Multimessenger signatures for sources of **Gravitational Waves**

XIX International Workshop on Neutrino Telescopes

Radioactively powered transients

17 August 2017, 12:41:04 UT

Credit: University of Warwick/Mark Garlick

GW170817

GW observables

GW170817: PARAMETERS OF THE SOURCE

23 < *f /Hz* < 2048 Analysis uses source location from EM

Mass range 1.0 – 1.89 Mo
 1.16 – 1.60 Mo low spin

Masses are consistent with the masses of all known neutron stars!

OF AIT KHOWIT REQUOIT 5(AF5)

Abbott et al. 2018, arXiv1805.11579

NS LABORATORY FOR STUDYING SUPER-DENSE MATTER

TIDAL DEFORMABILITY

$$\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$$

From only GWs we cannot say both components of the binary were NS

Post merger remnant?

Post merger remnant?

NS-NS Low-Mass NS-NS SMNS (--1 hour HMNS Tight Miss NS-NS (--1 hour HMNS (--1 s) BH + TORUS Sim. & vis., W. Kastaun

Heaviest NS or lightest BH known?

GW search:

- ringdown of BH around 6 kHz
 → LIGO/Virgo response strongly reduced
- short (tens of ms) and intermediate duration (≤ 500 s) GW signals up to 4 kHz
 → no ovidence of postmorger signals, but it

Abbott et al. 2017, ApJL,851

→ no evidence of postmerger signals, but it cannot rule out short- or long-lived NS

EM non-thermal emission

Short Gamma Ray Burst

Prompt emission Y-ray within seconds Afterglow emission Optical, X-ray, radio hours, days, months

GRB 170817A

- 100 times closer than typical GRBs observed by Fermi-GBM
- it is also "subluminous" compared to the population of long/short GRBs
- $10^2 10^6$ less energetic than other short GRBs

Abbott et al. 2017, APJL, 848, L13

Intrinsically sub-luminous event

or a classical short GRB viewed off-axis?

X-ray and radio emissions 9 and 16 days after the merger

10

Time since GW trigger [d]

100

After 150 days from the BNS merger...

..unexpected slow achromatic flux—rise until ~ 150 days!

D'Avanzo et al. 2017, A&A

RADIAL or ANGULAR STRUCTURE?

Mildly relativistic isotropic outflow (choked jet)

Structured Jet (successful) off-axis jet

[see e.g. Rossi et al. 2002, Zhang et al. 2002, Ramirez-Ruiz et al. 2002, Nakar & Piran 2018, Lazzati et al. 2018, Gottlieb et al. 2018, Kasliwal 2017, Mooley et al. 2017, Salafia et al. 2017, Ghirlanda et al. 2019]

After 150 days from the BNS merger...decaying phase!

MULTI-WAVELENGTH LIGHT CURVES CANNOT DISENTANGLE THE TWO SCENARIOS!

[Margutti, et al. 2018, Troja, et al. 2018, D'Avanzo et al. 2018, Dobie et al. 2018, Alexander et al. 2018, Mooley et al. 2018, Ghirlanda et al. 2019]

RADIO HIGH RESOLUTION IMAGING

At the same epoch: structured jet has LARGER DISPLACEMENT and SMALLER SIZE than isotropic midly relativistic outflow!

[Gill & Granot 2018; Nakar+2018; Zrake+2018; Mooley+2018; Ghirlanda+2018]

SIZE CONSTRAINTS

Observations 207.4 days after BNS merger by global VLBI network of 33 radio telescopes over five continents constrain SOURCE SIZE < 2 mas

Ghirlanda et al. 2019, Science

See also Mooley, Deller, Gottlieb et al. 2018

SIZE CONSTRAINTS

Ghirlanda et al. 2019, Science

Ruled out nearly isotropic, mildly relativistic outflow , which predicts proper motion close to zero and size > 3 mas after 6 months of expansion

Ghirlanda et al. 2019, Science

A relativistic energetic and narrowly-collimated jet successfully emerged from neutron star merger GW170817!

Thermal-emission

Kilonova

Tidal-tail ejecta → r-process

Neutron capture rate much faster than decay, special conditions: $T > 10^9$ K, high neutron density 10^{22} cm⁻³

nucleosynthesis of heavy nuclei

radioactive decay of heavy elements

Power short lived RED-IR signal (days)

Li & Paczynski 1998; Kulkarni 2005 Metzger et al. 2010; Tanaka et al. 2014; Barnes & Kasen 2013

Shock-heated ejecta, accretion disc wind outflow, secular ejecta

- \rightarrow Weak interactions: neutrino absorption, electron/positron capture
- → Higher electron fraction, no nucleosynthesis of heavier element
- \rightarrow Lower opacity

- Kasen et al. 2015, Perego et al. 2014, Wanajo et al. 2010
- → brief (~ 2 day) blue optical transient

Observables: expectations

Light curve shape (duration and peak luminosity) and spectarl shape are dramatically affected by lanthanides

UV/Optical/NIR Light Curves

Extremely well characterized photometry of a Kilonova: thermal emission by radiocative decay of heavy elements synthesized in multicomponent (2-3) ejecta!

First spectral identification of the kilonova emission

- the data revealed signatures of the radioactive decay of r-process nucleosynthesis (Pian et al. 2017, Smartt et al. 2017)
- BNS merger site for heavy element production in the Universe!

(Cote et al. 2018, Rosswog et al. 2017)

Credit: ESO/E. Pian et al./S. Smartt & ePESSTO/L. Calçada

Nucleosynthesis

Smartt et al. 2017

Attempt to identify elements

Spectral analysis hampered because of:

- heavy elements have forest of lines hence strong blending
- relativistic velocity makes for extremely broad lines (multicomponents and different velocities)
- atomic data are incomplete and uncertain

A recent work...

identification of the neutron-capture element **strontium**

Watson, D. et al. accepted in Nature

See also Perego et al. 2020

Multi-component kilonova emission (Pian et al. 2017, Nature, 551, 57)

At present models are not able to reproduce consistently all the observed spectral features

Multi-messenger studies

GRB/GW FUNDAMENTAL PHYSICS/COSMOLOGY

GRB/GW delay

 $\Delta t = (1.74 \pm 0.05) \, s$

 and 40 Mpc distance
 → difference speed of gravity and speed of light between

$$-3\,\times\,10^{-15}\leqslant\frac{\Delta v}{v_{\rm EM}}\leqslant+7\,\times\,10^{-16}$$

GWs propagate at the speed of light to within 1:10¹⁵! LVC 2017, APJL, 848, L13

Consequences of multi-messenger detection of GW170817 for cosmology Constraint on the speed of GWs ruled out many classes of modified gravity models (quartic/quintic Galileons, TeVeS, MOND-like theories, see, e.g., Baker et al. '17, Creminelli & Vernizzi '17)

GRAVITATIONAL-WAVE COSMOLOGY

measured from GWs

$$d=43.8^{+2.9}_{-6.9}\,{\rm Mpc}$$

and NGC4993 recession velocity

$$H_0 = 70.0^{+12.0}_{-8.0} \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

Recession velocity /redshift GW distance

Abbott et al. 2017, Nature, 551, 85A

MULTIMESSENGER CONSTRAINTS ON NUCLEAR EOS

Simulations in NR

EM observations exclude very soft EOS!

EM observations \rightarrow Mej,tot > 0.05Mo suggests a lower limit Λ > 400

Radice, Perego, Zappa, Bernuzzi 2017

EM constraints on the TYPE OF REMNANT and multi-messenger constraints on RADII and maximum MASS of (TOV) NSs

EM constraints on the TYPE OF REMNANT and multi-messenger constraints on RADII and maximum MASS of (TOV) NSs

Radioactively powered transients

First run O1, second run O2, and half of third run O3a

O3a Event Rate

39 candidate GW events in ~26 weeks of O3a (FAR 2 per year → contamination fraction of less than 10%)

26 candidate events low-latecy reported in GCN alerts + 13 candidate events offline analysis

LVC Catalog paper, arXiv: 2010.14527

O1, O2, O3 \rightarrow 50 candidate GW events

TOTAL MASS vs MASS RATIO

LVC Catalog paper, arXiv: 2010.14527

Notable candidate events

LVC Catalog paper, arXiv: 2010.14527

GW190425: another BNS detection!

	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
Primary mass m_1	1.60–1.87 M_{\odot}	$1.61-2.52 M_{\odot}$
Secondary mass m_2	$1.46 - 1.69 M_{\odot}$	1.12–1.68 M_{\odot}
Total mass $m_{\rm tot}$	$3.3^{+0.1}_{-0.1}M_\odot$	$3.4^{+0.3}_{-0.1}M_{\odot}$
Luminosity distance $D_{\rm L}$	$159^{+69}_{-72} \mathrm{Mpc}$	$159^{+69}_{-71} \mathrm{Mpc}$

NO firm EM counterpart!

Sky localization of $8284\ deg^2$

Abbott et al. 2020, ApJL, 892

GW190814: FIRST NS-BH or low-mass BBH?

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GW190814

Abbott et al. 2020, ApJL, 896

- NO evidence of measurable tidal effects in the GW signal
- NO EM counterpart
- → Consistent with both BBH and NSBH scenarios
 → In the NSBH, observation results can be explained by the large mass ratio

Sky localization of 18.5 deg²

GW190521

The birth of a intermediate massive black-hole!

Credit: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

Abbott et al 2020, PRL, 125 Abbott et al 2020, APJ, 900

BBH in the accretion disk of a supermassive black hole?

Caltech/R. Hurt (IPAC)

Graham et al 2020, PRL 124

ZTF detected a candidate counterpart(!?)

- EM flare close to AGN
- ~ 34 days after the GW event
- consistent with expectations for a kicked BBH merger in the accretion disk AGN
- 765 deg² localization area
- ZTF observed 48% of the 765 deg² (90% c.r.)

Next observating runs

A new window into the Universe

Strain sensitivities as a function of frequency

Abbott et al. 2020, LRR

Observing run timeline and BNS sensitivity evolution

Starting of 04 not before June 2022

LOCALIZATION: sky-area and volume

		BNS	NS-BH	BBH
		Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.
03	HLV	270^{+34}_{-20}	330^{+24}_{-31}	280^{+30}_{-23}
O4	HLVK	33^{+5}_{-5}	50^{+8}_{-8}	41^{+7}_{-6}

Detection: SNR > 4 in at least two detectors and network SNR > 12

EXPECTED NUMBER OF DETECTIONS FOR O3 and O4 detection counts per one-calendar-year observing run

Observation Run	Network	Expected BNS Detections
O3	HLV	1^{+12}_{-1}
O4	HLVK	10^{+52}_{-10}

Detection: SNR > 4 in at least two detectors and network SNR > 12 About FAR < 1/100 yr

3G detector

The European 3G idea

Europe we developed the idea of a 3G GW observatory

- Factor 10 better (x1000 Volume) than Advanced (2G) detectors
- Wide frequency, with special attention to low frequency (few HZ)
- Capable to work alone (but aiming to be in a 3G network)
- 50-years lifetime of the infrastructure

ESFRI proposal submitted in September

3G effort worldwide

NSF funded in 2018 the Conceptual Design Study of a 3G facility: Cosmic Explorer: 40km – L shaped detector

Einstein Telescope

Detection horizon for black-hole binaries

What ET and future EM observatories can do?

Binary systems of Compact Objects

- Study BNS/NSBH/BBH along the cosmic history
- Large increase of detatction rate
- Better parameter estimation

10⁴ BNS detections per year

Ghirlanda

Kilonovae detectable by the Vera Rubin Observatory survey up to 1 Gpc

In this volume

Rubin Observatory

- ET about 100 event per year have sky loc < 10 sq. degrees
- For ET+LVKI 10³ per year have sky loc < 10 sq. degrees

A few tens of joint detections!

High-energy Kev-MeV GRB

In this volume

- ET poor sky localization
- For ET+CE order of 10³ events per year with sky loc < 10 sq. degrees

Mission concept THESEUS (wide FoV) \rightarrow Tens of joint detections!

Next decades multi-messenger observatories

