--- title: Featurizing Time Series keywords: fastai sidebar: home_sidebar summary: "Functions used to transform time series into a dataframe that can be used to create tabular dataloaders." description: "Functions used to transform time series into a dataframe that can be used to create tabular dataloaders." nb_path: "nbs/020_data.features.ipynb" ---
In this case we are using tsfresh that is one of the most widely known libraries used to create features from time series. You can get more details about this library here: https://tsfresh.readthedocs.io/en/latest/
get_ts_features
[source]
get_ts_features
(X
:Union
[ndarray
,Tensor
],y
:Union
[NoneType
,ndarray
,Tensor
]=None
,features
:Union
[str
,dict
]='min'
,n_jobs
:Optional
[int
]=None
, **kwargs
)
Args: X: np.array or torch.Tesnor of shape [samples, dimensions, timesteps]. y: Not required for unlabeled data. Otherwise, you need to pass it. features: 'min', 'efficient', 'all', or a dictionary. Be aware that 'efficient' and 'all' may required substantial memory and time.
dsid = 'NATOPS'
X, y, splits = get_UCR_data(dsid, return_split=False)
X.shape
(360, 24, 51)
There are 3 levels of fatures you can extract: 'min', 'efficient' and 'all'. I'd encourage you to start with min as feature creation may take a long time.
In addition to this, you can pass a dictionary to build the desired features (see tsfresh documentation in the link above).
ts_features_df = get_ts_features(X, y)
ts_features_df.shape
Feature Extraction: 100%|████████████████████████████████████| 40/40 [00:05<00:00, 7.11it/s]
(360, 217)
The 'min' set creates a dataframe with 8 features per channel + 1 per target (total 193) for each time series sample (360).
cont_names = ts_features_df.columns[:-1]
y_names = 'target'
dls = get_tabular_dls(ts_features_df, splits=splits, cont_names=cont_names, y_names=y_names)
dls.show_batch()
0__sum_values | 0__median | 0__mean | 0__length | 0__standard_deviation | 0__variance | 0__root_mean_square | 0__maximum | 0__minimum | 1__sum_values | 1__median | 1__mean | 1__length | 1__standard_deviation | 1__variance | 1__root_mean_square | 1__maximum | 1__minimum | 2__sum_values | 2__median | 2__mean | 2__length | 2__standard_deviation | 2__variance | 2__root_mean_square | 2__maximum | 2__minimum | 3__sum_values | 3__median | 3__mean | 3__length | 3__standard_deviation | 3__variance | 3__root_mean_square | 3__maximum | 3__minimum | 4__sum_values | 4__median | 4__mean | 4__length | 4__standard_deviation | 4__variance | 4__root_mean_square | 4__maximum | 4__minimum | 5__sum_values | 5__median | 5__mean | 5__length | 5__standard_deviation | 5__variance | 5__root_mean_square | 5__maximum | 5__minimum | 6__sum_values | 6__median | 6__mean | 6__length | 6__standard_deviation | 6__variance | 6__root_mean_square | 6__maximum | 6__minimum | 7__sum_values | 7__median | 7__mean | 7__length | 7__standard_deviation | 7__variance | 7__root_mean_square | 7__maximum | 7__minimum | 8__sum_values | 8__median | 8__mean | 8__length | 8__standard_deviation | 8__variance | 8__root_mean_square | 8__maximum | 8__minimum | 9__sum_values | 9__median | 9__mean | 9__length | 9__standard_deviation | 9__variance | 9__root_mean_square | 9__maximum | 9__minimum | 10__sum_values | 10__median | 10__mean | 10__length | 10__standard_deviation | 10__variance | 10__root_mean_square | 10__maximum | 10__minimum | 11__sum_values | 11__median | 11__mean | 11__length | 11__standard_deviation | 11__variance | 11__root_mean_square | 11__maximum | 11__minimum | 12__sum_values | 12__median | 12__mean | 12__length | 12__standard_deviation | 12__variance | 12__root_mean_square | 12__maximum | 12__minimum | 13__sum_values | 13__median | 13__mean | 13__length | 13__standard_deviation | 13__variance | 13__root_mean_square | 13__maximum | 13__minimum | 14__sum_values | 14__median | 14__mean | 14__length | 14__standard_deviation | 14__variance | 14__root_mean_square | 14__maximum | 14__minimum | 15__sum_values | 15__median | 15__mean | 15__length | 15__standard_deviation | 15__variance | 15__root_mean_square | 15__maximum | 15__minimum | 16__sum_values | 16__median | 16__mean | 16__length | 16__standard_deviation | 16__variance | 16__root_mean_square | 16__maximum | 16__minimum | 17__sum_values | 17__median | 17__mean | 17__length | 17__standard_deviation | 17__variance | 17__root_mean_square | 17__maximum | 17__minimum | 18__sum_values | 18__median | 18__mean | 18__length | 18__standard_deviation | 18__variance | 18__root_mean_square | 18__maximum | 18__minimum | 19__sum_values | 19__median | 19__mean | 19__length | 19__standard_deviation | 19__variance | 19__root_mean_square | 19__maximum | 19__minimum | 20__sum_values | 20__median | 20__mean | 20__length | 20__standard_deviation | 20__variance | 20__root_mean_square | 20__maximum | 20__minimum | 21__sum_values | 21__median | 21__mean | 21__length | 21__standard_deviation | 21__variance | 21__root_mean_square | 21__maximum | 21__minimum | 22__sum_values | 22__median | 22__mean | 22__length | 22__standard_deviation | 22__variance | 22__root_mean_square | 22__maximum | 22__minimum | 23__sum_values | 23__median | 23__mean | 23__length | 23__standard_deviation | 23__variance | 23__root_mean_square | 23__maximum | 23__minimum | target | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -37.142456 | -0.566632 | -0.728283 | 51.0 | 1.080438 | 1.167346 | 1.302975 | 0.696339 | -2.332613 | -35.411819 | -0.415532 | -0.694349 | 51.0 | 0.832850 | 0.693640 | 1.084325 | 0.291253 | -1.906993 | -35.485306 | -0.702877 | -0.695790 | 51.0 | 0.298104 | 0.088866 | 0.756961 | -0.247774 | -1.539848 | 39.676464 | 0.573882 | 0.777970 | 51.0 | 1.060847 | 1.125397 | 1.315536 | 2.243961 | -0.855261 | -41.451077 | -0.508144 | -0.812766 | 51.0 | 0.747256 | 0.558391 | 1.104074 | 0.243118 | -1.956784 | -19.976217 | -0.453625 | -0.391691 | 51.0 | 0.559977 | 0.313574 | 0.683370 | 0.523402 | -1.635486 | -37.629429 | -0.681118 | -0.737832 | 51.0 | 0.255562 | 0.065312 | 0.780838 | -0.348886 | -1.181166 | -24.176161 | -0.583717 | -0.474042 | 51.0 | 0.296457 | 0.087887 | 0.559109 | 0.081907 | -0.771776 | -13.816839 | -0.244598 | -0.270918 | 51.0 | 0.166769 | 0.027812 | 0.318133 | -0.016374 | -0.672385 | 37.760784 | 0.651040 | 0.740408 | 51.0 | 0.263288 | 0.069320 | 0.785827 | 1.151987 | 0.373290 | -28.283892 | -0.656930 | -0.554586 | 51.0 | 0.266712 | 0.071135 | 0.615387 | -0.046888 | -0.849735 | -6.133113 | -0.115276 | -0.120257 | 51.0 | 0.273553 | 0.074831 | 0.298819 | 0.297453 | -0.711572 | -37.277363 | -0.612094 | -0.730929 | 51.0 | 0.724792 | 0.525324 | 1.029359 | 0.282950 | -1.823203 | -28.811653 | -0.299411 | -0.564934 | 51.0 | 0.588243 | 0.346030 | 0.815586 | 0.127075 | -1.441439 | -29.826628 | -0.537830 | -0.584836 | 51.0 | 0.180427 | 0.032554 | 0.612035 | -0.297570 | -1.118365 | 37.234772 | 0.619421 | 0.730094 | 51.0 | 0.770851 | 0.594211 | 1.061719 | 1.786640 | -0.412325 | -36.002819 | -0.572617 | -0.705938 | 51.0 | 0.515526 | 0.265767 | 0.874137 | 0.082940 | -1.552879 | -16.507471 | -0.375326 | -0.323676 | 51.0 | 0.450168 | 0.202652 | 0.554453 | 0.426705 | -1.334043 | -38.540119 | -0.677258 | -0.755689 | 51.0 | 0.930965 | 0.866696 | 1.199067 | 0.460875 | -2.161744 | -33.472477 | -0.407427 | -0.656323 | 51.0 | 0.666127 | 0.443725 | 0.935139 | 0.258667 | -1.678376 | -32.643517 | -0.576838 | -0.640069 | 51.0 | 0.272025 | 0.073997 | 0.695475 | -0.152945 | -1.433935 | 39.163143 | 0.546208 | 0.767905 | 51.0 | 0.896380 | 0.803498 | 1.180329 | 2.017790 | -0.761397 | -35.701706 | -0.425938 | -0.700033 | 51.0 | 0.673097 | 0.453059 | 0.971136 | 0.155471 | -1.725646 | -21.955692 | -0.472907 | -0.430504 | 51.0 | 0.485376 | 0.235590 | 0.648786 | 0.418492 | -1.392508 | 5.0 |
1 | -23.586538 | -0.459035 | -0.462481 | 51.0 | 0.009482 | 0.000090 | 0.462578 | -0.446862 | -0.481365 | -92.686127 | -1.849527 | -1.817375 | 51.0 | 0.101964 | 0.010397 | 1.820233 | -1.663032 | -1.962149 | -41.622047 | -0.827207 | -0.816119 | 51.0 | 0.033863 | 0.001147 | 0.816821 | -0.747979 | -0.858209 | 63.747234 | 0.934293 | 1.249946 | 51.0 | 0.673389 | 0.453453 | 1.419795 | 2.189053 | 0.548686 | -58.417156 | -1.841674 | -1.145434 | 51.0 | 1.016232 | 1.032728 | 1.531257 | 0.733217 | -2.084998 | -24.397539 | -0.548217 | -0.478383 | 51.0 | 0.308897 | 0.095417 | 0.569445 | -0.000290 | -0.809470 | -28.876244 | -0.562972 | -0.566201 | 51.0 | 0.008569 | 0.000073 | 0.566266 | -0.555073 | -0.588383 | -36.323483 | -0.716465 | -0.712225 | 51.0 | 0.015567 | 0.000242 | 0.712395 | -0.685397 | -0.728811 | -7.992872 | -0.155516 | -0.156723 | 51.0 | 0.005660 | 0.000032 | 0.156825 | -0.143304 | -0.168963 | 39.989666 | 0.623494 | 0.784111 | 51.0 | 0.238023 | 0.056655 | 0.819442 | 1.174931 | 0.483369 | -26.093328 | -0.753153 | -0.511634 | 51.0 | 0.351613 | 0.123632 | 0.620807 | 0.169596 | -0.812728 | -7.680929 | -0.204852 | -0.150606 | 51.0 | 0.102779 | 0.010563 | 0.182334 | -0.008648 | -0.263605 | -26.193447 | -0.509508 | -0.513597 | 51.0 | 0.013127 | 0.000172 | 0.513765 | -0.484523 | -0.541967 | -71.000397 | -1.411905 | -1.392165 | 51.0 | 0.072467 | 0.005251 | 1.394050 | -1.279870 | -1.469527 | -28.277258 | -0.567105 | -0.554456 | 51.0 | 0.037604 | 0.001414 | 0.555730 | -0.492550 | -0.598832 | 56.125183 | 0.875697 | 1.100494 | 51.0 | 0.484735 | 0.234968 | 1.202520 | 1.779165 | 0.617105 | -46.534298 | -1.413166 | -0.912437 | 51.0 | 0.748352 | 0.560030 | 1.180073 | 0.448841 | -1.586794 | -17.314447 | -0.398915 | -0.339499 | 51.0 | 0.226818 | 0.051447 | 0.408297 | -0.015210 | -0.585162 | -18.311501 | -0.351347 | -0.359049 | 51.0 | 0.018174 | 0.000330 | 0.359509 | -0.338670 | -0.400617 | -78.851265 | -1.556720 | -1.546103 | 51.0 | 0.105376 | 0.011104 | 1.549690 | -1.355958 | -1.702347 | -39.995407 | -0.796421 | -0.784224 | 51.0 | 0.053275 | 0.002838 | 0.786031 | -0.682512 | -0.850075 | 57.236649 | 0.919596 | 1.122287 | 51.0 | 0.674924 | 0.455523 | 1.309600 | 2.135956 | 0.426736 | -49.555946 | -1.602230 | -0.971685 | 51.0 | 0.927211 | 0.859720 | 1.343091 | 0.715503 | -1.850632 | -25.822395 | -0.650457 | -0.506321 | 51.0 | 0.296268 | 0.087775 | 0.586631 | 0.009632 | -0.798197 | 2.0 |
2 | -27.534769 | -0.549152 | -0.539897 | 51.0 | 0.021874 | 0.000478 | 0.540340 | -0.503747 | -0.575321 | -94.657532 | -1.904847 | -1.856030 | 51.0 | 0.081266 | 0.006604 | 1.857808 | -1.715478 | -1.953308 | -36.396606 | -0.719202 | -0.713659 | 51.0 | 0.015428 | 0.000238 | 0.713826 | -0.680681 | -0.736228 | 55.414169 | 0.777391 | 1.086552 | 51.0 | 0.664497 | 0.441556 | 1.273637 | 2.051978 | 0.447330 | -69.362656 | -1.774472 | -1.360052 | 51.0 | 0.702855 | 0.494004 | 1.530930 | -0.043852 | -1.950569 | -24.672823 | -0.584322 | -0.483781 | 51.0 | 0.236525 | 0.055944 | 0.538505 | -0.081316 | -0.720806 | -34.442677 | -0.691327 | -0.675347 | 51.0 | 0.028594 | 0.000818 | 0.675952 | -0.625143 | -0.715496 | -37.984409 | -0.753441 | -0.744792 | 51.0 | 0.018509 | 0.000343 | 0.745022 | -0.713884 | -0.774510 | -11.913812 | -0.233479 | -0.233604 | 51.0 | 0.005520 | 0.000030 | 0.233669 | -0.224766 | -0.243437 | 42.796070 | 0.710874 | 0.839139 | 51.0 | 0.202831 | 0.041140 | 0.863304 | 1.145277 | 0.655254 | -29.257515 | -0.785101 | -0.573677 | 51.0 | 0.310883 | 0.096648 | 0.652498 | 0.005091 | -0.829290 | -2.638177 | -0.082883 | -0.051729 | 51.0 | 0.082314 | 0.006776 | 0.097219 | 0.082908 | -0.137571 | -32.033615 | -0.644218 | -0.628110 | 51.0 | 0.034258 | 0.001174 | 0.629044 | -0.571184 | -0.666909 | -75.444572 | -1.515485 | -1.479305 | 51.0 | 0.057601 | 0.003318 | 1.480426 | -1.380601 | -1.548318 | -29.218090 | -0.581810 | -0.572904 | 51.0 | 0.017170 | 0.000295 | 0.573161 | -0.539507 | -0.592614 | 52.465370 | 0.762001 | 1.028733 | 51.0 | 0.451642 | 0.203980 | 1.123508 | 1.741365 | 0.599525 | -53.264122 | -1.412518 | -1.044395 | 51.0 | 0.571948 | 0.327124 | 1.190749 | 0.001606 | -1.542234 | -15.971079 | -0.393152 | -0.313158 | 51.0 | 0.188495 | 0.035531 | 0.365512 | -0.004376 | -0.512214 | -36.599499 | -0.737050 | -0.717637 | 51.0 | 0.042227 | 0.001783 | 0.718879 | -0.645706 | -0.769070 | -85.183380 | -1.703202 | -1.670262 | 51.0 | 0.064617 | 0.004175 | 1.671512 | -1.554826 | -1.760427 | -30.937372 | -0.620587 | -0.606615 | 51.0 | 0.026403 | 0.000697 | 0.607189 | -0.549836 | -0.658139 | 50.079212 | 0.589639 | 0.981945 | 51.0 | 0.633433 | 0.401238 | 1.168527 | 1.947102 | 0.384357 | -62.113159 | -1.563564 | -1.217905 | 51.0 | 0.546153 | 0.298283 | 1.334757 | -0.165008 | -1.699278 | -23.189987 | -0.585661 | -0.454706 | 51.0 | 0.239105 | 0.057171 | 0.513740 | -0.076619 | -0.706615 | 3.0 |
3 | -34.523727 | -0.611601 | -0.676936 | 51.0 | 1.118289 | 1.250571 | 1.307216 | 0.960055 | -2.449983 | -30.783985 | -0.095217 | -0.603608 | 51.0 | 0.967301 | 0.935672 | 1.140182 | 0.656134 | -2.015023 | -33.377033 | -0.564160 | -0.654452 | 51.0 | 0.500285 | 0.250285 | 0.823767 | 0.059411 | -1.797334 | 35.240353 | 0.437840 | 0.690987 | 51.0 | 1.138671 | 1.296571 | 1.331929 | 2.536414 | -0.825107 | -32.934444 | -0.278688 | -0.645773 | 51.0 | 0.943159 | 0.889549 | 1.143054 | 0.827051 | -2.039725 | -20.456612 | -0.444747 | -0.401110 | 51.0 | 0.505705 | 0.255738 | 0.645466 | 0.381416 | -1.547785 | -37.177876 | -0.791889 | -0.728978 | 51.0 | 0.392956 | 0.154415 | 0.828145 | -0.161233 | -1.296134 | -17.490719 | -0.251759 | -0.342955 | 51.0 | 0.340407 | 0.115877 | 0.483213 | 0.233377 | -0.815718 | -18.717752 | -0.236368 | -0.367015 | 51.0 | 0.283484 | 0.080363 | 0.463749 | 0.115903 | -0.997842 | 32.120663 | 0.668862 | 0.629817 | 51.0 | 0.463524 | 0.214854 | 0.782000 | 1.240265 | -0.106268 | -21.084183 | -0.243511 | -0.413415 | 51.0 | 0.318172 | 0.101233 | 0.521676 | 0.189670 | -0.902645 | -14.248999 | -0.072230 | -0.279392 | 51.0 | 0.375381 | 0.140911 | 0.467943 | 0.203083 | -1.014819 | -34.282619 | -0.691584 | -0.672208 | 51.0 | 0.879838 | 0.774114 | 1.107239 | 0.655985 | -1.946674 | -25.174671 | -0.115776 | -0.493621 | 51.0 | 0.681656 | 0.464656 | 0.841616 | 0.614789 | -1.514637 | -29.738565 | -0.447657 | -0.583109 | 51.0 | 0.324859 | 0.105533 | 0.667495 | 0.022827 | -1.405983 | 30.816469 | 0.584257 | 0.604244 | 51.0 | 0.916507 | 0.839985 | 1.097769 | 1.921937 | -0.677575 | -26.291033 | -0.251256 | -0.515510 | 51.0 | 0.700747 | 0.491046 | 0.869941 | 0.499655 | -1.579280 | -19.165892 | -0.368467 | -0.375802 | 51.0 | 0.342794 | 0.117507 | 0.508659 | 0.292727 | -1.157730 | -34.754513 | -0.539055 | -0.681461 | 51.0 | 0.993149 | 0.986345 | 1.204464 | 0.754227 | -2.281904 | -25.093094 | -0.081687 | -0.492021 | 51.0 | 0.859995 | 0.739592 | 0.990796 | 0.539001 | -1.798538 | -30.791185 | -0.652611 | -0.603749 | 51.0 | 0.445411 | 0.198391 | 0.750269 | 0.368556 | -1.615448 | 32.154030 | 0.350904 | 0.630471 | 51.0 | 1.001985 | 1.003974 | 1.183836 | 2.214722 | -0.835791 | -26.250469 | -0.174046 | -0.514715 | 51.0 | 0.828387 | 0.686224 | 0.975272 | 0.709062 | -1.912724 | -21.588564 | -0.484073 | -0.423305 | 51.0 | 0.418509 | 0.175150 | 0.595262 | 0.283859 | -1.556566 | 5.0 |
4 | -27.740828 | -0.545375 | -0.543938 | 51.0 | 0.018743 | 0.000351 | 0.544261 | -0.494518 | -0.579461 | -90.292770 | -1.765763 | -1.770447 | 51.0 | 0.036722 | 0.001349 | 1.770827 | -1.706970 | -1.853963 | -36.805576 | -0.719215 | -0.721678 | 51.0 | 0.014169 | 0.000201 | 0.721817 | -0.698224 | -0.746079 | 55.411224 | 0.565932 | 1.086495 | 51.0 | 0.703291 | 0.494618 | 1.294252 | 2.168473 | 0.435790 | -66.905548 | -1.832362 | -1.311873 | 51.0 | 0.788599 | 0.621889 | 1.530654 | 0.271097 | -1.874072 | -13.485033 | -0.417840 | -0.264412 | 51.0 | 0.234444 | 0.054964 | 0.353381 | 0.158437 | -0.510906 | -35.591778 | -0.699636 | -0.697878 | 51.0 | 0.007728 | 0.000060 | 0.697921 | -0.680177 | -0.707192 | -37.724495 | -0.744179 | -0.739696 | 51.0 | 0.010902 | 0.000119 | 0.739776 | -0.720091 | -0.753452 | -13.115386 | -0.258923 | -0.257164 | 51.0 | 0.008701 | 0.000076 | 0.257312 | -0.240681 | -0.273511 | 38.005325 | 0.582472 | 0.745202 | 51.0 | 0.226554 | 0.051327 | 0.778880 | 1.119772 | 0.565721 | -32.317341 | -0.837423 | -0.633673 | 51.0 | 0.317354 | 0.100713 | 0.708700 | -0.001292 | -0.881977 | 3.958976 | 0.056248 | 0.077627 | 51.0 | 0.059057 | 0.003488 | 0.097538 | 0.185256 | 0.023052 | -34.244289 | -0.672723 | -0.671457 | 51.0 | 0.009922 | 0.000098 | 0.671530 | -0.650090 | -0.691726 | -68.404839 | -1.351641 | -1.341271 | 51.0 | 0.028172 | 0.000794 | 1.341567 | -1.291957 | -1.426920 | -29.412851 | -0.578755 | -0.576723 | 51.0 | 0.011017 | 0.000121 | 0.576828 | -0.556926 | -0.600077 | 49.732811 | 0.580538 | 0.975153 | 51.0 | 0.497556 | 0.247562 | 1.094754 | 1.746756 | 0.565985 | -55.526955 | -1.487079 | -1.088764 | 51.0 | 0.604426 | 0.365331 | 1.245286 | 0.115819 | -1.528785 | -6.664329 | -0.240217 | -0.130673 | 51.0 | 0.180493 | 0.032578 | 0.222830 | 0.179415 | -0.291895 | -35.235294 | -0.693773 | -0.690888 | 51.0 | 0.025952 | 0.000674 | 0.691375 | -0.648388 | -0.752783 | -77.603714 | -1.524844 | -1.521641 | 51.0 | 0.052388 | 0.002745 | 1.522543 | -1.397734 | -1.647556 | -31.526560 | -0.623116 | -0.618168 | 51.0 | 0.042312 | 0.001790 | 0.619614 | -0.521688 | -0.710425 | 50.543438 | 0.437051 | 0.991048 | 51.0 | 0.672909 | 0.452806 | 1.197907 | 2.017675 | 0.407211 | -56.079052 | -1.548879 | -1.099589 | 51.0 | 0.741843 | 0.550331 | 1.326434 | 0.359649 | -1.701924 | -15.354649 | -0.491571 | -0.301072 | 51.0 | 0.273509 | 0.074807 | 0.406757 | 0.197746 | -0.517648 | 2.0 |
5 | -24.641052 | -0.505063 | -0.483158 | 51.0 | 0.042338 | 0.001792 | 0.485009 | -0.405295 | -0.534384 | -86.865654 | -1.701567 | -1.703248 | 51.0 | 0.029897 | 0.000894 | 1.703511 | -1.649558 | -1.776053 | -22.712065 | -0.425890 | -0.445335 | 51.0 | 0.033334 | 0.001111 | 0.446580 | -0.408019 | -0.500026 | 55.652981 | 0.659823 | 1.091235 | 51.0 | 0.685066 | 0.469316 | 1.288452 | 2.044420 | 0.421733 | -53.967831 | -1.695504 | -1.058193 | 51.0 | 0.920417 | 0.847167 | 1.402476 | 0.645616 | -1.791308 | -32.383308 | -0.648966 | -0.634967 | 51.0 | 0.047389 | 0.002246 | 0.636733 | -0.509608 | -0.720160 | -28.113087 | -0.570249 | -0.551237 | 51.0 | 0.051464 | 0.002649 | 0.553634 | -0.467229 | -0.602690 | -37.713421 | -0.714133 | -0.739479 | 51.0 | 0.055799 | 0.003114 | 0.741581 | -0.684414 | -0.833970 | -1.482825 | -0.017677 | -0.029075 | 51.0 | 0.043634 | 0.001904 | 0.052434 | 0.022231 | -0.092699 | 43.064579 | 0.721068 | 0.844404 | 51.0 | 0.212935 | 0.045341 | 0.870838 | 1.166963 | 0.644426 | -20.664692 | -0.710834 | -0.405190 | 51.0 | 0.427100 | 0.182414 | 0.588722 | 0.375265 | -0.735119 | -13.322674 | -0.277473 | -0.261229 | 51.0 | 0.031957 | 0.001021 | 0.263176 | -0.197522 | -0.290647 | -29.156836 | -0.580230 | -0.571703 | 51.0 | 0.036643 | 0.001343 | 0.572876 | -0.510735 | -0.617555 | -67.319504 | -1.317114 | -1.319990 | 51.0 | 0.037284 | 0.001390 | 1.320517 | -1.249171 | -1.388353 | -15.800675 | -0.304392 | -0.309817 | 51.0 | 0.030900 | 0.000955 | 0.311354 | -0.261847 | -0.350759 | 52.616730 | 0.736055 | 1.031701 | 51.0 | 0.473487 | 0.224190 | 1.135163 | 1.727030 | 0.587150 | -39.129475 | -1.277829 | -0.767245 | 51.0 | 0.719665 | 0.517918 | 1.051942 | 0.563694 | -1.306752 | -25.997158 | -0.535997 | -0.509748 | 51.0 | 0.054588 | 0.002980 | 0.512663 | -0.397202 | -0.567835 | -20.657892 | -0.417811 | -0.405057 | 51.0 | 0.040592 | 0.001648 | 0.407086 | -0.334117 | -0.452444 | -72.182457 | -1.411887 | -1.415342 | 51.0 | 0.041348 | 0.001710 | 1.415946 | -1.346556 | -1.506598 | -24.713848 | -0.481777 | -0.484585 | 51.0 | 0.021053 | 0.000443 | 0.485042 | -0.445826 | -0.546492 | 51.338303 | 0.642269 | 1.006633 | 51.0 | 0.678483 | 0.460340 | 1.213940 | 2.005553 | 0.364407 | -45.864155 | -1.413934 | -0.899297 | 51.0 | 0.762100 | 0.580797 | 1.178784 | 0.545444 | -1.529748 | -35.470558 | -0.696268 | -0.695501 | 51.0 | 0.082588 | 0.006821 | 0.700388 | -0.481607 | -0.844821 | 3.0 |
6 | -24.011181 | -0.463308 | -0.470807 | 51.0 | 0.022327 | 0.000499 | 0.471337 | -0.430550 | -0.519750 | -97.602142 | -1.932483 | -1.913768 | 51.0 | 0.065244 | 0.004257 | 1.914879 | -1.744846 | -2.022548 | -40.876678 | -0.822114 | -0.801503 | 51.0 | 0.037470 | 0.001404 | 0.802379 | -0.739014 | -0.852205 | 58.312725 | 0.890756 | 1.143387 | 51.0 | 0.625533 | 0.391292 | 1.303313 | 2.287177 | 0.488941 | -24.820274 | -1.291028 | -0.486672 | 51.0 | 1.539181 | 2.369080 | 1.614289 | 1.607593 | -2.030625 | -23.528324 | -0.470723 | -0.461340 | 51.0 | 0.340889 | 0.116205 | 0.573620 | 0.025836 | -0.867550 | -29.485134 | -0.580218 | -0.578140 | 51.0 | 0.010866 | 0.000118 | 0.578242 | -0.557524 | -0.598073 | -39.278442 | -0.783769 | -0.770166 | 51.0 | 0.037736 | 0.001424 | 0.771089 | -0.710738 | -0.828738 | -9.966043 | -0.219775 | -0.195413 | 51.0 | 0.053768 | 0.002891 | 0.202675 | -0.125779 | -0.268663 | 39.935242 | 0.751462 | 0.783044 | 51.0 | 0.217438 | 0.047279 | 0.812673 | 1.164140 | 0.542353 | -12.488911 | -0.582633 | -0.244881 | 51.0 | 0.651232 | 0.424103 | 0.695751 | 0.718757 | -0.883951 | -10.751954 | -0.203955 | -0.210823 | 51.0 | 0.109824 | 0.012061 | 0.237713 | -0.033436 | -0.347595 | -27.786322 | -0.539891 | -0.544830 | 51.0 | 0.017510 | 0.000307 | 0.545111 | -0.508702 | -0.577425 | -75.600090 | -1.486838 | -1.482355 | 51.0 | 0.063190 | 0.003993 | 1.483701 | -1.327342 | -1.596648 | -30.532627 | -0.613594 | -0.598679 | 51.0 | 0.045950 | 0.002111 | 0.600440 | -0.509880 | -0.664597 | 51.931953 | 0.871081 | 1.018274 | 51.0 | 0.424618 | 0.180301 | 1.103260 | 1.827167 | 0.569429 | -18.751158 | -0.944382 | -0.367670 | 51.0 | 1.195926 | 1.430238 | 1.251167 | 1.347136 | -1.549184 | -20.509649 | -0.400428 | -0.402150 | 51.0 | 0.233003 | 0.054291 | 0.464774 | -0.103234 | -0.706466 | -30.697359 | -0.596296 | -0.601909 | 51.0 | 0.019827 | 0.000393 | 0.602235 | -0.570799 | -0.636124 | -87.481331 | -1.717072 | -1.715320 | 51.0 | 0.065076 | 0.004235 | 1.716554 | -1.576493 | -1.851188 | -33.553829 | -0.659760 | -0.657918 | 51.0 | 0.072796 | 0.005299 | 0.661933 | -0.550007 | -0.793064 | 54.696705 | 0.877398 | 1.072484 | 51.0 | 0.548211 | 0.300535 | 1.204474 | 2.050468 | 0.381210 | -21.277277 | -1.030952 | -0.417201 | 51.0 | 1.346573 | 1.813258 | 1.409722 | 1.466641 | -1.913035 | -25.165306 | -0.649369 | -0.493437 | 51.0 | 0.331068 | 0.109606 | 0.594211 | -0.022846 | -0.904735 | 1.0 |
7 | -8.365997 | -0.488237 | -0.164039 | 51.0 | 0.861993 | 0.743032 | 0.877463 | 1.029133 | -1.768655 | -53.286537 | -1.314198 | -1.044834 | 51.0 | 0.886490 | 0.785865 | 1.370235 | 0.227674 | -2.050905 | -46.906807 | -0.802123 | -0.919741 | 51.0 | 0.311894 | 0.097278 | 0.971186 | -0.577902 | -1.703846 | 38.374161 | 0.568970 | 0.752435 | 51.0 | 0.450099 | 0.202589 | 0.876782 | 1.998679 | 0.147983 | -21.709152 | -0.124288 | -0.425670 | 51.0 | 1.425600 | 2.032334 | 1.487793 | 1.339821 | -2.144831 | -26.375257 | -0.630030 | -0.517162 | 51.0 | 0.384127 | 0.147553 | 0.644212 | 0.058934 | -1.188380 | -30.072155 | -0.564549 | -0.589650 | 51.0 | 0.176888 | 0.031289 | 0.615611 | -0.161023 | -0.994883 | -35.510662 | -0.706239 | -0.696288 | 51.0 | 0.134033 | 0.017965 | 0.709071 | -0.343577 | -0.890725 | -16.280081 | -0.202099 | -0.319217 | 51.0 | 0.198182 | 0.039276 | 0.375734 | -0.081876 | -0.796913 | 40.591137 | 0.800127 | 0.795905 | 51.0 | 0.195735 | 0.038312 | 0.819620 | 1.103982 | 0.528110 | -23.000767 | -0.717054 | -0.450995 | 51.0 | 0.448824 | 0.201443 | 0.636270 | 0.546236 | -0.909251 | -21.802408 | -0.330379 | -0.427498 | 51.0 | 0.248390 | 0.061698 | 0.494421 | -0.083385 | -0.906979 | -15.922804 | -0.569262 | -0.312212 | 51.0 | 0.649574 | 0.421946 | 0.720709 | 0.656241 | -1.462341 | -46.129963 | -1.034976 | -0.904509 | 51.0 | 0.586374 | 0.343834 | 1.077947 | 0.038515 | -1.571658 | -35.021671 | -0.608531 | -0.686699 | 51.0 | 0.247191 | 0.061103 | 0.729835 | -0.307963 | -1.350471 | 41.395386 | 0.644028 | 0.811674 | 51.0 | 0.296061 | 0.087652 | 0.863983 | 1.593879 | 0.538310 | -20.574291 | -0.347907 | -0.403417 | 51.0 | 1.097336 | 1.204146 | 1.169141 | 1.198281 | -1.712231 | -22.603098 | -0.393473 | -0.443198 | 51.0 | 0.215165 | 0.046296 | 0.492667 | -0.107243 | -0.823980 | -10.818039 | -0.407149 | -0.212118 | 51.0 | 0.762371 | 0.581210 | 0.791330 | 0.857516 | -1.666694 | -48.057308 | -1.098741 | -0.942300 | 51.0 | 0.694110 | 0.481789 | 1.170350 | 0.185651 | -1.769540 | -46.852596 | -0.797816 | -0.918678 | 51.0 | 0.244485 | 0.059773 | 0.950654 | -0.604900 | -1.462650 | 37.673004 | 0.618823 | 0.738686 | 51.0 | 0.405797 | 0.164671 | 0.842810 | 1.877750 | 0.143511 | -22.777447 | -0.054079 | -0.446617 | 51.0 | 1.213053 | 1.471496 | 1.292657 | 1.142601 | -1.970851 | -24.964903 | -0.473136 | -0.489508 | 51.0 | 0.345590 | 0.119433 | 0.599208 | 0.009404 | -1.023302 | 6.0 |
8 | -27.351284 | -0.518949 | -0.536300 | 51.0 | 0.046865 | 0.002196 | 0.538343 | -0.462070 | -0.607817 | -109.678902 | -2.180293 | -2.150567 | 51.0 | 0.151885 | 0.023069 | 2.155924 | -1.922185 | -2.391596 | -45.926826 | -0.917819 | -0.900526 | 51.0 | 0.041767 | 0.001744 | 0.901494 | -0.819673 | -0.955554 | 71.575691 | 1.572630 | 1.403445 | 51.0 | 0.592642 | 0.351225 | 1.523444 | 2.086033 | 0.596149 | -66.393974 | -1.657398 | -1.301843 | 51.0 | 0.891906 | 0.795497 | 1.578066 | -0.061573 | -2.444070 | 25.170977 | 0.447105 | 0.493549 | 51.0 | 0.465884 | 0.217048 | 0.678703 | 1.073184 | -0.126587 | -33.239853 | -0.644438 | -0.651762 | 51.0 | 0.044559 | 0.001985 | 0.653283 | -0.584973 | -0.715239 | -42.224979 | -0.818994 | -0.827941 | 51.0 | 0.035162 | 0.001236 | 0.828687 | -0.779379 | -0.898917 | -21.782492 | -0.433966 | -0.427108 | 51.0 | 0.018372 | 0.000338 | 0.427503 | -0.400342 | -0.450000 | 39.817318 | 0.777473 | 0.780732 | 51.0 | 0.179042 | 0.032056 | 0.800998 | 1.023270 | 0.525810 | -29.436472 | -0.805910 | -0.577186 | 51.0 | 0.339334 | 0.115147 | 0.669545 | -0.074147 | -0.964736 | 23.668175 | 0.518504 | 0.464082 | 51.0 | 0.208413 | 0.043436 | 0.508732 | 0.747857 | 0.191997 | -31.822119 | -0.614244 | -0.623963 | 51.0 | 0.047347 | 0.002242 | 0.625757 | -0.552890 | -0.689216 | -81.958847 | -1.648392 | -1.607036 | 51.0 | 0.109433 | 0.011976 | 1.610758 | -1.441106 | -1.777643 | -38.864323 | -0.771801 | -0.762046 | 51.0 | 0.028475 | 0.000811 | 0.762577 | -0.709696 | -0.798762 | 57.814247 | 1.231724 | 1.133613 | 51.0 | 0.399470 | 0.159576 | 1.201937 | 1.673647 | 0.584908 | -52.746735 | -1.405661 | -1.034250 | 51.0 | 0.730406 | 0.533492 | 1.266161 | -0.009948 | -1.907789 | 26.469147 | 0.570275 | 0.519003 | 51.0 | 0.341535 | 0.116646 | 0.621297 | 0.929915 | 0.086529 | -21.595278 | -0.415527 | -0.423437 | 51.0 | 0.042518 | 0.001808 | 0.425566 | -0.367692 | -0.549352 | -95.580650 | -1.886143 | -1.874130 | 51.0 | 0.136770 | 0.018706 | 1.879115 | -1.666203 | -2.075106 | -44.793419 | -0.877613 | -0.878302 | 51.0 | 0.051411 | 0.002643 | 0.879806 | -0.787749 | -1.004349 | 68.536438 | 1.469191 | 1.343852 | 51.0 | 0.552272 | 0.305005 | 1.452908 | 2.016362 | 0.540264 | -63.787148 | -1.542168 | -1.250728 | 51.0 | 0.784288 | 0.615107 | 1.476289 | -0.189796 | -2.381084 | 23.526495 | 0.450849 | 0.461304 | 51.0 | 0.418996 | 0.175557 | 0.623184 | 1.018544 | -0.144610 | 3.0 |
9 | -22.383287 | -0.433973 | -0.438888 | 51.0 | 0.030587 | 0.000936 | 0.439952 | -0.333878 | -0.489605 | -96.128319 | -1.866229 | -1.884869 | 51.0 | 0.049155 | 0.002416 | 1.885510 | -1.806382 | -1.977565 | -34.293411 | -0.664501 | -0.672420 | 51.0 | 0.028777 | 0.000828 | 0.673035 | -0.629528 | -0.722783 | 61.888138 | 1.129317 | 1.213493 | 51.0 | 0.685334 | 0.469682 | 1.393645 | 2.095530 | 0.397101 | -52.376316 | -1.658472 | -1.026987 | 51.0 | 0.951461 | 0.905279 | 1.399993 | 0.578646 | -1.938946 | -19.565296 | -0.331182 | -0.383633 | 51.0 | 0.262853 | 0.069092 | 0.465044 | -0.002740 | -0.745568 | -29.206686 | -0.577022 | -0.572680 | 51.0 | 0.023088 | 0.000533 | 0.573145 | -0.536008 | -0.599462 | -36.167240 | -0.690178 | -0.709162 | 51.0 | 0.041297 | 0.001705 | 0.710363 | -0.657463 | -0.784010 | -6.692489 | -0.121380 | -0.131225 | 51.0 | 0.029391 | 0.000864 | 0.134476 | -0.089520 | -0.178210 | 43.650726 | 0.772613 | 0.855897 | 51.0 | 0.234044 | 0.054777 | 0.887319 | 1.177192 | 0.610031 | -17.416252 | -0.611470 | -0.341495 | 51.0 | 0.438621 | 0.192389 | 0.555884 | 0.401384 | -0.723907 | -1.267462 | -0.041259 | -0.024852 | 51.0 | 0.075804 | 0.005746 | 0.079774 | 0.095014 | -0.138149 | -28.284584 | -0.552181 | -0.554600 | 51.0 | 0.029693 | 0.000882 | 0.555394 | -0.506625 | -0.593304 | -72.344162 | -1.405501 | -1.418513 | 51.0 | 0.034999 | 0.001225 | 1.418945 | -1.358184 | -1.510467 | -23.774748 | -0.467690 | -0.466172 | 51.0 | 0.013241 | 0.000175 | 0.466359 | -0.433828 | -0.499162 | 54.866055 | 1.048298 | 1.075805 | 51.0 | 0.525492 | 0.276142 | 1.197288 | 1.778087 | 0.442742 | -37.574776 | -1.268729 | -0.736760 | 51.0 | 0.790515 | 0.624913 | 1.080615 | 0.593380 | -1.499591 | -13.062757 | -0.201253 | -0.256132 | 51.0 | 0.215395 | 0.046395 | 0.334662 | 0.026883 | -0.549603 | -25.723345 | -0.543739 | -0.504379 | 51.0 | 0.122008 | 0.014886 | 0.518926 | -0.282899 | -0.655812 | -83.668297 | -1.647325 | -1.640555 | 51.0 | 0.083061 | 0.006899 | 1.642656 | -1.450976 | -1.808875 | -30.147928 | -0.542791 | -0.591136 | 51.0 | 0.099901 | 0.009980 | 0.599518 | -0.453954 | -0.761820 | 60.452160 | 0.911910 | 1.185336 | 51.0 | 0.624123 | 0.389530 | 1.339609 | 2.019748 | 0.524763 | -48.657574 | -1.482353 | -0.954070 | 51.0 | 0.788794 | 0.622196 | 1.237920 | 0.443158 | -1.727180 | -15.993189 | -0.312500 | -0.313592 | 51.0 | 0.200989 | 0.040396 | 0.372473 | -0.023128 | -0.636585 | 3.0 |
x_cat, x_cont, yb = first(dls.train)
x_cont[:10]
tensor([[ 0.8806, 0.1002, 0.8806, ..., 1.1443, -0.8758, -0.4822], [-2.0681, -2.0730, -2.0681, ..., 0.1335, -0.6172, -0.6517], [ 0.5705, 0.9112, 0.5705, ..., 0.1432, -1.0031, 0.4127], ..., [-0.5616, -0.7755, -0.5616, ..., 0.8445, -1.0365, -0.7131], [ 0.2748, 0.5201, 0.2748, ..., -0.2569, -0.4253, 0.2949], [-0.1811, 0.0787, -0.1811, ..., -0.1807, 0.0275, 0.2089]])
from tsai.models.utils import *
from tsai.models.TabModel import *
model = build_tabular_model(TabModel, dls=dls)
learn = Learner(dls, model, metrics=[accuracy, RocAuc()])
learn.fit_one_cycle(5)
epoch | train_loss | valid_loss | accuracy | roc_auc_score | time |
---|---|---|---|---|---|
0 | 1.861978 | 1.789068 | 0.266667 | 0.535370 | 00:00 |
1 | 1.778144 | 1.679453 | 0.477778 | 0.875778 | 00:00 |
2 | 1.637727 | 1.548165 | 0.622222 | 0.923259 | 00:00 |
3 | 1.509121 | 1.444736 | 0.672222 | 0.933259 | 00:00 |
4 | 1.409377 | 1.394630 | 0.650000 | 0.937111 | 00:00 |
b = first(dls.train)
model(*b[:-1]).shape
torch.Size([64, 6])