
Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

Alternate Timelines for TidalCycles

Alex McLean
Then Try This

Penryn/Sheffield
alex@slab.org

1. INTRODUCTION

The TidalCycles (or Tidal for short) live coding environment has been developed since
around 2009, via several rewrites of its core representation. Rather than having fixed
goals, this development has been guided by use, motivated by the open aim to make
music. This development process can be seen as a long-form improvisation, with
insights into the nature of Tidal gained through the process of writing it, feeding back
to guide the next steps of development.

This brings the worrying thought that key insights will have been missed along this
development journey, that would otherwise have lead to very different software. Indeed
participants at beginners’ workshops that I have lead or co-lead have often asked
questions without good answers, because they made deficiencies or missing features in
the software clear. It is well known that a beginner’s mind is able to see much that an
expert has become blind to. Running workshops are an excellent way to find new
development ideas, but the present paper explores a different technique - the rewrite.

2. THE REWRITE

I have re-written Tidal several times before (McLean 2014), or at least largely re-written
the inner representation of Tidal patterns and refactored its library of combinators. This
involved working in a fresh source folder, but copy-and-pasting a large part of the code,
function-by-function from old to new, re-appraising and rewriting as I went. By
focussing on the representation, and taking advantages of insights gained since the last
rework, generally this involved deleting more code than I wrote. Certainly the type
definitions and supporting code has become significantly shorter and clearer through
the process of these rewrites.

However the ongoing rewrite reported on here is as an attempt to recreate Tidal from
scratch without reference to the existing codebase, as a ‘clean room’ rewrite. It began
with a two-hour public live stream where I ‘thought aloud’ while rewriting Tidal’s core

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

mailto:alex@slab.org
https://iclc.toplap.org/2021/

Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

representation of patterns as functions of time. The design of these innards has taken
place over a decade, but this session could be viewed as replaying a condensed version
of the thinking behind its design over a mere two hours. This points to a potentially
useful research programme, where several people are invited to attempt a similar
process of thinking aloud while remaking a core part of their system.

The first motivation for this work was simply curiosity, after participating in a
discussion about rewriting generative systems from scratch1 - how different would it
turn out? Would it be better or worse? What insights will be gained, and how will this
work feed back into mainline Tidal development? Further motivations have emerged
during the rewrite; the clarity from refactoring, ideas to formalise Tidal’s polymetric
sequences underlying its ‘mini-notation,’ ways to escape Haskell syntax with a custom
parser, and facilitating ‘ports’ of Tidal to other languages.

2.1. The First Two Hours

I began the rewrite as a two-hour live stream, to see how much of Tidal I could write in
that time.2 I wasn’t sure how interactive or interesting the stream would be, but in the
event, I happily talked continuously throughout, with an eye on feedback in the live
chat. Surprisingly for me, this felt more engaged than the many times I have streamed
musical live coding performances. It felt good to respond to questions and read
encouraging messages, while sharing quite an intensive experience of writing the
foundations of a system from scratch.

Although this was what you might call “night science,” done out of curiosity rather
than to respond to a clear research question or design requirement, this approach has
some relation to the “think aloud” and “talk aloud” protocols (Ericsson and Simon 1984),
which are usability research techniques which have for example been applied in the
Psychology of Programming field (Wallace et al. 2002) to investigate programming
languages as user interfaces. From this experience I have found it possible to ‘think
aloud’ while writing a significant part of a representation for a live coding system,
during a relatively short period of time. The design of Tidal’s innards has taken place
over 12 years, but this session could be viewed as replaying a condensed version of the
thinking behind its design over a mere two hours. This points to a potentially useful
research programme, where several people are invited to attempt a similar process of
thinking aloud while remaking a core part of their system. There has been little in the
way of comparative research into the thinking that goes into live coding language
1 The discussion took place in July 2021, organised by the on-the-fly research group.
Mateo Tonatiuh described losing the source code for one of his music systems,
remaking it, and finding the new version behaved very differently from the original.
2 An archive of the live stream is available here: https://youtu.be/F2-evGtBnqQ

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

https://iclc.toplap.org/2021/
https://youtu.be/F2-evGtBnqQ

Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

design, and this could be a fruitful approach to take. However I only offer this thought
for future work, and in-depth analysis of the live stream itself is out of context for this
paper.

The outcome of the stream3 was 114 code lines4, roughly two lines per minute, although
37 of these lines were largely redundant type definitions. At the time of writing,
additional work tidying and expanding on this work has roughly trebled this line count
since, and it is this version that I will compare with the mainline Tidal codebase.5

2.2. Applicative Functors and Monads

The rewrite focussed on the representation of pattern, and the core functional
structures. At this point, Tidal’s representation of pattern is well defined, and the
rewritten version does not show any significant differences with the original. However
the functions representing how patterns are combined look very different.

The rewrite includes the following definition of the standard <*> operator and
supplemental <* and *>, which form the basis of Tidal’s family of operators for
combining patterns (#, +|, |*, and friends). For example these definitions allow two
patterns of numbers to be added together, or two patterns of synthesiser effects to be
combined, even if the patterns have very different structures. This forms part of Tidal’s
definition of an ‘applicative functor.’ Haskell programmers should note that the use of
<* and *> is unrelated to their usual definition and use in Haskell, rather they define
alternate behaviour to <*>.
app wf patf patv = Pattern f
 where f s = concatMap (\ef -> catMaybes $ map (apply ef) evs) efs
 where efs = (query patf s)
 evs = (query patv s)
 apply ef ev = apply' ef ev (maybeSect (active ef)
 (active ev))
 apply' ef ev Nothing = Nothing
 apply' ef ev (Just s') =
 Just $ Event (wf (whole ef) (whole ev)) s'
 (value ef $ value ev)

(<*>) :: Pattern (a -> b) -> Pattern a -> Pattern b
(<*>) = app (liftA2 sect)

3 See the following link for the code resulting from the two hour live stream:
https://github.com/yaxu/remake/commit/8cee36417438e82778b2e0085a2dd897609b8593
4 Calculated with the cloc utility: https://github.com/AlDanial/cloc
5 The state of the repository at the time of writing:
https://github.com/yaxu/remake/tree/a088f49683f3034881292f20a90d39abc21bdc5f

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

https://iclc.toplap.org/2021/
https://github.com/yaxu/remake/tree/a088f49683f3034881292f20a90d39abc21bdc5f
https://github.com/AlDanial/cloc
https://github.com/yaxu/remake/commit/8cee36417438e82778b2e0085a2dd897609b8593

Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

(<*) :: Pattern (a -> b) -> Pattern a -> Pattern b
(<*) = app const

(*>) :: Pattern (a -> b) -> Pattern a -> Pattern b
(*>) = app (flip const)

Unlike in the current ‘mainline’ Tidal, we can see from the above that the three
operators are based on a single function app, which does the work of matching events
from the pattern of events with the pattern of values. Often matching events will only
partly overlap, in which case are treated as fragments of an original ‘whole’ event. This
whole is either taken from the pattern of functions (using <*), the pattern of values
(using *>), or the intersection of the two (<*>). In the case of addition, the Tidal
operators built form these would be |+, +| and |+| respectively, where structure is
said to come from the ‘left,’ ‘right’ or ‘both.’ I won’t go into further detail of the
workings here, but if I did I would find it a lot easier to write about than the original
definitions in ‘mainline’ Tidal, which are around 2.5 times longer and far less clear.

The following is the rewritten version of Tidal’s ‘bind’ operations, which again provides
core functionality for how patterns are combined. In particular it is what makes
‘patterned parameters’ possible, where for example when using the fast function to
speed a pattern up, you can also pattern the amount by which it is sped up by. This
function (which forms part of the Tidal’s definition of a ‘monad’) is what leads to the
popular refrain that in Tidal, it’s patterns all the way down.
bindWhole :: (Maybe Span -> Maybe Span -> Maybe Span) -> Pattern a
 -> (a -> Pattern b) -> Pattern b
bindWhole chooseWhole pv f = Pattern $ \s -> concatMap (match s) $ query pv s
 where match s e = map (withWhole e) $ query (f $ value e) (active e)
 withWhole e e' = e' {whole = chooseWhole (whole e) (whole e')}

bind :: Pattern a -> (a -> Pattern b) -> Pattern b
bind = bindWhole (liftA2 sect)

bindInner :: Pattern a -> (a -> Pattern b) -> Pattern b
bindInner = bindWhole const

bindOuter :: Pattern a -> (a -> Pattern b) -> Pattern b
bindOuter = bindWhole (flip const)

Again, this is several times smaller than the current equivalent definitions in the
‘mainline’ Tidal, and far clearer. My reason for including both code snippets here
though is to point out the similarities between the definitions of <*>, <* and *>, and
those of bind, bindInner and bindOuter. This carries a core insight gained during
the rewrite process, that when combining patterns, a common question is that when
combining two event fragments, how do you choose what they are a fragment of? This
insight helps both understand and explain Tidal’s approach to combining patterns in
time.

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

https://iclc.toplap.org/2021/

Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

I should briefly note that despite the above talk of combining events, Tidal patterns are
not data structures, but functions of time. The above functions combine behaviour as
functions, but do not actually do any matching of events until later, when the pattern is
queried for events, usually by Tidal’s scheduler. This is good, because time is infinite,
and so procedurally combining all the possible events in two patterns would take
forever.

3. REPRESENTING SEQUENCES

The rewrite has also been an opportunity to rethink how sequences are represented.
TidalCycles is often looked on with some suspicion in the Haskell community for its
apparent heavy use of strings to represent polymetric sequences as ‘mini-notation.’ The
pejorative term ‘stringly typed’ (as opposed to ‘strongly typed’) has been used. To some
extent this is a misunderstanding, the double-quoted strings are ‘overloaded,’
immediately parsed into ‘well-typed’ functions of time with no other string
manipulation. With some exceptions, a rhythm written in the mini-notation is also
possible to express directly with Tidal’s library of Haskell functions; the mini-notation,
inspired by Bernard Bel’s Bol processor (Bel 2001) simply lets you do so more quickly
and succinctly.

Nonetheless, it is true that Tidal does not formally represent the polymetric sequences
parsed by the mini-notation. 0nce they are parsed into a Tidal pattern, the metric
structure of the sequence is locked away inside an opaque function of time. This rewrite
process was therefore an opportunity to consider how Tidal’s current representation of
patterns as functions of time could be augmented with equally well formalised
representation of rhythms as polymetric sequences.

To this end, the rewrite currently includes a type for representing rhythm as follows:
data Rhythm a = Atom a
 | Silence
 | Subsequence {rSteps :: [Step a] }
 | StackCycles {rRhythms :: [Rhythm a]}
 | StackSteps {rPerCycle :: Rational,
 rRhythms :: [Rhythm a]
 }
 | Patterning {rFunction :: Pattern a -> Pattern a,
 rRhythm :: Rhythm a
 }

An initial aim for this is to be able to represent mini-notation-alike structures in
Haskell types, in order to allow Tidal to engage more directly with the world of stateful
patterning procedures common in algorithmic music, such as L-Systems, Markov
chains, cellular automata and so on. A longer term aim however is to escape Haskell

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

https://iclc.toplap.org/2021/

Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

syntax completely. The idea here is that once everything is represented in Haskell, it
becomes easier to create something like a mini-notation that embraces the full
capability of Tidal. Consider the following piece of design fiction:

jux <(rev) (iter 4)> $ sound [bd (every 3 (fast 4) [sn])]

The above pattern is not valid Tidal code as we currently know it, and appears to be a
jumble of mini-notation and Tidal functions. Indeed, earlier I mentioned that running
workshops is a great way to access beginners’ minds for fresh perspectives, and I have
often seen Tidal beginner workshop participants write code like the above. This raises
the question, why shouldn’t we be able to jumble up these different constructs? We
could simply say that [] and {} allows us to jump into mini-notation-alike rhythms
(where multiple subsequences are combined cycle-wise or beat-wise respectively) and
() allows us to jump back into specifying pattern transformation functions.

In fact, we already have a parser for Tidal as-is that could support such
experimentation, the ‘MiniTidal’ parser created by David Ogborn, used at scale as part
of his web-based Estuary live coding environment(Ogborn et al. 2017). There seems to
be a path laid out then, for Tidal to first become more clearly formalised in Haskell, in
order to then support more flexible, experimental syntax beyond Haskell, such as the
above.

4. VORTEX - A Tidal ‘Port’ to the Python Programming Language

This leads to related possibilities offered up by this rewrite - porting Tidal outside of
Haskell completely. Now that the core ‘innards’ of Tidal have been significantly
clarified, particularly the applicative and monadic functions shared earlier, it could be
easier to port Tidal to other languages. In the past I have sometimes wondered whether
it is even practically possible to port Tidal to another language, when it use relies so
much on Haskell features of strict types, partial application, type inference and so on. I
took the opportunity to find out, by attempting to port Tidal to Python in collaboration
with Sylvain Le Beux, Damián Silvani and Raphaël Forment.

It proved to be fairly straightforward to port the core representation and applicative
and monadic functions to python, and turning this into something useful became a
collective effort, with python programmers in the Tidal community jumping in with
ideas and core contributions. The project is codenamed ‘vortex,’ and around two weeks
in, already has a native live coding editor, growing documentation, testing framework,
full integration with the Link synchronisation protocol, and of course is able to make
sound via the SuperDirt synthesiser in SuperCollider.

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

https://iclc.toplap.org/2021/

Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

I still doubt that it would have been possible to make something quite like Tidal
without the support of Haskell’s excellent type system, but now it is made, it seems that
the ideas and representations are readily transferable to quite different language
environments. Nonetheless, there will surely be different trade-offs involved, according
to the affordances of the language host, particularly where Tidal takes the form of an
embedded domain specific language (as it does with Haskell and now Python).

5. CONCLUSION

In summary, this work in rewriting Tidal was driven by curiosity, but lead to
unexpected insights and opportunities, in terms of a clearer representation of patterns
that opens up new possibilities for experimentation as discussed above.

What I would especially like to highlight in conclusion is the possibility of opening up
some of thinking that goes into creating live coding environments. Perhaps we should
think about this quite differently from projecting screens in live coding performance;
making live coding languages is after all quite a different mode compared to making
music, visuals, choreography or other time-based art. Making live coding environments
is an opportunity to get very deep in rethinking and restructuring our human
relationship with time, where following and properly mapping out an idea might take a
decade or more.

Around 13 years into the development of Tidal I feel I’m only now properly able to
grasp what Tidal is, and only starting to be able to properly articulate what it is to
others. This ‘clean room’ rewriting process has helped with this aim, and I if you
haven’t already, I encourage other live coding language makers to try doing something
similar. This is one way to give ourselves space, as dreamers of ways to dream.

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

https://iclc.toplap.org/2021/

Proceedings of the International Conference on Live Coding, Valdivia, December 2021
https://iclc.toplap.org/2021/

6. ACKNOWLEDGMENTS

Special thanks for the Tidal and live coding communities, especially Sylvain Le Beux,
Damián Silvani and Raphaël Forment in collaborating on Vortex, the people joining the
two-hour Tidal rewrite stream, and the organisers of and other participants in the On-
The-Fly research group cantinas which helped keep me thinking during pandemic
lockdown.

This research was conducted during the PENELOPE project, with funding from the
European Research Council (ERC) under the Horizon 2020 research and innovation
programme of the European Union, grant agreement No 682711. It was also conducted
during my fellowship as part of Then Try This, supported by a UKRI Future Leaders
Fellowship [grant number MR/V025260/1].

REFERENCES
Bel, Bernard. 2001. “Rationalizing Musical Time: Syntactic and Symbolic-Numeric
Approaches.” In The Ratio Book, edited by Clarence Barlow, 86–101. Feedback Studio.

Ericsson, K. A., and H. A. Simon. 1984. Protocol Analysis: Verbal Reports as Data.
Cambridge, MA: MIT Press.

McLean, Alex. 2014. “Making Programming Languages to Dance to: Live Coding with
Tidal.” In Proceedings of the 2nd ACM SIGPLAN International Workshop on Functional
Art, Music, Modelling and Design. https://doi.org/10.1145/2633638.2633647.

Ogborn, David, Jamie Beverley, Luis Navarro del Angel, Eldad Tsabary, and Alex
McLean. 2017. “Estuary: Browser-Based Collaborative Projectional Live Coding of
Musical Patterns.” In Proceedings of the International Conference on Live Coding, 11.
Morelia.

Wallace, Chris, Curtis Cook, Jay Summet, and Margaret Burnett. 2002. “Assertions in
End-User Software Engineering: A Think-Aloud Study.” In, 63–65.
https://doi.org/10.1109/HCC.2002.1046348.

Copyright Alex Mclean, 2021. This is an open access article distributed under the terms of the Creative Commons Attribution
ShareAlike 4.0 International License (CC BY SA 4.0).

https://doi.org/10.1145/2633638.2633647
https://doi.org/10.1109/HCC.2002.1046348
https://iclc.toplap.org/2021/

	1. INTRODUCTION
	2. THE REWRITE
	2.1. The First Two Hours
	2.2. Applicative Functors and Monads

	3. REPRESENTING SEQUENCES
	4. VORTEX - A Tidal ‘Port’ to the Python Programming Language
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	REFERENCES

