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“We are like dwarfs sitting on the shoulders of giants”

from The Metalogicon by John in 1159





Abstract

Why Abstract

The doi registration of the book forced the examination of what is written in this book.
This abstract is the result of this examination.

Abstract

This book deals with stability of floating bodies. The approach taken in this book is
that of looking at the physical point of view on the stability. This means that instead
looking at regulations, the book examines why the things behave in a certain way. For
example, the book does not start with the archaic GMGMGM (metacenter approach) but deals
with the direct approach (today standard approach angle in angle out). While this
difference looks symbolic at first, the results are profoundly different. For example, in
the common approach it was assumed (actually it is deeply believed relic) that a change
in the cross section liquid line is irrelevant. As results, an upside triangle and downside
triangle have the same stability. Here in this book, it was found that during the floating
body tilting, the rotation point changes according to the tilting angle. The rotation
location is indirectly believed to be in the metacenter approach in MMM and MMM is assumed
to be at a fixed point for small angles. These two assumptions are wrong, the rotation
point is not around metacenter and the metacenter is not fixed (only under certain
circumstances).

This method, used in this book, demonstrates that the turning point of the floating
body is at point AAA on the liquid line and it can move around. Are these discoveries
important? The answer is yes for most aspects and less important for others. With the
prediction of the floating bodies stability, both methods yield the same results. Yet,
the strength of the stability, even with the dimensional analysis improvement, that is
demonstrated in this book, has major issues. The most profound effect is the resonance
of container ship (and others). Ship are not regular pendulum but are double pendulum
that is they do not have regular frequency and amplitude but chaotic behavior for
medium and large wave. While this book is in the forefront of knowledge in this area,
there significant information needed to learn.

Containers during marine transport are in demanded and are the preferred mode of
transportation. This method show that problems with the stability or the resonance
(rocking) of the body. This topic is related to the general resonance (rotation) which
is impacts the rotation point (see elementary physic book) The metacenter yields a
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vi ABSTRACT

wrong rotation point location and is not fixed as it is assumed (in the metacenter
approach). These issues are discussed in this book. The publication of the complex
double pendulum was published in this book.

What should one do when ship is about to capsize? Add weight or reduce the weight
of the ship? This book utilizes the stability dome (that was create by this author) to
explain this phenomenon. For the first time the stability dome is displayed in the “main
hall” of the book.

Dimensional analysis was applied to the ship stability and now a direct equation
or graphs shows the right results for your ship size. No tables are needed for various
ship sizes (compared to other books). The standard material preceding the stability
like centroid, moment of inertia, buoyancy, are discussed but at a higher level of the
physics.

In fact, there is a tension among several forces or audiences for this book. On
the one hand, the book is intended for individuals who have a strong background in
mathematics, yet lack basic understanding the physics of (floating bodies) stability. As
anecdotal point, many the authors which dealt with rolling (which is kind of pendulum)
are not aware aware the moment of inertia depends on the rotation point. On the other
hand, the book is intended for ship architects and ship operators like ship mates and
engineers (this author was a ship engineer (third engine officer) in his youth). Personal
knowledge in the last group lacks the mathematical background, but has the physical
instinct and/or intuition. There is a third group is made of who invested so much in the
relic “science” that can not believe there should be other way. Hence, this book tries
to answer the first two groups and admittedly some parts of the book should be avoid
by the operators (too much theoretical math physics such as dealing with Lagrangian)
and some others should be avoid by other groups. As for the third group, in time they
will be diminished because they will eventually read the material and will understand
the new material. The number of the flat earth believers is diminishing today.

Even this author sinned with believing some misconceptions that the field of ship
stability is infested with. Well, it is hard to clean so many entrenched “scientific” facts.
Note three notable “facts”: rotation point (of the ship), the equation of motion of the
rolling rotations, the effects of the liquid in the ship on stability (one might described
the common approach as wrong), and fixing of the rotation point. The liquid line
area, (that is moment of inertia, etc) variation is be a minor misunderstanding . One
immediate effect is the understanding that ship are actually double pendulum which is
depends strongly on initial conditions This book is addressing all these challenges and
more.

The reader would find material in this book to be revolutionary which was not
published before. Besides the direct stability concerns, issues like how many corners are
immersed in a rectangular shape in liquid at different angles are analyzed. Comparison
of stability on solid vs stability in liquid is presented, which is lack of all other books
on stability. The methods developed in this book also spill into geometry in which new
methods to calculate the centroid for a circular segment was developed. A test the
author has been given to various experts in the field which they failed to pass. Even
the experts who wrote books about ship stability, can benefit from this book to provide
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a fresh prospective of the the new advances. While these statements sound dramatic
or brazen, it is believed that this book will transform how the stability field will be
approached in the future.
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Prologue For This Book

Version 0.7.0 Dec 14, 2021

pages 237 size 6.7M

The greatest fear that this author has been the fear to introduce errors into the blood
stream of his writing. This statement not aim at typos, arithmetic mistakes, poor
English, and layout issues, and LATEX (there are still many errors in the style file) but
the big conceptional mistakes. This book embarks on the layout the foundation on
the stability of floating bodies. Naturally, there will be errors which hopefully will be
corrected during the author’s life time. It already happened but it is not enough. This
author would not like to see that his work introduce omissions (like Bouguer’s omission
of the effect of the cross area) or error on the calculations of added properties or solving
the equations of rotating body (ship) without knowing where is the hinge point (this
error so elementary that one wonder if, those who wrote it, skip the elementary physics
class.) I depends on the hinge location. Thus, in writing this book, points not clear
to the author are mentioned and left to other to contribute. If mistakes are found, the
new version discuss it and try to fix it as soon as possible before they enter the blood
and contaminate it. Thus, if you read the book, please try to get the latest version.
In this undersign book on fluid mechanics several mistakes (in ship stability sections)
are currently present (they will be corrected after this book improved) (well, they are
commonly believed truths, sorry for blaming others). As contribution to contamination
prevention, surface tension is not created by inter molecular forces (read about the book
“basics of the fluid mechanics.”

Version 0.6.5 Oct 23, 2021

pages 223 size 5.3M

After the rotation point of the floating body was established it must be followed by
issue of the rolling (resonances). From the six possible motions only three have any
potential drowning effect on the floating body (heave, pitch, roll). Of the three motions,
the rolling is the most important not only because the droning but also the resonance
(economical losses and comfort of passenger ship). Obviously, the change in the rotation
location changes the moment of inertia which prompted this author to look into this

ix
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area. In addition, while not expert in the area of added properties1, notice misconception
about this issue in the research paper on this area. Hence, the rolling chapter was born.
The experiments chapter was long in consideration and was inspired by Dr. Robert
Ettema’s work or others how have done it..

While the several topics that planed to be covered like liquid and characteristic time
effect on stability and other the book approaching to the maintenance phase like a work
on the tcolorbox (example environment).

Version 0.6.0 Sep 27, 2021

pages 203 size 4.5M

Again, it is hard to believe how much one can achieve in a single book. Beside the
visual enhancement to the book the dimensionless presentation of what other call GZ
was constructed. History like to repeats itself. The great scientist E.R.G. Eckert wrote
his heat transfer book where he introduced dimensional analysis to the field. He was
mocked and ridiculed, but after 20 years the Eckert’s approached is the only used today.
A similar thing happened to this author in the Pressure Die Casting field. It is a question
what will in this field.

Several examples were enhanced and correction of typos were done. Improvements
of the visual will continue but mostly at this stage a discussion on the rolling frequency
will be analyzed. At that stage the major work on this book will shift to maintenance
(minor improvements). This author will (hopefully) shift focus to thermodynamics and
heat transfer and especially focus on biological system.

Version 0.5.5 Aug 22, 2021

pages 179 size 3.7M

It is very proud moment to observe all the achievements that were done in writing
this book. Normally, it is hard to see significance of the one book. However, it is
moment one should be able to boast about amount of achievements. In fact, this is a
field that is so outdated and with “facts” that are so entrenched with no challenges.
For example, around what point does the ship roll? Fact, the entrenched answer is
around the metacenter which is wrong. In this book, basically, the author discovered
and demonstrated that the rotation depends on the cross section at the liquid line due
to the new method developed in the book.

Furthermore, the fact that no one utilized Nusselt’s technique is strange. Why
did no one use the dimensional analysis in presenting the stability diagram? Is that
presentation so hard? As a result, now the location of stable zones are clear. One
indirect effect of the stability analysis provides straight and easy way to calculate the
segment (part of circular) centroid. All the graphs showing the GZ in what is referred

1Added properties referred to the fact that bodies operating in heavier liquid (like a ship) cause
resistance not by friction to the movement. This author never contributed to this area and simply took
a class on this topic and was a Teaching Assistance for this class later.
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to sometimes as the right hand arm are smooth. This is another one of the entrenched
misunderstanding of the stability field.

Still there are several topics that need clarifications that this book did not provide.
It is hoped that others will start to provide significant work that merit inclusion in
this book. For example, the dynamic stability analyzed in these days (2021) utilizing
numerical calculations. It is not that the numerical calculations are wrong. It is said
garbage in garbage out. For example, a paper (Hu, Ramlingam, Meyerson, Eckert, and
Goldstein 1992) carried the author (previous) name (Meyerson, without permission).
The correct thing in that paper is the experiments that this author solely had done and
were stolen without permission. The model in that paper is wrong because it failed to
take into account the right physical phenomenon. Is it the same for stability models
present in the recent books? This author is not convinced, hence no section in this book
can be presented on these topics. Yet, all the issues related to the safety regulations
should appear in future.

Version 0.5 June 4, 2021

pages 159 size 3.3M

This author’s introduction to ship stability was during 1974 where he was at Akko
Nautical College a unique and special high school. The class was taught by a big
man (size wise) as a main instructor who used to be captain and at time worked as
psychologist. The first class was extremely interesting because his unique ability to
handle boys2. However, because the class was after a war, it was carried in a condensed
fashion (over 8 hours a day for two weeks) to fulfill missing material. The most of
material taught was produced by the French Pierre Bouguer. For example, the numerical
integration was done by the trapezoid method, the Metacenter etc. It is interesting that
the instructor or his co–teachers did not know about the Bouguer himself.

Since that class, the author has worked on various stability3 problems like the stability
of thin film (small and large waves) in relationship to energy transfer in his Masters at Tel
Aviv University. Later the author worked on various stability problems in compressible
flow. Additionally, the author work on stability problems in multi–phase flow. After the
author went through these various stability problems, coming again to ship stability this
author realized how old technology has been frozen in time (over 300 years). There were
two attempts, that the author is aware, to bring to update the ship stability science.
The first one from Paul Erdös and second from Lautrup. The first is a mathematician
who did the mathematics correctly yet messed up some elements from a physics point
of view. The second is by a Danish physicist who had too much respect to the old
tradition, and yet he was able to renovate and focus on concepts like the stability
diagram. This author will refer to diagram as Lautrup’s diagram.

Perhaps the most amazing is the lack of dimensionless analysis of the stability of

2A very talented man in taking command of mischievous teen age boys. The author is ashamed of
the things that his group used to do.

3Even actually doing every morning stability calculations for ship as part of his duty. Not really
scientific but sheer fact of dealing with it.
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ships and other bodies. That is, what is the significance of GMGMGM=2m. Is it the same
effect on a big ship as compared to a small ship? The ship size has a strong effect and
dimensional analysis done only recently by several brave students from Egypt (Habib,
Ali, and Nawar 2018). Nevertheless, proper analysis utilizing Nusselt’s method was done
in Fluid Mechanics book by this author for the first time.

This is the partial list of achievements in this book.

• The development of the angle in angle out approach for stability.

• The recognition that stability is a problem that deals solely with rotation.

• The proper usage of dimensional analysis within the stability analysis.

• The discovery of the effect of the change of cross area with the height on the
stability.

• Construction of universal stability diagram for many fundamental geometrical
shapes.

• Presentation of the GMGMGM in a dimensionless form for several geometrical shapes.

• Presentation of the correction gravity centroid needed to make the body stable.

• Discuss the differences between stability on solid and liquid

• Point to interdependence of the different rotations. In other words, the mechanism
of the transfer for one motion to another was explained.

• Drive the relationship between the inclination angle and rotation point, and its
derivative was obtained.

After reading this book one can answer questions that before one could not. For
example, if you are on a boat which is about to be roll what should you do? Remove
items and throw them overboard, or add more items like filled out buckets full of water,
and why? If you were using all the books you could not answer this question.

This book is the fourth book in the series of POTTO project books (not counting the
world large gas dynamics tables). POTTO project books are open content textbooks so
everyone is welcome to join in. The topic of stability mechanics was chosen because the
discovery or the development of the direct methods. And the fact, this author wanted
to write a book that will be used by his old high school.

This book is written in the spirit of my adviser and mentor E.R.G. Eckert. Eckert,
aside from his research activity, wrote the book that brought a revolution in the educa-
tion of the heat transfer. Up until Eckert’s book, the study of heat transfer was without
any dimensional analysis. He wrote his book because he realized that the dimensional
analysis utilized by him and his adviser (for his post doc), Ernst Schmidt, and their
colleagues, must be taught in engineering classes. His book met with a strong criticism
in which some called to “burn” his book. Today, however, there is no known place
in world that does not teach according to Eckert’s doctrine. It is assumed that the
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same kind of individual(s) who criticized Eckert’s work will criticize this work. Indeed,
the previous book, on compressible flow, met its opposition. These criticisms will not
change the future or the success of the ideas in this work. As a wise person says “don’t
tell me that it is wrong, show me what is wrong”; this is the only reply. With all the
above, it must be emphasized that this book is expected to revolutionize to some degree
the field and change some of the way things are taught.

This book is written for several groups like high school students who study ship
stability, sea officers (even skipper), and for university students, hence the additional
material is required to satisfy these conflicting interest.

The book is organized into several chapters which, as a traditional textbook, deals
with basic mathematics, than fundamental of mechanics, and fluid statics. Later several
chapters will be dealing with various aspect of the floating stability.
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Nomenclature

α The resulting angle for tilde, see equation (4.12), page 39

β The large permanent angle, see equation (4.18), page 41

A The rotation (fix?) point at liquid surface, see equation (4.18), page 41

` Length, see equation (7.1), page 72

ω0 natural frequency, see equation (11.3), page 136

ωW disturbing wave, see equation (11.3), page 136

ρ Density of the body, see equation (4.4), page 29

ρ` The liquid density, see equation (8.4), page 97

ρs The solid density, see equation (8.4), page 97

ρfresh Fresh water density, see equation (2.2), page 10

ρsal Sea water density, see equation (2.2), page 10

θ The imposed angle of tilde, see equation (4.12), page 39

A Cross area or area in general, see equation (4.4), page 30

AM Midship wetted area of the cross section, see equation (2.7), page 12

Ar, Ao Area removed and added, see equation (4.8), page 31

Als Liquid surface area, see equation (2.11), page 14

B Buoyancy centroid, see equation (4.18), page 41

b The base of the body, see equation (4.9), page 31

Cm Maximum section Area Coefficient, see equation (2.8), page 12

CDW Dead weight coefficient, see equation (2.4), page 12

Cls Liquid surface coefficient, see equation (2.11), page 14

D the distance to point G, see equation (8.4), page 97
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d Draft of the body normally underwater, see equation (4.9), page 31

d the distance to point B, see equation (8.4), page 97

F The area of surface, see equation (6.1), page 61

FrD Froude Displacement Coefficient, see equation (2.15), page 15

g The gravity constant, see equation (7.2), page 72

g(θ) Added mass function based on the geometry., see equation (11.7), page 137

GB The distance between the buoyancy centroid and the gravity centroid, see equa-
tion (8.4), page 96

GM The distance between the gravity centroid to Metacenter point, see equa-
tion (9.6), page 114

h Height in the pressure chapter, see equation (7.7), page 74

Ixx Moment of inertia, see equation (5.1), page 49

m Mass of the body, see equation (4.1), page 28

MD Damping function for rolling, see equation (11.2), page 135

MR Returning Moment for rolling, see equation (11.2), page 135

MW Exciting (Activating) Moment for rolling, see equation (11.2), page 135

P The area of surface, see equation (6.1), page 61

Patmos Atmospheric Pressure, see equation (6.5), page 65

R The big radius, see equation (4.9), page 31

r Coordinate in r direction, see equation (3.17), page 23

t thickness, see equation (7.7), page 74

V Volume of the body, see equation (4.1), page 28

V0 The volume under the liquid, see equation (8.4), page 96

Vd Encompassing volume, see equation (2.1), page 10

x Coordinate in the base direction, see equation (3.0), page 18

y Coordinate in the other direction, see equation (3.0), page 18
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GNU Free Documentation License

The modification is that under section 3 “copying in quantity” should be add in the
end.

“If you intend to print and/or print more than 200 copies, you are required to furnish
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Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document ”free” in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or non–
commercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of ”copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
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software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The ”Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as ”you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A ”Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Document
is released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
”Transparent” is called ”Opaque”.
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Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, ”Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below,
such as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.)
To ”Preserve the Title” of such a section when you modify the Document means
that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered
to be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. Copying In Quantity

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
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of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.
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F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled ”History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled ”History” in the vari-
ous original documents, forming one section Entitled ”History”; likewise combine any
sections Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You
must delete all sections Entitled ”Endorsements”.

6. Collections Of Documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. Aggregation With Independent Works
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A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is called
an ”aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or
”History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. Future Revisions Of This License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ”or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free
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Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the title
page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.



How This Book Has Been Written

The Smart–ass Questions

As a typical phenomenon every time this author gets into a new field questions from
individuals who try to challenge the intellect of this author are asked (Wow, why people
repeat the same approach?). Basically the individuals claim that because it was done in
a certain way for over 300 years and with million of dollars in research it must be correct.
Similar things were said for the other advances that this author has made in the past.
Thus, these remarks just increase the interest into the investigate. The investigation
into the rolling was prompted indirectly by these kind of questions.

More info

This author’s initial research original interest was not focused on ship (bodies) stability.
All colleagues of this author are not in the area of ship stability but multi–phase flow,
heat transfer etc. Yet, when writing stated, this author approached several individuals
who have worked in this area from U.S.A. None of them was cooperative but yet all have
been polite (probably they heard about Bar–Meir), but strangely considerable email has
come from the far east and the middle east (why?). This stream of questions led to
the additional material which is about 40 pages.

Initial

This book started because I found or developed a new way, after hundred years, to
calculate the stability limits. While Simpson’s role was penetrating to the stability field
displacing the trapezoid integration there still ancient approach like lake of dimensional
analysis approach which must be updated. Perhaps, this book is written by this author,
who has non conforming and none traditional approach, will move the field to modernity
(as 2021) as a result of writing this book.

The book started as to attempt to teach my kids experimental physics in hopes that
they will like and want to be engineers. This attempt failed to get them to be interested
in engineering yet this book was born.

The famous Eckert converted the field of heat transfer to a dimensional(less) science.
Hence, it hope that tables (using big ships, small ship etc.) that appear in ship stability
books like (Derrett and Barrass 1999; Biran and Pulido 2013) should be located only
in library learning about the history of the issue.
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There are several books on stability of floating bodies but none them is open content.
The approach adapted in this book is practical, and with more hands–on approach. This
book indented for many different and conflicting audiences and that creates a difficulty
in writing a book. So, issue of proofs and so on are here only either to explain a point
or have a solution of exams. Otherwise, this book avoids this kind of issue.

The structure developed in the author’s book on fluid mechanics was adapted and
used as a scaffolding for this book. This author was influenced by material that he was
taught in high school, but this material will be ignored in this textbook. The chapters
are written in an order that assume reader has little background knowledge.

The presentation of some of the chapters is different from other books because the
new ideas and usability of the computers. The book does not provide the old style
graphical solution methods, yet provides the graphical explanation of things.

Of course, this book was written on Linux (Micro$oftLess book) using the vim editor
for editing (sorry, never was able to be comfortable with emacs). The graphics were
done by ipe, a new graphic program that this author is learning to use (and which is
user friendly with poor documentation yet there no better package.). The figures were
done by GLE. The figure in cover page was created by Genick Bar-Meir, and is copyleft
by him.



Preface
”In the beginning, the POTTO project was without form, and

void; and emptiness was upon the face of the bits and files. And
the Fingers of the Author moved upon the face of the keyboard.
And the Author said, Let there be words, and there were words.”
4.

This book, Stability of Ships and Other Bodies, describes the fundamentals, when
and why floating bodies are stable. In addition, it describes steps that transform un–
stable bodies to stable ones. This book is designed to replace all the other books
and inseminate and integrate the recent developments, technology and advances. The
material in standard books is so entrenched, archaic, and outdated material that one
can be only amazed. For example, concepts like potential stability are not discussed
or even mentioned in any of the books that this author reviewed. One of the recent
subject study is the resonance of rolling. One should expect that at the very minimum
the location of the rotation should be known or well defined. However, none who work
in the area and was asked knew what is location of rotation point was.

Stability naturally makes itself subject to dimensional analysis examination. There
are no extraordinary situations like multi–phase flow. Yet, only one attempt was made
to introduce it to stability analysis. Stability analysis is a well established topic in
engineering, physics, economics. The technique is done by introducing error and looking
if the error grows or decay. Bouguer found obscure and a different technique because at
his time the regular standard was not available or known. Now that we have a regular
standard approach there is no reason to avoid especially when it capture major stability
issues that were not known because of the metacenter technique.

This book was written from a physical point of view rather than of this what
the safety committee decided like all the books reviewed by this author on stability.
It is hoped that the book could be used as a reference book for people who have at
least some basics knowledge of science areas such as algebra, basic physics, etc. Even
without deep understanding, the graphs in this book can be used to find necessarily
quantities needed to understand or to fix your vessel.

The structure of this book is such that many of the chapters could be usable
independently. I hope this approach makes the book easier to use as a reference manual.
However, this manuscript is first and foremost a textbook, and secondly a reference
manual only as a lucky coincidence.

I have tried to describe why the theories are the way they are, rather than just
listing “seven easy steps” for each task. This means that a lot of information is presented

4To the power and glory of the mighty God. This book is only attempt to explain his power.

xliii
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which is not necessary for everyone. Many in the industry have called and emailed
this author with questions since this book is only source in the world of some of the
information. These questions have led to more information and further explanations
which are not available else where.

This book is written and maintained on a volunteer basis. Like all volunteer work,
there is a limit on how much effort the undersigned was able to put into the book and
its organization. Moreover, due to the fact that English is my third language and time
limitations, the explanations are not as good as if I had a few years to perfect them.
Nevertheless, I believe professionals working in other engineering fields could benefit
from this information.

I have left some issues which have unsatisfactory explanations in the book, marked
with a Mata mark (still under work). I hope to improve or to add to these areas in the
near future. Furthermore, I hope that other individuals will participateid in this project
and will contribute to this book (even small contributions such as providing examples
or editing mistakes/typos are needed).

I have tried to make this text of the highest quality possible and am interested in
your comments and ideas on how to make it better. Incorrect language, errors, ideas for
new areas to cover, rewritten sections, more fundamental material, more mathematics
(or less mathematics); I am interested in it all. I am particularly interested in the
best arrangement of the book. If you want to be involved in the editing, graphic
design, or proofreading, please drop me a line. You may contact me via email at
“barmeir@gmail.com”.

Naturally, this book contains material that never was published before (sorry
cannot avoid it). Actually it is the main trust of the book showing the new way to
do old things. Brazenly putting it in bold words, this book contain material that was
never published before and does not adhere to social appeasing. This material never
went through a close content review. While close content peer review and publication
in a professional publication is excellent idea in theory, practice, this process leaves large
room to block of novel ideas and plagiarism. In fact, many ideas in the book intimidate
many who has vast interest to keep hidden. Image that spend year and millions of
dollar just to find that you made a mistake in research. It is naturally believed that
those individuals will attempt block any regular channel publication (this author has
experience it in the past). If you would like be “peer reviews” or critic to my new ideas
please send me your comment(s).

Several people have helped me with this book, directly or indirectly. I would like
to especially thank to my adviser, Dr. E. R. G. Eckert, whose work was the inspiration
for this book. His approach in dimensional analysis was a key in understating concepts
like what dimensional group effect the stability but also the presentation.

I encourage anyone with a penchant for writing, editing, graphic ability, LATEX
knowledge, and material knowledge and a desire to provide open content textbooks and
to improve them to join me in this project. If you have Internet e-mail access, you can
contact me at “barmeir@gmail.com”.



1
Introduction to Stability

1.1 What is Stability of Floating Bodies?

The perquisite condition for stability of floating bodies regardless to usage is that the
body (ship) has to float. This condition is controlled by Archimedes’s law or principle.
The stability of floating does not have vertical stability issue unless it is in a small scale
or the density is almost transitional1. That is, once the body is floating, unless the
body density is changed, there is no vertical stability concerns2 In other words, pushing
or pulling the body in the vertical direction will not change the fact of the body’s
stability. The fact that ship has limitations on available flotation (how much ship can
load before it will sink) is not related to stability. In fact, it will be shown later in the
book that the ship become more stable when ship closer is fully loaded situation. This
limit related how much liquid the ship can absorb before it is too heavy to float (see for
more information in chapter 2).

However, under what conditions the angle of a floating body will be in equilibrium
is the question of ship or body stability. Floating bodies do not sink if their density is
below the liquid density because lack of force or moment that can cause it. On the
contrary, when the body is pushed down below the stability point there is a net force
that pushes the body up and vice versa. However, the body is placed on the liquid, only
under certain conditions will the body remain in initial position. For example, putting

1Lautrup suggested this possibility.
2There are those who claim that there are issues with vertical stability. For example, an Australian

mathematician (his name is mentioned) wrote a paper on rolling, that he alleged that it is clear all six
motions are important. His claimed this strange “fact” because he does not understand physics. His
paper is dealing with pendulum like situation/scenario yet he does know where is the rotation point.
This author would like see even one issue/case vertical stability issue.

1
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an extruded wood square in water straight up will results in a tilt to 45◦ (try it).

A body placed over a solid surface will remain in the same conditions if the body
is placed only, at minimum, when the center gravity is over the base. The situation
with solid surfaces is very intuitive as most readers have experienced it for example, an
extruded square has 4 possible angles of stability (for the 2D bodies). As almost always,
the stability points (angles) are complicated to determine and to predict when placing
bodies on liquid. The stability points (angles) on the solid surface are different from
those for the same body on liquid. Even the number of stability points can be different
between solid surface and liquid surface. For example, an extruded T–shape body can 4
stability points on solid surface (orientation) while in liquid it can have only one or two.
As opposed to the solid case, in liquid the ratio of the densities affects the stability. The
stability for a certain shape can be checked by modifying the geometrical parameters
(or their ratio) of certain shapes for various density ratios. The experience has shown
that the stability can be plotted as ratio of geometrical parameters for different density
ratios as shown in a typical stability diagram (see Fig. 1.1).

Unstable

ρs
ρ`

G
eo
m
et
ry

Stable

AB

Fig. 1.1 – Typical stability diagram for solid bodies like extruded rectangular.

It is amazing that for a certain geometry the ship or floating body is stable (see
point A in the Fig. 1.1) at one point and if the density ratio changes it becomes
unstable (the line enters into the dome) and if further change in the density ratio
occurs it becomes stable again (the line leaves the dome). This point is not obvious (at
least it was not clear to this author when he took ship stability class in high school.3).
In fact, ships have different scales for salt water and fresh water (they have different
densities, and they should have different scales for different temperatures). This diagram
is introduced (in Chapter 2). While this diagram is not related to the stability issue it
provided the power the density ratio is.

This book is organized by building on the foundations, like what is a centroid and
how to calculate it. Additional important fundamental concepts will be introduced: the
moment of inertia, pressure. The buoyancy will be followed and analyzed. Later, these
ideas will be used in the calculation of the ship stability (and floating body and in this
book the word “ship stability” should be interpreted as floating bodies as well.) As all
the books by this author, the books starts with history of ship stability.

3It is a good assumption that the teacher had no clue about this issue. In fact, a discussion with
another teacher (head teacher) simply demonstrates it is the prevailing belief.
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1.2 History of Ship Stability

1.2.1 Original History

The history of the stability analysis is reflective of
general physics and fluid mechanics science in par-
ticular. A good summary is given by (Nowacki and
Ferreiro 2003) which lacks major developments that
have occurred in the last 30 years. The highlights of
stability analysis research show that it was an impor-
tant topic for a long time. Clearly having ship that
does not flipped at sea (or other body of water) was
important since the early times. The test was done
by some individuals moving on the floating body to
examine how the ship stable has. The real under-
standing to more advanced mathematics of the

Fig. 1.2 – Bouguer Showing
Metacenter.

stability is tied and fluid mechanics, without which there was no ability to examine this
issue. For example, Archimedes did not know about the concept of pressure, hence
he lacked a major tool in his understanding. The early work was done by Huygens
(1629-1695), (Huygens 1967) by that time he knew about the concept of pressure and
some knowledge of early calculus. Even the concept of “specific gravity” (density) was
introduced by that time (density was introduced 1586 by Simon Stevin). Stevin also
discovered that the forces (gravity and buoyancy) have to act in the same line as a
prerequisite for stability. French mathematics Paul Hoste, (1652-1700) made attempt
to tackle the stability problem, but failed because he did not know about calculus.The
famous case of the Swedish flag ship Vesa shown on the cover page during her maiden
voyage was turned to a no–return–point and eventfully sank. The king’s, Gustavus
Adolphus, demands on ship’s cannons were so high and heavy that it was ridiculously
absurd showing the contempt people had to science.

Euler was requested by the Russians (at the time he was Russian Tzer children’s
tutor, what a lucky students) to review the work of La Croixs work (Euler 1735; Euler
1736). As usual, money was the reason pushing the science forward. That was the
age of discovery and the ability to project power especially with a marine power was
essential. During that era the ship’s gunport was developed. The need to find the water
(liquid) line and maximum turning point before water got into the ship were important.
Hence the importance of developing the science behind the stability.

Pierre Bouguer French hydrologist (fluid mechanics) got his father is royal pro-
fessor post at the age of 15 after his father pass away (must have be very smart kid).
He improved the numerical integration methods (he invent the trapezoid method)4.
Later he derived the Metacenter concept (Bouguer 1746) see Fig. 1.2. This Metacen-
ter method is the most used method today. Yet, when one tries to use it, it is found
to be complicated and graphical representation (or numerical modeling) is commonly
required. Perhaps, the intrinsic deficiencies of this method is that it is confusing as to

4This method is widely used in stability study even though there are simpler and better methods
like Simpson’s rule or by its other name?
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where the rotational point is and fails to capture the effect of liquid line cross section
area change on the stability.

Yaw

Pitch

Roll

top view

side view

front view

Fig. 1.3 – Typical rotation of ship/floating body.

As a result, another method namely,
the potential/energy principle is or could
be used. In this method the energy or the
potential of the system is written and uti-
lized to find stability points. This tech-
nique was first proposed by Huygens and
again because lack of calculus developed
at that time he failed to work out the tech-
nical details.

Paul Erdös et al was the first (this
author is not aware of any who else worked
to solve this problem utilizing potential en-
ergy) to have used this approach successfully (Erdös, Schibler, and Herndon 1992).
Amazingly the authors were not aware the centroid calculations were a well established
topic and used complex integral calculations to find the centroid of trapezoid (and these
calculations were done in 1992!). Additionally they have made some nonessential as-
sumptions which Mohammad Abolhassani was able to fix. The calculations of centroid
were not explained in the last paper (Abolhassani 2004). The potential method will be
explained briefly later on. This approach utilizes mathematics without the ability to see
or examine what cause what and why. In a way the method abstracts the physics and
converts it into a pure mathematical creation. The method seeks to find the angle(s)
in which the vertical distance between buoyancy centroid and the gravity/mass centroid
is shortest. Numerous mathematical papers (dealing with the mathematics) were pub-
lished later dealing with abstract. It is the opinion of this undersign that many of these
papers are without any real meaning to the stability of floating body. It is interesting
to point out that because the lack of physical observation ability or because the under-
lined the equilibrium analysis it was assumed that it is a dimensionally compartmental.
For floating bodies the stability is compartmental under very unique cases where the
body is symmetrical and extruded. For example, using marine terminology, roll rotation
creates yaw and pitch rotations because of the change of centroid location in x,y, and
z directions.

The newest approach is the Direct Examination approach and it is suggested by
this undersign. The Direct Examination method is probably the closest to Metacenter
method.

Example 1.1: Why G is above B Level: Easy

In the illustration 8.2 depicts G above B. Explain why at equilibrium stage the
G and B must be in the same vertical action line.

Solution

One of the favorite question that this undersign brings to engineers. Assume that G
is not the same vertical action line as the B. In that case, a moment is created and
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End of Ex. 1.1
the body will rotate until G and B do so on the vertical action line.

1.2.2 Recent Developments

Some developments have occurred recently will be presented in this section. Among
these recent developments of the ship stability is the stability diagram/dome. The
stability diagram is an important tool showing the stability of a certain geometrical
body. The investigation of history this diagram is not conclusive. While it is too
personal for this author, as he built these diagrams and he was sure that he is the first
(it is a disappointment to find that someone invented them head of you). However, it
seems that the credit should go toward to Lautrup (Lautrup 2011). While the coordinate
system presented in Lautrup book is different (and there is only one diagram) but the
concept is somewhat similar. Lautrup did not realized that this is a typical diagram and
it can be built for different geometries and maybe he did not attempt to build one for
other geometries. Another advance Lautrup should be credited for is the solution of the
principle axis.

Almost the investigation (research) on the ship stability was under the assump-
tion of compartmental effect5. Perhaps, the only transfer mechanism discussed in the
literature is the mechanism of the moving wave along x coordinate which makes rolling
motion (but these special cases that are discussed later). For example, the potential
energy implemented by Erdös (Erdös, Schibler, and Herndon 1992) worked under the as-
sumption of compartmental effect. This separation is not correct and was demonstrated
in (Bar-Meir 2021).

Beside the potential energy, this undersigned developed the Direct Examination
method which is simpler to understand and implement (Bar-Meir 2021). Addition-
ally, the author introduces the dimensional analysis to this area. There are quite new
advances in this book and recently developed and they will be discussed below.

1.3 Rolling Rotation

Any body has six possible movements which have special names relative to a ship in
the marine industry. The most dangerous and important because commercial damages
is the rolling which refers to rotation around the small dimension of the ship (in other
words the long axis). The complicate question what happened to a body under rotation
not in the principle axis really was not addressed yet because lack of understanding.

The damages created by rolling rotation are exhibits in the example of Fig. 1.4.

5If you aware of such non compartmental work, please notify this author.
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Fig. 1.4 – Containers falling from a their location on a ship after rolling rotation.

These damages are very substantial (according many sources). According to research
conducted by the World Shipping Council, on average 1,390 shipping containers are lost
at sea each year, whilst in 2019 there were approximately 16,000 lost cargo containers.
These numbers are only an approximation and the number of damaged (damaged is
more than lost) containers are higher. Regardless, of this specific information (it is
not scientific and has a very small amount of material to verify facts), it is estimated
the majority are due to the rolling rotation (not clear as of writing this section). This
information is considerable enough to warrant an examination of lost and damaged
containers.

Rolling is extension of static stability which was covered earlier. The metacenter
method is almost exclusively used by researchers in this area (this author did observe
even a single publication utilizing any other method). The weaknesses of the metacenter
method are abstracting and the belief that the ship’s rotation point is at metacenter
and which can be assumed to be fixed for small angles. That is, the rolling rotation
is like a giant pendulum movement. Clearly, if this assumption was correct then at
first glance the equation used in pendulum should be applied. Even this author sinned
with this erroneous assumption. The literature survey shows that the oldest publication
found is from 1939 (Rahola 1939) 6 and the work referred to as Rahola’s criteria. These
publications are relatively recent (Francescutto 2007).

6The first curious thing about this work is who were the sponsors. Were they Nazis or Nazi
sympathizers. If you have any information, please provide it to this author.



1.3. ROLLING ROTATION 7

The next issue was to find the energy
source or in other words the external (excit-
ing) force or moment that causes the reso-
nance (Spyrou and Thompson 2000; Bulian,
Francescutto, and Fucile 2009). This physi-
cal situation had to be converted to a math-
ematical model. As always engineers when
the situation cannot put into a model, in-
vent a safety factor relative to something
that was known at the time. Thus, the
weather conditions are based simply on the
GMGMGM with a coefficient that is obtained from
the formula Eq. (1.1) (Francescutto, Serra,
and Scarpa 2001). The roll–back angle is
written as,

φ = 109 kX1X2

√
WeWs (1.1)

Fig. 1.5 – The Correction for the weather
based onGMGMGM. The references to other
papers that appear on the exhibits
are leftover the paper by Frances-
cutto.

The roll–back angle is a kind of ship twisted angle. Where the terms k and X1

and X2 represent the damping (not clear how? it is based on Newman book Marine
Hydraulic, which are based on Buckingham Dimensional Analysis which makes this
author very suspicious of their scientific validity.). While We is the waves effective wave
slope, Ws is the regular wave steepness at resonance frequency. The 109 coefficient
was chosen to match the data. This information associated with the Fig. 1.5. This
weather criteria was improved but the change does not seem to be significant and the
main point demonstrates that rotating point was ignored.

Galeazzi et al (Galeazzi, Blanke, and Poulsen 2012) have noticed that there is
relationship between the various six movements of the ship7. They also speculated that
it results from the change of the buoyancy centroid which was corrected but the expla-
nation did not appear. However, they connect the change to any physical effects.This
oversimplification lead to improvements which depend on the dynamic conditions (in the
literature it is referred as operational conditions) (Petacco and Gualeni 2020). One of
the typical theory was a wave propagates along ship (x coordinate) and hence changes
the buoyancy point and hence makes the ship vulnerable at specific frequencies. Ac-
cording to this idea for waves with a wave ship length (or some fraction (1/2, 1/4, etc)
of the ship in such away that a wave crest pears one per ship length cause a change in
GMGMGM (change in the metacenter). The change in GMGMGM causes the ship to have a varied
stiffness depending on the wave crest location. The arrangement is such that ship will
over respond in part of the cycle and will under respond in the other part the ship
situation that can create capsizing. One can wonder why not slightly change the ship’s
velocity to solve the problem.

In this book, ship rolling is recognized as a special pendulum movement (actually
special double pendulum) where the rotation point is fluctuating. The addtional compli-
cation of varing moment of inertia of the ship changes during the rotation. Additionally,

7It seems to based on Newman (Newman 2018).
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in this book it was identified that added moment of inertia is a strong function of the
angle. The fact the ship has moving hinge point that changing means that the moment
of inertia is changing during the rotation.

1.4 Summary
It interesting to observe how the important Bouguer affected the field of ship stability.
The realization of the change of buoyancy centroid is the critical point in the under-
standing. Later it can be observed that this great personalty plus freezing effect the
Buckingham’s method had on the stability.



2
Marine Bodies Definitions

2.1 Opening Remarks on Definitions
Marine nomenclature dominates (obviously) the ship or the floating bodies stability.
While trying to find what is known and what is still a black art, this author concluded
that the terminology is used to complicate the topic. Furthermore, it seems that many
books on ship stability written is such jargon that it is hard to read them especially if
the reader is out of the field. In a way the chapter is a kind of dictionary or key that is
provided to be able to read books in the area.

Hence, this chapter presents a literature survey on the nomenclature. In this
book, a minor adaptation of some of this terminology is reused. This old terminology
is entrenched and appear as ancient relic of outdated an science frozen for 300 years.
Some terms were changed to reflect the advances in science or specifically the new
technology developed here. Furthermore, this material is backported into other books
(for example, “Basics of Fluid Mechanics”) and hence the terminology of the wider
field is preferred. In a typical stability analysis (in fluid mechanics and solid mechanics)
there is a typical disturbance which result in change of the field (where the disturbance
grows or decayed). In ship stability, the metacenter method does not have such concept.
For example, for a stability indication is whether GMGMGM positive or negative but further
more the analysis assumes that the metacenter is fixed regardless to the disturbance
θ. Therefore, for this author, who started his career a thermofluid with a ship stability
class, is forced to modify many terms.

Yet, the terms like left or right of the ship are not used (but rather port (left) and
starboard (right)), are used adapted here because they do not conflict with the standard
fluid dynamics field. These terms can trace their root to the Vikings (Hendrickson 2008).

9
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The main definitions are dealing with sizes and not naming. The first definition
is dealing with volume of a ship. The width of ship is denoted as b and height of ship
is D and the length of the ship is s. Notice the lower case d is only part of the D
and it is the distance from bottom to the liquid level1. In some books this quantify is
denoted as T (not in this book). The displacement is volume displaced by the ship or
the floating body denoted as V0. The encompassing volume

Vd = d b s (2.1)

Note that some books refers to the displacement as the displaced mass or the displaced
weight (yes, these strange definitions are common).

2.1.1 Salinity and temperature effects

In the ship industry the minute change of density due to salinity and/or temperature
(about 2%) appear in approximation as

dsal
dfresh

∼ ρfresh
ρsal

(2.2)

The fresh water density is approximated as 1000 [kg/m3] and the density of sea water
is approximated as 1025 [kg/m3]. The temperature has small effect and yet also appear
as seasonal. In other words, the seasonal refers to Summer, Winter, etc. Eq. (2.2) can
be derived from Archimedes’s formula (will be covered in Buoyancy chapter). It has
pointed that temperature play role nevertheless the changes are negligible.

2.1.2 Load Lines

Load lines are marked on a vessel’s side for various conditions water salinity, and tem-
perature. Yet, the common in the industry to make them on the ship

1Notice that in this book the term liquid is used and not water. The reason for this is to indicate
that apply to any kind of liquid and not limited to fresh or sea water.
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Fig. 2.1 – The first International Load Line Convention took place in 1930 after which, con-
tinue to amended to latest in 2003. Load lines based international Load Line Convention
after wikimedia.org.

0.9 From the top with smaller density from the top: TF is tropical fresh water, F for
fresh water, T is for tropical seawater, S is based and the summer seawater, W is the
winter seawater, and WNA is winter North Atlantic. The major part of the standard is
dealing the thickness of the lines etc. One can wonder how this relic still in use. The
answer to that has to do with historical validation and people respect things that have
been used for long.

2.1.3 Tonne Per Centimeter

This definition deals with the amount weight that increase the weight of the ship per
centimeter. It is strange that this definition is not defined in a scientific way like the
following

TPCproper =
dW

dh
(2.3)

In this case, dh refers to the infinitesimal height element and dW is the ship weight
element. Regardless the definition, the assumption is that the cross area (parallel liquid
surface) does not change much with the height (in other words, cross area is almost
constant). In fact, this definition should be a function (example of how outdated
material is currently in marine industry).

There two extreme cases of displacements one: Light Displacement two: Load
Displacement is the weight of the liquid displaced by a ship when at summer time in salt



12 CHAPTER 2. MARINE BODIES DEFINITIONS

water for maximum load (conflicting requirements, salt and temperature are pushing
to different directions.). The ship’s displacement lay between these two extremes. The
light displacement included fuel, stores, ballast etc which referred as “deadweight.”
Deadweight Coefficient describes the effectiveness of the ship. It is defined as

CDW =
Light Displacement

Displacement
(2.4)

This value is a dimensionless number. Basically it describes the useless fraction of the
ship weight. The typical values are

Table 2.1 – Typical values for dead weight coefficient.

Vessel Type CDW Vessel Type CDW

General Cargo Ship 0.7 Carry Wheeled Cargo 0.3
Oil Tanker 0.83 Container Ship 0.6
Bulk Carrier 0.82 Passenger Liners 0.37
Gas Tanker 0.62 Cross-channel Ferry 0.2

Some of these vessels type carry heavy weight and it is very wasteful.
The block coefficient is defined as the ratio between the actual volume to encom-

passing rectangular (extruded rectangular).

Cb =
V0

D b s
(2.5)

Cb is used for application and regulations of vessels. The coefficient indicates how
“smooth” the ship is. The ship displacing volume is denoted V0 and is defined as

V0 = CbD b s (2.6)

Another relic from the past is the Prismatic Coefficient which is the ratio of

Cp =
V0

sAm
(2.7)

This coefficient represents the width of the ship if the mid–section was expended to
full length of the ship. Notice that the shape encompassing the ship is not rectangular.
The Maximum Sectional Area Coefficient is defined as

Cm =
Am
bD

(2.8)
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Example 2.1: Cd calculations Level: Easy

A general cargo ship has a dead weight of 50k tonnes. Estimate the fully loaded
displacement (W).

Solution

The value of Cd is given the table 2.1 is 0.7. Hence, the displacement is

Displacement =
Light Displacement

Cd
(2.1.a)

Applying the data to the equation Eq. (2.1.a)

Displacement =
50000

0.7
∼ 71428.6 [tonnes] (2.1.b)

Basically, the ship can carry about 21,428 [tonnes].

The bilge region is at the bottom and there areseveral definitions for it.
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Fig. 2.2 – Ship Coordinates System suggested by DIN 81209-1.

Strangely there is a recommendation for coordinate system. However there is differences
between the various standards. For example, ISO 7460 and 7463 defined different origin
as compare to DIN 81209-1. In this book, this recommendation is not followed because
it it does not compatible with presentation of the material. The concept of the system
used by the context. It is assumed that this principle foreign to these who write the
standards. For example, in two dimensions, it is convenient to use x, y coordinate while
in three dimensions is should be x, z. This kind of system is adapted in this book.

General coordinate system is attached to the floating body or ship. So, ship with
fixed z–coordinate fixed to liquid z–coordinate is referred to as upright condition. A
rotation of the z y plain are referred as heel or roll depending on the variance with
time. Even keel is referred to the situation in which x–coordinate is parallel to the liquid
level. Nautical terminology depreciates pitch and trim (see Fig. 8.3).
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2.1.4 Deviations From the Design
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(a) Trim by the Stern
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(b) Trim by the Bow

Fig. 2.4 – Trim in two possibilities which are to opposite of each other. The trim is results
from unbalance loading more on stern or the bow.

Ideally ship and other floating bodies are designed to move relative to “center” coordi-
nate system. A deviation from the “center” coordinate exist and increase the resistance
to the flow and increase the cost operation. For example, the trim is pitch rotation to
new stability point. The trim is defined positive when the ship bow is up and referred
as trimmed by the head. The trim is the deviation from symmetry of the ship which
desired in certain situations ( like speedboat) more often is a problem.

The ship’s list is deviation form “zero” of the rolling movement. This change is
static. There is a dynamic component what have the zigzag movement which is results
from the non–symmetrical ship design and it is different from the ship’s list. There is
another deviation that is not very common or significant is referred as deviation offset.
As oppose to the zigzag in the list direction the deviation is more important and this
author estimate that ship because this movement travel additional 2% of the total road
or more. This occur as the other zigzag because symmetry considerations and waves.
This 2% additonal road means additional 2% in fuel cost.

2.1.5 Ship Length

While this books does not deal with ship design several points has to mention about
ship’s dimensions. The ship width is limited by the cost and the space available (canal
limitations). The ship length is determined by cost and need but limited by space at
designated ports. In same way the draft (depth) depends on the limited space with the
exception of the large tanker which can load and unload outside the port.

The measuring how much ship is way from the “box” shape is

CM =
AM
bD

(2.9)

The center cross section is referred as midship-section CM is referred as midship coef-
ficient. The compactness of ship is defined as

CP =
V0

sAM
∼ Cb
CM

(2.10)
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Where AM is the wetted area of the midship cross section. Another definition to
measure compactness of the surface area at the liquid level as

Cls =
Als
s b

(2.11)

Where Liquid Surface Coefficient is the measure of compactness relative recommenda-
tion area at liquid surface and some define denotes as Cw. The liquid cross area, Als,
is the area at the surface of the liquid. For completeness, addition has be mentioned
as Prismatic Coefficient.

2.1.6 Ship Length

The design of the ship/boat is art more than science as indication shown that a new
design is based on the old and tested design rather design totally from fresh. yet, some
engineering principles can be utilized. The displacement is related to the ship length.
Yet, ships especially smaller one heaving a complex shape which the relationship has to
account for these effects.

s ∼ 3
√
V0 −−−−−→ s = f(· · · ) 3

√
V0 (2.12)

The logical assumption is that the correction factor which is related to deviation fac-
tors from the extruded rectangular. These deviation factors Cb, CM , CP were defined
earlier. The value of these is given by experience and no science but black art is used.
Notice that in these calculations the actual ship width and the ship depth are unknown.
The relationship The ratio of the length, s/b is determined from the requirement on
the resistance to the flow (ship speed). The ratio of b/D is dictated by the stability
consideration (more this issue in the book). With deviation factors given above the
length of a ship can be estimated for given dead weight, DW (which related to V0) as

s = 3

√
DW

ρg
f(Cb, CD) (2.13)

There are several formulas suggested in the literature. No information on the scientific
nature of the development of these equations was provided and hence none can be
recommended. An example of such formula is

s =

3

√√√√√DW
(s
b

)2
(
b

D

)

ρ g Cb CD
(2.14)

A dimensionless parameter known as Froude Displacement Coefficient to measure
the stretchiness (resistance to the flow) of the vessel and is

FrD =
s

3
√
V0

(2.15)
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Froude number The Froude is range from 17 for racing boat, racing yacht 7, container
ship about 6.5 and Seventeenth-century first rate of 4. Beside this Froude number there
additional numbers have similar name and such example of definition is

Fr =
U√
g s

(2.16)

Heaving is a vertical movement of the ship. Sway is the linear movement in the
y direction. Surge is the linear movement in the x direction. If the body is symmetrical
than these movements do not affect each other (and also the other rotations). How-
ever, if the body is not a symmetrical they affect each other. Furthermore, all these
moments creates all the rotational moments. The base for the interaction between
these movements is clear but the calculation is beyond scope of this book. Estimate
this author done on this effect show that it about percent of order of magnitude. While
this number sound insignificant, in real life this can be a significant amount.

2.2 Special Dimensions of the Ships

This section is tied with historical
naming and such depend on school
of thought and no real uniform system
is agreed. The length of the ship is
defined by some as the length at the
water line. The same can said on the
ship width. The curvature of ship like
round shape of the deck (to make sure
that the water are deflected to the sea)
is referred as camber. The arc created
the ship floor is referred as “bilge.”
The bilge exist for the several reasons,

Rise of Floor

Keel Area

Camber
Flare

Fig. 2.5 – Mid ship cross section to illustrate
various definitions.

like collection the water (or liquids), strength, and etc. The other curvature surfaces
are created for structural reasons. However, the flare can help with the stability.

2.3 Summary
This chapter deals with topics related to ship structure and design. For example,
different ships were introduced and various international standards discussed. These
definitions are indirectly related to ship stability. This discussion was add to the book
because there was a demand for it. Moreover, the main usage of the stability is for the
marine industry. Some of the material related to dimensional analysis but it is covered
because the dimensionless aspects are not the main issue.



3
The Mathematical Background for Stability

In this chapter is review for most readers and new for others and intend to cover
minimum topics related to stability of floating body. These topics are present so that one
with some background in trigonometry could deal with the mathematics that encompass
in this book. Hence without additional reading, this book could be used by most readers.

3.1 Differentiation
What is differentiation and why it is important? In trigonometric there is a function
call tangent for short tan, that reader should know, the ratio the sides of triangle. A
parabolic function shown Fig. 3.1 has a point x, x2 denoted by the red point. To find
the tangent to the function a triangle is build starting at red point. The second point is
at (x+ ∆x, x2) and the third is on the graph vertically from second point denoted by
green point. Clearly the line connecting the second and third point is above the graph
(the purple point). To minimize the distance between the purple line (see the figure)

f (x) = x2

∆x

∆
y

θ

Fig. 3.1 – Parabola to explain derivative. Not to scale and point the triangle starts is at
(x, x2) (red point)

17
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and the graph, the triangle has to shrink. The tangent of the angle of the triangle at it
is

tan θ =
∆y

∆x

The value of ∆y an be ascertained the difference between the function value at x and
x+ ∆x as

∆y = f(x+ ∆x)− f(x) = (x+ ∆x)
2 − x2

The first term on right hand side can be expand as

∆y =@@x
2 + 2x∆x+ (∆x)2 −@@x2 = 2x∆x+ (∆x)2

The tangent in this case is

tan θ =
2x∆x+ (∆x)2

∆x
= 2x+ ∆x

When ∆x become smaller and smaller (about zero) the value of the tangent is 2x.
This example of differentiation explains the concept and it has been extend. In this
book the concept was explained and other derivative of other functions should obtained
from table or other sources. There is no need to emphasis here. The reason that
differentiation is extremely important because almost all the calculations in stability
requires understanding this concept. Ultimately, most of the calculations ended to
simple arithmetic. The derivative are denote as dy/dx and they are actually tan θ.

tan θ =
∆y

∆x
=
f(x+ ∆x)− f(x)

∆x
(3.1)

The tangent can be used to evaluate the at some distance from point x as

f(x+ ∆x) ≈ f(x) + ∆x

tan θ︷︸︸︷
dy

dx
(3.2)

It must be note that a short notation of derivative is f ′(x) or even shorter hand is
simply f ′.

3.2 Integration
The integration is calculation of the area under the curve. The area is made of many
trapezoids as shown in Fig. 3.2. Without any proof but simply using the intuition
integration is opposite of differentiation. The explain to that is based on the following.
Note the explanation is not rigorous but just the underline. The integration is denoted
by the symbol

∫
. For example, the function (F) can be defined as

F (x) =

∫ x

0

f(t)dt
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y(x)

∆x

x
1 2 ... n-2 n

a b

n-1

Fig. 3.2 – The trapezoid method to explain the numerical integration.

In this case, the notation of dt and t is just a dummy variable and the integral from
point 0 to point x. Integration is done by adding small rectangular shape thus,

F (x+ ∆x) =

∫ x

0

f(t)dt+

∼∆x f(x)︷ ︸︸ ︷∫ x+∆x

x

f(t)dt (3.3)

For small distance of ∆x the value of the function is constant. Hence, the second
integral can be written as over the brace was the width and height given.

F (x) + ∆xF ′(x) ≈
∫ x

0

f(t) dt+

∫ x+∆x

x

f(t) dt (3.4)

U

Uy

Ux

Uz

x

y

z

Fig. 3.3 – Vector in Cartesian coordi-
nates system.

The first term on the left is equal to first term
on the right. Thus, the second the term on left has
to equal to second of the left

HH∆xF ′(x) ≈HH∆x f(x) (3.5)

Thus F ′(x) ≈ f(x) and this consider fundamental
equation or law of calculus. To find the integral of
function is done by “guessing.” For example, it was
found before that the derivative of x2 is 2x. Hence, the integral of 2x is x2.

This a brief introduction to calculus and no mean it meat to be complete and
comprehensive. Yet, the reader should be able to understand some of the mathematical
explanation.

3.3 Vectors and Coordinates System
The are many coordinate systems which are used to describe location or direction. In this
book two systems will be discussed, Cartesian, Cylindrical coordinate. The Cartesian
system describes the location with three linear coordinate normally call, x, y, z. The
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Cylindrical coordinate measures with a distance from the center on the plane and the
angle and z.

Vector is a quantity with direction as oppose to scalar. The length of the vector
in Cartesian coordinates (the coordinates system is relevant) is

‖UUU‖ =

√
Ux

2 + Uy
2 + Uz

2 (3.6)

Vector can be normalized and in Cartesian coordinates depicted in Figure 3.3 where
Ux is the vector component in the x direction, Uy is the vector component in the y
direction, and Uz is the vector component in the z direction. Thus, the unit vector is

ÛUU =
UUU

‖U‖ =
Ux
‖UUU‖ îii+

Uy
‖UUU‖ ĵjj +

Uz
‖UUU‖k̂kk (3.7)

and general orthogonal coordinates

ÛUU =
UUU

‖U‖ =
U1

‖UUU‖h1 +
U2

‖UUU‖h2 +
U3

‖UUU‖h3 (3.8)

Vectors have some what similar rules to scalars which will be discussed in the next
section.

3.3.1 Vector Algebra

Vectors obey several standard mathematical operations which are applicable to scalars.
The following are vectors, UUU , VVV , and WWW and for in this discussion a and b are scalars.
Then the following can be said

1. (UUU + VVV ) +WWW = (UUU + VVV +WWW ) = UUU + (VVV +WWW )

2. UUU + VVV = VVV +UUU

3. Zero vector is such that UUU + 000 = UUU

4. Additive inverse UUU −UUU = 0

5. a (UUU + VVV ) = aUUU + aVVV

6. a (bUUU) = a bUUU
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The multiplications and the divisions have
somewhat different meaning in a scalar operations.
There are two kinds of multiplications for vectors.
The first multiplication is the “dot” product which
is defined by equation (3.9). The results of this mul-
tiplication is scalar but has no negative value as in
regular scalar multiplication.

UUU · VVV =

regular scalar
multiplication︷ ︸︸ ︷
|UUU | · |VVV | cos

angle
between
vectors︷ ︸︸ ︷

(∠(UUU,VVV )) (3.9)

U

V
W

Fig. 3.4 – The right hand rule,
multiplication of UUU × VVV re-
sults in WWW .

The second multiplication is the “cross” product which in vector as opposed to
a scalar as in the “dot” product. The “cross” product is defined in an orthogonal

coordinate (ĥ1, ĥ2, and ĥ3) as

UUU × VVV = |UUU | · |VVV | sin
angle︷ ︸︸ ︷

(∠(UUU,VVV )) n̂nn (3.10)

where θ is the angle between UUU and VVV , and n̂nn is a unit vector perpendicular to both UUU
and VVV which obeys the right hand rule. The right hand rule is referred to the direction
of resulting vector. Note that UUU and VVV are not necessarily orthogonal. Additionally
note that order of multiplication is significant. This multiplication has a negative value
which means that it is a change of the direction.

One of the consequence of this definitions in Cartesian coordinates is

îii
2

= ĵjj
2

= k̂kk
2

= 0 (3.11)

In general for orthogonal coordinates this condition is written as

ĥ1h1h1 × ĥ1h1h1 = ĥ1h1h1

2
= ĥ2h2h2

2
= ĥ3h3h3

2
= 0 (3.12)

where hihihi is the unit vector in the orthogonal system.
In right hand orthogonal coordinate system

ĥ1h1h1 × ĥ2h2h2 = ĥ3h3h3

ĥ2h2h2 × ĥ3h3h3 = ĥ1h1h1

ĥ3h3h3 × ĥ1h1h1 = ĥ2h2h2

ĥ2h2h2 × ĥ1h1h1 = −ĥ3h3h3

ĥ3h3h3 × ĥ2h2h2 = −ĥ1h1h1

ĥ1h1h1 × ĥ3h3h3 = −ĥ2h2h2

(3.13)

The “cross” product can be written as

UUU × VVV = (U2 V3 − U3 V2) ĥ1h1h1 + (U3 V1 − U1 V3) ĥ2h2h2 + (U1 V2 − U2 V1) ĥ3h3h3 (3.14)

Equation (3.14) in matrix form as

UUU × VVV =




ĥ1h1h1 ĥ2h2h2 ĥ3h3h3

U2 U2 U3

V2 V2 V3


 (3.15)
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The most complex of all these algebraic operations is the division. The multipli-
cation in vector world have two definition one which results in a scalar and one which
results in a vector. Multiplication combinations shows that there are at least four pos-
sibilities of combining the angle with scalar and vector. The reason that these current
combinations, that is scalar associated with cos θ vectors is associated with sin θ, is
that these combinations have physical meaning. The previous experience is that help
to define multiplication help to definition the division. The number of the possible
combinations of the division is very large. For example, the result of the division can
be a scalar combined or associated with the angle (with cos or sin), or vector with the
angle, etc. However, these above four combinations are not the only possibilities (not
including the left hand system). It turn out that these combinations have very little1

physical meaning. Additional possibility is that every combination of one vector element
is divided by the other vector element. Since every vector element has three possible
elements the total combination is 9 = 3 × 3. There at least are two possibilities how
to treat these elements. It turned out that combination of three vectors has a physical
meaning. The three vectors have a need for additional notation such of vector of vector
which is referred to as a tensor. The following combination is commonly suggested

UUU

VVV
=




U1

V1

U2

V1

U3

V1

U1

V2

U2

V2

U3

V2

U1

V3

U2

V3

U3

V3




(3.16)

e1

̂
θ

x

y

z

r
r̂θx

y

Fig. 3.5 – Cylindrical Coordinate System.

One such example of this division is the
pressure which the explanation is commonality
avoided or eliminated from the fluid mechan-
ics books including the direct approach in this
book.

This tenser or the matrix can undergo
regular linear algebra operations such as find-
ing the eigenvalue values and the eigen “vec-
tors.” Also note the multiplying matrices and
inverse matrix are also available operation to
these tensors.

1This author did find any physical meaning these combinations but there could be and those the
word “little” is used.
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3.3.2 Cylindrical Coordinates

The cylindrical coordinates are commonality used in situations where there is line of
symmetry or kind of symmetry. This kind situations occur in pipe flow even if the pipe
is not exactly symmetrical. These coordinates reduced the work, in most cases, because
problem is reduced a two dimensions. Historically, these coordinate were introduced for
geometrical problems about 2000 years ago2. The cylindrical coordinates are shown in
Figure 3.5. In the figure shows that the coordinates are r, θ, and z. Note that unite
coordinates are denoted as r̂, θ̂, and ẑ. The meaning of −→r and r̂ are different. The first
one represents the vector that is the direction of r̂ while the second is the unit vector
in the direction of the coordinate r. These three different rs are some what similar
to any of the Cartesian coordinate. The second coordinate θ has unite coordinate θ̂.
The new concept here is the length factor. The coordinate θ is angle. In this book the
dimensional chapter shows that in physics that derivatives have to have same units in
order to compare them or use them. Conversation of the angel to units of length is
done by length factor which is, in this case, r. The conversion between the Cartesian
coordinate and the Cylindrical is

r =
√
x2 + y2 θ = arctan

y

x
z = z (3.17)

The reverse transformation is

x = r cos θ y = r sin θ z = z (3.18)

The line element and volume element are

ds =

√
dr2 + (r dθ)

2
+ dz2 dr r dθ dz (3.19)

3.4 Numerical Analysis
The integration and the derivation sometimes cannot or hard to perform. In fact,
the first integration method was introduced by the father of modern, Bouguer, Pierre
namely the trapezoid method. First, the differentiation will be introduced3. The concept
numerical differentiation is direct as

∆y

∆x
∼ y2 − y1

x2 − x1
=
y2 − y1

∆x
(3.20)

2Coolidge, Julian (1952). ”The Origin of Polar Coordinates”. American Mathematical Monthly 59:
7885. http://www-history.mcs.st-and.ac.uk/Extras/Coolidge Polars.html. Note the advantage of
cylindrical (polar) coordinates in description of geometry or location relative to a center point.

3It hard to discuss intelligently the issue of differentiation without understanding Taylor series.
Taylor series will be presented hopefully in the next version. It is assumed that that they are known to
the reader.

http://www-history.mcs.st-and.ac.uk/Extras/Coolidge_Polars.html
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This method is called a forward differentiation or one-sided differentiation. The similar
methods is backward differentiation is

∆y

∆x
∼ y1 − y0

x1 − x0
=
y1 − y0

∆x
(3.21)

If the distance between the point is uniform then improvements can be made. Another
approach is the take the two sides which sometimes referred to as centered differentiation

∆y

∆x
∼ y2 − y0

x2 − x0
=
y2 − y0

2 ∆x
(3.22)

This equation is more precise under certain or even (most) certain circumstance.

3.5 Integration

y(x)

∆x

x
1 2 ... n-2 n

a b

n-1

(a) Right hand integration

y(x)

∆x

x
1 2 ... n-2 n

a b

n-1

(b) Left hand integration

y(x)

∆x

x
1 2 ... n-2 n

a b

n-1

(c) Center hand integration

y(x)

∆x

x
1 2 ... n-2 n

a b

n-1

(d) Trapezoids integration

Fig. 3.7 – Four different integration methods showing the difference graphically between the
actual function to the integrated area. It can be seem that Bouguer’s method (trapezoid)
is much better technique than these methods.

Integration is calculating the area under the “graph.” The simplest method is
left or right rectangular which is basically the value of the function (data point) times
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Deltax. Better technique was invented by Bouguer, Pierre. In this methods it is
assumed that the area can be calculated by a trapezoid. For practical purpose if distance
between the data points is equal, the calculation is

A =

(
y0 + yn

2
+

n−1∑

i=1

yi

)
∆x (3.23)

3.6 Simpson’s Rule
A better method is what is called Simpson Rule and it should be called Kepler rule.
The idea behind that methods is that the function can be represented by parabola so it
close the actual function. In this case the area is even equal parts (intervals) because
the nature of the method.

Simpson’s Rule is just a tool and the derivation can be found on numerous places.
However, actual procedure is presented here. For example if the interval is split into
two sub intervals than the equation is

Area = (2 ∆x)

(
yo + 4 y1 + y2

6

)

The minimal larger influence on the results. Simpson’s rule gives you the following
estimate for the area under the curve:

Area = (2 ∆x)

(
1

6

)
[(yo + 4y1 + y2) + (y2 + 4y3 + y4) + · · ·+ (· · · yn)] (3.24)

We can combine terms here by exploiting the following pattern in the coefficients:

1 4 1
+ 1 4 1
+ 1 4 1
1 4 2 4 2 4 1

Simpson’s rule get the final form

∫ b

a

f(x)dx ≈ ∆x

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn) (3.25)

Example 3.1: Simpson Rule Level: Easy

A function y (x) is given by the table of values. Approximate the area under the
function between point x = 0 and and the point x = 4 using Simpsons Rule
with 4 subintervals.

x 0 1 2 3 4
y 2 7 12 10 5
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End of Ex. 3.1
Solution

For n = 4 subintervals, Simpsons rule is reduced into

A =
∆x

3
[y(0) + 4 y(1) + 2 y (x2) + 4 y (x3) + y (x4)]

Every subintervals is

∆x =
b− a
n

=
4− 0

4
= 1

Using the values from the table and calculate the approximate value of the area

A ≈ 1

3
[2 + 4 · 7 + 2 · 12 + 4 · 10 + 5] =

1

3
[2 + 28 + 24 + 40 + 5] =

1

3
· 99 = 33 (3.1.a)

3.7 Summary
Mathematics is the language of science. It is hard to see how one can understand
concept as stability without knowledge of calculus. While the mathematics in stability
does not expand to two dimensions or even three dimensions. In the chapter dealing
moment of inertia and centroid of area or volume or mass requires knowledge integration.
This author experience was such that once intro was given and taken seriously the
material could be understood. Mathematics is only the tool and not core what this
book is focus on.



4
Mass Centroid

The mass (or gravity) centroid is divided into two sections, first, the mass centroid and
two, area centroid (two–dimensional body with equal distribution mass). Additionally,
the change of center of mass due to addition or subtraction of mass plus discrete areas
are presented. The reason for the last addition, is that explain core explanation of the
stability analysis.

4.1 Actual Mass Centroid
In many engineering problems, the knowledge of mass centroid is required to make the
calculations especially for stability. This concept is derived from the fact that a body
has a centroid (mass/gravity) which interacts with other bodies and that this force
acts on the center (equivalent force)1. It turns out that this concept is very useful in
calculating rotations, moment of inertia, etc. The mass centroid doesn’t depend on the
coordinate system and on the way it is calculated. The physical meaning of the mass
centroid is that if a straight line force acts on the body in away through the center of
gravity, the body will not rotate. In other words, if a body will be held by one point it
will be enough to hold the body in the direction of the mass centroid. Note, if the body
isn’t be held through the mass centroid, then a moment, in additional to the force, is
required (to prevent the body for rotating). It is convenient to use the Cartesian system
to explain this concept. Suppose that the body has a distribution of the mass (density,
ρ) as a function of the location. The density “normally” defined as mass per volume.

1(Lautrup 2011) has suggested when a body is long this statement needs corrections in variable
gravity field. To encourage participation of students, it is suggested here small projects. If you a
student or someone how interested in the field, and like your name mentioned, contact this author for
a project discussion.

27
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Here, the line density is referred to density mass per unit length in the x direction.

yyy

xxx

dVdVdV

zzz

Fig. 4.1 – Description of how the center of mass is calculated.

In x coordinate, the center will be defined as

, x =
1

m

∫

V

x

dm︷ ︸︸ ︷
ρ(x) dV (4.1)

Here, the dV element has finite dimensions in y–z plane and infinitesimal dimension in
x direction see Figure 4.1. Also, the mass, m is the total mass of the object. It can be
noticed that center of mass in the x–direction isn’t affected by the distribution in the
y nor by z directions. In same fashion the center of mass can be defined in the other
directions as following

x̄i =
1

m

∫

V

xi ρ(xi)dV

xi of Center Mass

(4.2)

where xi is the direction of either, x, y or z. The density, ρ(xi) is the line density as
function of xi. Thus, even for solid and uniform density the line density is a function of
the geometry. When finite masses are combine the total mass Eq. (4.2) converted into

x̄ =

∑
ximi∑
mi

(4.3)

where i denotes every mass in the system.

Example 4.1: Calculation of ship centroid Level: Easy

An example of ship’ weights is given in the following table.
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End of Ex. 4.1

Table 4.1 – Ship Data for typical calculation of gravity centroid. Notice that it
done in this example for z direction only

Your Ship

Item zi [m] Wi(Weight) [ton] ziWi[ton×m]

Main engines 7 2,000 14,000

Anchors and cable 12 150 1,800

Lifeboats 10 20 200

Fuel 0.75 120 80

Stores 150 15 2,250

Hull structure 9 18,000 162,000

Cargo 8 20,000 160,000

Smuggled material 15 10 150

Total n/a 40,315 340,490

Solution

The solution is obtained by utilizing Eq. (4.1) and it is

z =

∑
ziWi∑
Wi

=
340, 490

40, 315
∼ 8.446[m] (4.1.a)

4.2 Approximate Centroid of Area
The previous section dealt with the body was a three
dimensional characteristics. There are cases where the
body can be approximated as a two-dimensional shape
because the body is with a thin with about uniform den-
sity. Consider a uniform thin body with a constant thick-
ness shown in Figure 4.2 which has density, ρ. Thus,
equation (4.1) can be transferred into

x̄ =
1

t A︸︷︷︸
V

ρ

∫

V

x

dm︷ ︸︸ ︷
ρ t dA (4.4)

yyy

xxx

dAdAdA

zzz

ttt

Fig. 4.2 – Thin body
centroid of mass/area
schematic.

The density, ρ and the thickness, t, are constant and, therefore, can be canceled. Thus
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equation (4.4) can be transferred into

x̄i =
1

A

∫

A

xidA

Approximate xi of Center Mass

(4.5)

when the integral now is over only the area as oppose over the volume. Eq. (4.5) can
also be written for discrete areas as

x̄i =

∑
xiAi∑
Ai

(4.6)

It must be noted that area Ai can be positive or negative. The meaning of negative
area in this context is subtraction of area.

4.3 Change of Centroid Location Due to Area Change

Solid body with one area added and one area
removed. The old centroid marked “o” the
new centroid marked “n” and area removed
“r” and area added “a.” This section deals
with a change centroid location when an
area is add or subtracted from a given area
with a know centroid (or unknown). This
topic is important when a centroid of area
was found or previously calculated and

r

o n
a

Fig. 4.3 – Solid body with removed and
added area.

hence only change needed. Furthermore, for some problems, the change or its direction
has more importance as it will be discussed in greater detail in, chapter on stability of
floating bodies on page 89. The centroid of body in Fig. 4.3 is denoted at point “o”
(old). The centroid of the added and removed areas are at points “a” (added) and “r”
(removed), respectively. The point “n” (new) is the centroid after modification. A
special case when the added area is equal to the subtracted area and its application
will be discussed in an example below. It has to be noted that added and subtracted
areas do not have to be continuous. Utilizing Eq. (4.6) for the identical areas reads for
this case as

xn =
xoAo + xr Ar − xaAa

Ao +Ar −Aa
(4.7)

In a special case where subtracted area is equal to added area (Ar = Aa) Eq. (4.7) is
reduced to

xn = xo + xr
Ar
Ao
− xa

Aa
Ao

(4.8)
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x̄− xo =
Ar
Ao

(xr − xa)

Change of Centroid

(4.9)

Finding the centroid location should be done in the most convenient coordinate system
since the location is coordinate independent. There should be a sign convention to
determine the centroid direction movement so that the direction should be immedi-
ately expressed in the result. However, faults were found in several options that were
considered2.

Example 4.2: Center of Circle inside Circle Level: Easy

A circle with a radius, r has a cut out
from a larger circle with radius, R where
R > r (see Fig. 4.4). The distance be-
tween the center of the larger circle and
the small circle is x. Calculate the cen-
troid of the circle that a smaller circle
was cut out of it. Assume that x is
small enough so that the small circle is
whole.

R
r
x

Fig. 4.4 – Subtraction of circle from
a large circle for calculating the
new center.

Solution

The change in the centroid is only the direction of x. It should be noted that for
x = 0, the centroid is at x = 0 and y = 0 that is the centroid is at the center of the
larger circle. For larger distance up to the x = R − r the centroid can be calculated
utilizing Eq. (4.7) reads

∆x = �
π r2

�π R
2

(x− 0) = x
( r
R

)2
(4.2.a)

Notice that x is the distance between the two centers while ∆x is the change in the
centroid location. Additionally, if the removed circle is not on the x coordinate then
these calculations can be reused. For instance, if the cut is at angle, θ, the change
will be along straight line from the center of the large circle at the distance that was
obtained in Eq. (4.2.a). The conversion to a regular coordinate system could be done
by utilizing simple trigonometric functions.

2If you have a good method/technique please consider discussing it with this author.
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Example 4.3: Centroid of Trapezoid Level: Complex

In some situations a rectangle shape is
transferred to a trapezoid shape while
the area size remain constant. For ex-
ample, a body floating (in liquid) has a
rectangle shape. Rotation (hypothetical
or real) of the floating body will result
in a change to a trapezoid. This situa-
tion is used to check whether a body is
stable. Assume that the rectangle body
is transferred into a trapezoid with the
exact same area see Fig. 4.5. Calculate
the change of the centroid in the y and
x directions, the total change, and the
angle of change α. Note that α is mea-
sured from point (b/2,d).

θ

b/2

b

b
2 cos θ

b/
2
ta
n
θ

d

Y

X

1

2

Fig. 4.5 – Trapezoid created from a
tilted rectangle shape.

Solution

The rectangular centroid is located at b/2, d/2 (see table 4.2). The two triangles
must be identical to keep the condition of constant area. It also implies that two
triangles must start from the same point at the “center” (point x = b/2 and y = d
to be denoted Point A). Eq. (4.9) dictates that the change is due to the addition and
subtraction of the triangles. The change can be expressed as

∆ (Ai yi) =

y2︷ ︸︸ ︷(
�d+

b tan θ

6

) A︷ ︸︸ ︷
b2 tan θ

8
−

y1︷ ︸︸ ︷(
�d−

b tan θ

6

) A︷ ︸︸ ︷
a2 tan θ

8
(4.3.a)
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continue Ex. 4.3

It can be noticed that the
two triangles contribute identical value
in the direction of raising the cen-
ter. After simplifications and canceling
Eq. (4.3.a) reads

∆ (Ai yi) = ���
1

2

 b tan θ

���
3

6

×
b2 tan θ

8
=
b3 tan2 θ

24
(4.3.b)

θ

b/2

b

∆y d

Y

X

∆x

Fig. 4.6 – Mass Center Moving to New
Location center. Notice that the ac-
tual size is exaggerated.

It can be observed that the net change in the y direction is

∆y =

b3 tan2 θ

24
b d︸︷︷︸

total area

= b

(
b

d

)
tan2 θ

24
(4.3.c)

The change depends on the rectangle width and the ratio of the height to the width.
The change in the x direction is

∆ (Ai xi) =

x1=b−b/6︷︸︸︷
5 b

6

A1︷ ︸︸ ︷
b2 tan θ

8
−

x2=1/3×a/2︷︸︸︷
b

6

A2︷ ︸︸ ︷
b2 tan θ

8

∣∣∣∣∣∣∣∣∣
A1=A2=A

=
b3 tan θ

12
(4.3.d)

This change is to the left of the old centroid. Or the net change is

∆x =
b3 tan θ

12

1/A︷︸︸︷
1

b d
= b

b

d

tan θ

12

(4.3.e)

Note that for small angle θ ∼ tan θ therefore θ >> θ2 and hence, ∆x >> ∆y. The
total change ∆r can expressed as a function of ∆y and ∆x to read

∆r =
√

∆y2 + ∆x2

or in a dimensionless form as

∆r

b
=

√
∆y2

b2
+

∆x2

b2
(4.3.f)

Substituting Eq. (4.3.e) and Eq. (4.3.c) into Eq. (4.3.f) reads

∆r

b
=

√(
b

d

)2
tan2 θ

122
+

(
b

d

)2
tan4 θ

242
(4.3.g)
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End of Ex. 4.3
rearranging the Eq. (4.3.g) provides

∆r

b
=
b

d

tan θ

12

√
1 +

tan2 θ

4
(4.3.h)

The angle is measured from a specific
point. In this case the point is the connec-
tion between the two triangles. The reason
for this selection is that this point will be
used in stability issue. It can be noticed
that angle, α, of the new center can be ob-
tained from the straight triangle with one
side of (d/2−∆y) and ∆x.

α = tan−1 ∆x

d/2−∆y
(4.3.i)

Substituting the the values for ∆x and ∆y
yields

θ

∆y∆x

α

New Old

d
2

Fig. 4.7 – Movement of area center to
new location due to the change of
shape.

α = tan−1
b
b

d

tan θ

12
d

2
− b b

d

tan2 θ

24

(4.3.j)

with additional simplifications

α = tan−1

 �
��b
2

d

tan θ

12

�
��b
2

d

(
d2

2 b2
− tan2 θ

24

)
 (4.3.k)

It is interesting to point out that the α is related to the ratio of d/b and to the
rotating angle, θ. For small angle, tan θ ∼= θ and d/b ≥ 1/8 (or even smaller)
Eq. (4.3.k) becomes

α = tan−1

 2 tan θ

12

(
d

b

)2

−���:
∼0

tan2 θ

 ∼= tan−1

(
tan θ

6

(
b

d

)2
)

(4.3.l)

Thus under the condition of (b/d)2 = 6, the change in α is equal θ. This is a limiting
case which determines in certain situations whether a floating body is stable and it
will be discussed in Chapter 8 on page 89.
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Example 4.4: Centroid of Triangle Level: Complex

Triangle turns to a trapezoid as
shown in Fig. 4.8. Calculate the
change in the centroid (in the
directions of x, y, r, α) due
to change of angle θ. Hint due
to the symmetry, it does note
matter rectangular turns to left
or the right.

2

1

b

θ

45
◦

R
O

Q

R”

Q’

Fig. 4.8 – Triangle turns to trapezoid.

Solution

The added and subtracted areas are shown in Fig. 4.8.

∆(Ai xi) = A (x1 − x2) (4.4.a)

The triangle 4ROQ is an isosceles triangle with 45◦. The angle ^RR”O is (180◦ −
45◦ − θ). Law of sines can be written for 4RR”O as

RR′′

sin θ
=

b/
√

2

sin(135◦ − θ)
(4.4.b)

sin(135◦ − θ) according the trigonometry identies equal to (sin θ+ cos θ)/
√

2 and for
small angle of θ Eq. (4.4.b) becomes

RR′′ =
b/��
√

2 sin θ

1/��
√

2 (sin θ + cos θ)
=

b sin θ

��:
1

cosθ +���:
∼0

sin θ

∣∣∣∣∣
θ∼0

= b sin θ (4.4.c)

Note that for small θ the standard approx-
imation for sin θ and cos θ were used. The
height of 4ROR′′ is b/2 (it is the same
height as for4ROQ line Q′O see Fig. 4.8).
Hence the area of 4ROR′ is

A4ROR′ =
RR′ × b

2

2
∼ b2 sin θ

4
(4.4.d)

x2 can be ascertained from table 4.2 and
other data (geometry) from Fig. 4.9. The
dashed lines in the Fig. 4.9 are parallel to
their respective base. Further, these lines
are at one third of the distance.

{

C”

θ

b sin θ

b/
√
2

C

C’R’
R”

R OO’

Cx x2

Fig. 4.9 – The centroid of the small
triangle. Point C’ is the centroid
location. Line R′O′ is parallel to
base Line R′′O.

The distance OR = b/
√

2 (It can be verified by looking at the isosceles triangle
4RQ’O that has OR against π/2 angle.). The distance OC = 2/3×OR =

√
2 b/3.

The distance C C′′ = 2/3×RR′. Hence, C C′′ = 2 b sin θ/3. The line R′O′ split the
line C C′′ exactly in the middle (why? because C′′ C′ is two third of RR′′). Thus,
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continue Ex. 4.4
C C′ =

b sin θ

3
(4.4.e)

The triangle4 C’Cx,C is an isosceles triangle with π/2 angle. Hence, the line C′Cx =
CCx is b sin θ/(3

√
2). x2 can be found by

x2 = OC′ − C′ Cx =

√
2 b

3
− b sin θ

3
√

2
(4.4.f)

after simplification, Eq. (4.4.f)

x2 =

√
2 b

3

1−
�
���

0
sin θ

2

 ∼= 2 b

3
√

2
(4.4.g)

The distance in the y2 direction is ∆y = a sin θ

3
√

2
. With the values of x2 and y2 the

values of x1 and y1 are also known. Utilizing Eq. (4.9) it can be written that

∆ (Ai xi) = ���
1

2

 b2 sin θ

���
1

4


︸ ︷︷ ︸

A

 ���
1

2 b

3
√

2


︸ ︷︷ ︸

x

=
b3 sin θ

3
√

2 (4.4.h)

The change in the x direction is

∆x =
1

b× b/2︸ ︷︷ ︸
A

b3 sin θ

3
√

2︸ ︷︷ ︸
∆(Ai xi)

=

√
2 b sin θ

3 (4.4.i)

The other direction can be obtained in similar fashioned

∆ (Ai yi) = ���
1

2

 b2 sin θ

���
1

4


︸ ︷︷ ︸

A

b sin θ

3
√

2︸ ︷︷ ︸
y

=
b3 sin2θ

3
√

2 (4.4.j)

and the net change in ∆y is

∆y =
2

b2︸︷︷︸
1/A

b3 sin2θ

3
√

2
=

√
2 b sin2 θ

3 (4.4.k)

As it was shown earlier, the change in angle, α is from a straight triangle with one

side is ∆x and the other side
b

3
√

2
−∆y which is

b

3
√

2
−∆y =

b

3
√

2

(
1− 2 sin2 θ

)



4.4. CHANGE OF MASS CENTROID DUE TO ADDITION OR SUBTRACTION OF MASS IN 3D37

End of Ex. 4.4
The angle of the change is

α = tan−1


�b

A3
√

2

(
1− 2 sin2 θ

)
√

2 �b sin θ

A3

 = tan−1

((
1− 2 sin2 θ

)
2 sin θ

)
(4.4.l)

For small angle θ Eq. (4.4.l) becomes

α ∼= tan−1

(
θ

2

)
(4.4.m)

The total change is the same as in Eq. (4.3.f)

∆r

b
=

√√√√√(√2 sin θ

3

)2

+

����:∼0

2 sin2 θ

3

2

(4.4.n)

and for small angle θ << 1

∆r

b
=

√
2 sin θ

3
∼=
√

2 θ

3
(4.4.o)

4.4 Change of Mass Centroid Due to Addition or Subtraction
of Mass in 3D

This topic is extension of the previous topic of two dimensions change of centroid.
All bodies are three dimensions thus when no symmetry or extrudation3 exist the full
analysis has to be done. Furthermore, it is interesting to point to the phenomenon none
symmetrical body the change and be in a third dimension. This topic to be discussed
in stability Chapter.

A centroid of a slob is located in point “o” and additional mass depicted as “a”
and the removed/subtracted mass “r” and again the new location of centroid is denoted
as “n.”

xn =
mo xo +ma xa −mr xr

mo −ma +mr
(4.10)

As before the special case of equal subtracted and added material Eq. (4.10) converted
into

xn =
mo xo +m (xa − xr)

mo
(4.11)

3The word “extrudation” means same meaning it has in blender (software) for example, a flat area
that is expanded vertically.
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when the density is uniform, Eq. (4.11) can be written

xn =
Vo xo + V (xa − xr)

Vo
−→ xn − xo =

V

Vo
(xa − xr) (4.12)

Example 4.5: Center of Circle inside Circle Level: Complex

Calculate the change in the centroid of
cylinder with length d,that one wedge is
added and one is removed. In Fig. 4.10
describing only one wedge in additional
to second side (which is not drawn in
the figure.). Calculate the tiding angle,
α from the center of the cylinder.

θ
R

y

ψ

y = r sinψ

y

x

d

Fig. 4.10 – Mass centroid of cylinder
with added wedge and subtracted
wedge.

Solution

First the centroid of the wedge has to be calculated and Eq. (4.2) can be used as

xi =

∫
xi dV∫
dV

(4.5.a)

The ratio shown in Eq. (4.12) indicates that it is sufficient to ascertain over only half
of wedge. The centroid of mass of cylinder wedge is not given in any table in this
book and is not readily available other places. Hence, this work will be presented (a
bit more than what should be presented in this book.). The volume of the wedge is

V = 2

∫ r

0

Adx (4.5.b)

Notice that instead to carry the integration from r to −r it is carried from 0 to r
and multiplied by two. The circle equation is x2 + y2 = r2. The infinitesimal volume
made from the triangle (the brown color) with a base of

√
r2 − x2 and the height of√

r2 − x2 tan θ and infinitesimal thickness, dx, to be integrated as

V = �2
∫ r

0

A︷ ︸︸ ︷(
r2 − x2

)
tan θ

�2
dx = tan θ

∫ r

0

(
r2 − x2) dx (4.5.c)

A new variable is defined as ξ = x/r when x = r −→ ρ = 1, and equation Eq. (4.5.c)
can be transformed

V = r3 tan θ

∫ r

0

(
1− x2

r2

)
dx

r
=

r3 tan θ

∫ 1

0

(
1− ξ2) dξ =

2 r3 tan θ

3
(4.5.d)
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End of Ex. 4.5
The brown triangle with infinitesimal thickness has mass centroid at 2/3 of the length
of the triangle (from the center or in other words cylinder center). The mass centroid
can be calculated utilizing the similar approach but simpler in cylindrical coordinates
with the boundaries of zero to π/2. The integration of infinitesimal volume (similar
to previous calculations where the base is r cosψ) can be carried as

∫
xi dV = 2

∫ π/2

0

yi︷ ︸︸ ︷(
A2
3
r cosψ

) A︷ ︸︸ ︷
(r cosψ)2 tan θ

A2

′′dx′′︷ ︸︸ ︷
cosψ r dψ

(4.5.e)

The choice of the coordinate system base on convenience. Eq. (4.5.e) can be written
as ∫

xi dV =
2 r4 tan θ

3

∫ π/2

0

(cosψ)4 dψ (4.5.f)

The integral is readily available and can be done by integration by part as∫
xi dV =

2 r4 tan θ

3
×(

sinψ cos3 ψ

4
+

3 cosψ sinψ

8
+

3ψ

8

)∣∣∣∣π/2
0

=

r4 π tan θ

8
(4.5.g)

The first and the second terms vanished at the boundaries. Substituting the volumes
of both integrals into Eq. (4.5.a) provides

xi =

r4 π tan θ

16
2 r3 tan θ

3

=
3π r

8
(4.5.h)

It is interesting to point out that xi is not a function of the angle θ. The total change
based on Eq. (4.12) is

∆x =
2V xi
V0

=

2���
r2

r4
Aπ tan θ

8

Aπ���
1

r2 d

=
r2 tan θ

4 d

(4.5.i)

The angle of change, α under assumption of small ∆y can be obtained as

α ∼= tan−1 ∆x

ξ
= tan−1

 r2 tan θ

4 d
ξ

 = tan−1

(
r2 tan θ

4 d ξ

)
(4.5.j)
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Example 4.6: Wedge centroid Level: Intermediate

In Ex. 4.5 ∆y was assumed to be zero. Is this assumption is correct or/and
under what conditions it is correct. Hint: first calculate ∆y and then use the
results to the estimated results.

Solution

under construction

4.4.1 A Small Change in Angle of Rotation

This section is dealing with a special topic of change of area due to rotation when the
area (volume) is constant topic very is important to stability analysis. The change of
the area in Ex. 4.5 dealt with a specific geometry. This procedure can be generalized
or even simplified the procedure. The process of calculating the change of the centroid
can be converted for small angle.

xi =

∫
x dV∫
dV

=

∫
x

h︷ ︸︸ ︷
x tan θ dA

V
=

tan θ
∫
x2 dA

V
(4.13)

The term in the nominator is called the Moment of Inertia and will be discussed in the
following section. The Moment of Inertia symbolized by Ixx and Eq. (4.13) by

xi =
tan θ Ixx

V
(4.14)

Notice that Ixx is a function of the cross section only and is half of the cross section.
Hence for the total moment of inertia double the half (see next section for explanation).
The volume of the small wedge is calculated below. The total change is defined in
Eq. (4.12)

∆x =
��V

V0

2 x1︷ ︸︸ ︷
tan θ Ixx

��V
= tan θ

Ixx
V0

∆x due to change in θ

(4.15)

It is remarkable that the change location of centroid can be determined from know-
ing/calculating the moment of inertia of the cross section and by the displaced volume.

The change in centroid in the y direction and done in a similar fashion when
noticing that the y is actually y/2 (when first y refers to the y of the distance and the
second refers to its value.). For small angle it can be written that

yi =

∫
y dV

V
=

∫
y/2

dV︷︸︸︷
y dA

V
=

∫
(tan θ x)2 dA

2V
=

tan2 θ
∫
x2 dA

2V
(4.16)
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Again as in the x direction Eq. (4.17) moment of inertia should be recognized and it
can be written as

yi =
tan2 θ Ixx

2V
(4.17)

Hence,

∆y =
��V

V0

2 x1︷ ︸︸ ︷
tan2 θ Ixx

2��V
= tan2 θ

Ixx
2V0

∆y due to change in θ

(4.18)

The difference between in the two changes is significant. The amount change in y
smaller by a factor. For practical purposes, the change in y can be ignored.

D

b

d

s

A

B

β

bb

Fig. 4.11 – Rectangular Floating in Various Angles. Notice that blue surface represents all
the positions that the body can have up to point that is “fail” on the side.

Example 4.7: Centroid of cylinder Level: Complex

Repeat Ex. 4.3 and Ex. 4.4 with using Eq. (4.15). Use as a base the calculate
all change for all the angle 0 < θ < 60◦. Comment on the geometrical limita-
tions. In these two cases the volume is fix and the moment of inertia is varies.
The moment of inertia is discussed in the Chapter 5. For the purpose of this
exercise assume that moment inertia for rectangular is I = ab3/12 see the book
Appendix table 4.2. Where a is the length around the rotation occurs and b is
width of the rectangular.
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continue Ex. 4.7
Solution

As long as the geometry remains the same this analysis can be assumed to be correct.
Also note to that the β and θ are diffident angle: β is the angle that is as location
for which is checked to see if it is stable, while θ is the small angle forced on the
body to see the body will remain at β. Fig. 4.11 depicts the liquid surface plane
(the blue color). The question refers two edge cases, one when β = 0 and two when
β = 45◦. Thus, the solution here will deals with all the angles. So all the properties
have to express as a function of angle β. The volume is constant regardless to β. The
moments inertia is a strong of β. The distance bb shown in the figure is

bb =
b

cosβ
(4.7.a)

Hence, the moment of inertia is

Ixx =

s

(
b

cos θ

)3

12
=

s b3

12 cos3 β

(4.7.b)

The volume of the body is
V = d b s (4.7.c)

The change in buoyancy centroid Eq. (4.15) is

∆x = tan θ

As���
b2

b3

12 cos3 θ
d �bAs

−−−−→ ∆x

b
=
b

d

tan θ

12 cos3 β

(4.7.d)

The two cases in the question are β = 0 and β = 45◦ can be substituted into
Eq. (4.7.d) to get the answers which are plotted on Fig. 4.12. The graph depict
Eq. (4.7.d) for the dimensionless parameters, angle of inclination, β, and ratio of the
moment of inertia to the volume (below). The results show that as the inclination
angle, β, has a dramatic effect. For large angle (30◦–40◦) the change in centroid
getting larger and larger. Additionally, larger value of b/d (width and depth) ratio
the effect become more significant. In the case of β = 0 and β = 45◦ the equations
respectively are: 0 case;

∆x

b
=
b

d

tan θ

12
(4.7.e)

The distance AB is d/2 thus tangent α is

tanα =
∆x

AB
=

b2

d

tan θ

12
d/2

−−−−→ α = tan−1

{
1

6

(
b

d

)2

tan θ

}
(4.7.f)

45◦;
∆x

b
=
b

d

tan θ

12
1

2
√

2

−−−−→ ∆x

b
=

√
2

3

b tan θ

d (4.7.g)
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End of Ex. 4.7
In this case AB =d/(3

√
2). For the second case, the case angle α is

α = tan−1

{
2

(
b

d

)2

tan θ

}
(4.7.h)

Before the general expression could be written as formula for the centroid has to found.

0

1

2
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4
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3

2
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1
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Values of b
d∆

x d

August 3, 2021

Fig. 4.12 – Change of Buoyancy in The x Direction.

It can be observed from the analysis the change of ∆x varies and this will be used in the
stability analysis. There several conclusions that can be drawn so far. As long geometry
remain the same, larger change on centroid appear for larger angle. When happen when
the change of number of angle appear. In other words, if the surface reaches to upper
or the lower corner then the analysis has to be modified.

Example 4.8: Ellipse centroid Level: Intermediate

Repeat Ex. 4.7 for cylinder standing up. Cross section area is ellipse with minor
axis of D while the major radius changes and is function of the geometrical
identity as rm = r/cosβ. Using this information construct a map similar to the
above example.

Solution

The moment of inertia of the ellipse (see table 4.2) is

Ixx =

π r

(
r

cosβ

)3

4
−−−−→ Ixx =

π r4

4 cos3 β

(4.8.a)
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End of Ex. 4.8
The volume, again, is constant and equable to

V = π r2 d (4.8.b)

The change in centroid is

∆x = tan θ

Aπ���
r2

r4

4 cos3 β

Aπ���
1

r2 d

−−−−→ ∆x

r
=

tan θ r

4 cos3 β d

(4.8.c)

Remark

The difference between this Eq. (4.8.c) and Eq. (4.7.d) is the coefficient.

Generally the change in centroid for extruded shape will be in a general form of

∆x

b
= CC

geometrical parameter

geometrical parameter

tan θ

cos3 β
(4.19)

Where CC is a coefficient that depend on the geometry. This form change when the
shape of the body is radially diffident. Large ships can be considered as a large box with
a round bottom. Thus the analysis provide here in relevant to these bodies close to
“boxes.” However, for small boat have more complicate shape and it can be numerically
analyzed. It also can be noticed that bodies that change shape with z coordinate like
cone the centroid change as well as the center of the surface area (at liquid surface).

4.5 Transformation of Coordinates
Sometimes the information on the centroid is provided in different coordinate system.
In this case a demonstration on how to transfer the coordinate is present. A trapezoid
centroid are given normally in coordinate system that attached to base as shown below.

b

a
c

h

y

x

Cx

Cy

Fig. 4.13 – Standard trapezoid with given data and coordinate system.
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For this trapezoid in this specific coordinate system the center is given utilizing the
given names in the following:

cx =
a2 + b2 + 2 a c+ b c+ a b

3 (a+ b)
(4.20a)

cy =
h (2 a+ b)

3 (a+ b)
(4.20b)

To ascertain the location according to
the new specific dimensions. It can be no-
ticed that the following “translation” should
be made when the two Parallel lines. Utiliz-
ing the equations Eq. (4.20) to the dimen-
sions shown Fig. 4.13 to apply to Fig. 4.14.
It reduces the labor in handling with the use
of the following definitions are used

Ψ = b tanβ/2, h −−−→ b
a −−−→ d−Ψ b −−−→ d+ Ψ c −−−→ 2 Ψ.

b tanβ
2

β

Cξ

Cη
d

b

ξ

η

x
y

Cy

Cx

Fig. 4.14 – Trapezoid in a new coordinate
system to be transformation from old
system.

Several identies can be observed;

Table 4.2 – Trapezoid properties and equations

Trapezoid properties and equations

Transformation Identities Units

Ψ = b/2 tanβ a+ b = 2 d

h −−−→ b a2 + b2 = 2 d2 + 2 Ψ2

a −−−→ (d−Ψ) a b = d2 −Ψ2

b −−−→ (d+ Ψ) 2 a c = 4 dΨ− 4Psi2

c −−−→ 2 Ψ b c = 2 dΨ + 2 Ψ2

2 a c+ b c = 6 dΨ− 2 Ψ2
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Eq. (4.20) or more specifically Eq. (4.20a) can be evaluated

Cξ =
d

2
+ Ψ− Ψ2

6 d
(4.21)

or in dimensionless form as

Cξ
d

=
1

2
+

Ψ

d
− 1

6

(
Ψ

d

)2

(4.22a)

or in terms of b and tanβ as

Cξ
d

=
1

2
+

1

2

b

d
tanβ − 1

24

(
b

d

)2

tan2 β (4.22b)

For the η direction

Cη =
b (2 (d−Ψ) + (d+ Ψ))

6 d
=
b (3 d−Ψ)

6 d
=
b

2
− bΨ

6 d
(4.22c)

and dimensionless form as

Cη
d

=
1

2

b

d
− bΨ

6 d2
=

1

2

b

d
− 1

12

(
b

d

)2

tanβ (4.22d)

The ratio of Cξ is related to Cx by β through the equation above and and the same
can said for the other pair (Cy, Cη). Assume that β is rotating at a constant angular
speed then the centroid is rotating but in different angular velocity. This fact means
that the centroid will not be under the point G or even A. The results are depicted in
Fig. 4.16.

b

d

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
η
/b

0 10 20 30 40 50 60 70 80

β

Cη as a function of β

b/d = 0.5 45
b/d = 0.75 56.3099
b/d = 1 63.4349
b/d = 1.25 68.1986
b/d = 1.5 71.5651

βmax

b/2 tanβ

Cη

Cξ

(a) The distance of Cη as a function
of β.

b

d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
ξ
/b

0 10 20 30 40 50 60 70 80

β

Cξ as a function of β

b/d = 0.5 45
b/d = 0.75 56.3099
b/d = 1 63.4349
b/d = 1.25 68.1986
b/d = 1.5 71.5651

βmax

b/2 tanβ

Cη

Cξ

(b) The distance of Cξ as a function
of β.

Fig. 4.16 – Distance of the center as a function of β. The distance is measured from the top
corner and it is also moving with β as for Cξ (it does not effect Cη).

The corrected distance is depicted in Fig. 4.17.
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b

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ξ
/d

−
Ψ
/d

0 10 20 30 40 50 60 70 80

β

Corrected Cξ as a function of β

b/d = 0.5 45
b/d = 0.75 56.3099
b/d = 1 63.4349
b/d = 1.25 68.1986
b/d = 1.5 71.5651

βmax

b/2 tanβ

Cη

Cξ

Fig. 4.17 – Corrected Cξ as a function of β.

It can be noted that for small value b/d the distance increases which is very important
factor for instability.

4.6 Appendix
As a side kick, the integral that was canceled before Eq. (4.15) can be calculated as
following

∫
dV =

∫
x tan θdA = tan θ

∫
x dA = tan θx̄A (4.23)

The value of tan θ is constant in the integration and the value x̄ is the average height
of wedge. The value of x̄ is a function of θ but not its location and the A cross area is
not function of θ. Sometime of values x̄ are tabulated and hence the integration can
be readily available.
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5
Moment of Inertia

As the Chapter 4 on the centroid was divided, the chapter on moment of inertia is divided
into moment of inertia of mass and area. Additionally this chapter another issue that
is transformation to different coordinate systems (linear, rotational). Furthermore, the
product of inertia will be introduced.

5.1 Moment of Inertia for Mass
The moment of inertia turns out to be an essential part for the calculations of rotating
bodies and stability. Furthermore, it turns out that the moment of inertia has much
wider applicability and usefulness than one assumes initially. Moment of inertia of mass
is defined as

Irrm =

∫

V

ρr2dV

Moment of Inertia

(5.1)

If the density is constant then equation (5.1) can be transformed into

Irrm = ρ

∫

V

r2 dV (5.2)

The moment of inertia is independent of the coordinate system used for the calculation,
but dependent on the location of axis of rotation relative to the body. Some people
define the radius of gyration as an equivalent concepts for the center of mass concept
and which means if all the mass were to locate in the one point/distance and to obtain

49
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the same of moment of inertia.

rk =

√
Im
m

(5.3)

The body has a different moment of inertia for every coordinate/axis and they are

Ixx =
∫
V
rx

2dm =
∫
V

(y2 + z2) dm

Iyy =
∫
V
ry

2dm =
∫
V

(x2 + z2) dm

Izz =
∫
V
rz

2dm =
∫
V

(x2 + y2) dm

(5.4)

Ixx =
∫
V
rx

2dm =
∫
V

(y2 + z2) dm

Iyy =
∫
V
ry

2dm =
∫
V

(x2 + z2) dm

Izz =
∫
V
rz

2dm =
∫
V

(x2 + y2) dm

(5.5)

5.2 Moment of Inertia for Area

5.2.1 General Discussion

For body with thickness, t and uniform density the following can be written

Ixxm =

∫

m

r2dm = ρ t

moment of iner-
tia for area︷ ︸︸ ︷∫

A

r2dA (5.6)

The moment of inertia about axis is x can be defined as

Ixx =

∫

A

r2dA =
Ixxm
ρ t

Moment of Inertia

(5.7)

where r is distance of dA from the axis x and t is the thickness. Any point distance
can be calculated from axis x as

x =
√
y2 + z2 (5.8)

Thus, Eq. (5.7) can be written as

Ixx =

∫

A

(
y2 + z2

)
dA (5.9)

In the same fashion for other two coordinates as

Iyy =

∫

A

(
x2 + z2

)
dA (5.10)

Izz =

∫

A

(
x2 + y2

)
dA (5.11)
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5.3 The Parallel Axis Theorem
yyy

xxx

zzz

C

y′y′y′

x′x′x′

z′z′z′
∆∆∆xxx

∆∆∆yyy

Fig. 5.1 – The schematic that explains the sum-
mation of moment of inertia.

This section deals with transformation of
the moment of from one system to a par-
allel system. The moment is depended on
the coordinate system. The dependency is
because moment of inertia changes when
the body rotates in different coordinates.
The moment of inertial can be calculated
for any axis. The knowledge about one
axis can help calculating the moment of
inertia for a parallel axis. Ixx is denoted
as the moment of inertia about axis xx
which is at the center of mass/area. The moment of inertia for axis x

′
is

Ix′x′ =

∫

A

r
′2
dA =

∫

A

(
y
′2

+ z
′2
)
dA =

∫

A

[
(y + ∆y)

2
+ (z + ∆z)

2
]
dA (5.12)

Eq. (5.12) can be expended as

Ix′x′ =

Ixx︷ ︸︸ ︷∫

A

(
y2 + z2

)
dA+

=0︷ ︸︸ ︷
2

∫

A

(y∆y + z∆z) dA+

∫

A

(
(∆y)

2
+ (∆z)

2
)
dA (5.13)

The first term in Eq. (5.13) on the right hand side is the moment of inertia about
axis x and the second them is zero. The second therm is zero because it integral of
center about center thus is zero. The third term is a new term and can be written as

∫

A

constant︷ ︸︸ ︷(
(∆y)

2
+ (∆z)

2
)
dA =

r2︷ ︸︸ ︷(
(∆y)

2
+ (∆z)

)
A︷ ︸︸ ︷∫ 2

A

dA = r2A (5.14)

Hence, the relationship between the moment of inertia at xx and parallel axis
x
′
x
′

is

Ix′x′ = Ixx + r2 A

Parallel Axis Equation

(5.15)
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yyy

xxx

zzz

1

2

Fig. 5.2 – The schematic to ex-
plain the summation of mo-
ment of inertia.

The moment of inertia of several areas is
the sum of moment inertia of each area see
Figure 5.2 and therefore,

Ixx =

n∑

i=1

Ixxi (5.16)

If the same areas are similar thus

Ixx =

n∑

i=1

Ixxi = n Ixxi (5.17)

dr

h

r

Fig. 5.3 – Cylinder with an element for calcula-
tion moment of inertia.

Equation (5.17) is very useful in the
calculation of the moment of inertia utiliz-
ing the moment of inertia of known bod-
ies. For example, the moment of inertia
of half a circle is half of whole circle for
axis at the center of circle. The moment
of inertia can then move the center of area.

5.4 Examples of Moment of Inertia

Example 5.1: Moment of Cylinder Level: Easy

Calculate the moment of inertia for the mass of the cylinder about center axis
which height of h and radius, r0, as shown in Figure 5.3. The material is with
an uniform density and homogeneous.

Solution

The element can be calculated using cylindrical coordinate. Here the convenient
element is a shell of thickness dr which shown in Figure 5.3 as

Irr = ρ

∫
V

r2dm = ρ

∫ r0

0

r2

dV︷ ︸︸ ︷
h 2π r dr =

ρ h 2π
r0

4

4
= 1

2
ρhπr0

4 = 1
2
mr0

2 (5.1.a)

The radius of gyration is

rk =

√
1
2
mr0

2

m
=

r0√
2

(5.1.b)
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Example 5.2: Rectangular moment of Inertia Level: Easy

Calculate the moment of
inertia of the rectangular shape
shown in Figure 5.4 around x
coordinate.

yyy

xxx

zzz

dxdxdx

bbb

aaa

Fig. 5.4 – Description of rectangular in x–y
plane for calculation of moment of inertia.

Solution

The moment of inertia is calculated utilizing equation (5.9) as following

Ixx =

∫
A

 0︷︸︸︷
y2 +z2

 dA =

∫ a

0

z2

dA︷︸︸︷
bdz =

a3 b

3

This value will be used in later examples.

Example 5.3: Rectangular moment of Inertia Level: Intermediate

To study the assumption of zero thickness, consider a simple shape to see the
effects of this assumption. Calculate the moment of inertia about the center
of mass of a square shape with a thickness, t compare the results to a square
shape with zero thickness.

Solution

The moment of inertia of transverse slice
about y

′
(see Fig. 5.5) is

dIxxm = ρ

t︷︸︸︷
dy

Ixx︷︸︸︷
b a3

12

(5.3.a)

a b

dz

Fig. 5.5 – A square element for
the calculations of inertia of
two-dimensional to three–
dimensional deviations.
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End of Ex. 5.3
The transformation into from local axis x to center axis, x

′
can be done as following

dIx′x′m = ρdy


Ixx︷︸︸︷
b a3

12
+

r2 A︷ ︸︸ ︷
z2︸︷︷︸
r2

b a︸︷︷︸
A

 (5.3.b)

The total moment of inertia can be obtained by integration of equation (5.3.b) to
write as

Ixxm = ρ

∫ t/2

−t/2

(
b a3

12
+ z2 b a

)
dz = ρ t

a b t2 + a3 b

12
(5.3.c)

Comparison with the thin body results in

Ixx ρ t

Ixxm
=

b a3

t2 b a+ b a3
=

1

1 +
t2

a2

(5.3.d)

It can be noticed right away that equation
(5.3.d) indicates that ratio approaches one
when thickness ratio is approaches zero,
Ixxm(t → 0) → 1. Additionally it can be
noticed that the ratio a2/t2 is the only con-
tributor to the error1. The results are

I
x
x

I
x
x

m

t

aSeptember 29, 2013

Fig. 5.6 – The ratio of the moment
of inertia of two-dimensional to
three–dimensional.

present in Fig. 5.6. I can be noticed that the error becomes significant very fast even
for small values of t/a while the width of the box, b has no effect on the error.

Example 5.4: Moment of Inertia in z direction Level: Intermediate

Calculate the rectangular moment
of Inertia for the rotation trough
center in zz axis (axis of rotation is
out of the page). Hint, construct a
small element and build longer build
out of the small one. Using this
method calculate the entire rectan-
gular. Calculate the rectangular
moment of Inertia for the rotation
trough

dydydy

2b2b2b

yyy rrr

xxx

2a2a2a

dxdxdx

Fig. 5.7 – Rectangular Moment of inertia
in the z direction.

Solution

1This ratio is a dimensionless number that commonly has no special name. This author suggests
to call this ratio as the B number.
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End of Ex. 5.4
The moment of inertia for a long element with a distance y shown in Figure 5.7 is

d Izz|dy =

∫ a

−a

r2︷ ︸︸ ︷(
y2 + x2) dy dx =

2
(
3 a y2 + a3

)
3

dy (5.4.a)

The second integration ( no need to use (5.15), why?) is

Izz =

∫ b

−b

2
(
3 a y2 + a3

)
3

dy (5.4.b)

Results in

Izz =
a
(
2 a b3 + 2 a3 b

)
3

=

4 a b︷︸︸︷
A

(
(2a)2 + (2b)2

12

)
(5.4.c)

Or

Example 5.5: Parabola Moment of Inertia Level: Intermediate

Calculate the center of area
and moment of inertia for
the parabola, y = αx2, de-
picted in Figure 5.8. Hint,
calculate the area first. Use
this area to calculate mo-
ment of inertia. There are
several ways to approach
the calculation (different in-
finitesimal area).

ycycyc

a = 2
√

b/αa = 2
√

b/αa = 2
√

b/α

dddξξξ

bbb

XXXXXX

dddξξξ
ξξξccc

Fig. 5.8 – Parabola for calculations of moment of
inertia and the area centroid.

Solution

For y = b the value of x =
√
b/α. First the area inside the parabola calculated as

A = 2

∫ √b/α
0

dA/2︷ ︸︸ ︷
(b− αξ2)dξ =

2(3α− 1)

3

(
b

α

)3

2

The center of area can be calculated utilizing equation (4.5). The center of every

element is at,

(
α ξ2 +

b− αξ2

2

)
the element area is used before and therefore

xc =
1

A

∫ √b/α
0

xc︷ ︸︸ ︷(
αξ2 +

(b− αξ2)

2

) dA︷ ︸︸ ︷
(b− αξ2)dξ =

3α b

15α− 5
(5.5.a)

The moment of inertia of the area about the center can be found using in equation
(5.5.a) can be done in two steps first calculate the moment of inertia in this coordinate
system and then move the coordinate system to center. Utilizing equation (5.9) and
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End of Ex. 5.5
doing the integration from 0 to maximum y provides

Ix′x′ = 4

∫ b

0

ξ2

dA︷ ︸︸ ︷√
ξ

α
dξ =

2 b7/2

7
√
α

Utilizing equation (5.15)

Ixx = Ix′x′ −A ∆x2 =

I
x
′
x
′︷ ︸︸ ︷

4 b7/2

7
√
α
−

A︷ ︸︸ ︷
3α− 1

3

(
b

α

)3

2

(∆x=xc)
2︷ ︸︸ ︷(

3α b

15α− 5

)2

or after working the details results in

Ixx =

√
b
(
20 b3 − 14 b2

)
35
√
α

Example 5.6: Triangle Moment of Inertia Level: Complex

Calculate the moment of inertia of strait
angle triangle about its y axis as shown
in the Figure on the right. Assume that
base is a and the height is h. What
is the moment when a symmetrical tri-
angle is attached on left? What is the
moment when a symmetrical triangle is
attached on bottom? What is the mo-
ment inertia when a −→ 0? What is
the moment inertia when h −→ 0?

xxx
aaa

bbb

y

dydydy

Fig. 5.9 – Triangle for example 5.6.

Solution

The right wedge line equation can be calculated as

y

h
=
(

1− x

a

)
or

x

a
=
(

1− y

h

)
Now using the moment of inertia of rectangle on the side (y) coordinate (see example
5.2) ∫ h

0

a
(

1− y

h

)3

dy

3
=
a3 h

4

For two triangles attached to each other the moment of inertia will be sum as
a3 h

2
.

The rest is under construction.
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5.5 Product of Inertia
In addition to the moment of inertia, the product of inertia is commonly used. Here
only the product of the area is defined and discussed. The product of inertia defined as

Ixi xj =

∫

A

xi xjdA

Moment of Inertia

(5.18)

For example, the product of inertia for x and y axis is

Ixy =

∫

A

x ydA (5.19)

Product of inertia can be positive or negative value as oppose the moment of
inertia. The calculation of the product of inertia isn’t different much for the calculation
of the moment of inertia. The units of the product of inertia are the same as for moment
of inertia.

5.5.1 Transfer of Axis Theorem

Same as for moment of inertia there is also similar theorem.

Ix′y′ =

∫

A

x
′
y
′
dA =

∫

A

(x+ ∆x) (y + ∆y)dA (5.20)

expanding equation (5.20) results in

Ix′y′ =

Ixy︷ ︸︸ ︷∫

A

x ydA+

∆y

0︷ ︸︸ ︷∫

A

x dA

︷ ︸︸ ︷∫

A

x∆ydA+

∆x

0︷ ︸︸ ︷∫

A

y dA

︷ ︸︸ ︷∫

A

∆x ydA+

∆x∆y A︷ ︸︸ ︷∫

A

∆x∆ydA (5.21)

The final form is

Ix′y′ = Ixy + ∆x∆y A (5.22)

There are several relationships should be mentioned

Ixy = Iyx (5.23)

Symmetrical area has zero product of inertia because integration of odd function (asym-
metrical function) left part cancel the right part.
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Example 5.7: Triangle Moment of Inertia Level: Intermediate

Calculate the product of inertia of
straight wedge triangle. Assume that
body is two dimensional.

y′y′y′

xxx

aaa

bbb

yyy

x′x′x′

Fig. 5.10 – Product of inertia for tri-
angle.

Solution

The equation of the line is

y =
a

b
x+ a

The product of inertia at the center is zero. The total product of inertia is

Ix′y′ = 0 +

∆x︷︸︸︷
a

3

∆y︷︸︸︷
b

3

A︷ ︸︸ ︷(
a b

2

)
=
a2 b2

18

5.6 Principal Axes of Inertia

y

x
θ

x

y
ξ

η ηη
ξ

y sin θ

x co
sθ y

cos θ

x sin θ

dA

Fig. 5.11 – Rotated coordinate system to explain rotation of axes.

The element area shown in Fig. 5.11 can be measured in two coordinate systems x–y
and ξ–η. The transformation of from one system to another can be expressed by the
geometrical distance shown in the figure.

ξ = x cos θ + y sin θ (5.24)
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and

ξ = y cos θ − x sin θ (5.25)

Using these identities and writing by collecting all the right terms yields the following
relationship

Iξξ =
Ixx + Iyy

2
+
Ixx − Iyy

2
cos 2θ − Ixy sin 2θ (5.26a)

Iηη =
Ixx + Iyy

2
+
Ixx − Iyy

2
cos 2θ + Ixy sin 2θ (5.26b)

Iξη =
Ixx − Iyy

2
sin 2θ + Ixy cos 2θ (5.26c)

This Eq. (5.26) can be manipulated to show

Iξξ + Iηη = Ixx + Iyy (5.27)

By differentiating the Eq. (5.26a) with respect to θ and setting the result to zero to
obtain

dIξξ
dθ

= −2

(
Ixx − Iyy

2

)
sin 2θ − 2 Ixy cos 2θ (5.28)

Thus, the maximum or minimum is at

tan 2θprincipal =
2 Ixy

Iyy − Ixx
(5.29)

Using these results it can be shown that the maximum/minimum moment of inertia is

Imax
min

=
Ixx + Iyy

2
±
√(

Ixx − Iyy
2

)2

+ Ixy
2 (5.30)

The topic of Mohrs Circle is not discussed her because it is out the possible scop
of this book. Only for completion presentation of 3D tensor of the moment of inertia
is presented.

The inertia matrix or inertia tensor is



Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


 (5.31)

In linear algebra it was shown that for some angle equation (5.31) can be transform
into



Ix′x′ 0 0

0 Iy′y′ 0

0 0 Iz′z′


 (5.32)

System which creates equation (5.32) referred as principle system.
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6
Pressure

6.1 Introduction
The concept of pressure is very important in stability. As opposed to regular treatment
in Fluid Mechanics books or class, it will treated as a scalar and care will be given
to minimize the actual complex mathematical details. It is assumed that some of the
readers of this book lack the mathematical background, hence the complexity will be
abstracted.

a

h

Fig. 6.1 – Cylinder to explain the pres-
sure concept.

In simple terms, pressure is the ratio of force
and the area such as

P =
F

A
(6.1)

The force, F is a vector as well the area, A. So,
division of vector by vector creates a complex cre-
ation with nine (9) terms. However, here only one
term is used since the pressure is equal in all three
directions and there no other terms (at no flow sit-
uations). Here, the pressure is assumed to be acting force magnitude divided by the area
in the same direction. When the “bureaucratic” formality is cleared, a simple pressure
explanation can be presented. A cylinder of liquid shown in the Fig. 6.1 the top is at
liquid surface and is weight

W =

V︷ ︸︸ ︷
π a2
︸︷︷︸
A

h ρ g (6.2)
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The weight is the force that acting on the surface at the bottom of the cylinder. The
pressure at the surface according to the definition 6.1 is

HHπ a2 h ρ g
HHπa2

= ρ g h (6.3)

The pressure in stationary liquid is simply depends on the density and the height (and
the gravity). The pressure is not depends on the area.

This concept that pressure depends solely on the depth of liquid is extended to the
fact that there is no need for it be in a continuous line. That is the pressure constant
pressure lines that goes where the liquid is connected. For example, in Fig. 6.2 depicts
constant pressure line across solid walls.

Constant

Pressure

Lines

Fig. 6.2 – Constant pressure lines across solid boundaries. It can be noticed that free surface
are equal while the close could be higher.

In fact the this idea used in may places as way to measure two locations to be in the
same height.

6.2 Fluid Forces on Surfaces
The forces that fluids (at static conditions) extracts on surfaces are very important for
engineering purposes. This section deals with these calculations which are divided into
two categories, straight surfaces and curved surfaces. These issues especially applied to
floating bodies and ships.

6.2.1 Fluid Forces on Straight Surfaces

A motivation is needed before going through the routine of derivations. Initially, a
simple case will be examined. Later, how the calculations can be simplified will be
shown.

Example 6.1: Pressure on Door Level: Intermediate

A straight vertical ship door is exposed to salt water at density of ρws. The
width of door is 1[m] and its length is 2[m] and door hinges are located at the
surface of the water. The calculate the total force acted on the door and the
moment the water acts on the door. If water was acting both sides of the door
the net force and momentum is zero. Why?
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End of Ex. 6.1
Solution

The pressure that acting on door varied from zero at the top (since it is at the water
surface) and maximum pressure at the bottom. To avoid using the mathematics the
two values can be taken and averaged and multiply to get the force. The pressure at
the bottom is ρ g h and the height is given the h and thus average pressure

Pavg =
ρ g h

2
(6.1.a)

The total force will be

F =

P︷ ︸︸ ︷
ρ g h

2
A = 1000× 9.8× 2/2×

A︷ ︸︸ ︷
2× 1 ∼ 19, 600[N ]

(6.1.b)

The force is incredible almost 20 tons. According to same logic the moment (assuming
that this concept is introduced somewhere else before) will be at the center and value
will be 20 ton × m. At this part a bit must be inserted and check against these
assumptions. It is regular procedure to take an very small element in which the
pressure is uniform and add these elements. The element chosen is an element dh
and the width of the door. The pressure in the element (a dh) is uniform since the
element depth is uniform. The element force is dF = ρ g h a dh and total force is

F =

∫ h

0

ρ g h a dh = ρ g a
h2

2
(6.1.c)

which identical to what was computed using the average pressure. Note the integral
of h is h2/2. To find the point of equivalent force (that force substitute pressure)
obtained by

heffective =
M

F
=

∫ h
0
h

dF︷ ︸︸ ︷
�ρAg h�a dh

0.5�ρAg �a h
2

=

h3/3︷ ︸︸ ︷∫ h

0

h2 dh

0.5h
=

2h

3

(6.1.d)

The result is the center of triangle which is the shape of the pressure. So while the
pressure assumption was correct the center of pressure is at center of the triangle.

F2F2F2

A-A
A-A

"0"

F1F1F1 b[m]b[m]b[m]
ξξξ

ξξξ
a[m]a[m]a[m]

dddξξξ

ℓ =ℓ =ℓ = 5[m]5[m]5[m]

β =β =β = 50◦50◦50◦

hhh

Fig. 6.3 – Rectangular area under pressure.
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Example 6.2: Pressure on Rectangular Level: Intermediate

Consider a rectangular shape gate as shown in Fig. 6.3. Calculate the mini-
mum forces, F1 and F2 to maintain the gate in position. Assuming that the
atmospheric pressure can be ignored.

Solution

The forces can be calculated by looking at the moment around point “O.” The element
of moment is a dξ for the width of the gate and is

dM =

dF︷ ︸︸ ︷
P a dξ︸︷︷︸

dA

(`+ ξ) (6.2.a)

The pressure, P can be expressed as a function ξ as the following

P = g ρ (`+ ξ)sinβ

The liquid total moment on the gate is

M =

∫ b

0

g ρ (`+ ξ) sinβ a dξ(`+ ξ)

The integral can be simplified as

M = g a ρ sinβ

∫ b

0

(`+ ξ)2dξ (6.4)

The solution of the above integral is

M = g ρ a sinβ

(
3 b l2 + 3 b2 l + b3

3

)
This value provides the moment that F1 and F2 should extract. Additional equation
is needed. It is the total force, which is

Ftotal =

∫ b

0

g ρ (`+ ξ) sinβ a dξ

The total force integration provides

Ftotal = g ρ a sinβ

∫ b

0

(`+ ξ)dξ = g ρ a sinβ

(
2 b `+ b2

2

)
The forces on the gate have to provide

F1 + F2 = g ρ a sinβ

(
2 b `+ b2

2

)
Additionally, the moment of forces around point “O” is

F1 `+ F2(`+ b) = g ρ a sinβ

(
3 b l2 + 3 b2 l + b3

3

)
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End of Ex. 6.2
The solution of these equations is

F1 =
(3 `+ b) a b g ρ sinβ

6

F2 =
(3 `+ 2 b) a b g ρ sinβ

6

The above calculations are time consum-
ing and engineers always try to make life
simpler. Looking at the above calculations,
it can be observed that there is a moment
of area in Eq. (6.4) and also a center of
area. These concepts have been introduced
in Chapter 5. Several represented areas for
which moment of inertia and center of area

`0β

ξ

ξ

dξ`1

ξ

dA

O

Fig. 6.4 – Schematic of submerged area
to explain the center forces and mo-
ments.

have been tabulated in Chapter 5. These tabulated values can be used to solve this
kind of problems.

6.2.1.1 Symmetrical Shapes

Consider the two–dimensional symmetrical area that are under pressure as shown in
Figure 6.4. The symmetry is around any axes parallel to axis x. The total force and
moment that the liquid extracting on the area need to be calculated. First, the force is

F =

∫

A

PdA =

∫
(Patmos + ρ g h)dA = APatmos + ρ g

∫ `1

`0

h(ξ)︷ ︸︸ ︷
(ξ + `0) sinβ dA (6.5)

In this case, the atmospheric pressure can include any additional liquid layer above
layer “touching” area. The “atmospheric” pressure can be set to zero.

The boundaries of the integral of equation (6.5) refer to starting point and ending
points not to the start area and end area. The integral in equation (6.5) can be further
developed as

Ftotal = APatmos + ρ g sinβ


`0A+

xc A︷ ︸︸ ︷∫ `1

`0

ξdA


 (6.6)

In a final form as

Ftotal = A [Patmos + ρ g sinβ (`0 + xc)]

Total Force in Inclined Surface

(6.7)
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bbb

βββ

yyy
"O"

F2F2F2

F1F1F1
ξ1ξ1ξ1

aaaξ0ξ0ξ0

Fig. 6.5 – The general forces acting on
submerged area.

The moment of the liquid on the area around
point “O” is

My =

∫ ξ1

ξ0

P (ξ)ξdA (6.8)

My =

∫ ξ1

ξ0

(Patmos + g ρ

ξ sin β︷︸︸︷
h(ξ) )ξdA (6.9)

Or separating the parts as

My = Patmos

xc A︷ ︸︸ ︷∫ ξ1

ξ0

ξdA+g ρ sinβ

I
x
′
x
′︷ ︸︸ ︷∫ ξ1

ξ0

ξ2dA (6.10)

The moment of inertia, Ix′x′ , is about the axis through point “O” into the page.
Equation (6.10) can be written in more compact form as

My = Patmos xcA+ g ρ sinβIx′x′

Total Moment in Inclined Surface

(6.11)

Example 6.2 can be generalized to solve any two forces needed to balance the area/-
gate. Consider the general symmetrical body shown in Fig. 6.5 which has two forces
that balance the body. Equations (6.7) and (6.11) can be combined the moment and
force acting on the general area. If the “atmospheric pressure” can be zero or include
additional layer of liquid. The forces balance reads

F1 + F2 = A [Patmos + ρ g sinβ (`0 + xc)] (6.12)

and moments balance reads

F1 a+ F2 b = Patmos xcA+ g ρ sinβIx′x′ (6.13)

The solution of these equations is

F1 =

[(
ρ sinβ − Patmos

g b

)
xc + `0 ρ sinβ + Patmos

g

]
bA− Ix′x′ ρ sinβ

g (b− a)
(6.14)

and

F2 =
Ix′x′ ρ sinβ −

[(
ρ sinβ − Patmos

g a

)
xc + `0 ρ sinβ + Patmos

g

]
aA

g (b− a)
(6.15)
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In the solution, the forces can be negative or positive, and the distance a or b can
be positive or negative. Additionally, the atmospheric pressure can contain either an
additional liquid layer above the “touching” area or even atmospheric pressure simply
can be set up to zero. In symmetrical area only two forces are required since the moment
is one dimensional. However, in non–symmetrical area there are two different moments
and therefor three forces are required. Thus, additional equation is required. This
equation is for the additional moment around the x axis (see for explanation in Figure
6.6). The moment around the y axis is given by equation (6.11) and the total force is
given by (6.7). The moment around the x axis (which was arbitrary chosen) should be

Mx =

∫

A

y PdA (6.16)

Substituting the components for the pressure transforms equation (6.16) into

Mx =

∫

A

y (Patmos + ρ g ξ sinβ) dA (6.17)

The integral in equation (6.16) can be written as

Mx = Patmos

Ayc︷ ︸︸ ︷∫

A

y dA+ρ g sinβ

I
x
′
y
′

︷ ︸︸ ︷∫

A

ξ y dA (6.18)

The compact form can be written as

Mx = PatmosAyc + ρ g sinβ Ix′y′

Moment in Inclined Surface

(6.19)

The product of inertia was presented in
Chapter 5. These equations (6.7), (6.11)
and (6.19) provide the base for solving any
problem for straight area under pressure
with uniform density. There are many com-
binations of problems (e.g. two forces and
moment) but no general solution is pro-
vided. Example to illustrate the use of these
equations is provided.

y

x

dA y

ξ

Fig. 6.6 – The general forces acting on
non symmetrical straight area.

Example 6.3: Pressure on Non Symmetrical Level: Intermediate

Calculate the forces which required to balance the triangular shape shown in
the Figure 6.7.
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continue Ex. 6.3
Solution

The three equations that needs to be solved are

F1 + F2 + F3 = Ftotal (6.3.a)

The moment around x axis is
F1 b = My (6.3.b)

The moment around y axis is

F1 `1 + F2 (a+ `0) + F3 `0 = Mx (6.3.c)

The right hand side of these equations are given before in equations (6.7), (6.11) and
(6.19).
The moment of inertia of the triangle around x is made of two triangles (as shown in
the Figure (6.7) for triangle 1 and 2). Triangle 1 can be calculated as the moment of
inertia around its center which is `0+2∗(`1−`0)/3. The height of triangle 1 is (`1−`0)
and its width b and thus, moment of inertia about its center is Ixx = b(`1 − `0)3/36.
The moment of inertia for triangle 1 about y is

Ixx1 = b(`1−`0)3

36
+

A1︷ ︸︸ ︷
b(`1−`0)

3

∆x1
2︷ ︸︸ ︷(

`0 + 2(`1−`0)
3

)2

The height of the triangle 2 is a− (`1 − `0) and its width b and thus, the moment of
inertia about its center is

Ixx2 = b[a−(`1−`0)]3

36
+

A2︷ ︸︸ ︷
b[a−(`1−`0)]

3

∆x2
2︷ ︸︸ ︷(

`1 + [a−(`1−`0)]
3

)2

aaa

ℓ1ℓ1ℓ1
yyy

F2F2F2

F1F1F1

F3F3F3

ℓ0ℓ0ℓ0bbb

xxx

1

2

Fig. 6.7 – The general forces acting on a non
symmetrical straight area.

and the total moment of inertia

Ixx = Ixx1 + Ixx2

The product of inertia of the triangle can
be obtain by integration. It can be no-
ticed that upper line of the triangle is
y = (`1−`0)x

b
+ `0. The lower line of the

triangle is y = (`1−`0−a)x
b

+ `0 + a.

Ixy =

∫ b

0

∫ (`1−`0−a)x
b

+`0+a

(`1−`0)x
b

+`0

x y dx

 dy = 2 a b2 `1+2 a b2 `0+a2 b2

24

The solution of this set equations is

F1 =

A︷ ︸︸ ︷[
a b

3

]
(g (6 `1 + 3 a) + 6 g `0) ρ sinβ + 8Patmos

24
,
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End of Ex. 6.3

F2[
a b
3

] = −

(
(3 `1−14 a)−`0

(
12 `1
a
−27

)
+

12 `0
2

a

)
g ρ sin β

72
−

((
24 `1
a
−24

)
+

48 `0
a

)
Patmos

72
,

F3[
a b
3

] =

((
a− 15 `1

a

)
+`0

(
27− 12 `1

a

)
+

12 `0
2

a

)
g ρ sin β

72

+

((
24 `1
a

+24

)
+

48 `0
a

)
Patmos

72

6.2.2 Pressure Center

In the literature, pressure centers are commonly defined. These definitions are mathe-
matical in nature and has physical meaning of equivalent force that will act through this
center. The definition is derived or obtained from equation (6.11) and equation (6.19).
The pressure center is the distance that will create the moment with the hydrostatic
force on point “O.” Thus, the pressure center in the x direction is

xp =
1

F

∫

A

xP dA (6.20)

In the same way, the pressure center in the y direction is defined as

yp =
1

F

∫

A

y P dA (6.21)

To show relationship between the pressure center and the other properties, it can be
found by setting the atmospheric pressure and `0 to zero as following

xp =
g ρ sinβ Ix′x′

Aρg sinβ xc
(6.22)

Expanding Ix′x′ according to equation (5.12) results in

xp =
Ixx
xcA

+ xc (6.23)

and in the same fashion in y direction

yp =
Ixy
ycA

+ yc (6.24)

It has to emphasis that these definitions are useful only for case where the atmospheric
pressure can be neglected or canceled and where `0 is zero. Thus, these limitations
diminish the usefulness of pressure center definitions. In fact, the reader can find that
direct calculations can sometimes simplify the problem.
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6.3 Pressure on Floating Body

Fig. 6.8 – Pressure on a floating block.

While the fundamentals of the pressure where dis-
cussed before it worth while to review with a typical
body like a block. The pressure around the block
has a shap of triangle. It can be noticed that pres-
sure on the front is identical to the pressure at the
back. Hence it cancel each other. The same can
be said for the right side and the left side. Similar
argument is made for diagonal surfaces. For diago-
nal surface the net force in any direction is just the
”shadow” in that direction times the pressure. The
pressure is the same in the same depth and hence
it cancel. The only side that pressure is not cancel
it the pressure on the bottom. The pressure is total (force = P A) in the weight of
the ship or the body. When the body is total immersed in the liquid, the force at the
bottom is reduced by the force at the top. The net force in the vertical direction, at
the stationary conditions, is the weight of the body.

6.4 Summary
The main points that this chapter was indent to illustrate are the following. Pressure
lines are constant depth form the surface. The pressure acting surfaces from both sides
has zero force and zero moment because there is a counter force and momentum. On
straight surfaces the forces are at 2/3 of the distance.
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Buoyancy

7.1 Introduction

aaa

bbb

r0r0r0
h0h0h0

Fig. 7.1 – Schematic of Immersed Cylinder.

One of the oldest known scientific research on fluid mechanics relates to buoyancy due
to question of money was carried by Archimedes. Archimedes principle is related to
question of density and volume. While Archimedes did not know much about integrals,
he was able to capture the essence. Here, because this material is presented in a different
era, more advance mathematics will be used. While the question of the stability was
not scientifically examined in the past, the floating vessels structure (more than 300
years ago) show some understanding1.

The total net forces the liquid and gravity exact on a body are considered as
a buoyancy issue while the moment these force considered as a stability issue. The
buoyancy issue was solved by Archimedes and for all practical purpose is really solved

1This topic was the author’s high school class name (ship stability). It was taught by people like
these, 300 years ago and more, ship builders who knew how to calculate ¯GM but weren’t aware of
scientific principles behind it. If the reader wonders why such a class is taught in a high school, perhaps
the name can explain it: Sea Officers High School ( or Acco (sometimes spell Akko) Nautical College)

71
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issue. Furthermore, as a derivative issue, the stability in the perpendicular direction
to the liquid surface is a solved problem which did not cause any real question (like
oscillating of body is solved problem). While there are recent papers which deal the
issue but they do solve any issue in this respect. However, the rotation stability is issue
that continue to be evolved even after this work. There three approaches that deal with
issue which are in historical order are Metacenter, Potential, and Direct Examination2.
These stability issues will discussed in the next
several chapters.

To understand this issue, consider a cubical
and a cylindrical body that is immersed in liquid and
center in a depth of, h0 as shown in Fig. 7.1. The
force which hold the cylinder at the place made from
the integration of the pressure around the surface of
the bodies. The forces on square geometry body are
made only of vertical forces because the two sides
cancel each other. However, on the vertical direc-
tion, the pressure on the two surfaces are different.
On the upper surface the pressure is ρ g (h0 − a/2).
On the lower surface the pressure is ρ g (h0 + a/2).

θθθ

h0h0h0

rrr

Fig. 7.2 – The floating forces on
Immersed Cylinder.

The force due to the liquid pressure per unit depth (into the page) is

F = ρ g ((h0 − a/2)− (h0 + a/2)) ` b = −ρ g a b ` = −ρ g V (7.1)

In this case the ` represents a depth (into the page). Rearranging equation (7.1) to be

F

V
= ρ g −−−−−→ F = V ρ g (7.2)

The force acting on the immersed body is equal to the weight of the displaced liquid.
This analysis can be generalized by noticing two things. All the horizontal forces are
canceled. Any body that has a projected area that has two sides, those will cancel each
other in the perpendicular to surface direction. Another way to look at this point is by
approximation. For any two rectangle bodies, the horizontal forces are canceling each
other. Thus, even these bodies are in contact with each other, the imaginary pressure
make it so that they cancel each other.

On the other hand, any shape is made of many small rectangles. The force on
every rectangular shape is made of its weight of the volume. Thus, the total force is
made of the sum of all the small rectangles which is the weight of the sum of all volume.

In illustration of this concept, consider the cylindrical shape in Figure 7.1. The
force per area (see Figure 7.2) is

dF =

P︷ ︸︸ ︷
ρ g (h0 − r sin θ)

dAvertical︷ ︸︸ ︷
sin θ r dθ (7.3)

2The first method was developed 300 years ago, the potential was developed about 30 years ago
and Direct Examination is present here for the first time.
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The total force will be the integral of the equation (7.3)

F =

∫ 2π

0

ρ g (h0 − r sin θ) r dθ sin θ (7.4)

Rearranging equation (7.3) transforms it to

F = r g ρ

∫ 2π

0

(h0 − r sin θ) sin θ dθ (7.5)

The solution of equation (7.5) is

F = −π r2 ρ g (7.6)

The negative sign indicate that the force acting upwards. While the horizontal force is

Fv =

∫ 2π

0

(h0 − r sin θ) cos θ dθ = 0 (7.7)

7.2 Examples

Example 7.1: Floating Log Level: Advance

To what depth will a long log with radius, r, a length, ` and density, ρs in liquid
with density, ρ`. Assume that ρ` > ρs. You can provide the angle or the depth
as the solution.

Solution

This example actually deals with two dimensional problem. Archimedes formula reads

V ρs = V0 ρ` (7.1.a)

The equations for both volumes linearly depended on the length s as

AAs ρs = A0 As ρ` (7.1.b)

where A0 is the area of the segment. The area of segment as a function of θ is

A0 =
r2 (2 θ − sin(2 θ))

2
(7.1.c)

where θ is the angle measured from the bottom to the contact point between the
liquid surface and the circle and the center is at the center of the circle. Substituting
Eq. (7.1.c) into Eq. (7.1.b) results in

π��r
2 ρs =

(
��r

2 (2 θ − sin(2 θ))

2

)
ρ` (7.1.d)
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End of Ex. 7.1
which can be somewhat simplified as

2π ρs
ρ`

= (2 θ − sin(2 θ)) (7.1.e)

From practical point of view, this example is solved. Nevertheless, for the fun of the
math the sin θ can be expanded in Taylor series as

2π ρs
ρ`

=
(2 θ)3

3!
− (2 θ)5

5!
+

(2 θ)7

7!
+ . . . (7.1.f)

And for small θ (or small ratio of the density) Eq. (7.1.f) is reduced into

θ ∼ 3

√
4π ρs
3 ρ`

ρs
ρ`

/ 0.4 (7.1.g)

Which means that ρs
ρ`
< 0.0002 for this approximation to be valid.
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Fig. 7.4 – The effect of the density ratio on the buoyancy. Note the angle is from
the bottom to the contact of the liquid with cylinder.

Typical examples to explain the buoyancy are of the vessel with thin walls put
upside down into liquid. The second example of the speed of the floating bodies. Since
there are no better examples, these examples are a must.
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Example 7.2: Reverse Container Level: Advance

A cylindrical body, shown in Figure
7.5 ,is floating in liquid with density, ρl. The
body was inserted into liquid in a such a
way that the air had remained in it. Ex-
press the maximum wall thickness, t, as a
function of the density of the wall, ρs liquid
density, ρl and the surroundings air temper-
ature, T1 for the body to float. In the case
where thickness is half the maximum, calcu-
late the pressure inside the container. The
container diameter is w. Assume that the
wall thickness is small compared with the
other dimensions (t << w and t << h).

h1h1h1

hinhinhin hhh

www

ttt

Fig. 7.5 – Schematic of a thin
wall floating body.

Solution

The air mass in the container is

mair =

V︷ ︸︸ ︷
π w2 h

ρair︷ ︸︸ ︷
Patmos
RT

The mass of the container is

mcontainer =

(
A︷ ︸︸ ︷

π w2 + 2π w h

)
t ρs

The liquid amount enters into the cavity is such that the air pressure in the cavity
equals to the pressure at the interface (in the cavity). Note that for the maximum
thickness, the height, h1 has to be zero. Thus, the pressure at the interface can be
written as

Pin = ρl g hin

On the other hand, the pressure at the interface from the air point of view (ideal gas
model) should be

Pin =
mair RT1

hin π w
2︸ ︷︷ ︸

V

Since the air mass didn’t change and it is known, it can be inserted into the above
equation.

ρl g hin + Patmos = Pin =

(
π w2 h

) ρ︷ ︸︸ ︷
Patmos
RT1

RT1

hin π w2

The last equation can be simplified into

ρl g hin + Patmos =
hPatmos
hin
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And the solution for hin is

hin = −Patmos +
√

4 g hPatmos ρl + Patmos
2

2 g ρl

and

hin =

√
4 g hPatmos ρl + Patmos

2 − Patmos
2 g ρl

The solution must be positive, so that the last solution is the only physical solution.

Advance material can be skipped

Example 7.3: Reverse Container Level: Hard

Calculate the minimum density an infinitely long equilateral triangle Triangle
shape (three equal sides) has to be so that the sharp end is in the water.
Assume that the body is stable (it is not for most).

Solution

The solution demonstrates that when h −→ 0 then hin −→ 0. When the gravity
approaches zero (macro gravity) then

hin =
Patmos
ρl g

+ h− h2 ρl g

Patmos
+

2h3 ρl
2 g2

Patmos
2 −

5h4 ρl
3 g3

Patmos
3 + · · ·

This “strange” result shows that bodies don’t float in the normal sense. When the
floating is under vacuum condition, the following height can be expanded into

hin =

√
hPatmos
g ρl

+
Patmos
2 g ρl

+ · · ·

which shows that the large quantity of liquid enters into the container as it is expected.
Archimedes theorem states that the force balance is at displaced weight liquid (of the
same volume) should be the same as the container, the air. Thus,

net displayed
water︷ ︸︸ ︷

π w2 (h− hin) g =

container︷ ︸︸ ︷(
π w2 + 2π w h

)
t ρs g+

air︷ ︸︸ ︷
π w2 h

(
Patmos
RT1

)
g

(7.3.a)

If air mass is neglected the maximum thickness is

tmax =
2 g hw ρl + Patmos w − w

√
4 ghPatmos ρl + Patmos

2

(2 g w + 4 g h) ρl ρs
(7.3.b)

The condition to have a physical value for the maximum thickness is

2 g h ρl + Patmos ≥
√

4 ghPatmos ρl + Patmos
2 (7.3.c)
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The full solution is

tmax =

−
(
wR
√

4 ghPatmos ρl+Patmos
2−2 g hwRρl−Patmos wR

)
T1+2 g hPatmos w ρl

(2 g w+4 g h)Rρl ρs T1
(7.3.d)

In this analysis the air temperature in the container immediately after insertion in
the liquid has different value from the final temperature. It is reasonable as the
first approximation to assume that the process is adiabatic and isentropic. Thus, the
temperature in the cavity immediately after the insertion is

Ti
Tf

=

(
Pi
Pf

)
(7.3.e)

The final temperature and pressure were calculated previously. The equation of state
is

Pi =
mair RTi

Vi
(7.3.f)

The new unknown must provide additional equation which is

Vi = π w2 hi (7.3.g)

Thickness Below The Maximum

For the half thickness t = tmax
2

the general solution for any given thickness below
maximum is presented. The thickness is known, but the liquid displacement is still
unknown. The pressure at the interface (after long time) is

ρl g hin + Patmos =
π w2 hPatmos

RT1
RT1

(hin + h1) π w2

which can be simplified to

ρl g hin + Patmos =
hPatmos
hin + h1

The second equation is Archimedes’ equation, which is

π w2 (h− hin − h1) =
(
π w2 + 2π w h) t ρs g

)
+ π w2 h

(
Patmos
RT1

)
g

End Advance material

Example 7.4: Reverse Container Level: Intermediate

A body is pushed into the liquid to a distance, h0 and left at rest. Calculate
acceleration and time for a body to reach the surface. The body’s density
is αρl , where α is ratio between the body density to the liquid density and
(0 < α < 1). Is the body volume important?
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Solution

The net force is

F =

liquid
weight︷ ︸︸ ︷
V g ρl −

body
weight︷ ︸︸ ︷
V g α ρl = V g ρl (1− α)

But on the other side the internal force is

F = ma =

m︷ ︸︸ ︷
V αρl a

Thus, the acceleration is

a = g

(
1− α
α

)
If the object is left at rest (no movement) thus time will be (h = 1/2 a t2)

t =

√
2hα

g(1− α)

If the object is very light (α −→ 0) then

tmin =

√
2hα

g
+

√
2 g h α

3
2

2 g
+

3
√

2 g hα
5
2

8 g
+

5
√

2 g hα
7
2

16 g
+ · · ·

From the above equation, it can be observed that only the density ratio is important.
This idea can lead to experiment in “large gravity” because the acceleration can be
magnified and it is much more than the reverse of free falling.

Example 7.5: Half Sphere Level: Intermediate

In some situations, it is desired to find equivalent of force of a certain shape
to be replaced by another force of a “standard” shape. Consider the force that
acts on a half sphere. Find equivalent cylinder that has the same diameter that
has the same force.

Solution

The force act on the half sphere can be found by integrating the forces around the
sphere. The element force is

dF = (ρL − ρS) g

h︷ ︸︸ ︷
r cosφ cos θ

dAx︷ ︸︸ ︷
cos θ cosφ

dA︷ ︸︸ ︷
r2 dθ dφ
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The total force is then

Fx =

∫ π

0

∫ π

0

(ρL − ρS) g cos2 φ cos2 θ r3 dθ dφ

The result of the integration the force on sphere is

Fs =
π2 (ρL − ρS) r3

4

The force on equivalent cylinder is

Fc = π r2 (ρL − ρS)h

These forces have to be equivalent and thus

π �2��
���(ρL − ρS) r��

1

3

4
= �π��r

2
��

���(ρL − ρS)h

Thus, the height is
h

r
=
π

4

Example 7.6: Two Liquid Layers Level: Intermediate

In the introduction to this section, it was assumed that above liquid is a gas
with inconsequential density. Suppose that the above layer is another liquid
which has a bit lighter density. Body with density between the two liquids,
ρl < ρs < rhoh is floating between the two liquids. Develop the relationship
between the densities of liquids and solid and the location of the solid cubical.
There are situations where density is a function of the depth. What will be the
location of solid body if the liquid density varied parabolically.

Solution

In the discussion to this section, it was shown that the net force is the body volume
times the density of the liquid. In the same vein, the body can be separated into two:
one in first liquid and one in the second liquid. In this case there are two different
liquid densities. The net force down is the weight of the body ρc hA. Where h is the
height of the body and A is its cross section. This force is balance according to above
explanation by the two liquid as

ρc��hA =��Ah (αρl + (1− α)ρh)

Where α is the fraction that is in low liquid. After rearrangement it became

α =
ρc − ρh
ρl − ρh

the second part deals with the case where the density varied parabolically. The density
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as a function of x coordinate along h starting at point ρh is

ρ(x) = ρh −
(x
h

)2

(ρh − ρl)

Thus the equilibration will be achieved, A is canceled on both sides, when

ρc h =

∫ x1+h

x1

[
ρh −

(x
h

)2

(ρh − ρl)
]
dx

After the integration the equation transferred into

ρc h =
(3 ρl − 3 ρh) x12 + (3h ρl − 3h ρh) x1 + h2 ρl + 2h2 ρh

3h

And the location where the lower point of the body (the physical), x1, will be at

X1 =

√
3
√

3h2 ρl
2+(4 ρc−6h2 ρh) ρl+3h2 ρh

2−12 ρc ρh+3h ρl−3h ρh

6 ρh−2 ρl

For linear relationship the following results can be obtained.

x1 =
h ρl + h ρh − 6 ρc

2 ρl − 2 ρh

In many cases in reality the variations occur in small zone compare to the size of
the body. Thus, the calculations can be carried out under the assumption of sharp
change. However, if the body is smaller compare to the zone of variation, they have
to accounted for.

Example 7.7: Sphere Level: Advance

A hollow sphere is made of steel (ρs/ρw ∼= 7.8) with a t wall thickness. What
is the thickness if the sphere is neutrally buoyant? Assume that the radius of
the sphere is R. For the thickness below this critical value, develop an equation
for the depth of the sphere.

Solution

The weight of displaced water has to be equal to the weight of the sphere

ρs �g
4π R3

3
= ρw �g

(
4π R3

3
− 4π (R− t)3

3

)
(7.7.a)

after simplification equation (7.7.a) becomes

ρsR
3

ρw
= 3 tR2 − 3 t2 R+ t3 (7.7.b)

Equation (7.7.b) is third order polynomial equation which it’s solution (see the ap-
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pendix) is

t1 =
(
−
√

3 i
2
− 1

2

) ( ρs
ρw
R

3
−R3

) 1
3

+R

t2 =
(√

3 i
2
− 1

2

) ( ρs
ρw
R

3
−R3

) 1
3

+R

t3 = R

(
3

√
ρs
ρw
− 1 + 1

) (7.7.c)

The first two solutions are imaginary thus not valid for the physical world. The last
solution is the solution that was needed. The depth that sphere will be located depends
on the ratio of t/R which similar analysis to the above. For a given ratio of t/R, the
weight displaced by the sphere has to be same as the sphere weight. The volume of
a sphere cap (segment) is given by

Vcap =
π h2 (3R− h)

3
(7.7.d)

Spherical volume Where h is the sphere height above the water. The volume in the
water is

Vwater =
4π R3

3
− π h2 (3R− h)

3
=

4π
(
R3 − 3Rh2 + h3

)
3

(7.7.e)

When Vwater denotes the volume of the sphere in the water. Thus the Archimedes
law is

ρw 4π
(
R3 − 3Rh2 + h3

)
3

=
ρs 4π

(
3 tR2 − 3 t2 R+ t3

)
3

(7.7.f)

or (
R3 − 3Rh2 + h3) =

ρw
ρs

(
3 tR2 − 3 t2 R+ t3

)
(7.7.g)

The solution of (7.7.g) is

h =

(√
−fR (4R3 − fR)

2
− fR− 2R3

2

)1

3

+
R2

(√
−fR (4R3 − fR)

2
− fR− 2R3

2

)1

3

(7.7.h)

Where −fR = R3 − ρw
ρs

(3 tR2 − 3 t2 R + t3) There are two more solutions which

contains the imaginary component. These solutions are rejected.
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Example 7.8: Variable Weight Level: Easy

One of the common questions in buoyancy is the weight with variable cross
section and fix load. For example, a wood wedge of wood with a fix weight/load.
The general question is at what the depth of the object (i.e. wedge) will be
located. For simplicity, assume that the body is of a solid material.

Solution

It is assumed that the volume can be written as a function of the depth. As it was
shown in the previous example, the relationship between the depth and the displaced
liquid volume of the sphere. Here it is assumed that this relationship can be written
as

Vw = f(d, other geometrical parameters) (7.8.a)

The Archimedes balance on the body is

ρ`Va = ρwVw (7.8.b)

d = f−1 ρ`Va
ρw

(7.8.c)

Example 7.9: Wood Cone Level: Easy

In example 7.8 a general solution was provided. Find the reverse function, f−1

for cone with 30◦ when the tip is in the bottom.

Solution

First the function has to built for d (depth).

Vw =

π d

(
d√
3

)2

3
=
π d3

9

(7.9.a)

Thus, the depth is

d = 3

√
9π ρw
ρ` Va

(7.9.b)

Example 7.10: Isosceles Triangle Level: Intermediate

Extruded isosceles triangle is submerged in liquid and the net force of this
triangle is F. Outside the liquid the weight of the triangle is W. Calculate the
ratio of solid density and liquid density. What is the volume of the wood?
Assume the liquid density is known.

Solution
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W = ρs V g (7.10.a)

where ρs density of the wood, V is the volume of the wood. In the above equation
there are two unknowns and another equation is needed. In the liquid net force on
submerged triangle is

F = W − ρ` V g = ρs V g − ρ` V g = V g (ρs − ρ`) (7.10.b)

from Eq. (7.10.a) the volume can be expressed and substitute in Eq. (7.10.b)

F =
W

ρs �g
�g (ρs − ρ`) (7.10.c)

and ultimately the solid density is

ρs
ρ`

=
W

W − F (7.10.d)

This found density ratio can be used to calculate the volume

V =
W

ρs g
(7.10.e)

7.3 Applications of Buoyancy

Example 7.11: Hydrometer Level: Intermediate

Instrument used to measure the density liquid is called a hydrometer. One
possible design is a big heavy spherical ball attached to thin glass with a pipe of
diameter, D. The spherical ball is designed to weighed down so the rig will float
straight up. The hydrometer is placed in two liquids with different densities.
Assume that ρ1 > ρ2. What is the difference in height above surface for these
two situations. Assume the air has no weight.

Solution

Again this question deals with Archimedes’ law. In fact this device has a long history
and it was “invented” numerous times. This question deals with the calibration of
this device. The volume of the spherical attachment (acting like a ballast) denoted
as V0. The pipe has lower density than the liquid under the examination. The total
mass of the hydrometer is fix and denoted as m0 and total weight is m0 g. According
to Archimedes law it should be placed by the buoyancy force.

m0 g = ρ1

(
V0 + l1

A︷ ︸︸ ︷
πD2/4

)
(7.11.a)

Where l1 is the length of the pipe in the case 1.
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In the case 2 the same equation can be written

m0 g = ρ2

(
V0 + l2 πD

2/4
)

(7.11.b)

The length can be expressed from Eq. (7.11.a) as

l1 =

m0 g

ρ1
− V0

πD2/4
(7.11.c)

and the difference in the height is

∆h =

m0 g

ρ2
− V0

πD2/4
−

m0 g

ρ1
− V0

πD2/4
(7.11.d)

Example 7.12: Dimensionless Hydrometer Level: Intermediate

Use the solution of Ex. 7.11 to convert it to a dimensional form.

Case 1 Case 2

h
H

B

b

Fig. 7.6 – caption.

Example 7.13: Extruded Isosceles Triangle Level: Intermediate

Extruded wooden isosceles triangle can float in liquid in many positions. For
this excises consider two positions triangle floats on the head or the bottom.
There is difference how much height triangle will be above the liquid. Draw the
ratio of these two heights as a function of the density of of the wood to the
liquid. That is the density of the wood obeys 0 < ρs

ρ`
< 1. Show that the length

of the triangle is irrelavente for this calculations. This question is a preparation
of the stability as this height above the liquid.

Solution

While the question deals with geometry and it effects on physics. Archimedes’ law
dictates that the area in both cases must be same. The relationship between the
densities ratio and the area has to be established. In Case 1 the Archimedes’ law is

ρs
BH

A2
��ZZLg = ρ`

h1 b1

A2
��ZZLg (7.13.a)



7.3. APPLICATIONS OF BUOYANCY 85

End of Ex. 7.13
where index 1 and 2 refer to the case1 and case 2 respectively. The geometry identity
relates the different sides of the triangle for both cases as

H

B
=
h

b
−−−−−−−−−−−→ b =

B h

H
(7.13.b)

Eq. (7.13.a) utilizing Eq. (7.13.b) as

ρsBH = ρ` h1
2 B

H
−−−−−−−−−−−→ ρs

ρ`
=

(
h1

H

)2

(7.13.c)

For the case 2 the Archimedes’s law is (now without the length and the gravity)

ρs
BH

A2
= ρ`(H − h2)

b2 +B

A2
(7.13.d)

Substituting Eq. (7.13.b) into Eq. (7.13.d) yields

ρsBH = ρ`(H − h2)

(
B h2

H
+B

)
(7.13.e)

Eq. (7.13.f) can be simplified as

ρs
ρ`

=

(
1− h2

H

)(
h2

H
+ 1

)
−−−−−→ 1−

(
h2

H

)2

(7.13.f)

It common to denote two new parameters as ρ̄ = ρs/ρ` and h̄ = h/H. Hence
Eq. (7.13.f) can be written as

ρ̄ = 1− h̄2 (7.13.g)

or case 1 as
ρ̄ = h̄2 (7.13.h)

Eqs. (7.13.h) and (7.13.g) are drawn Fig. 7.7.
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Fig. 7.7 – The size of the tip height above the liquid. The red line represents the
case

The density ratio is approaching Zero the most the triangle is out the liquid. Notice
that for case 1 (upside and color red) the zero means that h most the triangle is out
of the liquid. While in case 2 the situation is the opposite. Notice that h −→ 1 most
of the triangle is out of the liquid. For both cases, the function is a parabola.
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R

rH

hR

rH

h

Case 1 Case 2

Fig. 7.8 – Floating cone height in liquid as a function of density ratio.

Example 7.14: Symmetrical Cone Level: Intermediate

As in Ex. 7.13 repeat the calculation for a symmetrical cone shown in Fig. 7.8.

Solution

The point of this example is not merely to repeat Ex. 7.13 but rather to show the idea
of symmetry of calculations. That is, the solution in the more convenient (at least for
this author) will be used to obtain the solution in the second case.
The cone has several properties that are well documented which include

Table 7.1 – Basic Cone properties

Cone Properties

Name Equation(s) Units

V 1
3
π R2 H none

Centroid H/4 none
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Archimedes’ laws written in this case as

ρs A
π R2 H

�3
= ρ` A

π r2 h

�3
−−−−→ ρsR

2 H = ρ` r
2 h (7.14.a)

Geometrical relationship for the cone are

r

R
=

h

H
−−−−→ r =

Rh

H
(7.14.b)

Combine Eqs. (7.14.a) and (7.14.b) yields

ρsR
2 H = ρ`

(
Rh

H

)2

h −−−−→ ρs
ρ`

=

(
h

H

)3

(7.14.c)

Now Eq. (7.14.c) and from symmetry shown in Ex. 7.13 that case 2 the relationship
is

ρsR
2 H = ρ`

ρs
ρ`

= 1−
(
h

H

)3

(7.14.d)

Additional argument or rational is that ratio should be same because the volume will
be from both sides.
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Fig. 7.9 – Cone height for various densities ratio of solid to liquid. Because the most
the volume is the the base the claiming is slow and become rapid at ratio of 0.6

7.4 Practical questions
This section indent to deal with practical problems that may or may not creates physical
questions.

Example 7.15: Ever Given Ship Level: Intermediate

The ship Ever Given blocked the Suez Canal in on 23 March 2021 because
navigation that might or might relate to stability. With this introduction this
ship length dimensions became famous. Assume that Ever Given is a rectangular
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(it is not far away from the shape of the ship). For the following shape calculate
the buoyancy centroid. When the ship is empty draft is 14.5[m] and when the
ship is the fully loaded the draft is 16[mm] The ship’s width is 59[m] and ship
length is about 399[m]. Assuming that the ship is made from uniform material
what the distance GB?

Solution

The width and the length of the ship do effect the buoyancy centroid. The centroid
is half of the depth. In this case, the value is 7.25[m] when empty and 8[m] when the
ship is full.



8
Direct Examination

8.1 Introduction
empty

buoyancy

center

gravity

center

full

a b c

Fig. 8.1 – Schematic of floating bodies.

Simplistically, the stability (of float-
ing body) is divided into three cat-
egories. When moments/forces are
such that they returned the immersed
body to its original position state is
referred to as the stable body and
vice versa. The third state is when
the couple forces do have zero mo-
ment, it is referred to as the neutral
stable. An example of such situation is a rounded body, like a marble, on flat surface1

Floating uniform density bodies are, as it can be observed, are inherently “unsta-
ble” because the gravity centroid is always above buoyancy centroid (case c in Fig. 8.1).
Only at extreme cases where liquid density is almost equal to the density of solid body
it will be neutral stability. Bodies with none uniform densities can be both situations, in
stable and unstable. The bodies with none uniform density can be arranged so that the
mass centroid in lower position and the buoyancy centroid. This fact can be illustrated
by Fig. 8.4 where the mass/gravity centroid can be at lower point than the buoyant
center. The discussion here will be focused on uniformed bodies as they provide more
complicated situations. The none uniformed bodies are like uniform bodies but with
a movable gravity centroid. To understand the unstable zone consider Fig. 8.1 which
shows a body made of a hollow balloon and a heavy sphere connected by a thin and

1It happen that the same for ball (spherical) and for the same reasons.

89
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light rod in three different configurations. The left one (a) shows the sphere just under
the balloon in middle (b) there is a slight deviation from the previous case. Case 3
depicts (right side) almost opposite to case (a). This arrangement has mass centroid
close to the middle of the sphere. The buoyant centroid is below the middle of the
balloon. If this arrangement is inserted into liquid and will be floating, the balloon will
be on the top and sphere on the bottom Fig. 8.1a. Tilting the body with a small angle
from its resting position creates a shift in the forces direction to return original state
(examine Fig. 8.1a). These forces create a moment which wants to return the body to
the resting (original) position. When the body is at the position shown in Fig. 8.1c, the
body is unstable and any tilt from the original position creates moment that will further
continue to move the body from its original position. This analysis doesn’t violate the
second law of thermodynamics because it takes energy to move the body to the unstable
situation.

GGG

Body on SolidBody (on) in Liquid

AAA
BBB

Fig. 8.2 – Center of mass arbitrary floating body on
solid surface and in liquid.

When a solid object is placed
on a straight horizontal surface as
long as the gravity centroid is placed
above the contact surface between the
body and the surface, it is stable (see
Fig. 8.2). The body can be stable
in other situations but they equivalent
to the above statement. Yet, when a
body (solid) is placed on top of liquid, the conditions of stability are more complicated.
It is not longer sufficient for the gravity centroid to be about the contact area (the same
area as in the solid). Furthermore, in one liquid the body can be stable while in another
liquid the body is unstable. Even the number of stable points and their locations are
different between the liquid and the solid.

8.2 Centroid of Floating Body or Buoyancy Centroid
To carry this analysis a new concept has to introduce, the centroid of displaced liquid or
Buoyancy Centroid which is denoted “BBB.” The pressure center discussed in Section 6.2.2
in this section expanded to deals with the equivalents force that acting on the floating
bodies. To illustrate this point consider an arbitrary shape floats on liquid shown in
Fig. 8.2. It was shown, in this book, that the force acting on floating body must be
only in the vertical direction. Furthermore, the liquid pressure must be balanced the
displaced liquid. The equivalent force of the pressure acting on the body in equilibrium
can be obtained from calculating the (mass) centroid of the displaced liquid. Note
that the above statement is correct for arbitrary density (for example, if the density,
ρ = f(h)). If the body is not in equilibrium with the floating force, it does not act at
the mass centroid. The location and direction of the force is some distance from the
mass centroid yet in the vertical direction under stationary conditions.
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Yaw

Pitch

Roll

top view

side view

front view

Fig. 8.3 – Typical rotation of ship/floating body.

8.3 Introduction to Direct Examination Method

BBB

GGG

Fig. 8.4 – Schematic of Cubic
showing the body centroid
(GGG) and buoyancy centroid
(BBB).

A cubic (for example made of pine) is in-
serted into liquid. In this specific case, half
the block floats above liquid line. The cubic
mass (weight) is in the middle of the cubic
(assuming uniform density). However the
buoyancy center is the middle of the vol-
ume under the water (see Fig. 8.4). This
situation is similar to Fig. 8.1c. However,
any experiment of this cubic shows that the
cubic is stable only under special conditions.
Small amount of tilting of the cubic results
in immediate returning away from the original position. For example, under the condi-
tions where the solid density is half of the liquid, the distance between GBGBGB (also AAABBB) is
exactly quarter of the side (b/4) as it can be observed from the drawing. The location
of gravity centroid is fixed at b/4 and centroid of the immersed part is b/4 and hence
GGGBBB = b/2 − b/4 = b/4. The buoyancy force is the weight of the cubic. When the
buoyancy centroid is exactly under the mass/gravity centroid (of the cubic), it can be
in equilibrium. What happen when the buoyancy force and gravity force are slightly
deviate from the equilibrium? This question is the core of stability analysis.

θ

b/2

b

b
2 cos θ

b/
2
ta
n
θ

Y

X

1
2

∆x

∆y

α

d

Fig. 8.5 – The Change Of Angle
Due Tilting.

The stability can be answered by
looking in what direction the moment
created. If the moment tries to return it
to “original” and tries to keep the two
forces in the same line then the situation
is stable. This topic is explained in several
stages. In Ex. 4.3 examined the change
angle α, to change of imposed angle θ.
Fig. 8.5 describes the new location of the
inclination of the body by purple line.
When the centroid point appears right to the purple line the body is unstable and
conversely the body is stable (to be on the left hand side of the purple line α ≥ θ).
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In Ex. 4.7 it was shown that

α = tan−1

(
tan θ

6

(
b

d

)2
)
∼= tan−1

(
θ

6

(
b

d

)2
)

(8.1)

In this case b/d = 2 and hence Eq. (8.1) reads 4/3 > 1 and thus α > θ because θ is a
monotonic linear increase function. Thus, this situation is unstable and the cubic will
tilted away.

The prerequisite condition for stabil-
ity is that the gravity centroid and the buoy-
ancy centroid must lay on the same vertical
line. When this condition is not met the
situation is unstable. For cylindrical shape,
(z–coordinate which is perpendicular to liq-
uid surface)2 this condition is fulfilled at all
angles. Hence the cylindrical shape fulfills
the prerequisite stability requirement. How-
ever, for all other shapes this condition is
fulfilled only under specific angles. For ex-
ample, in a rectangular (square) extruded
shape this requirement appear in two an-
gles: one vertically up and one at 45◦.

BBB

b

b√
2

b
3
√
2

GGG

Fig. 8.6 – Cubic on the side (45◦) stability
analysis.

Eq. (4.22) describes the change of buoyancy center as a function of the rotation3.
The change in buoyancy centroid does not follow the change in the gravity rotation
for the rectangular. In other words the two centerids are not on the same vertical line.
Thus, for practical purposes there are only two angles that this condition occur and
thus can be stable. The first location was role out and now the second angle is under
the investigation.4

When the cubic is floating at 45◦ degree the mass centroid remains in the same
location. Yet, the immersed volume (area) is now an isosceles triangle with two 45
degree angles. Note the gravity centroid and buoyancy centroid are on the same vertical
line. To keep the same volume (area) the base is at the corner of the cubic shown in
Fig. 8.6. Under the same procedure shown in Fig. 4.8 the relationship between the α is
given as by Eq. (4.7.h). For the sake of explanation, the equation is copied to here

α = tan−1

{
2

(
b

d

)2

tan θ

}
(8.2)

Here, evidently, 1 ≤ 2(b/d)2 and b/d = 2 and thus it allays larger than one. That
means that the moment will return to the body back and therefore the body is stable

2Note what is the definition of surface direction.
3in that case it was denoted β to differentiate from the small rotation θ.
4From thermodynamical point of view there must be at least one point in which body must be

stable. Other wise the second law will be violated and the body because perpetual motion machine.
There is not official proof for such point that this author is aware of. Nevertheless, this proof should
be build geometrical consideration in which the are based on the potential energy analysis.
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in this situation. It has to emphasis that it referred to specific density (in other words
that body density is half of the liquid).

From geometrical consideration (see Table 4.2 page 45) center is 1/3 of the
height. The height is b/

√
2 and hence the AAABBB (more importantly GGGBBB) is b/3

√
2. It

can be noticed that in this case the value GBGBGB is smaller than the GBGBGB distance in the
upright situation, that is b/4 > b/3

√
2. The value of GGGBBB (or AAABBB) in the upright is

about 0.01429774 b larger than the tilted case but any other configuration. Yet for both
cases the forces are identical (why? because body has the same mass yet the moment is
smaller due to a small leverage.). This point is actually the base for the energy method.

In this case, all the situations are “unstable” (the term unstable is used because
GGG is above BBB and therefor forces are pointing to each other) yet the case with the 45
degree is the least “unstable” (shown in Fig. 8.1c) because when turned the moment
turns body to the original state. Hence, the (45 degree) location is the most stable.
Also note body has the smallest moment (the force is the same). This topic is related
to curve of dynamical stability and Moseley’s formula (for stability not rays). Yet, this
topic will not be covered in this book.

In other geometries and/or other densities of liquid and floating body, this kind of
analysis has to done to determine the least “unstable” situation. This analysis can be
done in a conventional way which will presented first and in new innovative approach.
The conventional method introduces a new geometrical location which used to describe
the stability while this location is physical it requires calculations and it is not “visible.”
While the conventional approach is used by many, now this undersign recommends to
utilize the new direct examination method. Additional advance of the new method
is simple explain and demonstration of the concepts. For instance, the diagrams build
with the help of this methods shows the transition from the stability to unstable because
change of density ratio. This method also shows the important parameters and their
combination. Thus, the GMGMGM should not appear but the the ratio of GMGMGM/D should be
used.

The potential method is simpler and practical but requires some theoretical un-
derstanding and abstraction of the physics.

8.4 The Direct Examination
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(a) Ceder blocks on solid surface (b) Ceder blocks in liquid

Fig. 8.8 – Four blocks with different ratios of D/b = 1:1, 1:0.666, 1:1.2, 1:2 depicted in the
figure. It can be observed that 1:2 and 1:5 are stable while the boundary ratio of 1:1.2 is
slightly moving from the flat situation. The material used in this experiment is old grow
ceder on water. The density ratio is about 0.55. This result is with agreement with the
model.

θ

α

New Coordinates

System

Old Coordinates

System

α

G

Fig. 8.7 – Arbitrary body ro-
tates in θ and the buoy-
ancy centroid rotates in
α. The brown α shows
the case of stable sce-
nario. The purple de-
picts the large α not sta-
ble case.

The introduction provided an example for 2–D
examination of a square body under two situa-
tions. First, upright square was examined and
found to unstable (the specific case). Second,
45◦ case which was found to be stable. In this
section the general principles of the direct exam-
ination are described. As it was shown, the crit-
ical point for the stability requirement is α = θ
which determines where are boundaries. Hence,
the position under investigation is a given small
tilting angle, θ, results in angle α representing the
change in buoyancy centroid. If α > θ then the
body under the investigation is stable and vice
versa. The examples provided earlier are in three
dimensions that could be represented in 2-D i.e.
a long square. In reality, the body is not com-
pletely symmetrical. Thus, even a body is given a small rotation in one direction the
buoyancy centroid can move in 3-D. However, in most cases, the change in the other
directions is “minor” and can be ignored. The quantitative test is the ratio α/θ5. The
value of this ratio indicts how much stable the body at a specific position. Most of the
calculations could be done numerically.

The core of this idea mentioned in the introduction and it will be expanded here.
There are two possibilities one with α < θ shown in brown in Fig. 8.7 and two with
α > θ shown in purple in Fig. 8.7.The angle is measured from the gravity centroid with
one wing at the old coordinate and second wing is line from the gravity centroid to
the new buoyancy center. For large α the buoyancy center rotates back to restore the
body toward the original state. In other words, it creates a moment that return original
angle.

5it must be noted that this ratio really does not require finding either θ or α.
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(a) Foam on solid surface all stable

(b) Smaller foam blocks in liquid (c) Larger foam blocks in liquid

Fig. 8.10 – Six blocks with different ratios of D/b = 1:1, 1:0.89, 1:0.789, 1:0.61, 1:0.537,
and 0.39. It can be observed that all with the exception of 1:0.39 are stable while the
boundary ratio of 1:0.39 tend to be unstable. The material used in this experiment is
polystyrene on water. The density ratio is about 0.05. This results is with agreement
with the model.

Example 8.1: Minimum Condition for 3D Level: Intermediate

What are the minimum conditions for 3D effects?

Solution

The cause of 3D effect is the asymmetry in two directions “opposite to the motion at
question.” That is a ship that perfectly symmetrical along the length of the ship but
“front” (bow) and “back” (stern) are asymmetrical (for various reasons) the centroid
of the ship move along back and forth (between the bow and the stern) as result ship
has yaw rotation. (that is for example, roll creates yaw).

It was shown that Eq. (4.15) the relationship is

α = tan1

tan θ∼θ︷ ︸︸ ︷
tan θ

Ixx
V0

GBGBGB′
∼=
θ
Ixx
V0

GBGBGB
(8.3)

Where point A is the location of the intersection of the vertical line that goes through
the buoyancy centroid and intersect with liquid surface/plane.
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Fig. 8.11 – The change of centroid in a tilde body. The tilde increase the angle (right triangle),
α and hence make the body more stable.

Equation Eq. (8.3) is written for a very small angle θ when the change of y is very
small. And for practical application the stability condition is

GBGBGB ≤ Ixx
V0

Stability Governing

(8.4)

This equation is correct only under the condition that point AAA is fixed. Point AAA is fixed
only when floating body when the area does not change with the height. For example,
if body is extruded rectangular or cylinder then AAA is fixed. However, floating bodies
like extruded triangle or a cone do not have a fixed centroid (at the cross area at the
liquid level). The analysis of such situation will be in the next version of the book.
Nevertheless, a simple motivation is provided. Grossly, there are two zones separated
by a border that the previous discussion dealt with. In other words, the border is the
bodies that centroid are fixed (body with constant area as a function of the height).
Bodies that the cross section is increasing with the height like cone that its pinnacle is
in the liquid. In that case, centroid of the cross section area is moving with the angle.
To illustrate this point, consider the extruded triangle depicted in Fig. 8.11. On the
left the centroid moves to the left and on the right the centroid moves to right. The
movement of the centroid to the right (right body in Fig. 8.11) increases the angle, α,
which make the body more stable and vise versa. Note, for case where the cross section
area decreases with the height, a regular analysis is sufficient because the shifting of
point AAA increase the stability.

BBB

D

b

d

s

AAA
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Fig. 8.12 – Rectangular body floating in a liquid for stability analysis.

Example 8.2: Condition for extruded rectangular Level: Intermediate

What are the conditions that extruded rectangular shape will be floating stable
in a liquid (see Fig. 8.12). Assume that the dimensions of the rectangular are
s >> b long and the crosse section is b the width and D the height are same
magnitude. The example is repeat one of the previous example.

Solution

The governing equation Eq. (8.4) determines the stability conditions. In this case, GBGBGB

is given by D/2− d/2 the moment of inertia given in the book b3 s/12. The volume
is V0 = d b s.

D

2
− d

2
≤
���

b2

b3 As
12
d �bAs

(8.2.a)

rearrange Eq. (8.2.a) reads

6 (D − d) ≤ b2

d
(8.2.b)

The relation between the different heights (Archimedes’ law) is

ρ` d = ρsD (8.2.c)

Substituting Eq. (8.2.c) into Eq. (8.2.a) reads

6

d︷ ︸︸ ︷
ρsD

ρ`

D −
d︷ ︸︸ ︷

ρsD

ρ`

 ≤ b2 −→ 6
ρsD

ρ`

(
D − ρsD

ρ`

)
≥ b2 (8.2.d)

Eq. (8.2.e) can be rearrange to be written as

b

D
≥

√
6
ρs
ρ`

(
1− ρs

ρ`

)
(8.2.e)

The results of Eq. (8.2.e) are depicted in Fig. 8.13. It can be noticed that (as expected)
for large values of b/D the body is stable. However, when the density ratio is very
small ( ρs

ρ`
−→ 0) or very large ( ρs

ρ`
−→ 1) (solid density is close to liquid density)

even for small value the ratio of geometries the body is stable (not intuitive). In the
mid range of densities requires a larger ratio of b/D. Note that edge close range
ρs/ρ` −→ 0 or ρs/ρ` −→ 1 this analysis is not applied.
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End of Ex. 8.2
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Rectangle Stability Graph
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Fig. 8.13 – Extruded rectangular body stability analysis.

8.4.0.1 1, 2, and 3 corners in the liquid

This topic should be part of dimensional analysis. In view to make part of the coherent
flow of material it is present here. Nevertheless, it is add to here as a temporary place
holder.

This discussion deals with uniform density. When extruded rectangular floating
body in liquid there is two regimes. These two regimes are separated by half point
(ρs = 0.5ρ`). At this limiting case when a square turning to 45◦ there are three corners
(or one if half corner is considered to be out) in the liquid. Otherwise, there are two
corners in the liquid at all time. When (ρs > 0.5ρ`) then there are situations where two
corners or three corners inside the liquid. There are no situation with only one corner.
Conversely, in the case (ρs < 0.5ρ`) there are only one corner or two corners in the
liquid.

Example 8.3: Extruded Triangle Level: Easy

A long extruded isosce-
les triangle is placed
base down in a liquid
(shown in ??). An-
alyze the stability for
this case. Assume that
the base and the height
of the triangle are pro-
vided. A long ex-
truded isosceles triangle
is placed base down

D

b

d

rd

s

A

B
G

Fig. 8.14 – Floating base down triangle in liquid. The
Points AAA and BBB are representation to actual loca-
tion which is at the center.
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continue Ex. 8.3
Solution

The mass centroid of the triangle is 1/3 of the height for upside down triangle. The
governing equation for straight cross section area requires that

GBGBGB ≤ Ixx
V0

(8.3.a)

It was shown in Ex. 7.13 the relation between the density ratio and the height is given
by Eq. (7.13.f) and provides

ρs
ρ`

= 1−
(
D − d
D

)2

−−→ d

D
= 1−

√
1− ρs

ρ`
= f

(
ρs
ρ`

)
(8.3.b)
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(a) d/D as function for base down
triangle.
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(b) GBGBGB as a function of d
D

. The
figure demonstrates that rela-
tionship can be approximated
by a straight line. Notice that
the functions do not go to one
by geometrical considerations.

Fig. 8.16 – intermediate stages

In this case, the cross section decreases with the height of the triangle and hence if the
triangle is stable without considering the movement of point AAA it will be more stable.
The point BBB is centroid of trapezoid and it is given by Eq. (4.20b) (the notations have
to be fixed). Point B after notations converted is

B =
d

3


2

rd︷ ︸︸ ︷(
(D − d) Cb

D

)
+ Cb

(D − d) Cb
D

+ Cb


−−→ B

D
=

d

3D

2

(
(D − d)

D

)
+ 1

D − d
D

+ 1

 (8.3.c)

Observing the Fig. 8.15b that function can be approximated as a linearly function. As
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continue Ex. 8.3
approximation Eq. (8.3.c) can be written as a straight line The distance GBGBGB is

GBGBGB

D
=
G

D
− B

D
−−→ GBGBGB

D
=

1

3
− d

3D

2

(
D − d
D

)
+ 1

D − d
D

+ 1

 (8.3.d)

The moment of inertia is of rectangular is rd
3 s/12 and the immersed volume is

V = s

(
bD

2
− (D − d) rd

2

)
−−→ V =

bD s

2

(
1−

(
D − d
D

)2
)

(8.3.e)

The moment of inertia is

Ixx =

 rd︷ ︸︸ ︷
(D − d) b

D

3

s

12
−−→ Ixx =

s

12

(
(D − d) b

D

)3 (8.3.f)

Substituting the various values into the governing equation

D

3

1− d

,D

2

(
D − d
D

)
+ 1

D − d
D

+ 1


 ≤

As
12

(
(D − d) b

D

)3

bDAs
2

(
1−

(
D − d
D

)2
)

︸ ︷︷ ︸
ρs/ρ`

(8.3.g)

Or after reaarrangment it can be written as

2

1− d

D

2

(
D − d
D

)
+ 1

D − d
D

+ 1




(
ρs
ρ`

)
(

(D − d)

D

)3 ≤
b3

bD2
=

(
b

D

)2

(8.3.h)

The results of Eq. (8.3.h) are drawn in the following exhibit.
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End of Ex. 8.3

Fig. 8.17 – Base down triangle stability diagram.

The Fig. 8.17 exhibits the stability diagram of the base down triangle. As oppose to
the extruded rectangular which has a dome, the base down triangle has no ability to
be stable at high density ratio. The reason for it is that moment of inertia approaches
to zero while the volume is increasing. On the other side, when the peak was in the
liquid then at high density ratio the body is more stable. The position that body will
be have that two conditions are satisfied. That it was studied yet and the significance
was not explored.

Example 8.4: Cylinder Wedge Level: Intermediate

A cylinder is floating on a liquid when z coordinate is upright. Under what
conditions the cylinder is stable. Is 3–D effects appears in the stability analysis
of the cylinder under the condition in this question.

Solution

There is no 3-D effects because the cylinder is symmetrical in both directions around
the x axis and the y axis. The condition for stability is

GBGBGB ≤ Ixx
V0

(8.4.a)

The moment of inertia of circle is given in table 4.2 Ixx = π r4/4. The volume of
the submerged part is π r2 d. The location of point AAA = D/2 and the location of
BBB = d/2. The last part is to related between submerged volume to total volume as

d ρ` = Dρs (8.4.b)

Armed with all the components Eq. (8.4.a) can be written as

D

2
− d

2
≤
Aπ���

r2

r4

4

Aπ��r
2 d

which can be rearranged as

D

2

(
1− ρs

ρ`

)
≤ r2

4 d
=

r2

4
Dρs
ρ`

and finally get the form as

r

D
≥

√
2 ρs
ρ`

(
1− ρs

ρ`

)
(8.4.c)

It can be observed that the smallest possible value of the Eq. (8.4.c) when the ratio
(ρs/ρ` = 0.5) and in that case, r >

√
2D. The results are presented in Fig. 8.18

The strange fact is the stability line appears symmetrical as the rectangular shape in
regard to densities ratio.
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Fig. 8.18 – Cylinder in upright position stability line.

(a) Foam on solid surface all stable (b) Smaller foam blocks in liquid
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d

Fig. 8.20 – Cone stability calculations showing various parameters.

Example 8.5: Triangle Up Level: Intermediate

Repeat Ex. 8.3 when the base is in the liquid.

Solution
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Example 8.6: Cone Level: Advance

Calculable the requirements for symmetrical cone which base on the bottom to
be stable floating on liquid.

Solution

The cone has several properties that are well documented which include volume: V =
π r2 D/3 the centroid: D/4 The location of AAA is independent of the liquid and is
at the centroid which is at D/4. The location of the buoyancy center (centroid of
truncated cone) conical frustum is at

B =

D

(
1 +

2 rd
r

+ 3
(rd
r

)2
)

4

(
1 +

rd
r

+
(rd
r

)2
) = C̄1

(rd
r

)
(8.6.a)

The centroid is similar to complete cone with a correction factor. The ratio of rd/r
can be in The ratio of rd/r = 1− d/D results in

B =

D

(
6− 8 d

D
+ 3

(
d

D

)2
)

4

(
3− 3

d

D
+

(
d

D

)2
) = C1

(
d

D

)
(8.6.b)

The volume is the same

V0 =
πD r2

3

(
1 +

rd
r

+
(rd
r

)2
)

= C̄2

(rd
r

)
(8.6.c)

or substituting rd/r = 1− d/D results in

V0 =
πD r2

3

(
3− 3

d

D
+

(
d

D

)2
)

= C2

(
d

D

)
(8.6.d)

The correction factors, C1 and C2, approach zero when rd −→ 0. The cone weight
and the displaced liquid are identical hence

ρs Vcone = ρ`V0 (8.6.e)

or explicitly

ρs
�
�
�πD r2

3
= ρ`
�
�
�πD r2

3

(
3− 3

d

D
+

(
d

D

)2
)

(8.6.f)

which can be manipulated to be

d

D
=

3 +

√
9 +

4 ρs
ρ`

2

(8.6.g)
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End of Ex. 8.6
when ρs −→ 0 then d = 0 which was expected. The solution with the negative sign
was rejected for physical reasons.
The condition for stability expressed in Eq. (8.3) can simplified as

GBGBGB =
Ixx
V0

(8.6.h)

These two last equations related the densities to the displacement.

D

4
− C1

(
d

D

)
=

π rd
4

4

C2

(
d

D

) (8.6.i)

The solution of equations (8.6.i) provide the relationship between r and D and densities
ratio so limiting case of stability is established. For this chapter this point is a stopping
point. The relationships found here can be drawn.

(a) Ceder block in cotton seed oil
(b) Douglass fir cylinder in cotton

seed oil

(c) Foam block in cotton seed oil

Fig. 8.22 – The same block that were used in previous experiments with water depicted in
the current figure. For the ceder blocks it shows that they are more stable. While for the
foam block becomes less stable. I can be observed that 1:2 and 1:5 are stable while the
boundary ratio of 1:1.2 is slightly moving from the flat situation. The material used in
this experiment is old grow ceder on water. The density ratio is about 0.55. This result
is with agreement with the model.

The examination up to this point was whether the body is stable or not. The
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question in which angle the body is stable was not discussed. The trial and error
and methods can be used however, another methods can be used. For example, the
extruded rectangular has moment of inertia which is increases with the inclination angle,
β (1/ cos3 θ). In some situation as depicted in the figures the inclination change to
some degree or point and no further. To sharpener the question, again more tilding
the rectangular results in larger moment of inertia while the volume remain the same.
Thus, according to this argument all the body should continue to rotate maximum
moment of inertia. In fact, the experiments that this author has done show that body is
stable around that several points and they not continues (with the exception of cylinder
“type” on the side). The reason for singularly of these points is that another condition
has to be fulfilled. The buoyancy centerid must be on the same line vertical line with
the buoyancy centerid. So the question should be locate all the angle in which the
buoyancy and gravity centerids are on the same line. Then check if that point is stable.
For instance, in the case of rectangular and case of ρs/ρell is the same line are on
angles 0◦ and 45◦.

Example 8.7: Moment with Angel Level: Intermediate

Express the moment of inertia for rectangular body as a function of the incli-
nation. Start with complete vertical position. Assume that the trapezoid shape
remains through process. Note that the moment of inertia of rectangular is
bh3/12.

Solution

The surface has depth of s into the page and the width of the surface is b/ cos θ. The
location of AAA is independent of inclination. The buoyancy centroid at B can

∆y

b
=

(
b

d

)2
tan2 θ

12
(8.7.a)

∆y

b
=

(
b

d

)
tan θ

6
(8.7.b)

α = tan−1

 2 tan θ

6

(
d

b

)
− tan2 θ

 (8.7.c)

The location of buoyancy centroid is at

GBGBGB
′ =

√(
d

2
−∆y

)2

+ (∆x)2 (8.7.d)

The critical length GBGBGB” is obtained by

GBGBGB
′′ = GBGBGB

′ cos |α− θ| (8.7.e)

The moment of inertia can be expressed as

Ixx =
s b3

12 cos3 θ
(8.7.f)
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Example 8.8: Two triangles attached Level: Easy

One way to make a ship to be more hydro-
dynamical is by making the body as narrow
as possible. Suppose that two opposite sides
triangle (prism) is attached to each other to
create a long “ship” see Fig. 8.23. Supposed
that b/h −→∼ 0 the body will be unstable.
On the other side if the b/h −→∼ ∞ the
body is very stable. What is the minimum ra-
tio of b/h that keep the body stable at half
of the volume in liquid (water). Assume that
density ratio is ρs/ρ`. Is there limits on the
density ratio.

D

b

d

h

Fig. 8.23 – Stability of two tri-
angles put together.

Solution

The answer the question requires solve the governing equation. In this case the
moment of inertia of half triangle is hb3/24 for rotating triangle around the base.
There are four half triangles and thus the total moment of inertia is hb3/6. The
immersed volume of the body is

V0 = 2

(
b h d

2

)
= b h d

The relationship of the density ratio to heights (Archimedes Law) is

d =
Dρs
ρ`

(8.5)

The governing equation is

D

2
− d

2
=

���
b2

b3 Ah
6

�b Ah d
−−→ D

2

(
1− ρs

ρ`

)
=

1

6

b2

d

or in a dimensional form as (
1− ρs

ρ`

)
ρs
ρ`

=
1

3

(
b

D

)2

(8.6)

According to Eq. (8.6) the stability is affected by the density ratio and by the ratio
of b/D. Furthermore, according to this model the stability is not function of length,
h. However, according to this model it is build on the idea that that there in marine
terminology there is no pitch (rotating in the other direction). If h is the same order
as b then this model is fail to take into account the stability of the other direction.
Hence, with these hand waving argument h must at least two time of b.
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End of Ex. 8.8
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h
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Fig. 8.24 – Two attached triangles stability diagram. Shown that minimum b is at
least in the same size of D.

Example 8.9: Extruded Triangle angle Level: Intermediate

This example is expansion the
question 3.4 by Lautrup (Lautrup 2011).
Extruded triangle with a shape pointed
point down is placed in a liquid. When
alpha angle is very sharp the triangle is
not very stable. On the other hand,
when the angle is very wide the trian-
gle is stable. Assuming that the area
change does not affect the analysis.
what is the minimum angle for with the
body is stable for arbitrary density ratio
(0 ≤ ρr ≤ 1). This example only pro-
vide the trends and it sufficient of the
make of the point of the range where to
expect the stable zone.

αα

Fig. 8.25 – Triangle With The Peak
Down stability analysis.

Solution

The Symmetry dictated that it is sufficient to balance half the triangle. The density
ratio related to the draft as

ρs
DD tanα

2
= ρ`

d d tanα

2
−−−→ ρs

ρ`
=

(
d

D

)2

(8.9.a)

The moment of inertia of the of the cross section area is

Ixx =
s (2 d tanα)3

12
(8.9.b)
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End of Ex. 8.9
The volume is

V0 = A
2 s d2 tanα

A2
−−−→ V0 = s d2 tanα (8.9.c)

The governing equation is

G−B =
Ixx
V0

=

2As (d tanα)3

3

As d
2 tanα

=
2 d tan2 α

3

(8.9.d)

The distance G−B the difference between the two triangles. Hence

2D

3
− 2 d

3
=

2 d tan2 α

3
−−→

(
1− d

D

)
=

d

D
tan2 α (8.9.e)

The value of limit α is

α = tan−1

√(
1− d

D

)
D

d
(8.9.f)

This results is exhibited in the following graph. It is caution that Eq. (8.9.f) represents
the trends only and additional correction has to be taken into account.
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Fig. 8.26 – α as function of density ratio.

It can be observed fromFig. 8.26 that for small density ratios a large angle is required.
This results is obvious and it is based on intuitive. However, it expect that required
angle will have “jump” at the initial and the final zone. For large range the change is
approaching a linear. Again, it must be noted that this results is not the final because
the change of the rotation line and large tilde angle is applied then the triangle might
not be stale.
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8.4.1 Usage of Stability to find Cen-
troid

The stability arguments can be used to find the cen-
troid of fraction of circle. A cylinder is naturally sta-
ble and no matter what the value of the density ratio
(location of liquid level). Hence, this calculation is
based on this concept/idea, the extruded circle must
obey the stability equation equation as

r

sb

Fig. 8.27 – Circular shape for
finding centroid.

Ixx
V0

= G−B (8.7)

Since G is fix for all circles while B is unknown. The left side of the equation can be
reduced. For example, for ρs/ρ` = 0.5 it becomes

Ixx
V0

=

As(2r)
3

12

Asπ r
2

2

=
4 r

3π
(8.8)

Thus, the centroid is found and the depth (s) is irrelevant but to the results but is useful
tool in calculation the centroid of any fraction of the circle. In general, the moment of
inertia of and area of the golden area can be evaluated and the direct expression is

BBB = GGG− Ixx
V0

=
r

2
− b3/12

A
(8.9)

The area is readily available and hence center of buoyancy can be calculated.
The question that must follow this discussion is whether the circular contour is

some kind of boundary between stable and unstable contours? The investigation so far
shows and indicants that it is the case but there should additional stipulation which
was not formulated yet. For example, a removal of small section of the circle make the
body unstable and the “circle” will turn away.

8.5 Potential Energy Approach
This method was suggested by Erdös at el and was slightly improved by Abolhassani.
This method based on the idea that a derivative of potential energy can provide a
location or locations where a system has a minimum (or maximum) and thus it is
potential of stability point6. The energy used in this scenario is the gravitational energy
that is expressed as

Usys = (M +m) g hM+m = g (mhm +M hM ) (8.10)

6This topic should be discussed elementary physics class and not fluid mechanics textbook. However,
if there will be a significant request it will be briefly discussed.
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Where subscript sys referred to the entire system. The m is referred to floating body
and M is referred to the displaced liquid in other words to the mass if the liquid was
filling the submerged volume. The logic to the last definition is that it represents the
potential of the buoyancy force acting in the center immersed part. The change in the
potential is due to the change in the angle

dUsys
dθ

= 0 (8.11)

The condition that angle, θ is by checking the second derivative if it positive or negative.
In away doing example it will repetitive of the moment method converting it to potential
and going over the mathematics. This book is more focus on the physics and therefore
it not presented.
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Metacenter

9.1 Introduction

∆FδF

θ
dA

δF

∆F

BBBB′B′B′
BBB

AAA

GGG

MMM

Fig. 9.1 – Stability analysis of floating body.

The last chapter two methods were discussed: the Direct Examination and the abstract
Potential Energy. The cousin of the direct examination is the Metacenter method. In
Metacenter method, the ship or the floating body is given a small rotation or tilde (as in
Direct Examination) and instead of resulting angle, a distance from the gravity centroid
to new imaginary location (Metacenter) is measured. If the distance GGG to MMM is point
up it considered to possible and vice versa. If the distance is positive then the body is
stable and if it is negative the body is unstable. The advantages and short falls will be
discussed at the end of the Chapter.

111
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Assuming the general body is floating and it is at a certain configuration. The
body is tilted by a given small angle, θ, and the resulting distance is measured. As
opposed the perceived public opinion, the tilting point is around point A and not around
imaginary point MMM1. If the body will be rotating around point MMM it will not keep the
displaced volume constant. The immersed part of the body centroid translates to a
new location, BBB’ as shown in Fig. 9.1. The mass (gravity) centroid is still at the same
old location since the body itself does not change (on moving gravity center later).
This deviation of the buoyant centroid from the old buoyant centroid, BBB, is similarly
as it was done in the Direct Examination. The right brown area (volume) in Fig. 9.1
is displaced by the same area (really the volume) on left since the weight of the body
didn’t change2so the total immersed area (volume) is constant.

BBB

θ

Y

X

∆y∼0
∆x

θ

BBB
B′B′B′ GGG

MMM
AAA

Fig. 9.2 – Description to demonstrate what is Metacenter.

In the previous chapter it was shown that ∆x or BBBBBB′ is

BBBBBB′ =
Ixx tan θ

V0
(9.1)

the point where the gravity force direction is intersecting with the center line of the
cross section is referred as Metacenter point, MMM. The location of the Metacenter point
can be obtained from the geometry as Metacenter point! definition

BMBMBM =
BBBBBB′

sin θ
(9.2)

And combining equations (9.1) with (9.2) yields

BMBMBM =
Ixx tan θ

V0 sin θ
(9.3)

For small angle (θ ∼ 0)

lim
θ→0

sin θ

tan θ
∼ 1 (9.4)

1For fixed AAA point.
2It is correct to state: area only when the body is extruded. However, when the body is not extruded,

the analysis is still correct because the volume and not the area should be used.
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s

b

D

d

Fig. 9.3 – Cubic body dimensions for stability analysis.

It is remarkable that the results is independent of the angle. Looking at Fig. 9.2, the
geometrical quantities3 can be related as

GMGMGM =

BMBMBM︷︸︸︷
Ixx
V0
−GBGBGB (9.5)

Eq. (9.5) can also written for solid body as

GMGMGM =

BMBMBM︷ ︸︸ ︷
ρ` Ixx
ρs Vbody

−GBGBGB (9.6)

To understand these principles consider the following examples.

9.2 Application of GMGMGM
All the terms in Eq. (9.5) normally provided and it is simply plugging them into the
Eq. (9.5) and obtaining the results. Illustrate these points an extensive example is
provided.

Example 9.1: Cylinder Wedge Level: Intermediate

In Fig. 9.3 depicts the extruded rectangular with various dimensions. Assume
that the body is solid with density below the liquid density, calculate the GMGMGM
for various dimensions.

3Alternative explanation will be provided at the end of the chapter.
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End of Ex. 9.1
Solution

The governing equation is

GMGMGM =
Ixx
V0
−GBGBGB (9..a)

As before the densities is used to related

V0 ρ` = Vbody ρs −−−−→ d ρ` = Dρs (9..b)

Point GGG is located at D/2 and point BBB is located at d/2. Moment of inertia is
I = b3 s/12 and the volume is V0 = d s b Armed with these data Eq. (9..a) becomes

GMGMGM =

b3 As
12
dAs b

−
(
D

2
− d

2

)
(9..c)

or in dimensionless form as

GMGMGM

D
=

1

12

(
b

D

)2(
ρ`
ρs

)
− 1

2

(
1− ρs

ρ`

)
(9..d)

Plotting the results of various density and b/D provides the following figure
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Fig. 9.4 – GMGMGM of Rectangular shape with various dimensions.

The rectangular has larger GMGMGM when floating on very heavy liquid. It is more stable
if it is lighter. The blue line differentiate between positive and to negative GMGMGM values
The Fig. 9.4 exhibits the GMGMGM as function of the density ratio for various ratio of b/D.
The figure demonstrates that there is a minimum with every graph that is around the
ρs = 0.5ρ`. For some ratios of b/D the figure demonstrates that GMGMGM is negative.
As solid density approaches to liquid density, the body becomes more stable and even
with positive GMGMGM for some b/D ratios. At mid range density range the body is less
stable.
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Example 9.2: What to do to save the Ship Level: Easy

Assume that you are on a floating body (boat or ship) and it is about turn to
it the side. what should you in order to save the floating body? Throw items
over board or bring more things to ship like your raft that is normally tied to
your boat?

Solution

If the ship or the boat is light that throwing items will make more stable. On the other
the boat is almost full and you should add more items and make it as heavy as you
can (even pump water into the ship). It is common to have a maximum load marking
on the ship or boat. Normally this point should be design in about 30% of the ship
displacement. Thus, if the convention is applied that it better to throw as much as
possible. The reason that maximum mark exist is or should be for stability reasons.
Load about that point will the ship unstable (below safety factor).
As anecdote of this author, on his ship mechanic duty exam (on a missile boat) a com-
mon question was what to do when ship shows signs of turning. The proper answer was
to pump and throw overboard everything as possible out. The question was originated
by someone experienced it first hand without any the theoretical understanding.

Example 9.3: GMGMGM of cylinder Level: Easy

A cylinder with a radius, r and a length D is floating on a liquid. Calculate the
GMGMGM for various densities ratios and ratios of r/D.

Solution

This example basically repeat Ex. 9.1 for cylinder. The immersed volume is π d r2 The
moment of inertia of circular shape is π r4/4.

GMGMGM = A
π r4/4

Aπ d r
2
− D

2

(
1− ρs

ρ`

)
(9..e)

or in a clear form

GMGMGM =
r2

4 d
− D

2

(
1− ρs

ρ`

)
(9..f)

Or in a dimensionless form as

GMGMGM

D
=

1

4

( r
D

)2 ρ`
ρs
− 1

2

(
1− ρs

ρ`

)
(9..g)
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End of Ex. 9.3
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Fig. 9.5 – GMGMGM as a function of density ratio for various r/D.

9.2.1 Unstable Bodies, Negative GMGMGM

What happen when theGMGMGM negative values or in other words the height (draft) increases
beyond the critical height ratio? The body will flip into the side and turn to the next
stable point (angle). This is not a hypothetical question, but rather practical. This
stable point (that is body at new angle) will be point where body will be rotating
around. At that point, the possible rotation swing to the deck is smaller and thus the
ship is less stable.

This situation happens when a ship is overloaded with containers above the max-
imum height. In commercial ships, the fuel is stored at the bottom of the ship and thus
the mass centroid (point GGG) is changing during the voyage. So, the ship that was stable
(positive GMGMGM) leaving the initial port might became unstable (negative GMGMGM) before
reaching the destination port. It is the responsibility of the officer (captain) to be aware
of this pitfall.
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9.3 The GGGZZZ diagram
A typical approach in stability instead
of looking at the value of GMGMGM a dif-
ferent imaginary distance is checked.
This distance is what called the right
hand arm. This refers to distance be-
tween the gravity and buoyancy forces.
In Fig. 9.6 depicts the distance GGGZZZ.
This distance is perpendicular to the
line BBB′MMM . The line GBGBGBe is parallel to

B

G

Mβ

Be

A

b

D

z

B’

Fig. 9.6 – The right arm distance is display as
GGGZZZ as a function of β

BBB′MMM . BBBe is the buoyancy point that obtained when the equilibrium is achieved. In
other words, this point is the point the regular B′ that travels through until the stability
point. It can be noticed that his change occurs when the body is rotated and it no
question stability. In this analysis, the question is the location of buoyancy centroid.
This examination is based on the size of the right turning arm. When the arm length
is zero the floating body is stable or that is point like watershed line after which the
body will turn to next stable point.

In this analysis, the buoyancy centroid will be determined. The simple way to
explain this point is by example. First body that will be dealt is the extruded rectangular
like the one show in Fig. 9.6. Utilizing Eq. (4.20) provides the buoyancy centroid. For
simplicity, first the vertical distance between the buoyancy centroid to the liquid of the
water is calculated. Later, the horizontal distance between the gravity centroid and the
buoyancy centroid.

The vertical distance can asses by finding first distance BBB′L which can ascertained
by

BBB′L = Cξ − LN = Cξ − Cη tanβ (9.7)

The vertical distance is then

V D = BBB′L cosβ = (Cξ − Cη tanβ) cosβ (9.8)

Dividing equation by draft, D yields

V D

D
=

(
Cξ
D
− Cη
D

tanβ

)
cosβ (9.9)

Where Cξ/D can be obtained from Eq. (4.21) plus utilizing Archimedes’s formula as

Cξ
D

=
ρr
2

+
b

D

tanβ

2
− tan2 β

24

(
b

D

)2
1

ρr
(9.10)

Where ρr is the density ratio of the solid body over the liquid. Utilizing Eq. (4.22d)

Cη
D

=
b

2D
− 1

12

(
b

D

)2
tanβ

ρr
(9.11)
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Before the results are presented the maximum angle β has to addressed. It can
notice that the displaced volume is fix and independent of the angle of inclination. The
maximum angle that body can turn before it get over the edge is

tanβmax =





2 d
b = 2 ρr

b

D

, for ρr ≤ 0.5.

2 (D−d)
b = 2 (1−ρr)

b

D

, otherwise.
(9.12)

The results are exhibited in
Fig. 9.7. The maximum angle has a
maximum at ρr = 0.5 with is results
that the other corner is going to im-
mersed in the liquid for a large value of
density ratio. While, this point could be
seem as trivial it is very important even
with the calculations. At this point, the
rate of change for moment of inertia
obtains it minimum. This is a suspi-
cious point in which it could be a stable
point (e.g point where the body rotat-
ing around).
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Fig. 9.7 – The maximum beta angle that be-
fore the corner is immersed in the liquid

At this point the discussion can turn back to distances vertical and horizontal.
The horizontal distance GGGZZZ has to go through several stages. First the vertical distance
from the buoyancy (referred to as V D).
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Fig. 9.9 – Vertical distance for rectangular extruded shape showing for 4 different b/D ratios
as function of the turning angle β.

Fig. 9.9 shows the results of the vertical distance as a function for various density
ratio and various b/D ratio. For small values value of b/D the vertical distance become
smaller. For example, for b/D = 0.5 almost all the values are trending down. While
the values treading up for large values see Fig. 9.8d. This trend is consistent with the
Potential

Energy is based on. According to this
method, the shorter distance of BM the
more stable the situation is. Here, the stable
situations will have a trend going up because
they are stable and vice versa. The interme-
diate stage has a mix situation where part
trending up and part trending down which
indication that the body is stable only under
certain conditions which is consistent with
previous observations.

The distance GGGZZZ is calculated uti-
lizing the nomenclatures that used in
Fig. 9.10. The distance GGGJ is obtained by

B
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Mβ
A

b

D

z

B’ C
η

C
ξ

b tanβ
2

b tanβ
2

J

K

J’

L

N

Fig. 9.10 – Schematic for naming for the
GGGZZZ for vertical and horizontal dis-
tances. Notice, some of the nomen-
clatures are adapted from page 46.

GGGJ = d− JK −AGAGAG (9.13)

Where these distances are evaluated as JK = d+Ψ−Cξ and AGAGAG = d−D/2. Utilizing
these definitions yields

GGGJ =
D

2
+ Cξ − (Ψ + d) (9.14)

The dimensionless value of Cξ is given by Eq. (9.10). Utilizing the GGGJ to obtain the
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next value in the chain of values as

JJ ′ = GGGJ tanβ (9.15)

with this value

BBB′J ′ = JB′ − JJ ′ (9.16)

where the value of JB′ can be observed from the diagram as

JB′ =
b

2
− Cη (9.17)

and finally

BBB′J ′⊥ = GGGZZZ = BBB′J ′ cosβ (9.18)
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Fig. 9.12 – GGGZZZ as a function of the β for various b/D. It can be noticed that the angle is
smaller for larger density ratio.

Several trends can be observed in Fig. 9.12. First it must be noted that of the abscissa
scale is different for these graphs. As the ratio of b/D incenses the distance GGGZZZ
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decreases. The maximum is achieved earlier for larger b/D values. After the body
reaches the maximum angle, new equation describes by the new equations and it is not
shown in the figure. The change will manifest itself in the direction but still will be
continues that is no jump in the angle.

9.4 Stability of Body with Shifting Mass Centroid

G

M

B B′
G′

Fig. 9.13 – The effects of liquid movement on the GM .

Ships and other floating bodies carry liquid or have a load which changes the mass
location during tilting of the floating body. For example, a ship that carries wheat
grains where the cargo is not properly secured to the ship. The movement of the load
(grains, furniture, and/or liquid) does not occur in the same speed as the body itself
or the displaced outside liquid. Sometimes, the slow reaction of the load, for stability
analysis, is enough to be ignored. Exact analysis requires taking into account these
shifting mass speeds. However, here, the extreme case where the load reacts in the
same speed as the tilting of the ship/floating body is examined. For practical purposes,
it is used as a limit for the stability analysis. There are situations where the real case
approaches to this extreme. These situations involve liquid with a low viscosity (like
water, alcohol) and ship with low natural frequency (later on the frequency of the ships).
Moreover, in this analysis, the dynamics are ignored and only the statics is examined
(see Figure 9.13).

A body is loaded with liquid “L” and is floating in a liquid “F” as shown in Figure
9.13. When the body is given a tilting position the body displaces the liquid on the
outside. At the same time, the liquid inside is changing its mass centroid. The moment
created by the inside displaced liquid is

Min = g ρlLθIxxL (9.19)

Note that IxxL isn’t the identical to the moment of inertia of the outside liquid interface.
The change in the mass centroid of the liquid “L” then is

G1G′1 = �g��ρlLθIxxL

�g VL��ρlL︸ ︷︷ ︸
Inside
liquid
weight

=
Ixx θL
VL

(9.20)
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Equation (9.20) shows that GG′ is only a function of the geometry. This quantity,
G1G′1, is similar for all liquid tanks on the floating body.

The total change of the vessel is then calculated similarly to center area calcula-
tions.

�gmtotalGG′ =���
�:0

gmbody + �gmfG1G′1 (9.21)

For more than one tank, it can be written as

GG′ =
g

Wtotal

n∑

i=1

GiGiρliVi =
g

Wtotal

n∑

i=1

Ixxbi
Vbi

(9.22)

A new point can be defined as Gc. This point is the intersection of the center line with
the vertical line from GGG′.

GGGGc =
GG′

sin θ
(9.23)

The distance that was used before GMGMGM is replaced by the criterion for stability by GGGcMMM
and is expressed as

GGGcMMM =
g ρA IxxA
ρsVbody

−GBGBGB− 1

mtotal

Ixxb
Vb

(9.24)

If there are more than one tank partially filled with liquid, the general formula is

GGGcMMM =
g ρA IxxA
ρsVbody

−GBGBGB− 1

mtotal

n∑

i=1

Ixxbi
Vbi

(9.25)

GGG

TTT ddd

hhh

Fig. 9.14 – Measurement of GM of floating body.

One way to reduce the effect of
the moving mass center due to liquid
is done by substituting a single tank
with several tanks. The moment of
inertial of the combine two tanks is
smaller than the moment of inertial of
a single tank. Increasing the number
of tanks reduces the moment of in-
ertia. The engineer could design the
tanks in such a way that the moment
of inertia is operationally changed. This control of the stability, GMGMGM, can be achieved
by having some tanks spanning across the entire body with tanks spanning on parts of
the body. Movement of the liquid (mostly the fuel and water) provides way to control
the stability, GMGMGM, of the ship.

9.4.1 Neutral frequency of Floating Bodies

Please ignore this section as it will completely be modified.
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Meta
The examination of the GGGZZZ can be treated as linear for small range. Hence, this
fact can be basically making the ship or the floating body act as it is a pendulum
in some senses. Yet at the present case the mass or the moment of inertia is not
easy to calculate. In movement of pendulum in air the added mass and the add
moment of inertia are hard to calculated and is not negligible. The governing
equation for the pendulum is

`θ̈ − g θ = 0 (9.26)

Where here ` is length of the rode (or the line/wire) connecting the mass with
the rotation point. Thus, the frequency of pendulum is 1

2π

√
g
` which measured

in Hz. The period of the cycle is 2π
√
`/g. Similar situation exists in the case

of floating bodies. The basic differential equation is used to balance and is

rotation︷︸︸︷
Iθ̈ −

rotating moment︷ ︸︸ ︷
V ρsGMGMGM θ = 0 (9.27)

In the same fashion the frequency of the floating body is

1

2π

√
V ρsGMGMGM

Ibody
(9.28)

and the period time is

2π

√
Ibody

V ρsGMGMGM
(9.29)

In general, the larger GMGMGM the more stable the floating body is. Increase in GMGMGM
increases the frequency of the floating body. If the floating body is used to
transport humans and/or other creatures or sensitive cargo it requires to reduce
the GMGMGM so that the traveling will be smoother.

Meta End

9.4.2 Limitations

This topic is dealing with several aspects of fluid mechanics like wave propagation on
shallow liquid and the add mass. Admittedly these topics are very advance and require
considerable amount of material to explain them. Simplified explanation is provided.
The take away of this section to illustrate that the analysis is is provides the limit
and the actual movement are some what different. When the ship or the floating body
undergoes rolling,the shape of the body is fixed (to very large degree) while the shape or
the configuration of the liquid in the container or the tank is not. The actual time to get
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the shape that should be assumed to be in a steady state. Steady state refers to a state
which obtained when the particles stay at that location for ever (again approximate
definition). How long it takes for the liquid to reach a steady state is very hard to
calculate. However, it (to ascertain) is a much easier to do. First, it has to define the
characteristic time (the typical time to for liquid to move from side to side).

The movement of the liquid from side to side is done by a wave (this claim is
without a proof and more about it will appear in the book of ”Basic of Fluid Mechanics”
by this author). The speed of the wave over liquid in a shallow liquid is approximated
by gravity and the liquid depth.

U ∼
√
h g (9.30)

This equation provides a reasonable estimate of the velocity. The time required is then

tc =
b/2√
h g

(9.31)

When writing Eq. (9.31), it was assumed that the average distance is about the half
the width (b/2) (liquid is moving side to side). Several additional assumptions have to
be made to find the characteristic time liquid movement. What is the

When the body or the ship is rolling the

9.5 Metacentric Height, GMGMGM, Measurement
The metacentric height can be measured by finding the change in the angle when a
weight is moved on the floating body.

Moving the weight, T a distance, d then the moment created is

Mweight = T d (9.32)

This moment is balanced by

Mrighting = WtotalGMGMGMnew θ (9.33)

Where, Wtotal, is the total weight of the floating body including measuring weight.
The angle, θ, is measured as the difference in the orientation of the floating body. The
metacentric height is

GMGMGMnew =
T d

Wtotal θ
(9.34)

If the change in the GMGMGM can be neglected, equation (9.34) provides the solution. The
calculation of GMGMGM can be improved by taking into account the effect of the measuring
weight. The change in height of GGG is

�gmtotalGnew = �gmshipGactual + �g T h (9.35)

Combining equation (9.35) with equation (9.34) results in

GMGMGMactual = GMGMGMnew
mtotal

mship
− h T

mship
(9.36)

The weight of the ship is obtained from looking at the ship depth.
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9.6 Stability of Submerged Bodies
The analysis of submerged bodied is different from the stability when the body lays
between two fluid layers with different density. When the body is submerged in a single
fluid layer, then none of the changes of buoyant centroid occurs. Thus, the mass
centroid must be below than buoyant centroid in order to have stable condition. Stable
conditions

However, all fluids have density varied in some degree. In cases where the density
changes significantly, it must be taken into account. For an example of such a case is
an object floating in a solar pond where the upper layer is made of water with lower
salinity than the bottom layer(change up to 20% of the density). When the floating
object is immersed into two layers, the stability analysis must take into account the
changes of the displaced liquids of the two liquid layers. The calculations for such cases
are a bit more complicated but based on the similar principles. Generally, this density
change helps to increase the stability of the floating bodies. This analysis is out of the
scope of this book (for now).

9.7 Stability of None Systematical or “Strange” Bodies
This topic was address somewhat in the previous chapter and will be expanded in the
following versions of this book. Previously, the discussion dealt with smooth transition
in which the cross section area is a smooth function of the height. In section the
discussion deals with abrupt change in the cross section. The change is more profound.
Consider two extreme cases, one where narrow immersed body and two the wide part
immersed. The rotation point A is not rotating and move in two different directions
depending on cross section area (as function of the height) direction. Clearly without
calculating any data, one can observed that the body with the wide immersed part
rotating point A moves to the right while the other case the rotating point A moves
to left. In, the change if direct of the rotating point change the way calculations are
carried out. Never the lest it is clear wide immersed body is more stable.

While most floating bodies are symmetrical or semi–symmetrical, there are situ-
ations where the body has a “strange” and/or un–symmetrical body. The calculations
will appear in the following versions. These are on the same considerations that that
were discussed in the previous chapter.
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Fig. 9.15 – Calculations of GMGMGM for abrupt shape body.
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Variable Density Floating Bodies
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M

θ A

B’

G2

Fig. 10.1 – Body with movable gravity centroid.

Ship and other floating bodies do not have a constant density. In other words, the
gravity centroid moves depend on the loading to a different location in the ship or body.
That point is different from the centroid of the entire body. However, the buoyancy
centroid is in the same location. located before as it depend on the displaced volume.
If the gravity centroid is below the buoyancy centroid then the body is stable and no
further calculations are needed. However, for most cases the issue to find how much
to change the location of the gravity centroid to the vessel is stable. This chapter is
dealing with the requirement on location of the gravity centroid for given geometry.

Previously the gravity location was given for the question was given a rotation of
the body by θ what is the resulting α. Now the question is more complicated. Given

127
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the geometry, what are the requirements on the location of the gravity centroid to make
the body stable. A new triangle can be build that is now made from tree points B, B′

and G.

B’

G′

∆x

θ

A

B

G

Fig. 10.2 – Diagram to explain the calculation for safe GGG.

The geometry (law of sines) it can be written and utilizing Eq. (4.15)

∆x

sin θ
=

BGBGBG′

sin 90◦
−−−−→

XXXtan θ
Ixx
V0

XXXsin θ
= BGBGBG′ (10.1)

Or in a clear form

BGBGBG′ =
Ixx
V0

(10.2)

The location of gravity in solid body (or floating body) is at GGG and normally is at the
centroid of the entire body. The distance required to lower the gravity to make the
body stable is GGGGGG’. Hence,

GGGGGG′ = BGBGBG−BGBGBG′ −−−−→GGGGGG′ = BGBGBG− Ixx
V0

(10.3)

After the required distance is calculated, a weight needed to be attached, to bottom,
or other place. The weight size is based on the calculations explained in Chapter 4.

Example 10.1: Missing GM for Ship Level: Easy

In Ex. 8.2 dealt with rectangular shape which has zone with were unstable. Here
in this example, a possible correction will be calculated (GGGGGG’).

Solution

The Fig. 8.13 shows the shape where the rectangular is unstable and for that range
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End of Ex. 10.1
the required change is calculated. Eq. (8.2.e) is copied here for the boundary.

b

D
=

√
6
ρs
ρ`

(
1− ρs

ρ`

)
(10..a)

and
d

D
=
ρs
ρ`

(10..b)

In this case BGBGBG = D/2− d/2 and thus the GGGGGG’ is

GGGGGG′ =

(
D

2
− dD

2D

)
− 1

12

b2 D

D2

ρ`
ρs

(10..c)

and can be combined

GGGGGG′

D
=

1

2

(
1− ρs

ρ`

)
− 1

12

(
b

D

)2
ρ`
ρs

(10..d)

It can be observed that the largest change should be made when the density is when
the liquid density is relatively very law. Most large ships are with density ratio on the
upper limit has the change is relatively small.
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Fig. 10.3 – Requirements on gravity centroid for rectangular shape body.

The next is similar for the cylinder that was dealt before.

Example 10.2: What cylinder is stable Level: Hard

Earlier in the book in Fig. 8.24 the stability of cylinder was discussed. Here, the
correction that need to be applied so that cylinder will be stable (GGGGGG’).

Solution

The Fig. 8.13 shows the shape where the rectangular is unstable and for that range
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End of Ex. 10.2
the required change is calculated. stability zone.

r

D
=

√
2
ρs
ρ`

(
1− ρs

ρ`

)
(10..e)

and
d

D
=
ρs
ρ`

(10..f)

In this case BGBGBG = D/2− d/2 and thus the GGGGGG′ is

GGGGGG′ =

(
D

2
− dD

2D

)
− 1

4

r2 D

D2

ρ`
ρs

(10..g)

and can be combined

GGGGGG′

D
=

1

2

(
1− ρs

ρ`

)
− 1

4

( r
D

)2 ρ`
ρs

(10..h)
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Fig. 10.4 – Requirements on gravity centroid for cylinder shape body.

The Fig. 10.4 is seem to the replica (hopefully) not a mistake.

Example 10.3: EverGiving GMGMGM Level: Easy

The famous ship Ever Giving for this excise can be consider as extruded square
box with the following dimension L = 400[m] b = 60[m] and the D = 60[m].
The maximum draft (the depth) the ship can be in the liquid is 16[m]. What
is the minimum requirement on gravity centroid.

Solution

The ratio of b/D = 1 in this case. From the value of d and D the ratio of density can be
estimated as 16/60 = 0.267 and observing from Fig. 10.3 the value ofGGGGGG′/D = 0.075
thus, the value ofGGGGGG’ = 60[m]×0.075 ∼ 4.5[m] For uniform body the gravity centroid
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End of Ex. 10.3
has to be at half of D thus it is has to be at 30[m]. Thus, subtracting the correction
it became that gravity centroid has to be at least below the 25[m] from the bottom
of the ship.
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11
Rolling

11.1 Introduction
While ships are build to be stable (for the most part), there are several situations where
it is not sufficient. Ships act as a giant pendulum but with several distinct characteristics
(varying hinge point, varying moment of inertia, changing the damping elements etc )
which will be discussed in this chapter. Under certain conditions, these giant pendulums
create a problem to the cargo on board. This issue leads to accidents in which cargo
(containers) damaged. This problem could to be due to the resonance of the ship with
cargo (there could other reasons). This chapter focus on this issue. There numerous
investigations with estimate cost of over 10 millions dollars while cost of the actual
damages was high as a billion dollars. Thus, this issue deserves a chapter examining the
various factors of this problem and mechanisms in which they created. In this chapter,
a discussion is presented on the general parameters and a dimensional analysis of the
problem.

To understand thermodynamics, the material is categorized into equilibrium and
none–equilibrium zones. That is, initially classes use and presented the steam tables and
treated as Holy Grail for example, water boil at about 100◦C at atmospheric pressure.
This ability to carry calculations, based on this rough estimate, simplifies the ability to
obtain reasonable results. Yet, when precise values are required the effect of the heat
flow rate, surface tension, and boiling surface must be taken into account1. The real
reason for this separation is created helpful system so engineers simplify the calculations.
The same should be done for stability, and the quasi–equilibrium study should be done

1The purity of the water is deliberately does not appear in the list because they common and yet
less important. For example, the change in salinity for common material like sea water can be a few
degree while the smooth surface change thy boiling temperature by about 30◦C or more.

133
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before the full dynamics is implemented.
Obviously, the location of the rotation hinge of the pendulum is important to

understand the ship movement. The value of the moment of inertia depends on this
location. Yet, numerous works deal with the dynamics situations (where the ship is
not in equilibrium in z direction), yet, the rotation hinge is not known. In dynamics
situations the hinge point deviates slightly from the quasi–equilibrium. Hence, the
knowledge this hinge point at quasi–equilibrium is essential and should be known before
tackling the dynamics aspects. In this chapter, deals with quasi–equilibrium state and
attempt to establish it. Furthermore, the deviations from the normal such as trim and
list are not dealt at this stage.

Heave

Yaw

Pitch
Sway

Roll

Surge

z

x

y

Fig. 11.1 – Six motions of ship with their names (Floating bodies).

It to be established here that there is no problem with the linear motions: heave, sway,
surge.The sway and surge (check Fig. 11.1), no ship will be capsizing because these
motions (neglecting the transfer of energy mechanisms)2. In the extreme the heave, in
theory, can cause drowning of the floating body if the magnitude of movement is such
it exposed the opening to the liquid. However, if there is enough extra floating, most
waves amplitude are not sufficient to capsizing which are not common (this author is
not aware of a single case of such issue was for a commercial ship)3 .

Example 11.1: Heave motion Level: Intermediate

A large container ship (the Ever Giving) with the size of 60 [m] width and 400
[m] long is pushed 1[m] into the sea. Estimate the force that requires to create
this movement. How much water the ship has to be covered to create this
force. The ship height is 60 [m] and ship is about 50% inside the water. How
large force is required to be to push this ship 25% down? What is the estimated
acceleration of ship at this point?

Solution

The weight of the 1 cubic meter of water is about 1 tonne which for simplicity,

2This remark should be limited by suggestion offered by several individuals that tsunami can turn
even large ship. Yet, this remark is true for “normal” waves.

3The author was supposed to be served on Mazada owned by Zim Israel Navigation Co. of Haifa
on her last vogue 1981. The ship sank because admission of to much water due to leaking storage
compartments. But, the ship did not because of heave movement.
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End of Ex. 11.1
this value is taken as standard for this example. The force is then simply evaluated as
60×400 = 24, 000 tonnes. To push the ship 1 [m] the ship has to be covered with 1[m]
of water. Large ship do not covered with a miters of water and thus heave movement
is limited. To have 25% movement it has to be covered by the same amount of water.
In case of Ever Giving the entire ship has to be covered by 15 [m] of water (it is very
fast wave of 45 [m] and very long 400 [m] long). The force is 15× 60× 400tonnes.
The question of the acceleration is important because it determines the time the body
will be under the liquid which determines possibility of drowning. It can be shown that
this situation (to be constructed example in chapter 12) it analogous to a block with
density of half of the liquid at depth of 15[m]. The mass of the block is V ρs and the
net force is V (ρ` − ρs). The acceleration is the ratio of these two quantities

a =
V (ρ` − ρs) g

V ρs
=

(
ρ`
ρs
− 1

)
g (11.1.a)

which in this case is about g. Thus, to cause drowning the wave speed has to be in

order magnitude or larger than
√

2L
g

. Where L in this case is the ship length.

It was demonstrated that the heave is not dangerous up to the point where the
ship openings is exposed to the liquid. The heave movement is mainly concern of
the increase of the resistance to the flow (ship movement). The yaw rotation (again
without the transfer mechanism) is not dangerous because the obvious observation (see
Fig. 11.1). The pitch rotation can be caused by either by the transfer mechanisms or
waves from the x or y (non symmetrical wave) directions. Of the three rotation motions
the rolling is the most important and dangerous to the ship. It not to say that there are
no situations where a small boat along the pitch rotation can overturned (the author
personally observed such case of capsizing). These situations simply are less common
and specialty case study. After examining numerous papers on the effects of rolling
this author had a strong urge to utilize the standards fluid mechanics tools to write a
governing equation(s). As usual, the examination previous work will be followed by a
discussion on various terms of the governing equation with circumstances under which
the equation can be simplified. Due to the mathematical difficulties, the previous work
focus was on the mathematical aspects of the problems. That is, little care was given
to the physical meaning of the terms and mainly focus was on solving the mathematics.
For example, (Taylan 2004; Taylan 2000) considered the speed of ship and damping
force as the mathematical functionality.

The rolling rotation has unique features that makes it very difficult to understand
as compared to regular pendulum rotation motion. The fact is that until this point, no
one even formulate the complete governing equation and discuss what physical elements
and how they interact. The “regular” rotation has forces/moments balanced around a
fix point which may or may not have external inputs (sometimes referred as exciting
input). Floating body among other things has several elements that are unique such
shifting rotation point and shifting mass and/moment of inertia. The second issue
is transformation mechanism from one rotation to another which will be addressed in
this chapter. This author has not found a single source to which discuss the transfer
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mechanism from one rotation to another with the exception of the wave in the x
direction or surge that results in a rolling motion. The basic theory for this effect is
that a wave moves along the ship change GMGMGM during the time ship passes the wave.
This idea as far it can be judged was suggested by France and Shin (France, Levadou,
Treakle, Paulling, Michel, and Moore 2003; Shin, Belenky, Paulling, Weems, and Lin
2004).The ship, according to this theory, has to be exposed to a waves with a frequency
of twice the natural ship frequency (Van Laarhoven 2009) which is defined as

ωφ =

√
ρ` g V0GM

Ixx +Madd
(11.1)

where ωφ is the natural frequency and Madd is the added mass of the ship4 and the
other properties are regular terms used in the book This equation can be recognized
as the regular term from a simple pendulum. In addition, the wave length has to be
at certain conditions (while they are not specified). In the said paper, it seem from
the equation has a simple units mistake and the added mass should be replaced by the
added moment of inertia (logically and dimensionally). (to be added as example to
the dimensional analysis chapter) It is not clear from the model what causes the rolling
beside that the rolling is possible if the natural frequency was correct. This model
disregards the ship shape, shifting rotation point, and other important characteristics.
There are several problems with the assumptions that this model build on and they will
be discussed later.

11.2 Historical Background
One of the latest work (Remola 2018) formulated the governing equation as

Ixx
d2θ

dt2
+MD

(
θ,
d θ

dt

)
+MRθ = MW (t) (11.2)

where MD is the damping function which is depend on the angle and the angular velocity,
MR
∼= GGGZZZ V0. The moment of inertia, Ixx, is in the yz plane and is assumed to be

calculated around MMM point which is the metacenter). Ixx is the moment of inertia
assumed to be constant and include the added moment of inertia. Various sources
are assuming that the causing the rolling is the waves from different directions. In
construction, this equation it was assumed no coupling with other motions in the other
directions based on (Spyrou and Thompson 2000). with some objections by (Bulian,
Francescutto, and Fucile 2009) which are based on “because a good balance is achieved
between simplicity and accuracy.”

The actual equation that most researchers are trying to solve is without the
damping effect. An example of such work on the ship rolling is by (Jovanoski and
Robinson 2009) pointing to quite well phenomena to stability zones that dampingless
equation created. Under the assumption of specific wave it is assumed (Allievi and

4Should be moment of the inertia
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Soudack 1990) that the governing can be written as

d2θ

dt
+

ω0
2

︷︸︸︷
MR

Ixx
θ = WA cos(ωW t) (11.3)

where ω0 natural frequency ωW disturbing wave WA is the normalized exciting ampli-
tude.

Ixx
d2θ

dt
+
(
ω0

2 −WA cos(ωW t)
)
θ = 0 (11.4)

ωW is natural frequency to the longitudinal wave frequency, and ω0 is the natural
frequency of the ship WA is a measure of the waves amplitude. This equation is
referred in the literature is Mathieu equation.

11.3 Physical Considerations

11.3.1 Added Mass and Added Moment of Inertia

At the current stage, it is important to discuss the physics of the situation. During the
rotation of the ship beside the moment of inertia of the ship (around a point which
will be discuss later) there additional material that is affected the ship moment of
inertia. This material has a moment of inertia (around the same point) and is referred
as the added moment of inertia. The added moment of inertia term has several issues
that have to be addressed. This term appears in the current researchers derivation as
a constant value. That is, the total moment of inertia expressed as Iship + Iadd when
both are considered to be constant (Remola 2018). Where add is denoting the added
property. As Landweber and Miloh
(Landweber and Miloh 1980) have shown
that the added moment of inertia is con-
stant for constant acceleration for the same
geometrical shape. The added properties
do not get negative values5The added mass
is always positive none zero value.The
added moment of inertia is zero or larger.
The added moment of inertia of circle is
zero when the rotation around the center.
This fact should be a test point of any
model on the added moment of inertia.

The second issue that affects the vari-
ation of the added moment of inertia is the
change of the immersed geometry. For ex-
ample, a square body starts as rectangular
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ter Kianejad et al. Notice that the
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extruded area (depends on the density ratio) and changes to extruded trapezoid or
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extruded triangle depends on the angle). Hence, at every angle the body has different
immersed geometry and therefore different added moment of inertia. The calculated
Fig. 11.2 by Kianejad et al (Kianejad, Enshaei, and Ranmuthugala 2017) shows more or
less constant value. If one accept this calculations that a constant value can be used6.
If one insist on the constant value (reduction of accuracy idea) a better representation
is in nature of the added moment of inertia.

Iadd = 0.5 (Iadd|min + Iadd|max) (11.5)

Where Iadd|min is the minimum added moment of inertia and Iadd|max is estimate of
the maximum In general this term should be written as

Iadd = Iadd|0 + f(θ) (11.6)

The value of Iadd|0 is at zero rotation and f(θ) can be positive or negative to maximum
value of Iadd|0. Kianejad et al calculated the value of the specific ship of the added
moment of inertia (Kianejad, Enshaei, and Ranmuthugala 2017). The authors did not
specified the rotation point and used almost the full Nervier–Stokes equation (including
the turbulence and shear stress.)7. The work by Kianejad et al was based on work
by Korotkin and others (Korotkin 2008) which original definition of the added mass
is based the surrounding material for ideal flow (that is the viscosity and turbulence
must be ignored as these not part of the added properties.). Between these two works
there were additional steps or works that and the research groups who was using these
techniques. At writing this section it is not clear who introduce this strange definition
of the added moment of inertia into ”research” stream. The fact that there added
moment of inertia include additional effects makes it none standard added properties.
Due to the fact that these values are not based on known standards they should be
ignored and hope that they should recalculated and converted to regular standard in
the future.

Perhaps the biggest issue in this case is the change of location of the rotation point
or hinge. As opposed to commonly believed the rotation point is not at the metacenter
but at the surface of the liquid (for quasi–equilibrium calculations and extruded liked
bodies). For two–dimensional shape, it is at the middle of the liquid line.

6This author did work on the specific code that done by researchers. However, one cannot wonder
if the equations that were used are correct as they include viscosity and turbulence none which should
be used in added properties. Thus, it possible that added moment of inertia is defined differently than
the common added moment of inertia. The paper too abstract and does not specify what is really
going on and hence it hard to ascertain the validity of the work. Several other papers by other research
groups suggest this approach and yet none of them even provide the location of the rotation point for
which it was calculated. In this stage, this undersigned takes this work to mean none standard added
moment of inertia which some how include the dissipation terms.

6The source of the added moment of inertia is dragging of liquid due to the body geometry. Perfect
cylindrical shape do no drag any mass on rotation because the fiction is not considered and thus the
added moment of inertia has no added moment of inertia (yet it has added mass).

7The researchers cannot answer the questions this author present them.
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Example 11.2: The Rotation location Level: Advanced

One misunderstood point in rotation of ship especially for rolling motion is the
center of rotation. This point has profound effect on the frequency and other
parameters. The liquid surface (wetted area) changes during the rolling motion.
Demonstrate that the rotation point is the middle of the liquid surface for two
dimensional shape.

Solution

As first approximation the ship is assumed to have a constant mass. This assumption
is reasonable for the case where the ship shape does not have a large abrupt shape and
the acceleration of the movement is relatively small. For practical purposes, a change
of the mass up to 5% is still within zone for this analysis (much more complicate
analysis results from stringent requirements).
When the ship mass is constant (quasi steady state) then the instantaneous dis-
placement (assuming the heave movement is insignificant) the displacement volume
is constant under these two assumptions. If the ship has continuous liquid surface
(that is, the ship is not catamaran or trimaran) the rotation is at some point on the
liquid surface. As long the ship shape is continuous, the subtracted area has to be
equal added area. These two areas are, at the limit, strait triangles. The two triangles
have the same area if the height and the base are the same in the two triangles. This
condition occurs when the heights is the same which mean the rotation must occur
at the middle the liquid surface.

The rotation point moves to a new location when the body/ship is turning to
new angle because the middle of the liquid surface is at new location which depends on
the geometry. Almost all the shape of the ships are such that creates a change in the
hinge line or hinge point. The only exception to this a cylinder (or sphere in 3D) (in
general symmetrical bodies round the z coordinate.). Hence, this effect has to be taken
into account. The significance of this effect can be demonstrated by triangle up versus
triangle down. Thus even the experimental attempts to measure it when ignoring the
shifting of the hinge line (Balcer 2004) are not fruitful. Note, even the correct initial
hinge line was erroneously identified at the metacenter. The literature survey show that
not much work was done on these topics. For example Markeev (Markeev 2017) study
moving mass on the pendulum in 2017. Some what related work by Legaza (Legeza
2020) dealt with movable hinge for building. While some work has been done on this
two topics, they not well understood and the theatrical base is still missing.

Example 11.3: Square Rotation Point Movement Level: Intermediate

A square is rotating 5◦. Assume that density ratio is ρs/ρ` = 0.25 Where is
the location of the rotation point at that angle? How much the moment of the
inertia change by percent?

Solution
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End of Ex. 11.3

The geometry is depicted in
Fig. 11.3. The trapezoid area has to the
same as before because the displaced
volume (area) remain the same. The
angle is given and according the above
requirement the center must stay at the
same physical location and hence the two
triangles have the same area and cancel
each other. Note the actual physical point
moves (rotates). The body is rotating
around the middle of the liquid surface (of
the body).

Old turn point

New turn point

Fig. 11.3 – Change of the rotation
point geometry. For this geom-
etry these points are the same.

Example 11.4: Triangle Rotation Point MovementLevel: Intermediate

A triangle with the tip in side the liquid is turn about5◦. Calculate the physical
change of the rotation point. Assume that the triangle is isosceles with angle
2α and the density ratio is 0.25 with side length a.

Solution

a
2α

αα

β

ξ1
2

ξ sinα
cos(β−α)

ξ sinα cosβ
cos(β−α)

Fig. 11.4 – Triangle rotation point movement explanation.

As in Ex. 11.3 assumption is that the area (actually the volume) is constant. The
volume of the triangle is

A = a2 cosα sinα =
a2 sin 2α

2
(11.4.a)

where a is ,in this case, the side of the triangle. Notice that two triangles are consid-
ered. The submerged area is quarter of the total area V0 = 0.25V or A0 = 0.25A.
Hence, the submerged area is

A =

ρs/ρ`︷︸︸︷
1

4

a2 sin 2α

2

(11.4.b)
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continue Ex. 11.4
The height of the submerged area can be evaluated as it was done before for many
examples as

ρs/ρ`︷︸︸︷
1

4

ξ2sinα

2
= A1 +A2

(11.4.c)

where A1 is the area of the left side triangle and A2 is the area of the right side
triangle. The dimensions of the new shape can be obtained by calculating the two
zones (triangles 1 & 2). It can be noticed that triangle 1 is smaller than triangle 2 as
well as their top side. The left triangle (based on the observation at Fig. 11.4) is then

A1 =
ξ2

2

sin(α)

cos(θ + α)
(11.4.d)

The second area can be obtains utilizing
sine law for the entire triangle to obtain the
top side value. Notice, the cos is because
the angle is π/2− · · · . With this informa-
tion the other two sides can be evaluated.
The area of triangle 2 is half the base times
the height hence

A2 =
ξ2

2

sinα cosβ

cos(α+ β)
(11.4.e)

β

ξ tanα

ξ sin
α

cos(
α+

β)

α

ξ
si
n
α

si
n
β

co
s(
α
+
β
)

ξ sinα cosβ
cos(α+β)

Fig. 11.5 – The upper of the right
hand triangle.

The total area is the sum of the two triangles and it is

A =
ξ2

2

sin(α)

cos(θ + α)
+
ξ2

2

sinα cosβ

cos(α+ β)
(11.4.f)

Eq. (11.4.f) can be simplified as

A =
ξ2 sinα

2 cos(α+ β)
(1 + cosβ) (11.4.g)

This area has to be to the area initial area Eq. (11.4.b) thus

1

4

a2 sin 2α

A2
=

ξ2 sinα

A2 cos(α+ β)
(1 + cosβ) (11.4.h)

After rearmament Eq. (11.4.h) can be written as

(
ξ

a

)2

=

ρ`/ρs︷︸︸︷
1

4

���:
2 cosα

sin 2α cos(α+ β)

���:
1

sinα (1 + cosβ)

(11.4.i)

or after simplification Eq. (11.4.i) becomes

ξ

a
=

√
1

2

cosα cos(α+ β)

1 + cosβ
(11.4.j)
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End of Ex. 11.4
This found value ξ denoted as ξ∗ and is used to determine the upper part of triangles
(new surface) and the difference between S2−S1 is the change of the rotation location.

∆S

a
=
S2 − S1

a
=

ξ∗ sinα

cos(α+ β)
− ξ∗ sinα

cos(β − α)
(11.4.k)

The change is in the direction of the surface and the x component or the y component
can be evaluated.

With these two angles the a graph can be drawn.

11.4 Transfer Mechanisms

z

y

x

Fig. 11.6 – T shape floating to demonstrate the 3D effect The rolling creates yaw and Pitch.

The source of the original motion is generally not relevant to the transfer mechanism
of the motion from one mode to another. The cause of the transfer is the geometry
of the floating body. One body shape that does not transfer from one mode to an-
other is sphere. There is source of waves or other exciting forces/moments (beside the
magnetic forces) that can cause transfer. Thus, the transfer of the motion from one
mode to another is because symmetry (or asymmetry) of the body. Here, the transfer
mechanisms are divided into two categories: one, from rotation in one dimension to
rotation in another dimension, and two from rotation to linear motion (vis versa). The
transfer from linear motion to linear motion is considered as the second category8.

The movement of a floating body can be transferred due to the geometry from
one mode to another. To understand this transfer consider the T–shape body depicted
in Fig. 11.6. The extend part of the body is just touching the liquid. In this case
the regular marine coordinate system is adapted. If the body is rotating around the
x coordinate (or around another parallel line) the buoyancy centroid will change the
location. Furthermore, the change in buoyancy centroid move has component in the
x direction. The centroid moves to new location which in different plane that original
z−−y plane. Assuming that the body was at equilibrium, the change of the buoyancy
centroid which has component in the direction of x and y and it creates moment in
the y axis (pitch) and also around z (yew). This T–shape body is created by adding

8In discussion with one of the reader he point out that in the future it will be considered the third
category. Time will tell.
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body however similar effect can be created by removing part of the body. The meaning
of removing body is that a body when rotated exhibits a depression. Generally, if the
body is not symmetrical round y any rotation around the x coordinate creates rotation
y coordinate and z coordinate. The gravity centroid remains the same location on the
body. Thus, there is a new moment that acting the new direction. The described effect
is of roll causing pitch (and yaw). Yet, the same argument can describe pitch movement
causing roll. In this discussion, the source of the rotation is irrelevant.

The previous discussion dealt with the transfer from one rotation to another
rotation due to the floating body asymmetry
(in previous case the asymmetry was around
the yz plane). It can be expended to move-
ment of linear like heave to rotation. The
main difference in this category is that the
moment transferred into force. It must be
mentioned that the energy during the trans-
fer is constant and the transfer is reduce
the oscillations or the movement because
the energy is transferred. Additionally, the
transfer does not occur linearly and it de-
pend on the change of the buoyancy

BBB

GGG
xxx

yyy

Fig. 11.7 – Extruded triangle to explain
the movement transfer from Heave to
Rolling.

centroid. The forces in the x coordinate are equal and opposite to each other and
hence cancel each other. However, the forces in the y direction are are not equal and
cause a moment which will results in the rolling rotation. That is, in this case the
asymmetry in around y coordinate transfer energy from the heave to roll. If the floating
body is not perfect symmetry it also might create movement in other directions. Note
that if the body was made from straight lines going down it will not any effect on the
other direction linear motion.

The conceptional explanation has to get engineering expression. First the transfer
from roll to pitch requires to know the change in BBB due to the roll. The calculation of
the change in the x direction is done similar fashion that the change buoyancy centroid
was ascertained for symmetrical body. These calculations are 3–D nature at least for
the presentation. As this book (at least this version) is pioneer this aspect and the
technique presented here to calculate is crude. Not to bogged with the mathematics
the functionally assumed to be known. Consider the body shown in Fig. 11.6. First,
the change in the z− y of buoyancy is considered. The body is divided into many small
slices of with thickness of dx. For each slice the change in buoyancy and it is denoted as
dB. This value is a function of x and same time the area can be calculated it denoted
as A(x) (in mathematical term it referred as the weight function). The change in the
y direction is

∆B(θ)x =
1

V0

∫

V0

∆B(x)A(x)dx (11.7)
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The change in the y direction is

∆B(θ)y =
1

V0

∫

V0

y A(x)at new θdx (11.8)

It can be notice that change in the x is not relevant to the y direction.

Example 11.5: Heave motion Level: Intermediate

Calculate the change in the y direction of the body provided in the figure.

11.5 Appendix Double Pendulum: Simplifications

In this section a discussion on the double
pendulum which ship similar too. Essen-
tially ship is not a regular pendulum but
it is a what is known as double pendulum
with point mass. These point do not rep-
resent the ship nor the circular motion of
the point 1. A gradual progression will be
followed since material is written for a text-
book. That is, first introduction to a circu-
lar double pendulum with point masses later
a discussion about the circular double pen-
dulum with mass distribution (moment of
inertia instead of mass) will introduced.

xxx

yyy

θ2θ2θ2

θ1θ1θ1x1x1x1

y1y1y1

x2x2x2

y2y2y2

Fig. 11.8 – Simple double circular pendu-
lum with point mass.

Later the next stage is to deal with the circular movement to linear where x1 is related
to θ1.

11.5.1 Double Pendulum with Point Masses

The location of point 1 is

x1 = L1 sin θ1

y1 = −L1 cos θ1

(11.9)

The location of point 2 is

x2 = x1 + L2 sin θ2

y2 = y1 − L2 cos θ2

(11.10)

Taking the derivative to obtain the velocity

x′1 = θ′1 L1 cos θ1

y′1 = θ′1 L1 sin θ1

(11.11)
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In the same way for the second point

x′2 = x1′ + θ′2 L2 cos θ2

y′2 = y′1 + θ′2 L2 sin θ2

(11.12)

The second derivative is

x′′1 = θ′1
2
L1 sin θ1 + θ′′1 L1 cos θ1

y′′1 = θ′1
2
L11 cos θ1 + θ′′1 L1 sin θ1

(11.13)

the second derivative is for the second point

x′′2 = x′′1θ
′
2
2
L2 sin θ2 + θ′′2L2 cos θ2

y′′2 = y′′1 + θ′2
2
L2 cos θ2 + θ′′2L2 sin θ2

(11.14)

where T denotes the tension and m denotes the mass and standard stationary equation
can be written. The forces that act on mass 1 and mass 2 are the tension in the rods
and the gravity.

m1 x
′′
1 = −T1 sin θ1 + T2 sin θ2

m1 y
′′
1 = T1 cos θ1T2 cos θ2 −m1 g

(11.15)

and for the second point

m2 x
′′
2 = T2 sin θ2 (11.16)

m2 y
′′
2 = T2 cos θ2 −m2 g (11.17)

Basically there are 4 equations and 4 unknowns (T1, T2, θ1, and θ2). Notice that
x1, x2, y1, and y2 are a simple function of L and θ with the right indexes. After
the elimination or conversion of “dummy” variables (T1, T2) results in two equations
with unknowns which can be solved by numerical methods like Runge Kutta method.
No recommendations on the specific methods is provided.

The results are strongly depend on the initial conditions. There several conclusions
can be drown from the results which are very relevant to floating body stability. The
chief conclusion is that standard natural frequency does not exist. The results are more
chaotic that one expect. For small angle the behavior is close to a simple pendulum.
Even with going through more complicate examination one can see that situation get
more complex (this with including the change of moment of inertia and other factors).

11.5.2 Double Pendulum with Circular Motion with Mass Distri-
bution

This section is out reach for many of the readers because it involve advance physics and
concept like Lagrangian. These concepts are used because the complication of writing
the governing equations. The usage of Lagrangian provides the governing equations
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in a standard form. Equations presented in a standard form and thus element the
need to usage of vectors. With the Lagrangian methods there is no need to solve for
accelerations or a need to solve for inertial velocities. So simple demonstration of usage
of Lagrangian for simple pendulum is presented. The Lagrangian function is defined
as the difference between the total kinetic energy, T and total potential energy U of
system.

L = T − U (11.18)

For simple pendulum with point mass with arm length, ` the potential energy is relative
the lowest point and for small angle. The velocity is

v = ` θ (11.19)

The total kinetic energy is

T =
mv2

2
=
m`2θ̇2

2
(11.20)

The potential energy, U, in case of simple pendulum, depends only on the height. For
simplicity the potential energy is assigned U(θ = 0) = 0 Thus the potential energy can
be written as

U = ymg = ` (1− cos θ)mg (11.21)

With these two terms the Lagrangian is explicitly can written as

L = T − U =
gm (` θ̇)2

2
− ` (1− cos θ)mg (11.22)

For the next part The governing equation is obtained utilizing for zero non–conservative
forces by

d

dt
(
∂L

∂θ̇
)− ∂L

∂θ
= 0 (11.23)

substituting L into Eq. (11.23) yields

m`2 θ′′ +mg ` sin θ = 0 −−−−→ θ′′ +
g

`
sin θ = 0 (11.24)

which is the standard equation for simple pendulum.
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It can be noticed that coordinate system
change some what. That the distances are
measured to the center of the leg which has
mass and moment of inertia. It is assumed
that the moment of inertia is given. The
distance x1 is this only to half of the leg
and some can be said about the y1. The
distances can be express as

x1 =
`

2
sin θ1 (11.25)

θ2θ2θ2

θ1θ1θ1x1x1x1
y1y1y1

x2x2x2

y2y2y2

m1m1m1

m2m2m2

I1I1I1

I2I2I2

`
12
`
12
`
12

`
22
`
22
`
22

Fig. 11.9 – Double pendulum linear mo-
tion in circular motion with disperse
mass.

y1 = − `
2

cos θ1 (11.26)

It is assumed that rod are evenly distribute otherwise new dimension can be introduced.

x2 = `1 sin θ1 + `2
sin θ2

2

y2 = −`1 cos θ1 − `2
cos θ2

2

(11.27)

The kinetic energy can be expressed as

T =
m1 v1

2

2
+
m2 v2

2

2
+
I1 θ
′
1
2

2
+
I2 θ
′
2
2

2
(11.28)

The potential energy is

U = g y1m1 + g y2m2 (11.29)

Thus the Lagrangian is

L = T − U =
m1 v1

2

2
+
m2 v2

2

2
+
I1 θ
′
1
2

2
+
I2 θ
′
2
2

2
−m1gy1 −m2gy2. (11.30)

Assuming no external forces the governing equations are obtained from

d

dt

∂L

∂θ′1
− ∂L

∂θ2
= 0

d

dt

∂L

∂θ′2
− ∂L

∂θ1
= 0

(11.31)

At this stage the continuation can be found the literature as it establish issue. The main
point was to establish the method and demonstrate the ship rotation similar to double
pendulum but with a twist in which the relationship between the hinge to physics is
determined from ship determined.
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11.5.3 Double Pendulum with Linear Motion

The relation between y1 (see Fig. 11.10)
and θ1 is determined from the cross sec-
tion (for 2D simpler and it more complex
for 3D.). This relationship is independent
of the angular velocity and simply related
to angle itself θ1 and related based on ge-
ometrical parameters. This relationship ob-
tained by following the instructions in chap-
ter. Given this relationship only one body
as control mass is needed.

xxx

yyy

θ1θ1θ1

y1y1y1

x2x2x2

y2y2y2

Fig. 11.10 – Double pendulum linear mo-
tion with disperse mass.

11.6 Appendix: The Added Properties
The explanation of the added properties is very complicated at least the mathematical
part of it 9 This material way out scope of this book yet, it is here just to provide a
justification why this term is added. This addition due to the realization that a body
moves in a liquid it drags additional (therefore the word added) material/mass (in the
liquid phase). This addition strongly depends on the geometry of the body and the its
acceleration. For example, a sphere moving steady state has coefficient of add mass is
0.5 which can be larger than the momentum of the body itself. This value is, roughly
speaking, calculated by the singular points of potential flow. The added moment of
inertia of the ship body depends on the angle of the ship and the acceleration.

11.7 Pendulum With Moving Hinge Point

11.8 Change of Center of Rotation
At first the discussion deals with 2D cases as they simpler as compared to 3D. The
center of ration is at the middle of the liquid line (for two dimensional body). However,
the change of the center of rotation is in the average of addition to right and the
subtraction to the left assume counter–clock turn. In this derivation it is assumed that
the body is extruded that is it only 2–D and the angle is very small. Later it will derive
for measurable angles. In this derivations the body is not assumed to symmetrical. The
total change is made of the change to the right and to the left. The change to the right
is

∆xr =
dAr
dh

(11.32)

9This author was a teaching assistance long ago for Touvia Miloh (Landweber and Miloh 1980) who
was teaching class on the added properties. This knowledge is from time of being a teaching assistance
for that class. The never researched in this area.
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The ∆xr represents the change to the right. If the body is symmetrical that total
change is ∆x = ∆xr = ∆xl. The change to the left is ∆xl is

∆xl = −dAl
dh

(11.33)

The ∆xl represents the change of the contact
point of surface to the left. The total change
is then

∆xtotal =
dAr
dh
− dAl

dh
(11.34)

∆xr
∆xl

∆x

Fig. 11.11 – The derivative of the
change of the rotation points.
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12
Dimensional Analysis

This chapter is dedicated to my adviser, Dr. E.R.G. Eckert.
Genick Bar-Meir

12.1 Introductory Remarks
The reasons that this chapter is included in this book to eliminate the tables for various
situation but to have dimensionless presentation so tables should be included in the
equations them self. For example, in Metacenter method the parameter GM is not
given in dimensionless form. What is the meaning of GM 1[m] while it say the ship
is stable and does not indicate if it is very stable or not. One has to get additional
information. The indication that this question of stability is has relatively small of
parameters which indicate that it has to none–dimensionalized.
What is dimensionless analysis? Dimensional analysis refers to techniques dealing with
units or conversion to a unitless system. The definition of dimensional analysis is not
consistent in the literature which span over various fields (mostly in the thermo–fluid
field) (Buckingham 1914; Buckingham 1915b; Buckingham 1915a). Possible topics
that dimensional analysis deals with are consistency of the units, change order of mag-
nitude, applying from the old and known to unknown (see the Book of Ecclesiastes),
and creation of group parameters without any dimensions. In this chapter, the focus is
on the creation the creation of dimensionless groups. These techniques gave birth to
dimensional parameters which have a great scientific importance (Görtler 1975; Lang-
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haar 1980). Since the 1940s1, the dimensional analysis is taught and written in all fluid,
heat and mass transfer textbooks. The approach or the technique used in some of these
books is referred to as Buckingham–π–theory. The π–theory was coined by Bucking-
ham. However, there is another technique which is referred to in the literature as the
Nusselt’s method. Both these methods attempt to reduce the number of parameters
which affect the problem and reduce the labor in solving the problem. The key in these
techniques lays in the fact of consistency of the dimensions of any possible governing
equation(s) and the fact that some dimensions are reoccurring. The Buckingham–π
goes further and no equations are solved and even no knowledge about these equations
is required. In Buckingham’s technique only the dimensions or the properties of the
problem at hand are analyzed. This author is aware of only a single class of cases were
Buckingham’s methods is useful and or can solve the problem namely the pendulum
class problem (and similar).
The dimensional analysis was independently developed by Nusselt and improved by his
students/co–workers (Schmidt, Eckert) in which the governing equations are used as
well. Thus, more information is put into the problem and thus a better understanding
on the dimensionless parameters is extracted. The advantage or disadvantage of these
similar methods depend on the point of view. The Buckingham–π technique is simpler
while Nusselt’s technique produces a better result. Sometime, the simplicity of Buck-
ingham’s technique yields insufficient knowledge or simply becomes useless. When no
governing equations are found, Buckingham’s method has usefulness. It can be argued
that these situations really do not exist in the Thermo–Fluid field. Nusselt’s technique
is more cumbersome but more precise and provide more useful information. Both tech-
niques are discussed in this Chapter. The advantage of the Nusselt’s technique are: a)
compact presentation, b)knowledge what parameters affect the problem, c) easier to ex-
tent the solution to more general situations. In very complex problems both techniques
suffer from in inability to provide a significant information on the effective parameters
such multi–phase flow etc.
It has to be recognized that the dimensional analysis provides answer to what group of
parameters affecting the problem and not the answer to the problem. In fact, there are
fields in thermo–fluid where dimensional analysis, is recognized as useless. For example,
the area of multiphase flows there is no solution based on dimensionless parameters
(with the exception of the rough solution of Martinelli). In the Buckingham’s approach
it merely suggests the number of dimensional parameters based on a guess of all parame-
ters affecting the problem. Nusselt’s technique provides the form of these dimensionless

1The history of dimensional analysis is complex. Several scientists used this concept before Buck-
ingham and Nusselt (see below history section). Their work culminated at the point of publishing the
paper Buckingham’s paper and independently constructed by Nusselt. It is interesting to point out
that there are several dimensionless numbers that bear Nusselt and his students name, Nusselt number,
Schmidt number, Eckert number. There is no known dimensionless number which bears Buckingham
name. Buckingham’s technique is discussed and studied in Fluid Mechanics while almost completely
ignored by Heat and Mass Transfer researchers and their classes. Furthermore, in many advance fluid
mechanics classes Nusselt’s technique is used and Buckingham’s technique is abandoned. Perhaps this
fact can be attributed to tremendous influence Nusselt and his students had on the heat transfer field.
Even, this author can be accused for being bias as the Eckert’s last student. However, this author
observed that Nusselt’s technique is much more effective as it will demonstrated later.



12.1. INTRODUCTORY REMARKS 153

parameters, and the relative relationship of these parameters.

12.1.1 Brief History

The idea of experimentation with a different, rather than the actual, dimension was
suggested by several individuals independently. Some attribute it to Newton (1686)
who coined the phrase of “great Principle of Similitude.” Later, Maxwell a Scottish
Physicist played a major role in establishing the basic units of mass, length, and time
as building blocks of all other units. Another example, John Smeaton (8 June 1724–28
October 1792) was an English civil and mechanical engineer who study relation between
propeller/wind mill and similar devices to the pressure and velocity of the driving forces.
Jean B. J. Fourier (1768-1830) first attempted to formulate the dimensional analysis
theory. This idea was extend by William Froude (1810-1871) by relating the modeling
of open channel flow and actual body but more importantly the relationship between
drag of models to actual ships. While the majority of the contributions were done
by thermo–fluid guys the concept of the equivalent or similar propagated to other
fields. Aiméem Vaschy, a German Mathematical Physicist (1857–1899), suggested
using similarity in electrical engineering and suggested the Norton circuit equivalence
theorems. Rayleigh probably was the first one who used dimensional analysis (1872) to
obtain the relationships between the physical quantities (see the question why the sky
is blue story).
Osborne Reynolds (1842–1912) was the first to derive and use dimensionless parameters
to analyze experimental data. Riabouchunsky2 proposed of relating temperature by
molecules velocity and thus creating dimensionless group with the byproduct of compact
solution (solution presented in a compact and simple form).
Buckingham culminated the dimensional analysis and similitude and presented it in a
more systematic form. In the about the same time (1915, Wilhelm Nusselt (November
25, 1882 – September 1, 1957), a German engineer, developed the dimensional analysis
(proposed the principal parameters) of heat transfer without knowledge about previous
work of Buckingham.

12.1.2 Theory Behind Dimensional Analysis

In chemistry it was recognized that there are fundamental elements that all the material
is made from (the atoms). That is, all the molecules are made from a combination of
different atoms. Similarly to this concept, it was recognized that in many physical
systems there are basic fundamental units which can describe all the other dimensions
or units in the system. For example, isothermal single component systems (which does
not undergo phase change, temperature change and observed no magnetic or electrical
effect) can be described by just basic four physical units. The units or dimensions
are, time, length, mass, quantity of substance (mole). For example, the dimension or
the units of force can be constructed utilizing Newton’s second law i.e. mass times
acceleration −→ ma = M L/t2. Increase of degree of freedom, allowing this system

2Riabouchunsky, Nature Vol 99 p. 591, 1915
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to be non–isothermal will increase only by one additional dimension of temperature,
θ. These five fundamental units are commonly the building blocks for most of the
discussion in fluid mechanics (see Table of basic units 13.3).

Table 12.1 – Basic Units of Two Common Systems

Standard System Old System

Name Letter Units Name Letter Units

Mass M [kg] Force F [N ]

Length L [m] Length L [m]

Time t [sec] Time t [sec]

Temperature θ [◦C] Temperature T [◦C]

Additional Basic Units for Magnetohydrodynamics

Electric
Current

A [A]mpere
Electric
Current

A [A]mpere

Luminous
Intensity

cd [cd] candle
Luminous
Intensity

cd [cd] candle

Chemical Reactions

Quantity of
substance

M mol
Quantity of
substance

M mol

The choice of these basic units is not unique and several books and researchers suggest
a different choice of fundamental units. One common selection is substituting the mass
with the force in the previous selection (F, t, L, mol, Temperature). This author is not
aware of any discussion on the benefits of one method over the other method. Yet,
there are situations in which first method is better than the second one while in other
situations, it can be the reverse. Other selections are possible but not common and, at
the moment, will not be discussed here.

Example 12.1: What are the units of Level: Easy

What are the units of force when the basic units are: mass, length, time,
temperature (M, L, t, θ)? What are the units of mass when the basic units
are: force, length, time, temperature (F, L, t, T)? Notice the different notation
for the temperature in the two systems of basic units. This notation has no
significance but for historical reasons remained in use.

Solution
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End of Ex. 12.1
These two systems are related as the questions are the reversed
of each other. The connection between the mass and force can
be obtained from the simplified Newton’s second law F = ma
where F is the force, m is the mass, and a is the acceleration.
Thus, the units of force are

F =
M L

t2
(12..a)

For the second method the unit of mass are obtain from Equation
(12..a) as

M =
F t2

L
(12..b)

The number of fundamental or basic dimensions determines the number of the combi-
nations which affect the physical3 situations. The dimensions or units which affect the
problem at hand can be reduced because these dimensions are repeating or reoccurring.
The Buckingham method is based on the fact that all equations must be consistent
with their units. That is the left hand side and the right hand side have to have the
same units. Because they have the same units the equations can be divided to create
unitless equations. This idea alludes to the fact that these unitless parameters can be
found without any knowledge of the governing equations. Thus, the arrangement of the
effecting parameters in unitless groups yields the affecting parameters. These unitless
parameters are the dimensional parameters. The following trivial example demonstrates
the consistency of units

Example 12.2: Newton’s law dimensions Level: Easy

Newton’s equation has two terms that related to force F = ma+ ṁU . Where
F is force, m is the mass, a is the acceleration and dot above ṁ indicating
the mass derivative with respect to time. In particular case, this equation get a
form of

F = ma+ 7 (12..c)

where 7 represent the second term. What are the requirement on equation
(12..c)?

Solution

Clearly, the units of [F ], ma and 7 have to be same. The units
of force are [N ] which is defined by first term of the right hand
side. The same units force has to be applied to 7 thus it must

3The dimensional analysis also applied in economics and other areas and the statement should
reflect this fact. However, this book is focused on engineering topics and other fields are not discussed.
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End of Ex. 12.2
be in [N ].

Suppose that there is a relationship between a quantity a under the question and several
others parameters which either determined from experiments or theoretical consideration
which is of the form

D = f(a1, a2, · · · , ai, · · · , an) (12.1)

where D is dependent parameters and a1, a2, · · · , ai, · · · , an are have independent di-
mensions. From these independent parameters a1, a2, · · · , ai have independent di-
mensions (have basic dimensions). This mean that all the dimensions of the param-
eters ai+1, · · · , an can be written as combination of the the independent parameters
a1, a2, · · · , ai. In that case it is possible to write that every parameter in the later set
can written as dimensionless

ai+1

a1
p1 , a2

p2 , · · · , aipi
= dimensionless (12.2)

The “non–basic” parameter would be dimensionless when divided by appropriately and
selectively chosen set of constants p1, p2, · · · , pi.

Example 12.3: Clamping force Level: Easy

In a experiment, the clamping force is measured. It was found that the clamping
force depends on the length of experimental setup, velocity of the upper part,
mass of the part, height of the experimental setup, and leverage the force is
applied. Chose the basic units and dependent parameters. Show that one of
the dependent parameters can be normalized.

Solution

The example suggest that the following relationship can be writ-
ten.

F = f(L,U,H, τ,m) (12..d)

The basic units in this case are in this case or length, mass,
and time. No other basic unit is need to represent the problem.
Either L, H, or τ can represent the length. The mass will be
represented by mass while the velocity has to be represented by
the velocity (or some combination of the velocity). Hence a one
possible choice for the basic dimension is L, m, and U . Any of
the other Lengths can be represented by simple division by the
L. For example

Normalize parameter =
H

L
(12..e)
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End of Ex. 12.3
Or the force also can be normalized as

Another Normalize parameter =
F

mU2 L−1
(12..f)

The acceleration can be any part of acceleration component such
as centrifugal acceleration. Hence, the force is mass times the
acceleration.

The relationship (12.1) can be written in the light of the above explanation as

D

a1
p1 , a2

p2 , · · · , aip1
=

F

(
ai+1

a1
pi+1,1 , a2

pi+1,2 , · · · , aipi+1,i
, · · · , an

anpn,1 , anpn,2 , · · · , anpn,i
)

(12.3)

where the indexes of the power p on the right hand side are single digit and the double
digits on the on the right hand side. While this “proof” shows the basic of the Buck-
ingham’s method it actually provides merely the minimum number of the dimension
parameters. In fact, this method entrenched into the field while in most cases pro-
vides incomplete results. The fundamental reason for the erroneous results is because
the fundamental assumption of equation (12.1). This method provides a crude tool of
understanding.

12.1.3 Dimensional Parameters Application for Experimental
Study

The solutions for any situations which are controlled by the same governing equations
with same boundary conditions regardless of the origin the equation. The solutions are
similar or identical regardless to the origin of the field no matter if the field is physical, or
economical, or biological. The Buckingham’s technique implicitly suggested that since
the governing equations (in fluid mechanics) are essentially are the same, just knowing
the parameters is enough the identify the problem. This idea alludes to connections
between similar parameters to similar solution. The non–dimensionalization i.e. opera-
tion of reducing the number affecting parameters, has a useful by–product, the analogy
in other words, the solution by experiments or other cases. The analogy or similitude
refers to understanding one phenomenon from the study of another phenomenon. This
technique is employed in many fluid mechanics situations. For example, study of com-
pressible flow (a flow where the density change plays a significant part) can be achieved
by study of surface of open channel flow. The compressible flow is also similar to traffic
on the highway. Thus for similar governing equations if the solution exists for one case
it is a solution to both cases.
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D2

D1

Fig. 12.1 – Fitting rod into a hole.

The analogy can be used to con-
duct experiment in a cheaper way and/or
a safer way. Experiments in different scale
than actual dimensions can be conducted
for cases where the actual dimensions are
difficult to handle. For example, study of
large air planes can done on small mod-
els. On the other situations, larger mod-
els are used to study small or fast situ-
ations. This author believes that at the
present the Buckingham method has ex-
tremely limited use for the real world and
yet this method is presented in the classes
on fluid mechanics. Thus, many examples
on the use of this method will be presented in this book. On the other hand, Nusselt’s
method has a larger practical use in the real world and therefore will be presented for
those who need dimensional analysis for the real world. Dimensional analysis is useful
also for those who are dealing with the numerical research/calculation. This method
supplement knowledge when some parameters should be taken into account and why.

Fitting a rod into a circular hole (see Figure 12.1) is an example how dimensional
analysis can be used. To solve this problem, it is required to know two parameters;
1) the rode diameter and 2) the diameter of the hole. Actually, it is required to have
only one parameter, the ratio of the rode diameter to the hole diameter. The ratio is
a dimensionless number and with this number one can tell that for a ratio larger than
one, the rode will not enter the hole; and a ratio smaller than one, the rod is too small.
Only when the ratio is equal to one, the rode is said to be fit. This presentation allows
one to draw or present the situation by using only one coordinate, the radius ratio.
Furthermore, if one wants to deal with tolerances, the dimensional analysis can easily
be extended to say that when the ratio is equal from 0.99 to 1.0 the rode is fitting, and
etc. If one were to use the two diameters description, further significant information
will be needed. In the preceding simplistic example, the advantages are minimal. In
many real problems this approach can remove clattered views and put the problem into
focus. Throughout this book the reader will notice that the systems/equations in many
cases are converted to a dimensionless form to augment understanding.

12.1.4 The Pendulum Class Problem

The only known problem that dimensional analysis can solve (to some degree) is the
pendulum class problem. In this section several examples of the pendulum type problem
are presented. The first example is the classic Pendulum problem.
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Example 12.4: Dimensionless Pendulum Level: Easy

Derive the relationship for the gravity [g],
frequency [ω] and length of pendulum [`]. As-
sume that no other parameter including the
mass affects the problem. That is, the relation-
ship can be expressed as

ω = f (`, g) (12..g)

Notice in this problem, the real knowledge is
provided, however in the real world, this knowl-
edge is not necessarily given or known. Here it
is provided because the real solution is already
known from standard physics classes.4

θ

mg

`

Fig. 12.2 – Figure for exam-
ple (12.4).

Solution

The solution technique is based on the assumption that the in-
dexical form is the appropriate form to solve the problem. The
Indexical form

ω = C1 × `agb (12..h)

The solution functional complexity is limited to the basic com-
bination which has to be in some form of multiplication of ` and
g in some power. In other words, the multiplication of ` g have
to be in the same units of the frequency units. Furthermore,
assuming, for example, that a trigonometric function relates `
and g and frequency. For example, if a sin function is used, then
the functionality looks like ω = sin(` g). From the units point
of view, the result of operation not match i.e. (sec 6= sin (sec)).
For that reason the form in equation (12..h) is selected. To sat-
isfy equation (12..h) the units of every term are examined and
summarized the following table.

Table 12.2 – Units of the Pendulum Parameters

Parameter Units Parameter Units Parameter Units

ω t−1 ` L1 g L1t−2
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End of Ex. 12.4

Thus substituting of the Table 12.2 in equation (12..h) results in

t−1 = C1

(
L1
)a (

L1 t−2
)b

=⇒ La+bt−2 b (12..i)

after further rearrangement by multiply the left hand side by L0

results in
L0t−1 = C La+bt−2 b (12..j)

In order to satisfy equation (12..j), the following must exist

0 = a+ b and −1 = −2
b

(12..k)

The solution of the equations (12..k) is a = −1/2 and b = −1/2.

What was found in this example is the form of the solution’s equation and fre-
quency. Yet, the functionality e.g. the value of the constant was not found. The
constant can be obtained from experiment for plotting ω as the abscissa and

√
`/g as

ordinate.
According to some books and researchers, this part is the importance of the di-

mensional analysis. It can be noticed that the initial guess merely and actually determine
the results. If, however, the mass is added to considerations, a different result will be
obtained. If the guess is relevant and correct then the functional relationship can be
obtained by experiments.

12.2 Buckingham–π–Theorem
All the physical phenomena that is under the investigation have n physical effecting
parameters such that

F1(q1, q2, q3, · · · , qn) = 0 (12.4)

where qi is the “i” parameter effecting the problem. For example, study of the pressure
difference created due to a flow in a pipe is a function of several parameters such

∆P = f(L, D, µ, ρ, U) (12.5)

In this example, the chosen parameters are not necessarily the most important parame-
ters. For example, the viscosity, µ can be replaced by dynamic viscosity, ν. The choice
is made normally as the result of experience and it can be observed that ν is a function
of µ and ρ. Finding the important parameters is based on “good fortune” or perhaps
intuition. In that case, a new function can be defined as

F (∆P,L,D, µ, ρ, U) = 0 (12.6)

4The reader can check if the mass is assumed to affect the problem then, the result is different.
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Again as stated before, the study of every individual parameter will create incredible
amount of data. However, Buckingham’s5 methods suggested to reduce the number of
parameters. If independent parameters of same physical situation is m thus in general
it can be written as

F2(π1, π2, π3, · · · , πm) = 0 (12.7)

If there are n variables in a problem and these variables contain m primary dimensions
(for example M, L, T), then the equation relating all the variables will have (n-m)
dimensionless groups.

There are 2 conditions on the dimensionless parameters:

1. Each of the fundamental dimensions must appear in at least one of the m variables

2. It must not be possible to form a dimensionless group from one of the variables
within a recurring set. A recurring set is a group of variables forming a dimen-
sionless group.

In the case of the pressure difference in the pipe (Equation (12.6)) there are 6
variables or n = 6. The number of the fundamental dimensions is 3 that is m = 3 ([M],
[L], [t]) The choice of fundamental or basic units is arbitrary in that any construction
of these units is possible. For example, another combination of the basic units is time,
force, mass is a proper choice. According to Buckingham’s theorem the number of
dimensionless groups is n −m = 6 − 3 = 3. It can be written that one dimensionless
parameters is a function of two other parameter such as

π1 = f (π2, π3) (12.8)

If indeed such a relationship exists, then, the number of parameters that control the
problem is reduced and the number of experiments that need to be carried is considerably
smaller. Note, the π–theorem does not specify how the parameters should be selected
nor what combination is preferred.

12.2.1 Construction of the Dimensionless Parameters

In the construction of these parameters it must be realized that every dimensionless
parameters has to be independent. The meaning of independent is that one dimen-
sionless parameter is not a multiply or a division of another dimensional parameter. In
the above example there are three dimensionless parameters which required of at least
one of the physical parameter per each dimensionless parameter. Additionally, to make
these dimensionless parameters independent they cannot be multiply or division of each
other.

For the pipe problem above, ` and D have the same dimension and therefore
both cannot be chosen as they have the same dimension. One possible combination

5E. Buckingham, “Model Experiments and the Forms of Empirical Equations,” Transactions of the
American Society of Mechanical Engineers, Vol. 37, 1915.
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is of D, U and ρ are chosen as the recurring set. The dimensions of these physical
variables are: D = [L1], velocity of U = [L t−1] and density as ρ = [M L−3]. Thus,
the first term D can provide the length, [L], the second term, U , can provide the time
[t], and the third term, ρ can provide the mass [M ]. The fundamental units, L, t, and
M are length, time and mass respectively. The fundamental units can be written in
terms of the physical units. The first term L is the described by D with the units of
[L]. The time, [t], can be expressed by D/U . The mass, [M ], can be expressed by
ρD3. Now the dimensionless groups can be constructed by looking at the remaining
physical parameters, ∆P , D and µ. The pressure difference, ∆P , has dimensions of
[M L−1 t−2] Therefore, ∆P M−1 L t2 is a dimensionless quantity and these values were
calculated just above this line. Thus, the first dimensionless group is

π1 =

[M L−1 t−2]︷︸︸︷
∆P

[M−1]︷ ︸︸ ︷
1

ρD3

[L]︷︸︸︷
D

[t2]︷︸︸︷
D2

U2
=

unitless︷ ︸︸ ︷
∆P

ρU2
(12.9)

The second dimensionless group (using D) is

π2 =

[L]︷︸︸︷
D

[L−1]︷︸︸︷
`−1 =

D

L
(12.10)

The third dimensionless group (using µ dimension of [M L1 t−1]) and therefore dimen-
sionless is

π3 = µ

[M−1]︷ ︸︸ ︷
1

D3 ρ

[L]︷︸︸︷
D

[t]︷︸︸︷
D

U
=

µ

DU ρ
(12.11)

This analysis is not unique and there can be several other possibilities for selecting
dimensionless parameters which are “legitimately” correct for this approach.

There are roughly three categories of methods for obtaining the dimensionless
parameters. The first one solving it in one shot. This method is simple and useful for
a small number of parameters. Yet this method becomes complicated for large number
of parameters. The second method, some referred to as the building blocks method, is
described above. The third method is by using dimensional matrix which is used mostly
by mathematicians and is less useful for engineering purposes.

The second and third methods require to identification of the building blocks.
These building blocks are used to construct the dimensionless parameters. There are
several requirements on these building blocks which were discussed on page 161. The
main point that the building block unit has to contain at least the basic or fundamental
unit. This requirement is logical since it is a building block. The last method is mostly
used by mathematicians which leads and connects to linear algebra. The fact that this
method used is the hall mark that the material was written by mathematician. Here,
this material will be introduced for completeness sake with examples and several terms
associated with this technique.



12.2. BUCKINGHAM–π–THEOREM 163

12.2.2 Similarity and Similitude

One of dimensional analysis is the key point is the concept that the solution can be ob-
tained by conducting experiments on similar but not identical systems. The analysis here
suggests and demonstrates6 that the solution is based on several dimensionless num-
bers. Hence, constructing experiments of the situation where the same dimensionless
parameters obtains could, in theory, yield a solution to problem at hand. Thus, knowing
what are dimensionless parameters should provide the knowledge of constructing the
experiments.

In this section deals with these similarities which in the literature some refer as
analogy or similitude. It is hard to obtain complete similarity. Hence, there is discussion
how similar the model is to the prototype. It is common to differentiate between
three kinds of similarities: geometric, kinetics, and dynamic. This characterization
started because historical reasons and it, some times, has merit especially when applying
Buckingham’s method. In Nusselt’s method this differentiation is less important.

Geometric Similarity

One of the logical part of dimensional analysis is how the experiences should be
similar to actual body they are supposed to represent. This logical conclusion is an add–
on and this author is not aware of any proof to this requirement based on Buckingham’s
methods. Ironically, this conclusion is based on Nusselt’s method which calls for the
same dimensionless boundary conditions. Again, Nusselt’s method, sometimes or even
often, requires similarity because the requirements to the boundary conditions. Here7

this postulated idea is adapted.
Under this idea the prototype area has to be square of the actual model or

Ap
Am

=

(
`1prototype
`1model

)2

=

(
`2p
`2m

)2

(12.12)

where `1 and `2 are the typical dimensions in two different directions and subscript p
refers to the prototype and m to the model. Under the same argument the volumes
change with the cubes of lengths.

In some situations, the model faces inability to match two or more dimensionless
parameters. In that case, the solution is to sacrifice the geometric similarity to minimize
the undesirable effects. For example, river modeling requires to distort vertical scales
to eliminate the influence of surface tension or bed roughness or sedimentation.

Kinematic Similarity

The perfect kinetics similarity is obtained when there are geometrical similarity
and the motions of the fluid above the objects are the same. If this similarity is not
possible, then the desire to achieve a motion “picture” which is characterized by ratios

6This statement is too strong. It has to be recognized that the results are as good as the guessing
which in most cases is poor.

7Because this book intend to help students to pass their exams, this book present what most
instructors required. It well established that this over–strict requirement and under Nusselt’s method
it can be overcome.
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of corresponding velocities and accelerations is the same throughout the actual flow
field. It is common in the literature, to discuss the situations where the model and
prototype are similar but the velocities are different by a different scaling factor.

The geometrical similarity aside the shapes and counters of the object it also can
requires surface roughness and erosion of surfaces of mobile surfaces or sedimentation
of particles surface tensions. These impose demands require a minimum on the friction
velocity. In some cases the minimum velocity can be Umin =

√
τw/ρ. For example,

there is no way achieve low Reynolds number with thin film flow.

Dynamics Similarity

The dynamic similarity has many confusing and conflicting definitions in the lit-
erature. Here this term refers to similarity of the forces. It follows, based on Newton’s
second law, that this requires similarity in the accelerations and masses between the
model and prototype.

Example 12.5: Nusselt’s technique Level: Easy

What are the dimensional param-
eters that control the stablity of floating
bodies using Nusselt’s technique assum-
ing the body are with uniform density.

α
s

∆x

Fig. 12.3 – Floating body showing al-
pha and other dimensions.

Solution

The governing equation for the stability of floating body is

θ = α (12.13)

where θ is the arbitrary turning angle and α is the angle result-
ing from change of the centroid of submerge volume due to the
change in θ. The relationship between the various geometrical
parameters is determined connection according to Eq. (12.13).
That relationship requires look at the component of triangle at
Fig. 12.3. The base of the triangle is determined by

∆x = xn − x0 =
V

V0

(xa − xr) (12..l)
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End of Ex. 12.5
and xa and xr is related to ratio

xa =

∫
x dV∫
dV

=

∫
x(x tan θ)d(x) dx

V
=

tan θ
∫
x2

dA︷ ︸︸ ︷
d(x) dx

V
(12..m)

or using the definition of moment of inertia Eq. (12..m) can be
transferred into

xa =
tan θ Ixx

V
(12..n)

After the opposite side calculation, adjacent side (GBGBGB center of
(BBB) buoyancy (GGG) center of gravity ) thus (GGG-BBB). The weight
can be estimated as m = ρ`ABBB = ρsAGGG. When A is typical
cross section, thus

GBGBGB = GGG

(
1− ρs

ρ`

)
(12..o)

Combining equations (12..n) and (12..o) results in

α =

tan θ Ixx
V

GGG
(

1− ρs
ρ`

) (12..p)

Observation of Eq. (12..p) so dimensional group ρs
ρ`

, and Ixx
GGGV

While the analysis was clumsy and rough it provides dimension-
less parameters while Buckingham’s method fails dramatically.

12.3 Summary
The two dimensional analysis methods or approaches were presented in this chapter.
Buckingham’s π technique is a quick “fix approach” which allow rough estimates and
relationship between model and prototype. Nusselt’s approach provides an heavy duty
approach to examine what dimensionless parameters effect the problem. It can be shown
that these two techniques in some situations provide almost similar solution. In other
cases, these technique proves different and even conflicting results. The dimensional
analysis technique provides a way to simplify models (solving the governing equation by
experimental means) and to predict effecting parameters.
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13
Experiments for Stability

13.1 Introduction
This chapter intended for students who taking a stability class or fluid mechanics beside
professionals in marine industry. This chapter is intended to be supplemental to the
academic material but in other situations it could be a stand alone material. While
stability has mainly theoretical subjects. Yet, there are elements that should provide the
student with a hands–on experience. For this reason, several experiments are designed
to be performed by the instructor or by the students to provide the “missing” intuition.
The floating body stability is not intuitive as the stability of placing body on solid surface
and requires demonstration for various aspects. Even professionals could benefits from
these experiments due to the fact that many of these aspects are totally innovative.

The first experiment deals with the stability diagram of floating bodies. Every
geometry of floating body has its own stability diagram and diagram demonstrates three
zones: stable, unstable, and neutral situations. The second experiment deals again with
stability diagram but for different geometries. The third experiment the measurements
of GMGMGM of the cylinder are carried out. The natural frequency of the floating body is
measured for constant cross. The change of the rotation location is estimated. The
principle axes experiment in which general shape of the “preferred” axes of rotation is
examined.

The every experiment will be written as a separated document (that is, start from
a new page) and appear in this collection.

167
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13.2 Stability Points of Various Bodies

13.2.1 Concept

Every body has a stability points (angles or positions) either on solid surface or in liquid
(while floating) for which the body is stable. The number of these points and their
angle depends on the geometry of the body. The intention of this experiment is to
build intuition in regards to the stability points and demonstrate the unpredictability of
these angles. This discussion is for the uniform density bodies.

13.2.2 Description

The existences of stability points is a fundamental concept in the stability analysis which
could be carried out by high school students , university students and by professionals.
The experiment is designed to demonstrate the existence of clear points (angles) in
which the body is stable around. At stability points, the body is stable while at other
angles the body is unstable. These points are different from the angles when the body
is at rest on solid surface. The neutral stability is also demonstrated in this experiment.

GGG

(a) G over the base: stable

GGG

Body on SolidBody (on) in Liquid

AAA
BBB

(b) G out of the base: unstable

Fig. 13.1 – Body on solid surface stable and unstable.

These bodies shown in the Fig. 13.1 have different stability points on liquid. The body
depicted in Fig. 13.1a has four point on solid and floating on liquid. While the body
depicted in Fig. 13.1a has two points but on liquid these point are at different angles.

13.2.3 Apparatus

The experiment is based on observation and not measurement and is relatively simple to
carry out. Yet, there are several issues to be pointed out, placing body on solid surface
compared to placing the body in liquid, estimating the number stable points (again
should be compared to solid), comparison change of one parameter of the geometry,
and change of density ratio. A container (preferred transparent) with an ability to
contain enough liquid in which the floating bodies can to be examined. Several bodies:
extruded squire, extruded circular, extruded rectangular (with different ratios). It also
should include a body similar to the one depicted Fig. 13.1b and one similar to one
depicted in Fig. 13.1a. The same bodies should be made out two different materials
(light and heaver like a styrofoam, and wood).
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13.2.4 Procedure

State what are your predicting angles prior the experiments and tabulate the prediction
in the following tables.

Table 13.1 – Angle of Stable points Styrofoam

Solid Liquid

Shape Prediction Actual Prediction Actual

square

rec ratio 1:1.1

rec ratio 1:1.2

rec ratio 1:1.3

rec ratio 1:1.4

rec ratio 1:1.5

rec ratio 1:1.6

rec ratio 1:2

cylinder

ball

Table 13.2 – Angle of Stable points Oak

Solid Liquid

Shape Prediction Actual Prediction Actual

square

rec ratio 1:1.1

rec ratio 1:1.2

rec ratio 1:1.3

rec ratio 1:1.4

Continued on next page
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Table 13.2 – Angle of stable point Oak (continue)

Shape Prediction Actual Prediction Actual

rec ratio 1:1.5

rec ratio 1:1.6

rec ratio 1:2

cylinder

ball

Place the bodies on solid surface and observed the results. Place the cylinder in
different angle and observed if the cylinder change or stay in the placed angle. Repeat
the same for the ball.

13.2.5 Data Analysis

Calculate the density of the oak and styrofoam. Using the information build a stability
diagram for the rectangular shape.

13.2.6 Additional Questions

1. Is possible to build the same diagram for triangle?

2. Is possible to build this diagram for other shape? what are the requirements for
this diagram on the geometry?
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13.3 Cylinder Stability Diagram

13.3.1 Concept

This laboratory experiment is an exercise in stability. It is designed to demonstrate the
stability of floating bodies and to familiarize the student with the concepts of buoyancy,
neutral and stable and unstable situations, and stability dome. Every floating body has
a stability diagram which is depicting stability for certain angle. The vertical position
(angle) is often the most alluring for many applications. For example, rectangle in a
vertical position is useful for marine applications.

13.3.2 Description

The stability of the floating body for specific angle has what known as the stability
dome. The floating body buoyancy centroid, BBB, depends on the body shape and on its
orientation.

A floating body has several stable positions (angles). The vertical position mimic
to some extent the shape of ship. A position can be stable under a certain density
ratio range. The stability dome is introduced via the change of the density ratio. In
other words, the experiment is designed to investigate the change density effect on the
stability. The change of the density effect is obtained by adding sand (or liquid) to the
cylinder. The additional material add weight and hence the effective density c hanges.
The schematic of the experiment is shown diagram Fig. 13.2.

ho hi

ri

ro

A B

hm

Fig. 13.2 – Schematic the stability dome Apparatus.

Note that the gravity centroid changes also during filing process and it is accounted by
introducing the effective density ratio. The effective density concept is emulate body
with a constant density.

This experimental is verification of the theory presented in this textbook. The
dome shown in stability map represents the limits of floating body stability. The effective
density of the floating body (ρs) is controlled by the amount liquid in the cylinder. A
discussion about the effective density is below. Thus, the density ratio can be varied by
filling the cylindrical container with liquid or sand.

The core issue of the floating body stability is the locations of gravity centroid
and buoyancy centroid. The gravity is fixed in case of uniformed density body. In
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this case the gravity depends on the liquid level in the in the inner container (A). The
effective density ratio (or the simulated solid body density) is changed by amount liquid
poured into cylinder. As opposed to the fix case the buoyancy centroid can be calculated
from the middle of the height of the inner cylinder (regardless of the thickness of the
container.)

13.3.3 Apparatus

There are three components of the experimental set-up shown in Fig. 13.2:

1. Large vertically-standing cylinder containing liquid (fresh water) denoted in figure
as B

2. Small cylinder with a detachable cap at one end denoted in figure as A

3. weighing scale

Insert the inner container to the large container empty. Fill the inner container
with small incremental amount of liquid (see Fig. 13.2). Measure the height of the
filling the liquid and records the mount. Check if the inner container is stable.

13.4 The procedure
1. Measure the weight the inner container and indicate it on the report

2. Fill the exterior container with liquid (fresh water or oil, etc)

3. Inserted the inner container into the larger container

4. Measure the thickness inner container wall

5. Measure and record the height ho. This height is the initial height, ho0.

6. Check if the cylinder is stable and record this information

7. Add small amount of liquid into the inner container.

8. Messure hi and ho

9. Go item 6 if the inner cylinder is not full

10. If the inner cylinder is full, it is the end of the process.

13.4.1 Data Analysis

The data analysis is made from two sections: the initial and the process parts. The
initial part deals with calibrations.
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Initial

1. Calculate the density of the liquid using the weight

2. Use the value of ho0 to calculate and verify the weight of the empty inner cylinder,
wi0.

w10 = h2 π r1
2 ρ` (13.1)

3. Calculate the initial gravity location of the empty inner container, (assuming thin
walls)

GGG0 =
hm

2 π ro t

π ro2 t+ 2hm π ro t
=

hm
2

ro + 2hm
(13.2)

4. Calculate the buoyancy centroid using BBB0 = ho
2

Process

Repeat the following steps for each additional liquid amount:

5. Calculate the buoyancy centroid as BBB = ho/2

6. Calculate the effective gravity centroid by

GGGeff =
wi0GGG0 + 0.5hi

2 π ri
2 g ρ`

wi0 + hi π ri2 g ρ`
(13.3)

7. Compare GGGeff and hB . If GGGeff > BBB the experiment is not valid (it is not
addressed the case of GGG over/above BBB) for uniform density. This data point
should be ignored. Continue the next data point.

8. The density ratio can can be calculated by

ρs =
2hG
ho

ρ` (13.4)

9. Draw stability dome for the inner container.

Table 13.3 – Table for the calculating various value

index ho hi BBB GGGeff ρs

1

Continued on next page
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Table 13.3 – Table for the calculating various values (continue)

index h0 hi BBB GGGeff ρs

2

3

4

5

6

7

8

9

10

11

13.4.2 Additional Questions

Questions to the students:

1. Under what conditions the fact that the liquid (or other moving surfaces) is not
relevant to the stability analysis?

2. Show that Eq. (13.3) the density of the liquid is irrelevant. Simplify the equation.

3. Explain how Eq. (13.3) was constructed.

4. What is the physical limit of this experiment. Why the experiment is limited?
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13.5 GMGMGM experiments

13.5.1 Concept

Simply stating, a body is stable if a small rotation is applied and body return to its
original state. In the old method is done by measuring the GMGMGM as a marker of the
stability. The body is stable when GMGMGM is positive. Note the GMGMGM is monotonic but not
a linear function, that is, GMGMGM=2[m] is more than 1[m] but not double in the “stability.”

13.5.2 Description

In this experiment, the stability marker, GMGMGM, is obtained for specific geometry. In doing
so the concepts of stability, and metacenter are introduced. This concept was discussed
in chapter 9 and here it is verified. Due to fact this material could be used as a stand
alone this description is added.

The buoyancy centroid depends on submerged geometry. Assuming quasi steady
state, that is the body in equilibrium with

the liquid in the z direction and, forces act
on the body gravity and buoyancy are equal.
However, the only deviation from the quasi
steady state is in the roll (change in angle
of the body in the yz plane as defined in
chapter 2).

Buoyancy depends on the body shape
and orientation (angle). When the body is
tilted in a small amount the buoyancy cen-
troid moves as well. Thus, the buoyancy
centroid movement is such that BBB moves

θ

G

B′B′B′
2

MMM1

B′B′B′
1

BBB

MMM2

Fig. 13.3 – Genral change of BBB with two
possibilities.

to two possible zones with a border (the border is not shown explicitly) as shown
in Fig. 13.3. The right side is stable (blue color) and the unstable (brown color).
The border is made by a circular body which is neutral stability (under the GGG point).
The point of intersection of the lines of vertical line from the new buoyancy centroid
with the previous vertical line that goes through the BBB is referred as the metacenter
(MMM) and the distance between the center of gravity (GGG) and MMM , is referred as the
metacentric height (GMGMGM , see Fig. 13.3).

The expression for the metacentric height GMGMGM is

GM =
Ixx
V0
−GBGBGB (13.5)

where Ixx is the floating body moment of inertia at the liquid line, GBGBGB is the distance
between the gravity centroid and the old buoyancy centroid and V0 is volume of the
displaced liquid. For stability the metacentric height GMGMGM must be positive. Stability
(restoring force) increases with increasing GMGMGM .

In this experiment, the mission to estimate the metacentric height for several
floating bodies.
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13.5.3 Rig

There are three components of the experimental set-up:

1. A large pot (preferred in a cylinder shape) containing liquid (the liquid can be
salt water, fresh water, oil, etc.),

2. scale,

3. a additional sand or liquid,

4. relatively smaller pot to be fitted into the first pot (thus it should be made from
cylindrical shape or, at least, both can be any shape that fitted into each other
proffered to be in a form that easy to calculate (or pre–calibrated) the volume),
and,

5. and a metric balance to weigh the cylinders.

GGG `
ho hi

ri

ro

A B

hs
GGGp

t

Fig. 13.4 – Apparatus for GMGMGM.

13.5.4 Procedure

1. Measure the weigh of the small pot make it ws

2. Place the small empty cylinder into the large vertical cylinder filled with liquid
and observe stability (whether or not the cylinder is stable).

3. Add a small amount of sand/liquid into the small cylinder and describe if the small
cylinder is unstable. Measure the distance of the small cylinder is submerged, ho,
and then measure the height of liquid/sand, hi.

4. Continue adding sand until the small cylinder remains vertical, i.e., stable. Mea-
sure the submerged amount of cylinder. (This is the stability boundary)

5. Continue the process until the cylinder become stable again. Mark that point as
the second stability boundary on the GMGMGM diagram or the stability diagram.

6. Remove the small cylinder and measure its weight. Also measure the height of
sand and record your results on the data sheet.
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13.5.5 Measurements

According to procedures described above, measure the following quantities:

Table 13.4 – Measurement table

Measurement Table

Case Mass (gm) h[cm] hi[cm]

Unstable

Stable

13.5.6 Data Analysis

Fig. 13.4 shows apparatus that used for this experiment which a cylinder (pot) inside
another cylinder (pot). The inside cylinder is filled by material. The cylinder floats in
a liquid with density of ρ`, as it marked in schematic. The buoyancy centroid is at
BBB = ho/2. The center of the actual gravity centroid, GGG, is given by

GGG =
wi (hi/2 + t) + wA hs

wi + wA
(13.6)

The metacenter is given (assuming that it is cylinder) by

GMGMGM =
π ri

4

π ri2
− (GGG−BBB) (13.7)

Table 13.5 – Trapezoid properties and equations

The calcualted values

ho hi BBB GGG GMGMGM

Continued on next page
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Table 13.5 – Basic Cone properties (continue)

The calcualted values

ho hi BBB GGG GMGMGM

13.5.7 Additional Questions

1. In the vertical position, how many stable positions are there?

2. Is there any other layout or angles of the cylinder beside the vertical position
that body is in stable positions? (hint, check the photos in this book) When the
cylinder is layout in the liquid as shown in Fig. 13.5 are considered as neutral
stable (that is, consider the symmetrical shape and its orientation in x coordinate
as defined for ships.). What are the conditions that these cylinders for this to be
true (hint, see the discussion about it in book). Is the cap at the cylinder end
affects this neutral symmetry.

3. Consider a hollow circular cylinder of homogeneous material of specific gravity,
s = 0.5, length, L, and diameter, D, stable at the position shown in Fig. 3. Find
the formulas for the immersion of the cylinder h at this position.

BBB

(a) hollow cylinder without cap

BBB

(b) hollow cylinder with cap

Fig. 13.5 – cylinder laying on liquid with and without cap.

4. Consider a hollow cylinder made with two plates of thickness t = ξ r, and the
density of the solid is a ρ`. Assume the cylinder is filled with air which mass can
be ignored. what the range of ξ that this cylinder will float?

5. A hollow cylinder is with wall of uniform thickness, t is floating vertically in liquid.
The ratio of the height and ratios of cylinder are L and r respectively. Determine
the ranges of r/L for which the positions of the vertical cylinder is stable. The
density of the liquid is ρ`.
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13.5.8 References

Meta
Dr. Robert Ettema 57:020 Mechanics of Fluids & Transfer Processes Laboratory
Experiment #2

ERIC SAVORY

Associate Professor of Fluid Mechanics Department of Mechanical and Materi-
als Engineering Faculty of Engineering Professional Associations: PEng, CEng,
MRAeS https://www.eng.uwo.ca/people/esavory/

Meta End
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DataDataData

Table 6 – Moment of Ineria and Other Data

Shape Name Geometry Centroid Area III

Rectangle
b

a

b/2

XX
b

2
;
a

2
a b

ab3

12

Triangle

aaa

bbb

XXXXXX

b/3b/3b/3

a

3

a b

3

ab3

36

Circle

b

a

b/2

XX
a = b

b

2

π b2

4

πb4

64

Ellipse

YY

a

b

XX

a

2

b

2

π ab

4

ab3

64

Continued on next page
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Table 6 – Moment of inertia (continue)

Name Geometry Centroid Area III

y = αx2

Parabola

b

XX

xc

a

3α b
15α−5

6α−2
3 ×(
b
α

) 3
2

√
b (20 b3−14 b2)

35
√
α

Trapezoid
c

a

b

h

y

x

Xc

Yc

Xc =
a2+b2+2ac+cb+ab

3(a+b)

Yc =

h(2a+b)
3(a+b)

h(a+b)
2

h3(3a+b)
12

Quadrant
of Circle

r

r

XX

4 r

3 π

4 r

3π

π r2

4
r4( π16−

4
9π )

Ellipsoidal
Quadrant

b

a

XX

4b

3 π

4 b

3π

π a b

4
a b3( π16−

4
9π )

Half of
Elliptic

b

a

XX

4b

3 π

4 b

3π

π a b

4
a b3( π16−

4
9π )

Circular
Sector

r

XX
α
α

0 2α r2 r4

4

(
α− 1

2 sin 2α
)

Continued on next page
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Table 6 – Moment of inertia (continue)

Name Geometry Centroid Area III

Circular
Sector

r

XX
α 2

3

r sinα

α

α

2
3
r sinα
α 2α r2

Ix′x′ =

r4

4

(
α+

1
2 sin 2α

)
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