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BRAIN DISORDERS  

Urban air pollutants exposure is known as a source of neuroinfl ammation and oxidative stress 
that causes the Central Nervous System (CNS) and neuropathology disease. Transition metals, 
Particulate Matter (PM), including PM 2.5 (PM <2.5 μm) and PM 0.1 (PM <0.1μm), nitrogen oxides 
and ozone are of potent or oxidant capable of producing Reactive Oxygen Species (ROS). Redox-
sensitive pathways can be caused by oxidative stress, leading to various biological processes, 
including infl ammation and cell death. The incidence of Alzheimer's Disease (AD) and Parkinson's 
Disease (PD) and stroke are associated with exposure to air pollution. Some recent fi ndings suggest 
that urban air pollutants reach the brain in addition to pulmonary and cardiovascular diseases and 
affect the CNS health too. While the underlying CNS pathology mechanisms induced air pollutants 
exposure are not well understood, recent studies show that changes in Blood Brain Barrier (BBB) 
and microglial activation are key components. In this work, we reviewed the new evidence of the 
mechanisms by which ambient air pollution reach the brain and activate innate immune response as 
a source of oxidative stress and neuroinfl ammatory factors.

ABSTRACT

INTRODUCTION
While a variety of environmental factors are involved in neuronal infl ammation 

leading to CNS disease, air pollutants may be the most common source of 
environmental oxidative stress and infl ammation. In the chronic nature and 
pathology of CNS disease, infl ammation is recognized as a risk factor [1]. Ambient 
air contains a complex combination of toxins, including gases, benzene, and 
Particulate Matter (PM) that can be irritating. Chemical composition of particles 
varies widely depending on geographic, meteorological, and specifi c source 
variables [2]. In general, ambient particles include elemental and organic carbon, 
inorganic components (trace metals, nitrates, sulfates, chloride, and ammonium), 
biological components (pollens, bacteria, and spores), volatile and semi-
disintegrating organic compounds [3]. Furthermore, when the ambient particles 
are mixed with atmospheric gases (carbon monoxide, sulfur, ozone, and nitric 
oxides), they can form airborne particles. Environmental particles are commonly 
characterized by aerodynamic properties and their size and defi ned as PM2.5 and 
PM10 with diameters of less than 2.5 and 10 μm: PM with an aerodynamic diameter 
of 2.5 to 10 μm (PM10), PM smaller than 2.5 μm (PM2.5) and very small PM less 
than 0.1 μm or ultrafi ne PM (UFPs; <100 nm). This particles are acceptable fractions 
from diff erent sources such as agricultural dust, wood combustion, road, vehicles 
emission, tire wear propagation, construction, mining operations, and demolition 
work [4,5]. PM2.5 due to heavy metals absorbed in pores and particle surfaces 
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produces more hydroxyl radicals, while larger particles 
(PM10) are mainly in the upper airways and it is purifi ed by 
the mucosal system [6,7]. Diesel Exhaust Particles (DEPs), 
from vehicle emissions particularly diesel engines emission, 
are a main source of UFPs that may penetrate the home if 
poorly ventilated, where additional sources such as burning 
candles, cooking, chemical reactions, and tobacco smoke are 
also available [8]. However, attention has also been focused 
on nanoparticles less than 100 nm in diameter; UFPs are 
important because of their health eff ects such as chemical 
composition, high alveolar deposition fraction, large 
surface area, and ability to enter the bloodstream and cause 
infl ammation [3,9]. The main route of air pollutant exposure 
is inhalation. The fi ne particles (PM2.5) are deposited in 
lungs, while the coarse particles (PM10) are fi ltered usually 
out by nose and the upper airways [3]. 

Recently, some fi ndings support the involvement of 
neuroinfl ammation in pathogenesis of cognitive impairment 
and aff ective disorders [9,10]. For example, anxiety and 
depression in male mice and hippocampal infl ammatory 
cytokine response and learning and memory disorder 
are related with DEPs exposure [10-12]. Traditionally, 
associated with an increased risk of cardiovascular and lung 
disease, now, air pollution exposure is also related to CNS 
diseases including stroke, Parkinson's, and Alzheimer's 
disease. Air pollutants are a multifaceted ambient poison 
that can attack the CNS through a variety of routes [3]. Now 
days, despite the varying chemical and physical properties 
of air pollution and their subsequent activation in multiple 
pathways, oxidative stress and infl ammation are known 
to be the underlying mechanisms through which ambient 
air pollutants cause damage in the CNS [13]. In addition, 
while diff erent types of cells in the brain are susceptible to 
air pollutants, new research suggests that capillaries and 
microglia may be important causes of cellular damage. 
This review corers the multifaceted mechanisms through 
which nanoparticles in the contaminated air aff ect the CNS 
as well as new mechanistic fi ndings that contain chronic 
neuroinfl ammation and innate immunity in CNS disease 
caused by exposure to air pollutants.

Air pollution particles and health effects

Air pollution from traffi  c is a mixture that includes 
various components such as gases, Particle Matter (PM), 
organic compounds and metals [14]. Estimated that 
traffi  c pollution 20% to 70% of environmental pollution 
and 85% of ambient PM is related to traffi  c and resulting 
from vehicle combustion. So air pollution from traffi  c is 
one of the important sources of environmental pollution 
[7,15]. The association between exposure to urban air 
pollutant and mortality complications from respiratory 
and cardiovascular diseases is well established today, 
While new fi ndings suggest that air pollutants exposure 
may also contribute to diseases of the CNS [12,16,17]. Some 

of the epidemiological surveys suggest that increased 
exposure to traffi  c air pollutant is associated with hearing 
and olfactory impairment, decreased cognitive function, as 
well as increased incidence of neurological pathology and 
depressive symptoms [18-20].

It is believed that exposure to PM is a very important 
threat between traffi  c air pollutant components and has 
been played a signifi cant role in disease [17] (Figure 1). PM is 
broadly determined by size (aerodynamic diameter such as 
PM10 and PM2.5). UFPs is very worrying because these fi ne 
particles can easily enter bloodstream and after crossing the 
BBB, are transmitted to the brain and various organs [12,13]. 
Exhaust from diesel engines includes the complex mixture 
of hydrocarbons, gases, heavy metals, sulfur, particles and 
especially small sized PM produced in diesel fuel combustion 
[8,21]. Most DEPs are less than 1 micron in diameter and 
these particles are one of the main components of air 
pollutants [8]. DE is the main source of urban air pollution 
PM, which contains more than 40 toxic pollutants, especially 
UFPs. Some of the research to controlled Diesel Exhaust 
(DE) exposure has been investigated on human health. For 
example, following acute exposure to DEPs (300 μg/m3) 
in humans, it has been observed EEG changes [22]. DEPs 
contain many compounds that have potentially harmful 
eff ects on brain growth [23-25] and the immune system 
[26]. In 2013, DEPs was identifi ed as a human carcinogen 
group 1 based on evidence of exposure to particles and lung 
cancer by the International Agency for Research on Cancer 
(IARC) [27,28].

As said, the mechanisms responsible for UFPs entry into 
brain are the main discussion topic, where active transport, 
BBB, and leakage and transmission along olfactory nerve 
into Olfactory Bulb (OB) have been proposed [12,29]. In spite 
of complex composition of urban air pollution, the classic 
surveys in cardiovascular system have shown that oxidative 
stress and infl ammation are common mechanisms of air 
pollution injury [16,30,31]. Recent studies show that not only 
oxidative stress and infl ammation are common concepts in 
neurodegenerative and CNS diseases, but current fi ndings 
also point to a growing chain of evidence. 

Exposure to air pollution: Oxidative stress and 
in lammation

In recent decades, due to the traffi  c of vehicles and 
other combustion processes, much attention has been 
given to exposure to air pollution. Gas and PM pollutants 
are very important factors in the urban areas, and various 
mechanisms have been proposed to explain the side eff ects 
of exposure to them on human health [32]. Although any 
air pollutant directly through the activation of intracellular 
oxidant pathways can exert its toxicity on cardiovascular 
and respiratory systems, particulates, ozone, and nitrogen 
oxides all have the same property of being strong oxidants, 
either through their direct eff ect on proteins and lipids 
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Figure 1 Air pollutants affect the brain in several ways. Air pollution Particulate Matter (PMs) is a complex toxin that causes a variety of pathologies in the CNS 
through several related mechanisms that may lead to CNS disease. Due to the complex nature of this environmental toxin, CNS pathology is probably due to the 
synergistic interactions of the multiple pathways listed here, and which causes air pollution nanoparticles to be a strong environmental exposure, in terms of 
Biological and be an important challenge for mechanical research. Depicts black dots of PMs.

[30,33-35]. Oxidative stress is in fact a biochemical 
imbalance that in which ROS production exceeds the capacity 
of the normal antioxidant. The biochemical imbalance can be 
caused by exposure to prooxidant air pollutants in the body. 
Uncontained ROS, in presence of oxidative stress, causes 
dysfunction and tissue damage by attacking and functional 
molecules (proteins, lipids, carbohydrates, RNA, DNA, NO, 
etc.) and denaturing structural, by modulating activities of 
redox-sensitive transcription factors [36,37].

ROS can generate by the particle surface where Polycyclic 
Aromatic Hydrocarbon (PAH) and nitro PAH are adsorbed, 
except for the transition metals (copper, iron, vanadium, 
and chromium) that catalyze the Fenton (Fe2++ H2O2 
+ H+ → Fe3++ OH• + H2O) reaction [38,39]. Numerous 
researchers reported that some of the metals such as 
iron in the transition from the particles or through their 
presence on the particle surfaces are involved in production 
of ROS in the biological systems [37]. Besides, it should be 
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noted that nitrogen dioxide and ozone are oxidative DNA 
damage that they are usually associated with particles in 
ambient air [40,41]. Furthermore, photochemical oxidants 
(peroxyl acetate nitrate and ozone), secondary pollutants 
caused by sunlight in the atmosphere that contain reactive 
hydrocarbons and NOx, are involved in increasing oxidation 
stress. Then, if excess ROS is formed, mitochondrial damage 
occurs by induction of the NADPH Oxidase 4 (NOX4) isoform, 
together with activation of infl ammatory cells (monocytes, 
neutrophils, and eosinophils) and an increase in the number 
of macrophages capable of ROS and reactivity nitrogen 
production [37,42-44]. At fi rst, when oxidative stress 
is relatively low, for the formation of protection against 
undesirable biological consequences, various transcription 
factors, such as red blood cell Nuclear Factor (Nrf2), induce 
a series of antioxidant and detoxifying enzymes (catalase, 
glutathione S-transferase, and superoxide dismutase) 
that neutralize ROS [45-47]. Secondly, if the protective 
antioxidant response fails or is insuffi  cient to counteract 
increased ROS production, it results in a pro-infl ammatory 
state with various eff ects on cytotoxicity [48]. These eff ects 
are mediated by cascades of Mitogen-Activated Protein 
Kinase (MAPK) and NF-B, which are responsible for 
expression of infl ammatory biomarkers such as cytokines, 
chemokines, and adhesion molecules [47,48].

Essential pathways in response to toxic pollutants related 
to antioxidant enzymes and the proteins involved in phase 
II detoxifi cation is fi rst line of defense against oxidative 
stress. These responses are regulated by the Nuclear Factor-
Erythroid 2-Related Factor 2 (Nrf2)/Antioxidant-Response 
Element (ARE) pathway. When oxidative and electrophilic 
chemical signals modify Kelch-like ECH associated protein 1 
to release Nrf2, the pathway is activated, which then travels 
to nucleus and activates expression of antioxidant and phase 
II genes with ARE [36,47]. This pathway is important in 
mitigating oxidative stress-induced endothelial dysfunction 
[49]. Cytotoxic eff ects could occur at high concentration of 
pollutant exposure [47,50]. When these defense mechanisms 
are overwhelmed at a high dose of pollutants exposure 
induced oxidative stress, proinfl ammatory eff ects lead to 
via the activation of NFB. The NFB activation is increases 
transcription of chemokines, cytokines, and acute-phase 
proteins [51]. 

Findings show linkages of depressed antioxidant 
capacity and oxidative stress with the risk of hypertension 
[52], cardiovascular [30,53], and kidney disease [54]. 
Oxidative stress can play an important role in cardiovascular 
and respiratory eff ects of exposure to air pollution 
through the eff ects of the immune system and its ability to 
thrombogenic activity and initiate infl ammatory process 
[16]. Experimental fi ndings show that redox-active 
UFPs components following oxidative stress lead to ROS 
production in various cells in vascular tissues, blood, and 
the lungs. This can cause increased systemic infl ammation, 

airway infl ammation, and adverse cardiovascular reactions 
after overcoming antioxidants [50,55].

Epidemiological studies data that directly support 
this empirical evidence are limited, but there is indirect 
support for studies that have examined modifi cation of 
responses to the exposure to air pollutants with a variety 
of genes associated with oxidative stress [56-61]. Also, 
some epidemiological studies reported that exposure to 
PM signifi cantly increases the oxidative stress biomarkers 
in the blood, but surveys are limited for the populations 
exposed to air pollutants. Epidemiological data include 
panel investigation of healthy individuals with repeated 
criteria [62-65] and survey of workers exposed to smoke 
and aerosols of combustion [61,66-71]. Exposure to urban 
air pollution increases ox-LDL in mice [72] and impairs 
the anti-infl ammatory capacity of the High-Density 
Lipoprotein (HDL) in the mice [73]. The secondhand tobacco 
smoke similar urban air pollution may have to carry redox-
active components. It has been observed that low-density 
lipoprotein oxidation (ox-LDL) has increased among the 
people this smoke exposed [74]. Epidemiological studies 
show that the risk of atherosclerotic lesions is increased 
among the subjects living near heavy traffi  c [9,75-77]. 
Recent advances and fi ndings have provided key insights into 
how exposure to air pollutants has harmful and dangerous 
eff ects on the brain. In particular, it is believed that air 
pollution exposure aff ects the brain in multiple pathways. 
Air pollutants are a mixture of toxin that causes a variety of 
CNS damage through multiple interconnected mechanisms 
that may cause CNS disease. While some of the air pollution 
eff ects have been attributed to the specifi c components of 
CNS, no specifi c pathway responsible for the CNS pathology 
has yet been identifi ed. As said, given the complex nature of 
air pollutants, CNS pathology is most likely caused by the 
synergistic interactions of multiple pathways and causes air 
pollution to become an important challenge for mechanistic 
inquiry.

Oxidative stress responses, the importance of 
particle size and composition

In vitro results show that toxin compounds in PM such as 
transition metals and organic compounds (e.g., Cu, Fe, Zn, 
and Ni) are capable to produce ROS directly [50,61,78,79] or, 
as a result, their capacity to activate alveolar macrophages, 
respiratory endothelial and epithelial cells, and neutrophils 
or other leukocytes. Transmission metals through Fenton 
reactions have known the potential to stimulate oxidative 
stress. The ROS cellular generation has been demonstrated 
following exposed to PM mixtures using an invitro system of 
the rat alveolar macrophages [80,81]. Responsible for most 
of the PM emissions mobile-source are automobile exhaust 
[7,82], which produces nearly the complete set of pollutants 
[83]. One of the causes of oxidative stress is the important 
reactive chemicals, which may include PM2.5 organic 
components such as quin ones, which are PAHs or oxidized 
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PAH species that are converted to biotransformation 
using cytochrome P-450 1A1 to quinones [84,85]. DEPs 
are enriched in these redox cycling components [86]. 
Experimental fi ndings show that PAH and themselves-
oxidizing (e.g., quinones) in DEPs promote the generation 
of ROS, which leads to oxidative stress and infl ammatory 
response resulting from NFkB activation [85,87,88]. 
Exposure to DEPs also leads to changes in the expression of 
antioxidant enzymes as shown in laboratory data [89] and 
studies of airway responses in humans [90] (Figure 2). These 
eff ects may underlie epidemiological fi ndings of an increase 
in circulating infl ammatory markers and excessive vascular 
hypercoagulability markers about exposure to ambient air 
pollutants in cross-sectional studies [91,92] and cohort 
panel studies [93-95].

The results of the chemical mass equilibrium model using 
the source tracer show that most PAHs come from vehicular 
sources. The biomarkers level of systemic infl ammation 
were signifi cantly associated with concentrations of both 
outdoor and indoor home of the low, medium, and high 
molecular weight PAHs [85,96,97]. Another study found 
that associations between plasma homocysteine levels with 
black carbon, and urban air pollutants [98,99]. Mechanisms 
have been suggested to explain these fi ndings, including 
the inactivation of enzymes involved in homocysteinere 
methylation or involvement of pollutant-generated ROS. 
These results are consistent with the extensive literature 
review that has concluded that PM2.5 black carbon standard 

should be considered in line with national standards 
for ambient air quality standards in the United States, 
and "vehicular emissions are a main ambient factor in 
cardiovascular complications and mortality in united states" 
[61,100].

Also, the particle size has a vitally important determinant 
role of the chemical dose of redox-active, which is delivered 
to target organs. The UFPs (diameter <0.1 micrometers) and 
accumulation modes (PM2.5) make up the total mass of fi ne 
particles, which is regulated by United States Environmental 
Protection Agency (EPA). UFPs are expected to induce larger 
responses per unit mass than coarse particles that dominate 
PM2.5 mass. This is attributed to greater deposition and 
retention in lungs, the ability to escape phagocytosis by 
surface and large macrophages, and a higher number and 
surface area of fi ne particle, than larger particles, thus 
transferring and delivering more concentrations of toxic 
components to the lungs [50,61,101-104]. Due to this surface 
area, UFPs contain redox-active organic chemicals (such as 
PAH), and transport metals at concentrations much higher 
than coarse PM [105]. Even for low organic contents soot 
particles, the UFPs cell interactions may be an important 
the pro-oxidant mechanism that stimulates infl ammatory 
responses, particularly in the lungs, possibly due to the 
carbon extensive reactive surface area [103,106]. Thus, 
the components of toxic particles and the eff ective surface 
area are not well-represented by EPA-regulated PM10 and 
PM2.5. However, some studies of cohort panels still showed 

Figure 2 Air pollution nanoparticles can help activate toxic microglia by creating a reactive microglial cycle through three mechanisms: (1) Air pollutants components 
may directly activate microglia. (2) Cytokines from the peripheral systemic infl ammatory response may activate microglia. (3) Particles, adsorbed compounds, or 
margin-derived cytokines may directly damage neurons and activate reactive micro gliosis. Thus, the components of air pollution cause reactive micro gliosis at 
several points in the cycle to lead to nerve damage. Depicts black dots of PMs.
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associations of oxidative stress biomarkers with PM10 or 
PM2.5 mass [62,63,107,108].

Oxidative DNA damage (mainly 8-oxodG) in the 
lymphocytes following exposure to the high level of UFPs [64] 
and PM of metals [65] have been shown in two small panel 
cohort studies. However, the sample size was somewhat 
small due to the diffi  culty of performing 8-oxodG test on 
newly isolated lymphocytes. Besides, there is a few evidence 
of epidemiological study in humans that PM exposure is 
causing an increase in oxidative stress biomarkers in the 
blood. However, the movement of UFPs in the circulation 
have been demonstrated in several research, and despite 
its very low overall velocity, which is probably ≤1%, due to 
the high surface area and long shelf life, its eff ect on target 
organs may be signifi cant [103,104] High retention of UFPs 
in the lungs, suggests that the eff ect of PM transfer through 
to the circulation is much greater [109]. This could be lead to 
lasting eff ects through the gradual transfer of redox-active 
component sin to circulation over a long time. And may be 
especially crucial for chemicals such as PAH that require 
biotransformation through phase I enzymes [110]. The results 
of a cohort panel study for UFPs showed that only pseudo-
UFPs <0.25 micrometers (PM0.25) were signifi cantly related 
with systemic infl ammation biomarkers [TNF and IL-6] 
[111] and are measured by ischemic ST-segment depression 
with outpatient electrocardiography [112].

PM itself contains ROS as well as active components of 
redox oxidation that can lead to the production of ROS by 
interaction with samples of biological origin. The capacity of 
inhaled PM to cause cell damage through oxidative reactions 
is called oxidative potential and can be measured using cell-
free methods (Table 1).

Potential evaluation of PM components oxidation

Exposed to airborne particles, macrophages are fi rst line 
of defense against lung damage. After phagocytizing the 
particles, following the cytokine cascades, the macrophages 
create ROS in an oxidative burst, leading to additional ROS 
production and infl ammation. In this assay, the activity of 
cell-based ROS induced by aqueous particles extracts has 
been associate with organic compound concentration and 

the metal transition [2,80,113-115]. Also, in another study, 
the activity of ROS for PM0.25 was shown higher than that 
of larger particle fractions [115]. The association of the 
systemic infl ammatory responses and the airway to the 
potential of collected PM to induce cellular ROS production 
was evaluated with both plasma NO and IL-6 measurements 
for 12 weeks in the sixty elderly subjects [116]. As described 
to evaluate the oxidative potential of PM, ROS production 
has been measured. Both IL-6 and NO exhalations were 
positively associated with macrophage ROS generation 
levels. The relationship of NO exhalation with ROS activity 
is not refl ected by the mass concentration of PM0.25. 
But PM0.25 co-regression models with ROS production 
show that the oxidative potential of IL-6 has the highest 
association with PM0.25 mass [116]. In conclusion, the 
systemic biological indicators of infl ammation are related 
to the ability of particles to induce ROS production by 
macrophages, and this relationship is nominally refl ected 
by the mass concentration of the particles.

Cellular mechanisms of neuronal in lammation

Besides, recent studies, to understanding how air 
pollutants exposure aff ects the brain, surveyed the cell 
types that mediate the CNS pathology following air pollution 
exposure.

Astroglia

Astroglia plays an important role in BBB integration, 
maintains glia-neuron contact, maintains ionic homology, 
buff er excess neurotransmitters, and secrete nerve factors 
[117]. Storm activation occurs in response to a variety of CNS 
damage [118]. Accordingly, astroglia has been reported to 
be activated in humans that exposure to high doses of air 
pollutants, which is evident with increased Glial Fibrillary 
Acidic Protein (GFAP) [119,120]. Exposure to ozone in 
animal studies showed that local astrocytes near the brain 
capillaries increased the expression of TNF and IL-6 
[37,121]. Moreover, ozone exposure astrocytes in vitro result 
in the death of astrocytes [122]. Nevertheless, does astroglia 
respond to urban air pollutants, to oxidative stress and 
infl ammation produced by other cell types or cell damage? It 
is unclear how astrology is activated in the brain.

Table 1: Biomarkers and methods of assessing oxidative stress.

Oxidative-stress assays

ROS oxidative potential ERS, HRP/DCFH, DTT

Oxidative damage

Proteins Oxidation level

Lipids Peroxidation level

DNA Deoxyguanosine modifi cation

Detoxifying proteins MAPK, Nrf2, PTEN, PI3K

Antioxidant defense GPx, SOD1, SOD2, XO, NOX

Abbreviations: Cytp450: Cytochrome P450; CAT: Catalase; DNA: Deoxyribonucleic Acid; ERS: Electron Spin Resonance; DTT: Dithiothreitol; HPRT/DCFH: Horseradish 
Peroxidase/2070-Dichlorodihydrofl uorescein; Gpx: Glutathione Peroxidase; NADPH: Nicotinamide Adenine Dinucleotide Phosphate; MAPK: Mitogen-Activated 
Protein Kinase; Nrf2: Nuclear Factor Erythroid 2-Related Factor 2; NOX: Nitric Oxidase; PTEN: Phosphatase and Tens in Homolog Protein; PI3K: Phosphoinositide 
3- Kinase; XO: Xanthine Oxidase; SOD1: Superoxide Dismutase 1; SOD2: Superoxide Dismutase 2.



970Ehsanifar M, et al. (2021) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres1339

Microglia

Microglia are activated in response to pathogenic 
proteins in the body (eg. water and synuclein), cytokines, 
neurotoxicity, and environmental toxins (eg. paraquat 
and rotenone) [1,10], including air pollutants [123-125]. 
Microglia is of the brain innate immune cells that actively 
monitor the brain environment [126] and are activated in 
neurological diseases such as PD and AD [127,128]. Findings 
show that microglia mediate the neuronal damage because 
mixed cultures of neurons and moths treated with DEPs 
show selective dopaminergic neurotoxicity which occurred 
only in the presence of microglia [123]. It has been shown 
that microglia respond to the titanium nanoparticles by 
ROS production that is neurotoxic [129]. Also, it has been 
shown that microglia respond to PM in a laboratory study 
using DEPs. DEPs-treated cultures showed the microglial 
activation, as indicated by changes in the morphology and 
increased the production of superoxide, although PGE2, 
Nitric Oxide (NO), and TNF were not detected [88,123]. 
Interestingly, exposure to concentrated air pollutants in 
vitro microglia, shows an increase in the mRNA expression 
for infl ammatory cytokines, such as TNF and IL-1b 
[10,12,124], suggesting that exposure to some forms of 
PM induces cytokine production. Besides, metal sin air 
pollutants activate microglia because microglia are in vitro 
activated by manganese [130], a component of industrial-
induced air pollution. Further to neural death, disease 
proteins, and environmental stimuli such as air pollutants, 
microglia are also activated by the cytokines produced in 
response to the systemic infl ammation, with catastrophic 
neurological consequences [131,132] and brain injury.

While most microglia activation is useful, activated 
microglia can be a chronic source of oxidative stress (●NO, 
H2O2, O●2—, ONOO●—/ONOOH) and infl ammatory factors 
(TNFα, PGE2, and IFNg) in the brain [1]. Exposure to air 
pollutants can contribute to activation of the toxic microglial 
by activating the reactive microglia cycle through three 
mechanisms: (I) Air pollution components may directly 
activate microglia. (II) Microglia activated by cytokines 
arising from peripheral systemic infl ammatory response. 
(III) PM, sorbents, or cytokines from margin may directly 
damage nerve cells to activate reactive microglia. Therefore, 
components of air pollutants may be interpreted as 
pathogens by microglia and lead to oxidative stress, chronic 
infl ammation, brain vascular damage, and neurotoxicity.

Blood and brain barrier

Blood vessels throughout body show a wide range of 
diff erent phenotypes that vary in function, gross structure, 
cellular structure, and blood exchange properties [133], which 
may be unique in their responses to air pollutants. Compared 
to most peripheral "leaky" vessels, brain microscopes (3 to 
8 mm in diameter) are separated from many vessels because 
of a large barrier to macromolecules, small organic drugs, 
various toxins, and ions are. Therefore, these small vessels 

with in brain parenchyma from BBB [134]. The BBB is a 
physical and chemical barrier that protects diff erent cell 
types, metabolic enzymes, and carrier proteins and protects 
brain from external insults. PM has been identifi ed in both 
the human capillaries and brain parenchyma [120,135], 
indicating the ability to interact with both BBB-forming 
cells and to move within BBB through mechanisms still 
unknown. Recent fi ndings have suggested that aluminum 
nanoparticles can increase oxidative stress, decrease the 
viability of human brain microvascular endothelial cells, 
alter mitochondrial potential, and reduce tight junction 
protein expression, suggesting that nanoparticles can 
endothelial cells damage and damage to BBB [136].

Exposure to air pollution is associated with increased 
ICAM and VCAM injury to brain endothelial cells [120]. 
Further, in vitro surveys using rat capillaries show that 
particle treatment induces the production of the cytokines 
and the ROS and that these signal caused changes in the 
expression and function of transmitters (eg: P-glycoprotein 
and resistance) [137]. Therefore, brain capillaries detect air 
pollutants and respond to these by regulating the function 
of the chemical and physical barrier and by producing 
infl ammatory signals. Also, this response may act as an 
infl ammatory sensor and fi nally contribute to the distribution 
of ROS, cytokines, and particles in the brain parenchyma, 
more likely in CNS pathology. Therefore, these fi ndings 
are dependent on CNS drug therapy in neurodegenerative 
diseases. In particular, PM rearrangement induced by 
circulating transporters (multidrug resistance protein and 
p-glycoprotein in the BBB) in BBB may be have signifi cant 
consequences for drug access to brain parenchyma for 
people living in heavily infected cities, be it [138-144].

Generally, human, animal, and cell culture research 
have shown that exposure to air pollutants causes CNS 
oxidative stress, nerve infl ammation, nerve damage, BBB 
changes, abnormal fi lamentous protein reinforcement, and 
brain injury and pathways. This indicates through which air 
pollution is aff ected in the pathology of CNS disease. While 
empirical evidences are compelling, given nature of chronic 
air pollution exposure in humans, the eff ects of the CNS are 
likely to refl ect exposure to pollutants throughout human 
life length, including critical growth and development 
periods. It is noteworthy that these chronic eff ects are not 
harmful by laboratory methods and short-term exposure to 
animals (Table 2). However, these important and empirical 
studies have provided the foundation needed to identify 
the air pollutants toxic components and opportunity to the 
address their role in the CNS disease and pave the way for 
rigorous empirical investigation at the epidemiological level.

Conclusion and Future Perspective
The air pollutants eff ects are transmitted from the 

periphery to the brain through systemic infl ammation 
and the movement of UFPs to the brain, where both 
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Table 2: Effects of exposure to traffi  c air pollution particulate matter on brain.

Exposure Model of Air 
Pollution Experimental

Model

Pro-infl ammatory Markers & 
Neuroinfl ammation

Behavior Changes&
Neuropathology References

Chronic Exposure to
Urban Air Pollution

Human

Dog

IL1-b, COX2, iNOS, &
CD14 Increase

NFkb, iNOS, & CD14
Increase

White Matter Lesions,
Diffuse AbPlaques,

BBB Damage, a Synuclein Aggregation, 
Cognitive Defi cits, & DNA Damage 

White 
Matter Lesions Diffuse Ab Plaques

a Synuclein Aggregation,
DNA Damage, & BBB Damage

[119,120,136,140-142]

[141,143,144]

Exposure to 
Nanoparticles

Cell Culture

Cell Culture Mouse

Mouse
Mouse

Microglial Activation

Superoxide Production N/T

N/T

DA Neuron Damage
Lower Tight Junction 

Expression Oxidative Stress (Brain) 
Lipid Peroxidation, HBMEC Toxicity

[145,146]
[136]

[12,147-149]

Exposure to Particulate 
Matter

Mouse N/T DA Neuron Damage in the [150]

Substantia Nigra

Mouse TNFa, IL1-b, and INFg Change in [10,12,151]

increase in OB Neurotransmitters

Mouse Cytokine Production, JNK N/T [152,153]

Activation, Enhanced NFkb

Expression

Mouse N/T Changes in [154]

Neurotransmitters

Rat N/T Lipid Peroxidation, [155]

Decrease in Exploratory

Behavior

Cell Culture Microglial Activation DA Neuron Damage [123]

Superoxide Production

Cell Culture Microglial Activation N/T [124]

IL-6 & TNFaProduction

Brain Capillary TNFa & ROS P-GP & MRP2 Increase [137]

Culture Production Tight Junction Protein

c-Jun Phosphorylation Decrease

Abbreviations: N/T: Not Tested; IL-1b: Interleukin 1b; DA: Dopamine; c-JNK: c-Jun N Terminal Kinase; INFg, Interferon g; TNFa: Tumor Necrosis Factor a; IL-6: 
Interleukin 6; NFkb: Nuclear Factor kb; P-GP: P-Glycoprotein; OB: Olfactory Bulb; ROS: Reactive Oxygen Species; BBB: Blood-Brain Barrier; MRP2: Multidrug Resistance 
Associated Protein-2; COX2: Cyclooxygenase 2; HBMEC: Human Brain Microvascular Endothelial Cells.

the physical properties of the particles and the toxic 
compounds absorbed in the PM can cause damage. Cerebral 
capillaries, astroglia, and particularly microglia respond 
to the air pollutants components by oxidative stress, 
chronic activation, and infl ammation. Exposure to urban 
air pollutants at high concentrations is problematic given 
the suggested association between air pollution exposure 
and neurodegenerative diseases such as AD or dementia. 
In addition, exposure to air pollutants in the workplace is 
usually low, but very worrying, given that even short-term 
exposure can cause the biochemical changes associated with 
such diseases. In general, other studies are needed to better 
describe the eff ects of exposure to traffi  c air pollutants on 
the CNS, its role, and its underlying mechanisms in the 
development of neurodegenerative and neurodevelopmental 

diseases. In particular, due to the higher prevalence 
of neurodevelopmental (such as AD) and neurological 
disorders (such as PD) in males, gender may be aff ected by 
exposure to air pollution [145-155]. In any case, according 
to recent fi ndings, the higher emissions of diesel engines 
than the ones mentioned above have raised major concerns 
that should be addressed with further studies on the health 
eff ects of exposure to DEPs, so experimental studies and the 
epidemiological link between the DEPs and the CNS of the 
disease is of particular importance.
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