in_circulation.mean()

We then construct a function that returns to us the likelihood of the data given the
distribution of pennies in circulation, as calculated by our model. PyMC expects this
likelihood to be expressed as a log probability, to give resolution in the 'very small
likelihood' regimes that our model will predict for our observations.

@mc.stochastic(trace=True, observed=True)

def circulation(entry rate=entry rate,
loss _rate=loss_rate, value=1l):

mapfunc = lambda x: get population(x, entry rate,
loss_rate)
population = models['model'].apply(mapfunc)

#transform to log probability and then normalize
log distribution = (np.log(population) -
np.log(population.sum()))

#calculate the probability of the data
log prob = (models['Philadelphia Samples'] *
log_distribution).sum()

return log_prob

We can now call on PyMC’s algorithms to perform the MCMC calculation:
mcmodel = mc.Model([entry rate, loss _rate, circulation])
mcmc = mc.MCMC(mcmodel)

mcmc.sample (20000)

Running the simulation, we get distributions for the entry_rate and loss_rate
parameters:

Entry Rate Likelihood Loss Rate Likelihood

35

160

140 |

120

100 |-

20 -

0
05 06 0.010 0.020 0.025
Entry Rate Loss Rate

Together these let us (via regular Monte Carlo simulation) infer the number of
pennies in circulation:

Estimates of the total number of Philadelphia pennies in cirilélation

251188643150

97474022555

37824899063

14677992676

5695810810

Log Scale!

2210265497

857695898

332829813

129154966

50118723
1930 1940 1950 1960 1970 1980 1990 2000 2010

This predicts for 2015 about 250 billion pennies currently in circulation. It’s
impossible to know if our value is correct, but it is generally consistent with a US
General Accounting Office estimate of 132 billion in 199624,

20

15¢

10

-10

Teaching intuition for oscillating systems with real-time simulation

In this example, we'll use PySD to join a model with data in real time. In this case,
we're constructing a demo to teach students about how delays plus balancing
feedback loops can yield oscillations. We begin with a simple third order delay,
modeled (for pedagogical purposes) in all of its glorious detail:

Delay
Delay part 1 Delay part 2 Delay part 3
Buffer 2 Buffer 3
Input Buffer 1 Throughput 1 u Throughput 2 u Output

We then show the student a graph such as the one on the left below, explaining that
the blue line represents the ‘Output’ of this delay process, and their task is to press
the up or down arrow keys to open or close the ‘Input’ valve, such that the blue
‘Output’ line comes to match the dashed red target. The student’s input forms the
last link in a goal-seeking feedback loop.

The invariable outcome is that the student overshoots and oscillates before coming
to rest at the target. After the simulation, we plot their performance for them,
showing the levels of each of the stocks (here on the same axis as the flows).

Time 16.25 16 | 1 ‘ ! | .

ol NI — AU SN S—

””””””””””””””””””” 10f- [\
gl--f X — input

6L I AY — delay_buffer_1 1]

al /] - - — delay_buffer_2

5 5 | — delay_buffer_3 |

] N1 e — output 4

0 16 26 36 46 Sb 60

To make this happen, we interface PySD with the Matplotlib!® animation module:

import pysd

from matplotlib import animation

We import the model, and set the delay parameter to our chosen value:
model = pysd.read vensim('Third Order_Delay.mdl')

model.set components({'delay':5})

After setting up the plot, we instantiate a variable to serve as the state of the ‘valve’,
and construct a function that will be executed whenever a key is pressed during the

simulation, and connect it to the plot window. This function increases or decreases
the valve flowrate:

input_val =1

def on_key press(event):
global input_val

if event.key == 'up':
input_val += .25

elif event.key == 'down':
input_val -= .25

sys.stdout.flush()

fig.canvas.mpl _connect('key press _event', on_key press)

Now we need to connect this value to the value of the input in the model. We could
do this by passing it into the . run () function as a static parameter at each step in
the simulation, but it is simpler to just construct a single function (using Python
inline function syntax 1ambda) that lets PySD check the value in each iteration.

| model.components.input = lambda: input_val

Finally we have to set up the function that creates the animation. This function will
be called at each frame in the animation. To render each frame of the animation, we
must run the model forward by one time-step from its previous position, then plot
the resulting output.

def animate(t):
run the model forward by one time-step

time = model.components.t+dt

stocks = model.run(return_columns=["input',
'delay_buffer_ 1",
'delay_buffer_ 2",
'delay_buffer_ 3",
'output'],

return_timestamps=[time],
initial_condition='current',
collect=True)

#make changes to the display

level = stocks['output']
line.set data([0,1], [level, levell])

We then go on to call the animator with this function, which brings the graph to life
and gives us the real-time interaction we are hoping for. We can then access the full
history of the model using the . get_record () method, and create time-series
plots.

| record = model.get record()

Machine-learning regression in place of an equation

In the penny jar example, we executed a set of models and then compared their
output with measurements. In the delay game example, we fed the model with live
data from the user. This example will demonstrate the use of data and machine
learning techniques to stand in for a structural equation in a model. We touched on
this process earlier, in a superficial way, so lets get a little deeper into the data here.

In this hypothetical case, we will look at a manufacturing firm that responds to a
backlog by increasing the employee workday and pressuring employees to spend
less time on each task. We note that the fraction of defective products produced by
an employee during their shift depends upon both the time allocated per task and
the length of the workday. We can build up a system dynamics model to investigate
this feedback.

Number of Employees

Q#» Backlog v _a iy

Arrival Rate Fulfillment Rate +

(+ 4

Working Faster

Influence of
Backlog on Speed

Making Mistakes

- Defect Rate

Time allocated _/

per unit

(1

Working Long€+r Length of

workday

A

Influence of Backlog
on Workday

The firm collects data on workday, time per task, and defect rate for every worker
for every shift:

Workday Time Per Task Defect Rate
0.168 0.039 0.022
0.271 0.033 0.040

0.400 0.042 0.024

In this case, we see that the defect rate is not a linear function of the two variables -
there is some compounding effect that leads to an unknown and inseparable
functional form for defect rate as a function of workday and time per unit.

Defect Rate Measurements

009 r | | -
0-08 . . 0-09
007) 0.08
10.07
% 0.06 - .
- 0.06 5
- 1VvYb
¢ 0.05 - ”
LY Lo
e 4005 &
E 004 "0, o0 congs ~ - g
@ s) -
* . .°T 5 0.04
0.03 - ' -
0.03
0.02 - .
‘ 0.02
0.0 .

1 L \ | \ | \
0.15 0.20 0.25 0.30 0.35 040 0.45
Length of Workday

To capture this in our model we can replace the equation for ‘Defect Rate’ with a
support vector regression, from the Scikit-Learn module?°. This ML regression
utilizes the workday and time per unit as Factors and defect rate as the Outcome.

from sklearn.svm import SVR

regression = SVR()
regression.fit(Factors, Qutcome)

We create a function to interface the regression with our system dynamics model,
and then substitute it in for the original defect_rate equation.

def new_defect_ function():
""" Replaces the equation with a regression model"""

workday = model.components.length of workday ()

time_per_task =
model.components.time_allocated_per_unit()

return regression.predict([workday, time_per_task])[0]

model.components.defect rate = new_defect_ function

As the next step in our modeling process, we could modify the influence that backlog
has on speed and overtime to optimize a loss function based upon the cost of
defective parts and of carrying a backlog.

Future Development

The PySD tool is under development with the goal of creating (along with tools such
as the EMA workbench and SDM-Doc) an integrated stack of system dynamics
utilities that further the development of the field and its integration with other
disciplines. This set of tools will need to attract a diverse user base and a committed
group of developers who share responsibility for updating and maintenance.!

Documentation and Changes

The project webpage on Github hosts updated documentation, and provides a
mechanism for submitting bugs, feature requests, or other issues. Online
documentation should be considered the definitive resource for use of this package,
over this publication. The material presented in this document is being expanded
into an online executable ‘cookbook’ of standard methods for integrating data and
system dynamics models.

Future direction

Future enhancements to PySD include the ability to use native Python datetime
types to facilitate integration with time-series data; mechanisms for intelligently
handling model units; structure for storing model parameter and run values in
database backends, to facilitate model exploration; inclusion of arrays and
subscripts; and support for popular macros.

Integration with other tools

We hope to work with developers of other XMILE-stack system dynamics tools to
include PySD as a standard component in a variety of different supporting tools.
Components of PySD, such as the translators, are relatively modular and available
for use in other projects.

Availability and License

PySD is released under the MIT license?>, and is free to use, modify, and distribute
according to that agreement. The software is available on Github at:
https://github.com/JamesPHoughton/pysd, or through the Python Package Index
at: https://pypi.python.org/pypi/pysd/. If you use PySD in support of published
research, consider citing this paper to acknowledge that contribution.

1If you are interested in getting involved in development, contact James Houghton
(Houghton@mit.edu).

Bibliography

1.

10.

11.

12.

McAfee A, Brynjolfsson E. Big Data: The Management Revolution. Harv Bus
Rev. 2012.

Mabry PL. Making sense of the data explosion: the promise of systems science.
Am] Prev Med. 2011;40(5 Suppl 2):S159-S161.
doi:10.1016/j.amepre.2011.02.001.

Pruyt E, Cunningham S. From data-poor to data-rich: system dynamics in the
era of big data. ... Conf....2014.
http://repository.tudelft.nl/view/ir/uuid:6ac45297-47e5-4ceb-99dc-
3cc4f306a28c/. Accessed March 13, 2015.

Pruyt E, Kwakkel J. A bright future for system dynamics: From art to
computational science and beyond. ... 30th Int Conf ... 2012.
http://repository.tudelft.nl/view/ir/uuid:3f5b22cb-1552-4ef4-88bf-
9f6d6deb14c3/. Accessed March 13, 2015.

Kwakkel], Pruyt E. Exploratory Modeling and Analysis (EMA) Workbench.
2014. http://simulation.tbm.tudelft.nl/ema-workbench/contents.html.

Sticiillii C, Yiicel G. Behavior Analysis and Testing Software (BATS).
ie.boun.edu.tr.
http://www.ie.boun.edu.tr/labs/sesdyn/projects/bats/files/Can_Sucullu_Go
nenc_Yucel_BATS_Paper_ISDC_2014_Delft.pdf. Accessed March 2, 2015.

Martinez-Moyano I. Documentation for model transparency. Syst Dyn Rev.
2012. http://onlinelibrary.wiley.com/doi/10.1002 /sdr.1471 /full. Accessed
March 2, 2015.

Abdel-Gawad A. Identifying dominant behavior patterns, links and loops:
Automated eigenvalue analysis of system dynamics models. Proc 2005.
http://www.systemdynamics.org/conferences/2005/proceed/papers/ABDE
L373.pdf. Accessed March 2, 2015.

Ventana Systems Inc. Vensim. http://vensim.com/.

isee Systems Inc. Stella/iThink. http://www.iseesystems.com/.

Diker VG, Allen RB. XMILE: towards an XML interchange language for system
dynamics models. Syst Dyn Rev. 2005;21(4):351-359. d0i:10.1002 /sdr.321.

Rose E. Parsimonious. 2012. https://github.com/erikrose/parsimonious.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Hindmarsh A. ODEPACK, A Systematized Collection of ODE Solvers, RS
Stepleman et al.(eds.), North-Holland, Amsterdam,(vol. 1 of), pp. 55-64. IMACS
Trans Sci Comput. 1983.
http://www.citeulike.org/group/2018/article/2644528. Accessed March 13,
2015.

PyData Development Team. Pandas: Python Data Analysis Library. 2012.
http://pandas.pydata.org/. Accessed March 18, 2014.

The Pip Developers. Pip. 2008. http://pip.pypa.io.

Numpy Developers. NumPy Documentation. 2013. http://www.numpy.org/.
Accessed March 13, 2014.

Jones E, Oliphant T, Peterson P. {SciPy}: Open source scientific tools for
{Python}. 2014. http://www.citeulike.org/group/19049/article/13344001.
Accessed February 18, 2015.

Hunter], Dale D, Firing E, Droettboom M, The Matplotlib Development Team.
Matplotlib: Python Plotting — Documentation. 2013. http://matplotlib.org/.
Accessed March 13, 2014.

Fonnesbeck CJ. PyMC User’s Guide. 2012. http://pymc-devs.github.io/pymc/.
Accessed March 8, 2014.

Pedregosa F, Varoquaux G. Scikit-learn: Machine learning in Python. /] Mach
2011. http://dl.acm.org/citation.cfm?id=2078195. Accessed March 2, 2015.

Hagberg A, Schult D, Swart P. Networkx. High productivity software for
complex networks. 2013. https://networkx.github.io/. Accessed March 2,
2015.

GeoPandas developers. Geopandas. 2013.
Davidson-Pilon C. Probabilistic Programming and Bayesian Methods for
Hackers.; 2013. http://camdavidsonpilon.github.io/Probabilistic-

Programming-and-Bayesian-Methods-for-Hackers/.

Gadsby JW. FUTURE OF THE PENNY Options for Congressional Consideration.;
1996.

The MIT License (MIT). Open Source Initiat. 1988.
http://opensource.org/licenses/MIT. Accessed February 18, 2015.

26.

27.

28.

29.

30.

Magoulas R, King J. 2013 Data Science Salary Survey: Tools, Trends, What Pays
(and What Doesn’t) for Data Professionals. O’Reilly; 2014.
http://www.oreilly.com/data/free/stratasurvey.csp.

McKinney W. Python for Data Analysis: Data Wrangling with Pandas, NumPy,
and IPython.; 2012.
https://books.google.com/books?hl=en&lr=&id=]tJAkfzds4wC&oi=fnd&pg=P
R3&dqg=Python+for+Data+Analysis+Data+Wrangling+with+Pandas,+NumPy,
+and+IPython&ots=pQsLxDUV4e&sig=HSj4Yodi5-tEePOHaqyvZVchG3w.
Accessed February 23, 2015.

Rossant C. IPython Interactive Computing and Visualization Cookbook.; 2014.
https://books.google.com/books?hl=en&lr=&id=yZafBAAAQBA]&oi=fnd&pg=
PT31&dqg=IPython+Interactive+Computing+and+Visualization+Cookbook&ot
s=vVj6XR]-]Z&sig=0fBGioP_WnkVCZ_N6Uq5sIlwqAMc. Accessed March 13,
2015.

McKinney W. 10-minute tour of pandas. 2013. https://vimeo.com/59324550.
Accessed March 13, 2015.

Russell M. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn,
Google+, GitHub, and More.; 2013.
https://books.google.com/books?hl=en&Ir=&id=_VkrAQAAQBA]&oi=fnd&pg=
PR4&dq=Mining+the+social+web&ots=]JgkwmFTxoK&sig=tnv-
AHAc1vrwwgzZSCOVBxYZI68. Accessed March 13, 2015.

Appendix

Supported functions and their Python equivalents
As of this publication, PySD supports the following commands:

Why Python?

Vensim Python

lognormal np.random.lognormal
modulo np.mod

poisson np.random.poisson
arcsin np.arcsin

max max

<= <=

pulse functions.pulse

< <

step functions.step

exprnd np.random.exponential
integer int

inf np.inf

tan np.tan

random np.random. rand
uniform

if then functions.if then else
else

cos np.cos

random functions.bounded normal
normal

min min

1n np.log

pulse train functions.pulse train
ramp functions.ramp

sqrt np.sqrt

arctan np.arctan

abs abs

>= >=

exp np.exp

arccos np.arccos

There are a number of different environments used in data science, with more or
less well-developed sets of supporting software, including Python, Matlab, R,
Tableau, Java, Javascript, SAS/SPSS, and others26. The choice to develop this tool
using Python represents the consideration of a number of factors, in approximate
order of importance: open source accessibility, maturity of data science toolbox,

existing use within the system dynamics field, established user base in the data
science community, flexibility for a variety of data collection and display tasks,
modern programming constructs, and computational power.

Working with the iPython Notebook

One of the better user interfaces for performing scientific analyses in Python and
with PySD is the iPython Notebook. The Notebook provides a simple way to
incorporate code, documentation, equations, references, and execution output in a
document-like environment. This layout makes constructing and communicating
analyses very straightforward. Notebooks can be shared using an online viewer
available at http://nbviewer.ipython.org/.

® ® IPy Teacup X James
& localhost:8888/notebooks/Google_Drive/Academic %20Projects/PYSD/p... ke ||| =
IPlyl: Notebook Teacup
File Edit View Insert Cell Kernel Help VO
O xx & B 4 ¥ > H C Code 4 |Cell Toolbar: None s

When can | drink my tea?

This analysis makes use of a vensim model of a teacup to understand how the temperature of
tea changes over time, and to understand how external factors such as the temperature of a
room influence the timeseries behavior.

In [3]: %pylab inline
import pysd
model = pysd.read_vensim('Teacup.mdl’')

Populating the interactive namespace from numpy and matplotlib

Our model simulates Newton's Law of Cooling, which follows the functional form:
daT
— = k(T — T i
dt (ambtent)

In [3]: stocks = model.run()
stocks.plot()
plt.ylabel('Degrees F')
plt.xlabel('Minutes');

180

— teacup_temperature

160

140

120 +

Degrees F

100

0 5 10 15 20 25
Minutes

How PySD cleans variable names

PySD allows variable names that start with a letter, and then contain some number
of letters, numbers, dollar signs, and spaces. PySD converts all letters to lower case,
and substitutes underscores for all spaces. Thus:

Model Identifier Sanitized Python
Interest Rate interest _rate
Return % -not allowed-
Avgerage $s per Sale Average $s _per_sale

Resource List
Python Data Analytics Stack
* Python for Data Analysis?’: Wes McKinney
* Ipython Interactive Computing and Visualization Cookbook?8: Cyrille Rossant
* Probabilistic Programming and Bayesian Methods for Hackers?3: by Cam
Davidson-Pilon
* 10-Minute tour of Pandas??: Wes McKinney
* Mining the Social Web30: by Matthew Russel

Thanks

Special thanks to Stuart Madnick, Allen Moulton, David Keith, Hazhir Rahmandad,
Eliot Rich, David Andersen, Luis Luna-Reyes, Robert Ward and David Weiss for their
feedback and help with this project.

