

SSHOC, “Social Sciences and Humanities Open Cloud”, has received funding from the EU Horizon 2020

Research and Innovation Programme (2014-2020); H2020-INFRAEOSC-04-2018, under the agreement No.

823782

Research and Innovation Action

Social Sciences & Humanities Open Cloud

Project Number: 823782 Start Date of Project: 01/01/2019 Duration: 40 months

Deliverable 7.2 Marketplace – Implementation

Dissemination Level PU

Due Date of Deliverable 31/12/2021 (M36)

Actual Submission Date 17/11/2021

Work Package WP 7 - Creating the SSH Open Marketplace

Task
Task 7.2 Development of the Marketplace

Application

Type Report

Approval Status Waiting EC approval

Version V1.0

Number of Pages p.1 – p.50

Abstract:

Report by Task 7.2 team accompanying the implementation and final public release version of the SSH

Open Marketplace application on the background of the system specification published as D7.1 System

Specification - SSH Open Marketplace, in September 2019.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made of the
information contained therein. The information in this document is provided “as is” without guarantee or warranty of any kind, express or implied,
including but not limited to the fitness of the information for a particular purpose. The user thereof uses the information at his/ her sole risk and
liability. This deliverable is licensed under a Creative Commons Attribution 4.0 International License.

D7.2 – v. 1.0

History

Version Date Reason Revised by

0.0 06/2021 Skeleton Frank Fischer, Laure Barbot

0.1 09/2021 First draft

Matej Ďurčo, Laure Barbot with contributions
from Klaus Illmayer, Seung-Bin Yim, Sotiris
Karampatakis, Frank Fischer, Yoann
Moranville, Joshua Tetteh Ocansey, Stefan
Probst, Michał Kozak and Stefan
Buddenbohm.

0.2 10/2021 Review
Stefania Martziou, Antonis Lempesis
(OpenAire) & John Shepherdson (CESSDA)

1.0 15/11/2021 Addressing comments Matej Ďurčo, Laure Barbot

Author List

Organisation Name Contact Information

DARIAH/OEAW Matej Ďurčo matej.durco@oeaw.ac.at

DARIAH Laure Barbot laure.barbot@dariah.eu

DARIAH/OEAW Klaus Illmayer klaus.illmayer@oeaw.ac.at

SWC Sotiris Karampatakis sotiris.karampatakis@semantic-web.com

DARIAH Frank Fischer frank.fischer@dariah.eu

DARIAH Yoann Moranville yoann.moranville@dariah.eu

CESSDA Joshua Tetteh Ocansey joshua.ocansey@cessda.eu

DARIAH/OEAW Stefan Probst Stefan.Probst@oeaw.ac.at

DARIAH/PSNC Michał Kozak mkozak@man.poznan.pl

DARIAH/UGOE Stefan Buddenbohm buddenbohm@sub.uni-goettingen.de

DARIAH/OEAW Seung-Bin Yim Seung-Bin.Yim@oeaw.ac.at

2

D7.2 – v. 1.0

Executive Summary
This document delivers the results of Task 7.2 “Development of the Marketplace application” of the
Social Sciences and Humanities Open Cloud (SSHOC) project funded by the European Commission
under Grant Agreement #823782. Its main purpose is to describe the actual implementation of the SSH
Open Marketplace application on the background of the system specification (delivered in 2019 as D7.1
System Specification - SSH Open Marketplace).

The SSH Open Marketplace is a discovery portal which pools and contextualises resources for Social
Sciences and Humanities research communities: tools, services, training materials, datasets and
workflows. The Marketplace highlights and showcases solutions and research practices for every step
of the SSH research data life cycle.

Based on an agile methodology and an iterative process of releases, the implementation of the SSH
Open Marketplace is carefully described here, and this deliverable represents a companion to the final
release of the application (in December 2021). Three other complementary WP7 deliverables published
between September and December 2021 are also documenting and supporting the final release: D7.3
Marketplace Interoperability; D7.4 Marketplace Data population & curation and D7.5 Marketplace
Governance.

Following the requirements engineering process and the first iterations of the data model and system
architecture presented in the System Specification, this implementation report describes the
methodology used to ensure the quality of the SSH Open Marketplace software, and presents the latest
iteration of the data model and system architecture supported by the rationales for the
implementation choices. Key components and features, as well as other aspects of the system like its
configuration, deployment or its API are described giving a technical insight into the creation of this
discovery portal.

Embedded in the European Open Science Cloud (EOSC) ecosystem, the SSH Open Marketplace has also
been developed to contribute to the resources discoverability layer of the EOSC and to ensure, thanks
to its user-friendly interface, an entry door to the EOSC for social scientists and humanists.

3

D7.2 – v. 1.0

Abbreviations and Acronyms

ACDH-CH Austrian Centre for Digital Humanities and Cultural Heritage

API Application Programming Interface

CESSDA Consortium of European Social Science Data Archives

CLARIN Common Language Resources and Technology Infrastructure

DARIAH Digital Research Infrastructure for the Arts and Humanities

DPU Data Processing Units

EOSC European Open Science Cloud

ETL Extract, Transform, Load

EURISE European Research Infrastructure Software Engineers

GWDG Society for Scientific Data Processing

IdPs identity providers

JSON-LD JavaScript Object Notation for Linked Data

JWT JSON Web Token

LOD Linked Open Data

M month

MP (SSH Open) Marketplace

MS milestone

NLP Natural Language Processing

OEAW Austrian Academy of Sciences

ORCID Open Researcher and Contributor ID

PSNC Poznan Supercomputing and Networking Center

RDF Resource Description Framework

REST API representational state transfer Application Programming Interface

RML RDF Mapping Language

SKOS Simple Knowledge Organization System

SPARQL SPARQL Protocol and RDF Query Language

SSH Social Sciences and Humanities

SSHOC Social Sciences and Humanities Open Cloud

4

D7.2 – v. 1.0

SWC Semantic Web Company

T task

UV UnifiedViews

UX User eXperience

WP work package

5

D7.2 – v. 1.0

Table of Contents

Introduction 7

Methodology 8

Development guidelines 8

Communication 8

GitLab for code maintenance & issue tracking 9

Data Model 11

Main features of the data model 12

SSH Open Marketplace data model in context 16

Implementation 18

From specification to implementation 18

Backend component 23

Frontend component 24

Ingestion 25

Curation Components 32

Extraction module 38

Deployment and configuration of the system 40

Application Programming Interface 42

EOSC Integration 42

EOSC AAI 43

Onboarding SSH Open Marketplace into the EOSC portal 44

Research community portals in the EOSC 45

Conclusion 46

References 47

Annex 1 - EURISE Software Quality Checklist applied to the SSH Open Marketplace 49

6

D7.2 – v. 1.0

1. Introduction
The SSH Open Marketplace is a discovery portal revolving around five general types of content: tools &
services, training materials, workflows, datasets and publications. Thanks to a contextualisation layer
(relations between items and research workflows exemplifying the use of some items), the SSH Open
Marketplace helps to increase the discoverability and findability of useful resources to support the
uptake of digital methods in Social Sciences and Humanities.

This report describes the actual implementation of the SSH Open Marketplace application on the
background of the system specification published in September 20191. It summarises the development
method and work carried out to achieve the three releases of the application over the course of the
SSHOC project: the alpha release in June 20202, the beta release in December 20203 and the final
release planned for December 2021. As the present report is submitted a few months before the final
release, Milestone 44 report that will be published at the beginning of 2022 might include some final
implementation remarks, but at the time of writing, most of the remaining issues are already identified,
prioritised and assigned to ensure successful completion of the final iteration of the application.

Though the actual technical implementation work was within task (T) 7.2, given that all tasks of the
work package were geared towards one common main outcome, there was a strong cohesion and
intensive exchange between the four tasks of the work package4, basically forming one team with
smaller groups being dynamically formed to attend to individual issues at hand.

After a first chapter presenting the underlying methodology used to develop the SSH Open
Marketplace, the data model and the system architecture of the application are described in the light of
the changes made since the specification phase. Decisions taken during the implementation phase by
the task 7.2 members, informed by input from the work of tasks 7.3 and 7.4, are described and
motivated. Finally, a chapter about the relation of SSH Open Marketplace to European Open Science
Cloud (EOSC) is added in order to highlight the specificities of the landscape in which the SSH Open
Marketplace is developed.

4 Task 7.1 User requirements, Conceptual Model and System Architecture of the SSH Open Marketplace; task 7.2
Development of the Marketplace Application; task 7.3 Marketplace Interoperability; task 7.4 Governance:
Population, Curation & Sustainability of the SSH Open Marketplace.

3 Laure Barbot, Frank Fischer, Klaus Illmayer, Matej Ďurčo, Alexander König, Dieter Van Uytvanck, & Nicolas
Larrousse. (2020). MS.43 -Marketplace - beta release (1.0). Zenodo. https://doi.org/10.5281/zenodo.4785194
[22.09.2021]

2 Laure Barbot, Yoann Moranville, Stefan Buddenbohm, Klaus Illmayer, & Matej Ďurčo. (2020). MS42 Marketplace –
alpha release (v1.0). Zenodo. https://doi.org/10.5281/zenodo.4585700 [22.09.2021]

1 Laure Barbot, Yoan Moranville, Frank Fischer, Clara Petitfils, Matej Ďurčo, Klaus Illmayer, Tomasz Parkoła, Philipp
Wieder, & Sotiris Karampatakis. (2019). SSHOC D7.1 System Specification - SSH Open Marketplace (1.0). Zenodo.
https://doi.org/10.5281/zenodo.3547649 [21.09.2021]

7

https://doi.org/10.5281/zenodo.4785194
https://doi.org/10.5281/zenodo.4585700
https://doi.org/10.5281/zenodo.3547649

D7.2 – v. 1.0

2. Methodology

2.1. Development guidelines
As described in D7.1 System Specification, the SSH Open Marketplace (MP) has been developed following
several key principles of the agile software development methodology. Requirements and
implementation evolved during the three years’ development period, based on a User Centered Design
approach, supported by SSHOC WP2 and WP6 dissemination and event teams and driven by UX
designer from DARIAH/PSNC, that allowed T7.2 developers led by DARIAH/OEAW5 to refine the key
functionalities of the application. An overview of the different methods used to ground development
work on SSH researchers and future users needs can be found in MS43 report6.

Furthermore, within the SSHOC project some recommendations and guidelines for software
development7 have been shared by the coordinator CESSDA in order to ensure the quality and the
coherence of the different outputs of the project. The EURISE Technical Reference8, jointly developed by
CESSDA, CLARIN & DARIAH, and their guidelines have been a good starting point for T7.2 activities. The
EURISE software quality checklist has been added in Annex 1 and summarises the steps taken to
ensure quality of the SSH Open Marketplace as a software.

The developed code is released under APACHE-2.0 open source license9.

2.2. Communication
In order to ensure appropriate communication between the T7.2 team members, with the rest of the
project and with the outside world, several communication channels have been used:

● Regular (bi-weekly or monthly) tele-meetings for all WP7 members, and for T7.2 members on
demand either focusing on design and frontend implementation or gathering all developers
involved in the task.

9 More information about this license can be found here:
https://choosealicense.com/licenses/apache-2.0/ [13.10.2021]

8 See EURISE Technical Reference: https://technical-reference.readthedocs.io [22.09.2021]

7 See the internal documentation:
https://sites.google.com/cessda.eu/sshocwiki/collaboration/software-development [13.10.2021]

6 A combination of live events, consultation platform and guerrilla interviews was set up to ensure that
the initial user requirements and specifications remained pertinent and coherent over the course of
their implementation.

5 The institute from OEAW involved in the project and leading T7.2 is the Austrian Centre for Digital
Humanities and Cultural Heritage (ACDH-CH).

8

https://choosealicense.com/licenses/apache-2.0/
https://technical-reference.readthedocs.io
https://sites.google.com/cessda.eu/sshocwiki/collaboration/software-development

D7.2 – v. 1.0

● A dedicated Basecamp project for SSHOC WP7 has been used to follow high-level tasks derived
from the Description of Work.

● Multiple Gitlab repositories, for maintaining the code and more fine-grained issues related to
the implementation of individual components of the overall system, have been set up (see next
section).

● A dedicated folder for WP7 within the Shared Drive procured by the project coordinator for the
whole project has been used for collaborative authoring of project documents and sharing of
(non-implementation) files.

● A dedicated Slack channel within the DARIAH namespace dariah.slack.com #marketplace has
been opened for quick ad hoc communications of the development team.

In specific cases - such as the data model update described in the next chapter - specific
communication workflows involving all parties have been agreed, documented and maintained through
dedicated “tracking changes” or “umbrella” issues10 in Gitlab.

2.3. GitLab for code maintenance & issue tracking
To maintain code and other technical resources as well as the implementation-related issues, a
dedicated group11 within the gitlab instance provided by DARIAH/UGOE12 has been used, divided into
multiple projects corresponding to the component boundaries of the system:

● https://gitlab.gwdg.de/sshoc/sshoc-marketplace
General project for the overall division of work, especially holding the set of requirements
distilled in the initial phase of the project expressed as individual issues.

● https://gitlab.gwdg.de/sshoc/sshoc-marketplace-frontend/
code and issues related to the frontend component

● https://gitlab.gwdg.de/sshoc/sshoc-marketplace-backend
● code and issues related to the backend component
● https://gitlab.gwdg.de/sshoc/vocabularies

project with repository to keep versions of vocabularies used in the Marketplace serialized in
SKOS and accompanied by vocabulary-related issues

● https://gitlab.gwdg.de/sshoc/data-ingestion
scripts and auxiliary files pertaining to the ingestion procedures: RML13 mappings, Unified Views
pipelines and other configuration files

13 RML is the RDF Mapping Language while RDF stands for Resource Description Framework.

12 More precisely, the GWDG.

11 SSHOC group in GWDG Gitlab instance: https://gitlab.gwdg.de/sshoc [22.09.2021]

10 See for example the “Tracking changes to dynamic properties” issue used to inform tasks 2, 3 and 4 of the latest
changes in dynamic properties implementation: https://gitlab.gwdg.de/sshoc/sshoc-marketplace/-/issues/66
[13.10.2021]

9

https://gitlab.gwdg.de/sshoc/sshoc-marketplace
https://gitlab.gwdg.de/sshoc/sshoc-marketplace-frontend/
https://gitlab.gwdg.de/sshoc/sshoc-marketplace-backend
https://gitlab.gwdg.de/sshoc/vocabularies
https://gitlab.gwdg.de/sshoc/data-ingestion
https://gitlab.gwdg.de/sshoc
https://gitlab.gwdg.de/sshoc/sshoc-marketplace/-/issues/66

D7.2 – v. 1.0

● https://gitlab.gwdg.de/sshoc/curation
scripts and auxiliary data for the ongoing curation of the Marketplace

The development team made extensive use of various features provided by gitlab allowing to structure
the work and foster the team communication in accordance with the principles of agile software
development. A set of custom tags or labels have been introduced to categorize the issues according to
their status (ToDo, InDev, InReview, etc.) and the area they pertain to (data-model, content, etc.).
Milestones14 were used to group issues that needed to be resolved to achieve a certain state, examples
being: “Minimal viable product”, “Alpha release”, “Curation module implemented”, “Final release”.
Kanban boards also helped the team to keep track of the progress of issues.

14 See Milestones board: https://gitlab.gwdg.de/groups/sshoc/-/milestones [13.10.2021]

10

https://gitlab.gwdg.de/sshoc/curation
https://gitlab.gwdg.de/groups/sshoc/-/milestones

D7.2 – v. 1.0

3. Data Model
The SSH Open Marketplace Data Model was first described in the D7.1 System Specification document15.
Since the publication of D7.1 in M9, the data model has undergone a series of iterations, guided by the
practical needs of the implementation and the actual data from external sources the team was dealing
with. The most recent version of the data model, 1.5, is depicted in the diagram below figure 1.

Fig. 1 - Data Model v 1.5

15 SSHOC D7.1 System Specification - SSH Open Marketplace, p. 24 and following.

11

D7.2 – v. 1.0

3.1. Main features of the data model
In the following paragraphs the main features of the data model are described (features introduced
since version 1.0 proposed in D7.1 are marked with *).

MPEntity and main categories
The main class of the data model is MPEntity. All content items of the SSH Open Marketplace are
instances of MPEntity, though indirectly by means of one of the subclasses. In contrast to the original
class hierarchy based on conceptual considerations, the final system implements a simplified set of
main classes as dictated by the practical understanding and needs of the users. These are:
Tools&Services, Publication, Dataset, TrainingMaterial, and Workflow, omitting originally introduced
intermediary classes DigitalObject, and InformationObject, as well as convoluting Software and Service to
one class, Tool16. These main classes are also reflected as dedicated endpoints in the systems API, and
thus considered very stable structures, where a major refactoring of the application would be required,
if these were to change.

The MPEntity class also implements most of the generic aspects of the data model: versioning, dynamic
properties, relations, media, external identifiers, commenting, provenance.

Flexible classification/typing
The above argument also implies that the data model should not hardwire a rich class hierarchy.
Therefore, most information about the described resource is captured already in the top class MPEntity
and the majority of classification/typing is expected to be covered by appropriate Properties with
corresponding Vocabularies. As an example, the various types of training materials, as expressed in the
user requirements, are modelled as a property of an MPEntity instance, rather than being hardwired as
classes in the data model. This is because a) there is no global consensus on the categorisation, b) a
training material could belong to multiple categories, c) from the system point of view there is no
principle difference between the different types, and it is more efficient to handle them all uniformly as
MPEntities.

Generic model
Given the heterogeneous dataspace that the service covers, and the broad and underspecified range of
information to be captured about the entities represented in the MP, a generic data model that can be
refined through configuration during runtime has been chosen. The main mechanisms are: every
MPEntity can have a set of Properties, i.e. key-value pairs, where allowed keys and allowed values for
individual keys are specified in the configuration of the system, not in the data model itself. Equally,
there is a generic relation between MPEntities, that can be typed as needed.

16 In this case, there is a slight inconsistency between the internal class system and the exposed API, where this
entity type is referred to as tools-services.

12

D7.2 – v. 1.0

Versioning*
To support the envisaged curation workflow and to ensure complete traceability, a comprehensive
versioning system has been put in place that retains a complete record of all changes to the data,
including the author of the change. This allows the curator to see, compare and approve/dismiss
changes proposed by editors, or introduced by automatic updates. To this end, a new generic class
MPEntityVersion has been introduced next to the main class MPEntity, with multiple versions being
attached (1:N relation) to one MPEntity, and at most one version being the current approved version.
The most complex part of the versioning system is tracking the changes to relations, because these
pertain not just to the edited item, but also the related one. An intricate mechanism has been put in
place, where also the version of the related items is bumped if there is a change to the relation.

The moderators mode of the frontend shows a version history, allowing the Moderators to review
previous versions and even to revert changes.

Status*
The implementation of versioning prompted a need for an elaborate status handling of individual
versions. The following statuses have been introduced:

Statuses for items:

● DRAFT - instead of immediately publishing an item on the MP, users can create a draft version
of an item. A draft item is accessible only by the user who creates it and cannot be shared with
other users. The user can add further information and publish the item when it is ready, thus
setting the new state to “SUGGESTED” (if the user is a Contributor) or “APPROVED” (if the user is
a Moderator/Administrator).

● INGESTED - status for items coming from an ingestion pipeline. This allows
Moderators/Administrators to differentiate them from items that are “SUGGESTED” by
Contributors. These ingested items are passed on to the Moderators/Administrators for
approval/rejection.

● SUGGESTED - status of items created or updated by Contributors. These items are submitted to
Moderators/Administrators for approval/rejection.

● APPROVED - items with the status “INGESTED“ or “SUGGESTED” get the status “APPROVED”
when they have been reviewed and accepted by a Moderator/Administrator.

● DISAPPROVED - items with the status “INGESTED“ or “SUGGESTED” get the status
“DISAPPROVED” if they have been rejected by a Moderator/Administrator.

● DEPRECATED - items that are deleted by Administrators. They are not visible to the public in the
frontend anymore. Deleted items are still available for authorized accounts - e. g. an ingestion
pipeline needs to be aware that an item is deprecated so that it does not ingest this item again -
and Administrators are allowed to revert the status of such items to “APPROVED”. Items once
ingested or created but not meeting the quality criteria should be deprecated.

13

D7.2 – v. 1.0

Fig. 2 - Transitions between statuses of items

Dynamic properties
Given the heterogeneity of the source data at hand, already the original data model has foreseen a
mechanism for dynamic properties, i.e. a way to describe specific aspects of a resource without having
to change the underlying data model implemented in the system. As a result, there are only a handful
of dedicated attributes like label and description hard-wired into the data model, and most of the
information about an MPEntity is being captured through a flexible set of Properties. This mechanism
proved to be most instrumental in accommodating the diversity of information encountered in the
different sources, specific to the different types of resources.

While this approach allows for maximum flexibility with respect to what can be captured, it hampers
the traditional means of restricting or validating the input through constraints on the database level.
This deficiency has been mostly remedied by introducing typing for the dynamic properties, which
indicates if any given property is an integer, a string, etc. This same mechanism was employed to
introduce so-called concept-based properties, i.e. properties which take the range of values from a
controlled vocabulary. This is a crucial feature allowing for a flexible yet controlled categorisation of the
resources. A dynamic system has been put in place where new properties can be defined as needed
and can be associated with one or more vocabularies, which define the set of concepts or terms
allowed as values for a given property.

14

D7.2 – v. 1.0

For an overview of dynamic properties used in the SSH Open Marketplace, you can consult the editorial
guidelines17.

Vocabularies
In many dynamic properties, the range of values needs to be restricted to a more or less fixed set of
terms, or a controlled vocabulary. The data model foresees a generic mechanism, where such
vocabularies can be imported into the system and attached as “allowed vocabularies” for individual
dynamic properties. These constraints are checked by the system, i.e. only concepts from allowed
vocabularies are valid inputs for given property.

The data model follows the SKOS schema18 and is capable of importing and exporting the vocabularies
in SKOS. Expressing the terms used as concepts in vocabularies (in line with the SKOS model) allows the
move from simple lexical terms to more complex semantic entries, with multiple lexical labels,
definitions, examples etc., as well as semantic relations between these.

The vocabularies are exposed as autocomplete fields in the edit forms and as facets in the search
interface. The additional information is made available on demand to the normal user in the search
and detail view, thus providing the user with additional contextual semantic information (see following
sections 4.3 and 4.5.1 for details on the user interface). More importantly however it is crucial for the
curation work, which has to be based on well-defined and agreed upon terminology (see following
section 3.2 for the role of vocabularies in fostering interoperability).

Typed relations
Another generic mechanism is the attribute related that allows defining relations between two
MPEntities. The type of relation is not hard-wired in the data model but can be defined by the
Administrator at runtime, so the allowed types of relations can be managed dynamically. A typical
example of such a typed relation would be an MPEntity (e.g. a Tool) isMentionedIn another MPEntity
(typically a Publication, or TrainingMaterial).

Similarly, the relation between an MPEntity and an Actor is kept generic, with the configuration of the
applicable “roles” of an Actor with respect to an MPEntity left to Administrators at runtime. Typical roles
include: hasContributor, hasAuthor, hasFunder.

Media*
While the need for media such as images has been recognized from the start, in practice it turned out
that media objects are not well represented as simple dynamic properties, and need to be expressed
as a separate class in the data model. Thus, Media has been added as a separate weak entity of
MPEntity, allowing for 1:N relation and structured information about each media object. Next to a

18 Simple Knowledge Organization System Reference: https://www.w3.org/TR/skos-reference/ [11.11.2021]

17 SSH Open Marketplace Editorial Guidelines v.1 are published as annex to D7.4 Marketplace Data population &
curation, and will be added to the “Contribute” pages of the SSH Open Marketplace website for its final release.

15

https://www.w3.org/TR/skos-reference/

D7.2 – v. 1.0

dedicated field for caption, introduction of a type field for distinguishing between image, video, or
object allowed for more elaborate handling of the media objects on the frontend side. Additionally an
option was introduced to actually upload a file, alternatively to providing a source URL pointing to the
media object.

externalIDs*
Based on the experience from mapping various sources, it was essential to introduce an array of
qualified (external) identifiers both for MPEntity as well as Actors.

This is in acknowledgement of the fact that often, next to a dedicated homepage, there may be multiple
equally authoritative representations of any given resource on the web, such as a git repository or a
wikidata or wikipedia entry. This mechanism allowed these special URLs to be distinguished from other
links, which may refer to various aspects of a given resource, such as documentation or helpdesk for a
service, and to replace a number of URL-based dynamic properties, like repository-url, wikidata-id.

Provenance
MPEntity also features a few meta-attributes pertaining to the provenance of the information gathered
about a given entity: informationContributor allows the User who entered the information about that
entity to be tracked, lastInfoUpdate records the date and time of the last change to the entry.

3.2. SSH Open Marketplace data model in context
As presented in D7.1, the data model of the SSH Open Marketplace has been designed primarily based
on the most important sources identified for data population, the kind of information expected by the
users of the MP, and with the goal of having a flexible data model able to accommodate new kinds of
information either coming from new sources or arising from the needs of discoverability. Nevertheless,
three avenues have been pursued to foster interoperability:

a) Extensive use of controlled vocabularies in concept-based properties for describing resources,
employing existing external controlled vocabularies wherever possible (see Table 1 for an
overview, and see the previous section on the implementation of vocabularies in the data
model). All the vocabularies used in the Marketplace will be published via the Vocabs service of
DARIAH19 hosted by DARIAH/OEAW. External vocabularies are considered “closed”, i.e. no
concepts are added or changed on the side of the Marketplace, as opposed to internal
vocabularies based mostly on source data, which are considered “open”, i.e. they can evolve.
Publishing the vocabularies and concepts as semantic artifacts in their own right will foster their
reuse and thus interoperability between communicating systems. This holds for the
Marketplace but also for the SSHOC family of services.20

20 This approach is in line with cross-WP activity led by CLARIN on harmonising vocabulary management and the
corresponding infrastructure across the SSH cluster, called SSH Vocabulary Commons.

19 Vocabs service: https://vocabs.dariah.eu/ [28.09.2021]

16

https://vocabs.dariah.eu/en/

D7.2 – v. 1.0

b) Collecting and curating alternative and additional external identifiers (esp. from Wikidata,
ORCID and other relevant reference resources) for the entities in MP (both items and actors),
generating essentially identifier-sets that form the bridges to other LOD datasets. This also
represents groundwork for potential enrichment from these sources, or even vice versa
contributions of the curated information from MP to e.g. Wikidata.

c) A mapping of the MP data model to the common SSHOC reference ontology21 has been
proposed in collaboration with task 4.8 (led by FORTH). This mapping will be implemented so
that the data in the Marketplace is available in RDF based on this ontology, exposed either
through JSON-LD embedded metadata, an RDF-dump, or a triplestore with a SPARQL-endpoint.

property vocabulary type of vocabulary

geographical-
availability

EOSC Geographical Availability List22 closed

life-cycle-status EOSC Life Cycle Status List closed

resource-category EOSC Resource Category List closed

intended-audience audience open

mode-of-use Invocation type open

language ISO 639-3 Language Codes23 closed

keyword Keywords from SSHOC MP open

object-format Media Types from IANA24 closed

discipline ÖFOS 2012. Austrian Fields of Science and
Technology Classification 201225

closed

license Software License from SPDX26 closed

standard SSK Standards List open

26 SPDX License List: https://spdx.org/licenses/ [12.10.2021]

25 ÖFOS 2012. Austrian Fields of Science and Technology Classification 2012: https://vocabs.dariah.eu/oefos/en/
[12.10.2021]

24 IANA Media Types: https://www.iana.org/assignments/media-types/media-types.xhtml [12.10.2021]

23 ISO 639 Code Tables: https://iso639-3.sil.org/code_tables/639/data [12.10.2021]

22 EOSC related vocabularies are all available here:
https://eosc-portal.eu/providers-documentation/eosc-provider-portal-resource-profile [12.10.2021]

21 See Bekiari,Chrysoula, Kritsotaki, Athina, & Tsouloucha, Eleni. (2020). SSHOC D4.18 SSHOC Reference Ontology
(beta version) (v1.0). Zenodo. https://doi.org/10.5281/zenodo.3744861 [12.10.2021]

17

https://spdx.org/licenses/
https://vocabs.dariah.eu/oefos/en/
https://www.iana.org/assignments/media-types/media-types.xhtml
https://iso639-3.sil.org/code_tables/639/data
https://eosc-portal.eu/providers-documentation/eosc-provider-portal-resource-profile
https://doi.org/10.5281/zenodo.3744861

D7.2 – v. 1.0

activity TaDiRAH 227 closed

publication-type The Bibliographic Ontology Concept
Scheme28

closed

Table 1 - Vocabularies used in concept-based properties

4. Implementation
In this chapter, the actually implemented application is described, on the backdrop of the envisaged
setup laid out in D7.1. The first section gives an overview of the individual components and how they
evolved in the process of implementation, the following sections give details about the individual
components and other aspects of the system - like its configuration, deployment or API.

4.1. From specification to implementation
Figure 3 depicts the system architecture as envisioned at the beginning of the project and formulated
in D7.1 System Specification. Figure 4 is an update of the system architecture representing the state of
the affairs post hoc, i.e. towards the end of the project, when the system has already been largely
implemented. While the principal components of the system have remained as originally foreseen, a
few refinements and adjustments to the original plan have occurred in the course of the
implementation, stemming from experience gathered during the development as well as feedback
from the involved parties (test users, developers, curation team).

It is to be noted that given the numerous components involved in the final architecture, a very strict
regime has been implemented with respect to access to the data, in order to ensure data consistency
and encapsulation, in that the only way to read or edit the primary data stored by the core component
is via the REST-API. Both the primary frontend application, as well as the ingestion pipelines and
curation scripts interact with the data by means of the same well-defined API.

28 Bibliographic Ontology BIBO: https://github.com/structureddynamics/Bibliographic-Ontology-BIBO [12.10.2021]

27 TaDiRAH: Taxonomy of Digital Research Activities in the Humanities: https://vocabs.dariah.eu/tadirah/en/
[12.10.2021]

18

https://github.com/structureddynamics/Bibliographic-Ontology-BIBO
https://vocabs.dariah.eu/tadirah/en/

D7.2 – v. 1.0

Fig. 3 - System Architecture Diagram as introduced in D7.1 System Specification

Fig. 4 - Update of the system architecture (major changes to original plan are marked red)

19

D7.2 – v. 1.0

Table 2 lists the individual components as originally envisaged in the system specification, contrasting
them with the actual implementation in the final system.

Components Specification Implementation

Server-side
web
application

Comprises primary persistence,
business logic and exposes REST API,
including methods used by the
frontend application.

Server application implemented in Java
using the Spring framework.29

- Persistence
Layer

Stores information offered by and
necessary to operate the Marketplace,
e.g. information about users, metadata
about entities available in the platform.

PostgreSQL30 database implementing
the data model allows storage of all the
information about the MP items, as well
as all auxiliary entities, like actors, or
media, and all previous versions of the
items.

- Index &
search

Provides efficient mechanisms
(including a search engine) supporting
discovery features of the platform,
keyword and faceted search.

An Apache Solr component. Only
available to the main Java application,
which passes on search requests
transparently to the solr index and
returns back results via corresponding
REST endpoints.

- Aggregator The component is responsible for
automatically harvesting information
from identified sources, transforming
and ingesting it into the platform. It
requires custom filters, mapping and a
clear policy on how to deal with
updates/conflicts.

Implemented as separate components,
independent of the core application,
communicating with it solely via the
REST API.
Originally implemented using PoolParty
Unified Views, meanwhile a new system
DACE has been developed.
See the Ingestion section below for
details.

- Extractor
(optional)

Can be considered as a special kind of
Aggregator that takes text as input and
tries to extract relevant information

Given its experimental nature and
complex processing/specific
requirements (use of NLP methods), this

30 Relational database management system (RDBMS) used. See https://www.postgresql.org/ [24.09.2021]

29 Spring Framework is an application framework and inversion of control container for the Java platform

20

https://www.postgresql.org/

D7.2 – v. 1.0

from it, then again ingesting it into the
platform.
This is considered as an optional
component serving an experimental
aspect of the platform.

component has been implemented
independently of the set of ingestion
pipelines using Python.
See the Extraction module section below
for details.

- User
management

Primarily we aim to rely on Identity
Federations (Shibboleth, OpenID).
Nevertheless, the system needs to have
a “local” representation of the user, and
also we need a fall-back to register
locally if all else fails.
This component also comprises a user
profile that could capture the user’s
search history or allow her to bookmark
certain items or store queries, etc.

The system implements a hybrid user
management allowing both local and
remote users, remote ones
authenticated by means of federated
identity relying on the EOSC AAI.
See the EOSC AAI section below for more
details.

Personalisation features (user’s search
history etc.) haven’t been implemented.

Rich client
application
with modules:

primary user interface to explore the
data offering searching and browsing
capabilities.

Implemented using React framework,
communicating with the server solely
through the defined REST-API.

- Search/
Discovery

Faceted browser and full-text search for
the end-user to explore the content.

Both modules form the integral part of
the client application.
See the Frontend component section for
details.- Detail View A detailed view of each entity, gathering

and presenting all existing contextual
information, also allowing to navigate
“sideways” to similar entities based on
the contextualisation.

- (Micro-)Editing Collaborative editing/curation of the
information/content.
The authoring mode, allowing to make
changes to data.
Only available to logged-in users,
distinguishing roles. General logged in
users can suggest changes which need
to be approved by a Moderator.
Similar to wiki-data, the idea of
micro-editing is that a user can suggest

Edit forms implemented as part of the
main client application. Users with
appropriate permissions can switch
from view-mode to edit-mode on any
item, minimizing the effort to propose
changes to the existing information.
Micro-editing has not been
implemented, due to both technical
difficulties and usability concerns - a
clear distinction between view and edit

21

D7.2 – v. 1.0

just one specific fact or a piece of
information for an existing entity entry
in a quick and intuitive fashion.

mode seemed more suitable.
See the Frontend component section for
details.

- Managing A module for the Moderators,
power-users, a dashboard informing
about status and history of automatic
imports (aggregation) and checks as
well as manual (suggested) changes
(moderation of the community).

The curation dashboard is an integral
part of the frontend application,
available to users with appropriate
rights (Moderators, Contributors), it
gives an overview of the status of the
data in the system with respect to its
curation status.

Automatic checks accompanied by
corresponding batch processing
methods have been implemented as a
set of python notebooks to be operated
by the moderators probing the data via
REST API exposed by the backend,
subsequently performing a number of
statistics and data quality checks.
See the Curation Components section for
details.

- Vocabulary
Management

A big part of the Managing and curation
will be dealing with / curating
vocabularies. This would justify a
dedicated (potentially external) tool for
managing the vocabularies.

Originally relying on the vocabulary
management capabilities of the
PoolParty suite/solution.
Meanwhile MP-API allows for a basic
management of vocabularies and
concepts.
See the Vocabulary Management section
for details.

Data Lab /
Notebook
(optional
auxiliary
service)

Not considered an integral part of the
Marketplace, rather expected to be an
externally provided but tightly
connected service that allows capturing
and “replaying” recipes, workflows.
Motivation:

Not implemented, however the Data Lab
technology (Python notebook) has been
employed to implement the automatic
curation procedures.

22

D7.2 – v. 1.0

Describing workflows in “data
notebooks” (e.g. ipynb – the python
notebook), which combine prose and
code and can be inspected and edited
through a browser and executed
server-side is becoming popular very
fast. This seems to be an ideal means to
accompany the solutions in the
Marketplace, with executable code
(where possible).

Table 2 - Components of the system architecture: foreseen vs. implemented

4.2. Backend component
The core part of the backend component is implemented in the Java Spring framework. A PostgreSQL
database serves as the primary persistence layer, Apache Solr is used for additional indexing to allow
for fast searching and faceting of the data. Both the database and the Solr instances are internal to the
system; the only way to access the data by other components or third-party applications is via a REST
API exposed by the backend component. This API offers the necessary endpoints to retrieve or
manipulate any of the entities managed by the system. The endpoints, the available parameters, as
well as the response formats are described using OpenAPI31. API endpoints can be divided into six
categories in line with the main entities in the data model:

● CRUD32 and Search endpoints of items offered by SSH Open Marketplace
● CRUD and Search endpoints of Property types and Vocabularies used to describe these items
● CRUD and Search endpoints of Actors and their roles in the items
● CRUD endpoints for Sources from which the items come
● Endpoints for uploading/importing media and connecting them to the items
● Endpoints for signing-in, both with local accounts registered in the backend component and via

external identity providers (IdPs) available by OAuth233 protocol in EOSC. See section EOSC AAI
in the next chapter for more details.

The backend component preserves the whole history of items (tools and services, datasets, training
materials, publications, and workflows) and manages their statuses. These statuses depend on the
called method creating subsequent versions of items (create/update/delete) but also on the role of the

33 OAuth: https://oauth.net/ [18.10.2021]

32 CRUD stands for the generic operations: Create, Read, Update, Delete

31 OpenAPI specification: https://swagger.io/specification/ [11.11.2021]

23

https://oauth.net/
https://swagger.io/specification/

D7.2 – v. 1.0

user who calls the method (Contributor vs. Moderator). Accepted versions are provided via read and
search methods for unauthenticated users. Authenticated users are able to retrieve other versions
depending on their roles and whether they are creators of a particular version. The backend
component uses JWT tokens34 for user authentication.

To ensure stability of the API, more than 400 integration tests were implemented as a part of the
project, allowing to automatically test all REST API endpoints. See section 4.7 below for more
information regarding deployment and configuration of the system.

4.3. Frontend component
Based on the user requirements and the system specification presented in D7.1, some low-fidelity
sketches were designed by DARIAH/PSNC in September 2019 (see Fig. 5). After a round of feedback
from all involved partners, detailed mockups of the main types of pages - home page, search result and
item detail view (see Fig. 6) - have been devised and discussed with future users allowing the frontend
developer from DARIAH/OEAW to start the implementation of the client application - towards the
Minimal Viable Product in December 2019.

The frontend is implemented as a Next.js application, and utilises React Query for client-side caching.
As accessibility of the application should be ensured for all audiences, UI components closely follow
WAI-ARIA Authoring Practices 1.235.

Fig. 5 - low-fidelity sketches of the search result page

35 WAI-ARIA Authoring Practices 1.2: https://www.w3.org/TR/wai-aria-practices-1.2/ [13.10.2021]

34 JSON Web Token: https://en.wikipedia.org/wiki/JSON_Web_Token [11.11.2021]

24

https://www.w3.org/TR/wai-aria-practices-1.2/
https://en.wikipedia.org/wiki/JSON_Web_Token

D7.2 – v. 1.0

Furthermore, to ensure user-friendly management of the SSH Open Marketplace, a basic Content
Management System (CMS) to edit the content of the static pages of the SSH Open Marketplace has
been set up. This interface allows Moderators of the Marketplace to edit, in Markdown36, two main
menus of the portal: the “About” and “Contribute” pages hosting and structuring the user’s
documentation.

Fig. 6 - Screenshot of the Gephi tool - Item detail view

Finally, the edit forms and an editorial dashboard - see Curation Components section for more details -
have been implemented and are the main user interfaces for data curation of the Marketplace.

4.4. Ingestion
A critical part of a discovery service like the SSH Open Marketplace, assuming a role of an aggregator, is
a component for collecting and ingesting information from external sources. In the original system
specification, this functionality was encapsulated in the aggregator component, foreseen as part of the

36 Markdown: https://en.wikipedia.org/wiki/Markdown [11.11.2021]

25

https://en.wikipedia.org/wiki/Markdown

D7.2 – v. 1.0

core server-side application. In the final system, it has been implemented as a separate component
which communicates with the core application via the REST API.

Different ingestion pipelines have been employed over the course of the project, two of them are
described in more detail in the next two subsections. Originally, PoolParty Unified Views was used, as it
was provided by a project member - SWC (see subsection 4.4.2). Even though PoolParty is a
comprehensive well-established solution, its licensing terms after the end of the project prompted a
discussion in the WP7 team aimed at finding an alternative solution for the ingestion task. To this end, a
set of features for an ingestion component has been compiled and the following aggregator solutions
frameworks have been assessed against it:

● Leopoldina, a regional aggregator for Europeana developed by PSNC;
● a combination of the METIS framework37 and ECloud;
● the DNET approach from OpenAire;
● the respective aggregators of Archives Portal Europe and the Jewish Heritage Network;
● the PoolParty UnifiedViews used so far in the SSHOC context, and
● the MoRe aggregator38.

In parallel, a discussion with the technical team of the TRIPLE project39 has also been conducted, to
understand if the AirFlow framework that the discovery platform GoTriple decided to rely on could be
an option for the SSH Open Marketplace as well40.

After these investigations, it turned out that none of the solutions (besides PoolParty) can be used
without further adaptation, the decisive aspect became the availability and capacity of a software
development team able to adjust any of the solutions to the specific needs of SSH Open Marketplace.
This gave way to the decision to further develop Leopoldina by DARIAH/PSNC resulting in the
thoroughly refactored system Data Aggregation and proCessing Engine (DACE) further described in
section 4.4.3.

The list of specific sources to harvest during the development phase of the SSH Open Marketplace has
been managed in task 7.3. The procedures for compiling the list, as well as the list itself, are available
under D7.3 Marketplace Interoperability.

40 See the ”Exploring the SSH data landscape: thematic discovery portals in the EOSC” session of the Realising the
EOSC event for more details: Frank Fischer, Yoann Moranville, Laure Barbot, Laurent Capelli, Virginie Ngo, Suzanne
Dumouchel, Emilie Blotière, Matej Ďurčo, Dieter Van Uytvanck, Alexander König, Arnaud Gingold, Aleksandra
Nowak, & Tomasz Parkoła. (2020, November 25). Exploring the SSH data landscape: thematic discovery portals in
the EOSC. REALISING THE EUROPEAN OPEN SCIENCE CLOUD Towards a FAIR research data landscape for the social
sciences, humanities and beyond. Zenodo. https://doi.org/10.5281/zenodo.4290599 [28.09.2021]

39 TRIPLE project website: https://project.gotriple.eu/ [28.09.2021]

38 MoRe aggregator: http://more.dcu.gr/?p=home [28.09.2021]

37 Metis framework: https://github.com/europeana/metis-framework [28.09.2021]

26

https://doi.org/10.5281/zenodo.4290599
https://project.gotriple.eu/
http://more.dcu.gr/?p=home
https://github.com/europeana/metis-framework

D7.2 – v. 1.0

4.4.1. Ingestion workflow

The ingestion workflow supports the mass data population pipeline of the SSH Open Marketplace.
Figures 7 and 8 below illustrate the workflow itself and the different components involved in the
process.

Fig. 7 - Overview on the different components of the ingestion workflow

27

D7.2 – v. 1.0

Fig. 8 - Ingestion workflow

This ingestion workflow can be summarised by the following steps.

1. Suggest a new source to harvest. A source can be suggested by a Contributor or Moderator
via a contact form. The decision to include a new source has to be met on a consensual basis
within the Moderators’ team. D7.3 Marketplace - Interoperability includes a list of criteria that the
Editorial Team of the Marketplace should take into consideration for future sources to harvest.

2. Define mappings. A mapping from the source data model to the Marketplace data model has
to be devised in each case. This mapping is prepared in a spreadsheet by one of the
Moderators and reviewed by at least another. This mapping represents the prescription for the
custom ingestion pipeline.

3. Implement a custom pipeline. Based on the mapping defined in the previous step, a custom
ETL (extract, transform, load) pipeline is implemented, which fetches the data from the source,
iteratively processes all the items and maps the structured data in the source format to the MP
data model, ingesting the transformed items expressed as JSON-objects via the API of the
Marketplace.

28

D7.2 – v. 1.0

4. Test ingest and review. After the mappings are defined, ingestion against a test instance and
automatic checks are performed, as the basis for a review of the quality of the mapping.
Identified problems inform refining of the mappings in an iterative process, until the test ingest
passes the review (by the Moderators team). This work will be handled by the assigned
Moderator, if necessary in cooperation with the Administrators.
Note: in this stage, the checks are performed, but no curation or editing of the data is
performed, only adjustments to the mapping.

5. Production ingest. After the test ingest has been approved, the assigned Moderator can
invoke the ingestion against the production instance. The ingest triggers automatic checks
delivering reports for manual curation via the curation dashboard. These steps are detailed in
D7.4 Marketplace - Data population & curation.

6. Continuous ingest. For sources, the content of which is expected to change substantially over
time, the production ingest is configured as a recurring task. The ingestion pipeline is able to
match the source items against Marketplace items and updates them accordingly, and
processes previously unseen items to create new Marketplace items.

4.4.2. Pool Party UnifiedViews Pipeline

UnifiedViews (UV) is an ETL-tool for RDF data. The Data Processing Units (DPUs) provide functions that
enable users to cover the extraction and data transformation tasks they need in order to prepare for
and use data with PoolParty.

The DPUs can be chained into a pipeline, output from one DPU serving as input for another DPU,
allowing the composition of complex processing pipelines out of simple functions encapsulated in
individual DPUs. At the core of the processing is a RML Schema mapping DPU, which can execute
mappings from various sources in JSON, XML or CSV format into an RDF data model using the RML
specification41. The advantage of using RML for the definition of mappings is that the mappings are
interoperable and are considered as cross-platform, since the mappings can be used in a variety of
platforms (Java, python, Scala, JS). One example of the mapping definition can be seen in the SSHOC
data-ingestion repository42. In this example, JSONPath expressions43 are used to define the mappings of
specific fields on each JSON file to the respective RDF properties.

UV has been used as a tool to ingest metadata from various sources into the SSH Open Marketplace44.
For every distinct source, three different pipelines exist: data acquisition; Users ingestion; and

44 The SSHOC UV instance is available (with credentials) at: https://sshoc-unifiedviews.poolparty.biz/ [24.09.2021]

43 JSONPath - XPath for JSON: https://goessner.net/articles/JsonPath/ [11.11.2021]

42 Example of the Programming Historian actors mapping definition:
https://gitlab.gwdg.de/sshoc/data-ingestion/-/blob/master/repositories/programminghistorian/users/mapping.ttl
[28.09.2021]

41 RML specification: https://rml.io/specs/rml/ [28.09.2021]

29

https://sshoc-unifiedviews.poolparty.biz/
https://goessner.net/articles/JsonPath/
https://gitlab.gwdg.de/sshoc/data-ingestion/-/blob/master/repositories/programminghistorian/users/mapping.ttl
https://rml.io/specs/rml/

D7.2 – v. 1.0

Marketplace Entity Ingestion. This design decision was made to reduce used resources, and have better
control of the steps. Pipelines are named using the name of the source and the phase of the ingestion.

1. Source - Data acquisition. This is where metadata are extracted from the source. The easiest
case is when metadata exist in some repository (i.e. github) as JSON, XML, YAML or CSV. This
DPU takes as configuration a URL, that executes a download from some location (usually a
github repository).

Fig. 9 - Screenshot of the Data Acquisition DPUs in Pool Party

2. Source - Ingesting users. User instances have to exist in the platform before any other resource
ingestion, prompting this a separate step.

3. Source - lessons|tool|scenarios|steps ingestion. This is where the mappings of the source
data to the Marketplace data model are created. These pipelines can be used as templates for
other sources in the respective MPEntity resource.

Entity ingestion pipelines are more complex than the user pipelines. Tasks like annotation with
vocabularies, cleaning and transformation are handled either through the RML mappings, or SPARQL
queries.

4.4.3. DACE

DACE45 is an Open Source aggregation framework that has been developed by DARIAH/PSNC following
the SSH Open Marketplace needs and requirements in terms of aggregation and processing. DACE
consists of several applications (microservices) that can be used as a set to build a harvesting,

45 See the Data Aggregation and proCessing Engine (DACE) repository:
https://gitlab.pcss.pl/dl-team/aggregation/dace [13.10.2021]

30

https://gitlab.pcss.pl/dl-team/aggregation/dace

D7.2 – v. 1.0

processing and ingesting workflow. Applications communicate with each other using asynchronous
messaging. The framework is flexible and the deployment does not have to consist of all the available
applications but only those which are really needed for the specific processing workflow. Each
application can be scaled and run in multiple instances if needed.

DACE applications are divided into two main parts46:

1. harvesting applications: their goal is to communicate with the source, run a specific
query/request, parse the response and save the results in the DACE database. There are
components supporting standard protocols (like OAI-PMH47) and others built to communicate
with custom data sources (e.g. HTTP interface listing records in a JSON file). The latter are used
in SSHOC.

2. processing applications used for transforming source records into the desired form, so they
can be saved into the target database (SSH Open Marketplace, in this case). DACE deployment
in SSHOC uses a dedicated processing application. It performs a mapping step - JSON to JSON
transformation - using the JOLT library. For each data source a separate mapping is prepared.
Each processing application also executes an enrichment step, linking the result of the mapping
to Marketplace entities (e.g. for sources, actors) or concept entities (from vocabularies) and a
final indexing step in which the record is created or updated in the Marketplace instance using
its REST API.

47 See Open Archives Initiative - Protocol for Metadata Harvesting: https://www.openarchives.org/pmh/
[12.10.2021]

46 Detailed DACE user documentation is available at: https://gitlab.pcss.pl/dl-team/aggregation/dace/-/wikis/home
[24.09.2021]

31

https://www.openarchives.org/pmh/
https://gitlab.pcss.pl/dl-team/aggregation/dace/-/wikis/home

D7.2 – v. 1.0

Fig. 10 - JSON to JSON transformation on the JOLT demo site for DARIAH-Campus source

4.5. Curation Components
This section subsumes components of the overall system relevant to the critical task of ongoing
curation of the data contained in the Marketplace. The original idea to combine automatic checks with
the possibility to intervene manually has manifested itself in the following setup:

● Item Edit Form (see 4.5.1) - each item can be edited by users with sufficient permissions, the
edit form being tightly integrated to the web application, allowing switching between view and
edit mode.

● Curation Notebooks (see 4.5.2) - in order to maximize flexibility and expressivity, Jupyter
Python Notebooks have been introduced as a means to systematically analyse the dataset
according to the editorial guidelines and agreed upon quality checks. Implementing the
automatic checks as a separate component independent of the core application was a
deliberate design decision, to ensure a) a stable core application, b) simple extension of the
checking procedure (without a need for changes to the code of the core application), c)
separation of concerns (central data management, vs. curation tasks).

● Curation Dashboard (see 4.5.3) - a module of the web application component available to
users with elevated permissions (Moderators), providing an overview of the status of the items
in the Marketplace with focus on the quality of the information and the ensuing curation tasks.

32

D7.2 – v. 1.0

4.5.1. Item Edit Form

This basic form allows manual creation and/or editing of all information about a specific item and
supports three modes of editing: draft, suggestion and edit. For suggestions and edits, changes are
recorded as a new version of the entry, however a suggestion is flagged as “suggested” and thus is not
visible publicly, until reviewed and approved by the Moderator. To give a complete overview and
support the curation workflow, the edit form features a version history, visible to Moderators, listing all
previous versions of an item.

A major challenge in implementing the edit forms is to reflect the dynamic and flexible data model,
while at the same time allowing for customisation depending on the item type. To this end, the
frontend application implements a number of custom widgets/web-components to support the data
authoring, such as autocomplete fields for concept-based properties, as well as actors and related
items.

Fig. 11 - Screenshot of the edit form - “3DHOP - How To” item

33

D7.2 – v. 1.0

4.5.2. Curation Notebooks

Right from the start, the curation process was foreseen as a combination of manual AND automatic
tasks which inform each other. Besides the question of the specific checks that can be automated,
there was the question of the general mechanism for implementing such automatic checks. The
following major requirements have been identified:

1. These checks should be flexible, i.e. they shouldn't be hard-coded as part of the backend, so
that rebuilding and redeployment of the whole backend would be required for every change in
the checks. Rather they should be considered a separate "component".

2. At the same time, the checks need to be systematic and the results of the checks need to be an
integral part of the MP-data, so that the Moderators can operate on a consistent information
set.

In response to this, a set of Jupyter Python notebooks has been developed by CNR that uses the MP API
and readily covers the first point (flexibility). To satisfy the second point (systematic integration), this
approach needed to be extended to write via the API, recording results of the automated checks to the
database, or even introduce automated changes to the data. To this end, a set of curation properties
has been introduced, which constitute the contract between the automatic and manual checks, passing
on the information gathered in the automatic process to the Moderators. The curation properties are
employed in the curation dashboard, allowing the Moderators to easily navigate through this
procedural/curation information in combination with other dimensions of the data.

Given that the scripts interact with the system through the API, the access is subject to the same global
authentication and authorisation rules as it is with the client application, i.e. only authorized personnel
are able to perform write-operations via the API. Though the scripts can be easily adapted to run
regularly (e.g. via cron, a basic server-side scheduling mechanism), it seems advisable at least in the
initial period to run the scripts in a supervised mode, given that their outcomes provide the input for
the human task of evaluating the results and conducting appropriate curation actions.

Although the notebooks are not fully finalised at the time of writing this report, the following general
structure is foreseen and to large extent already implemented:

● “utils” library - implements the methods used to perform analysis and checks in the
notebooks.

● ingest overview - a notebook to review the sources ingestion presents some statistics about
the number of values per attributes and properties to easily compare the ingestion and the
mapping phases.

● global data overview - a notebook presenting a global overview of the Marketplace data with
descriptive statistics of:

○ the item type

34

D7.2 – v. 1.0

○ the provenance (by sources or by users)
○ the metadata coverage rate (using the number of null values in mandatory and

recommended fields per item type)
○ the quality of the description field based on its length
○ the contextualisation quality that presents an overview of the number of relations per

items
● type-based checks - a set of notebooks with specialized checks for the main types of entities.

These notebooks also feature/invoke methods writing results of the checks back to the system
via the curation flags properties.

The following are some of the checks implemented as Python methods, invokable within the curation
notebooks (see D7.4 for a more detailed discussion)48:

● checking accessibility of links / dead links
● missing/null values, coverage of fields
● description length
● duplicate items and duplicate actors

4.5.3. Editorial Dashboard

This component provides a dedicated user interface to overview and manage items, actors and users.
Coming from inspirations such as the CLARIN Harvest Viewer49, the editorial dashboard provides an
overview for Moderators of the sources’ records being retrieved by the Marketplace. This overview
varies depending on the user roles. It allows Contributors to see the list of their draft and suggested
items, Moderators to manage the items to moderate, the sources labels and the actors. In addition to
these actions, Administrators can manage the user roles.

Fig. 12 - screenshot of the “My account” homepage for Administrator

49 See the CLARIN Harvest Viewer: https://vlo.clarin.eu/oai-harvest-viewer/ [24.09.2021]

48 Potential further checks are being considered like consolidation of vocabularies or finding and suggesting
related items for example.

35

https://vlo.clarin.eu/oai-harvest-viewer/

D7.2 – v. 1.0

The most elaborate part of this editorial dashboard is the “items to moderate” section. It features a
faceted search interface similar to the default one available to the normal users, enriched with
additional facets that allow the Moderators to filter the items based on their status and other curation
or meta information. Especially, the items can be filtered by the curation flags set by the automatic
checks in the Python notebooks, representing the crucial part of the communication mechanism
between automatic and manual curation processes. By combining the available filters, Moderators can
easily narrow down a specific small subset of the items to concentrate on, e.g. all the Tools & Services
from TAPoR, which feature a broken link.

4.5.4. Vocabulary Management

As described in section 3 Data Model, concept-based properties and controlled vocabularies are central
elements of the Marketplace design and interoperability. Many of the properties that describe entities
in MP use dedicated controlled vocabularies and the data model supports the notion of Vocabularies
consisting of Concepts and provides the means to restrict the value ranges of individual dynamic
properties to selected Vocabularies.

While some of the vocabularies can be considered “closed”, i.e. a predefined set of concepts, in most
cases the system needs to allow for new concepts to be admitted to the vocabulary continuously,
however in a controlled manner. New concepts can be introduced by Contributors/Moderators in need
of a new term when editing an MP-item, but most often new terms are encountered during the
automated ingest of data from existing sources. In general, human intervention is required to
determine if the new term represents a new concept, is just another lexical representation of an
existing concept, or should be disregarded altogether. This is at odds with the automatic ingestion
process, prompting a need to disentangle the items ingestions or curation processes from the vocabulary
curation process, allowing them to run asynchronously, while at the same time ensuring that newly
created concepts can be used right away to describe MP-items.

This has been accomplished by introducing a status for the concepts, where newly encountered terms
can be created as “candidate” concepts by the ingestion script, so that they can be used immediately,
while keeping them in a kind of “quarantine” for the Moderators to identify them easily, and decide on
their final admission to the vocabulary.

In the initial system architecture the Vocabulary Management was foreseen as a separate component,
the main rationale being to avoid reimplementing functionality, given existing mature vocabulary
management tools that could be readily reused, most notably VocBench50. On the downside, this
configuration implies the need for synchronisation of vocabularies between the vocabulary
management component and the MP-core. During the first phase of the project, the vocabularies have

50 VocBench vocabulary management tool: http://vocbench.uniroma2.it/ [13.10.2021]

36

http://vocbench.uniroma2.it/

D7.2 – v. 1.0

been managed by PoolParty Taxonomy Server51 and manually synchronized with the MP-backend. This
setup turned out problematic, hampering the dynamic evolution of vocabularies, and the handling of
newly encountered/proposed terms/concepts. Three possible alternative implementation options have
been considered:

A. “helper” twin properties for concept-based properties, storing candidate concepts until the next
vocabulary synchronisation between the vocabulary manager and the MP-core;

B. an indirection approach - there still is an external component for managing the vocabularies,
however the synchronisation between this external component and the MP-backend is handled
by the MP-backend, so that both ingestion scripts and curators (Moderators and
Administrators) can in their basic routines restrict themselves to interaction with the
marketplace. MP accepts new concepts and passes them on as candidate concepts to the
external vocabulary management component, where they are handled accordingly in a
separate vocabulary curation process.

C. an integrated approach where whole vocabulary management is part of the MP-core.

Approaches B and C both require the following functionalities to be supported by the system:

● CRUD operations on Vocabularies
● Vocabulary curation as CRUD operations on Concepts supporting main features of the SKOS

data model, i.e. semantic relations between concepts and a set of qualified labels per concept
(preferred, alternative, hidden, language-wise)

● Bulk ingest of (concepts of) an existing vocabulary
● Associate Vocabularies with corresponding property types.

Even though indirection has been chosen as the preferred solution, it was delayed in the
implementation. At the same time the practical handling of the vocabularies revealed the
heterogeneous nature of vocabulary management, with vocabularies coming from different sources in
different forms. This finding yielded a final setup, where there is no tight integration between MP-core
and an external vocabulary management component. Rather the main/default operations are
supported by the API of the MP-core component, there is minimal functionality and the version of
vocabularies in the system is considered the source of truth. For the case when major curation effort is
needed for a given vocabulary, it is exported in SKOS format, imported into a separate vocabulary
management tool, curation is performed and the new version of the vocabulary is again exported in
SKOS and reimported into MP via the API, making SKOS the primary interoperability mechanism.

51PoolParty Taxonomy server used for the Marketplace vocabularies: https://sshoc.poolparty.biz/Vocabularies.html
[08.10.2021]

37

https://sshoc.poolparty.biz/Vocabularies.html

D7.2 – v. 1.0

This setup required, following adjustments to the system, is as follows:

● adjustment of the data model, enriching the representation of Concepts covering the main
aspects of the SKOS data model

● enhancing the API of MP-backend correspondingly to the richer data model, and introducing
support for candidate concepts

● adaptations of the ingest pipelines to rely on MP as the authoritative source of vocabularies,
and to push candidate concepts.

● introducing edit forms to create new ("candidate") concepts.

4.6. Extraction module
The extraction task had been foreseen as a potentially very fruitful, but experimental, feature of the
system in the project proposal stage and correspondingly was described in the Description of Work.
While the idea to extract structured information from publications and other textual material is very
compelling, potentially yielding a host of new information, the extraction task is an exceedingly
challenging one, rendering the outcome quite uncertain.

Correspondingly, this line of action has been kept independent from the main development and data
processing task areas. Initial experiments have been conducted already in a very early stage of the
project with a simple dictionary-based approach. That is a list of known tools coming from one of the
primary sources - TAPoR - has been matched against a set of articles or conference abstracts (DH
conferences 2015-2020) and against the Programming Historian lessons52 to offer a first idea of the
feasibility and actual usefulness of the proposed task. These first experiments, implemented in a
simple Java-based application named ToolXtractor53 have been described in a series of white papers54.

Next to these lexicon-based experiments, some machine learning and training of Named Entity
Recognition (NER)55 model approaches have also been developed with the idea that the extraction part
would be integrated to the ingest process. The extraction module consists of two major parts, the
Named Entity Recognition model and the extraction pipeline, where the NER model is integrated and
used to extract new tool and relation candidates.

55 Named Entity Recognition: https://en.wikipedia.org/wiki/Named-entity_recognition [11.11.2021]

54 See Which DH Tools Are Actually Used in Research?: https://weltliteratur.net/dh-tools-used-in-research/; DH
Tools Mentioned in "The Programming Historian": https://weltliteratur.net/dh-tools-programming-historian/ &
Tools Mentioned in DH2020 Abstracts: https://weltliteratur.net/tools-mentioned-in-dh2020-abstracts/ [08.10.2021]

53 ToolXtractor: https://github.com/lehkost/ToolXtractor/ [08.10.2021]

52 Programming Historian: https://programminghistorian.org/ [08.10.2021]

38

https://en.wikipedia.org/wiki/Named-entity_recognition
https://weltliteratur.net/dh-tools-used-in-research/
https://weltliteratur.net/dh-tools-programming-historian/
https://weltliteratur.net/tools-mentioned-in-dh2020-abstracts/
https://github.com/lehkost/ToolXtractor/
https://programminghistorian.org/

D7.2 – v. 1.0

4.6.1. Named Entity Recognition Model

This section describes how machine learning, based on named entity recognition models trained on
publications containing tool names, can be used to extract candidates for new tools that are not yet
ingested in the marketplace.

● Pre-processing: Two Python scripts have been written to extract sentences from the
conference abstracts (DH conferences 2015-2020) as the context for the extraction, the first
script converts the original files in TEI format56 to Plain Text files with one sentence per line. The
second script converts the Plain Text files to JSONL57 format.

● Dataset: Annotation tool Prodigy58 is used to collect annotated data samples. The dataset
currently consists of 1538 sentences annotated by two groups of annotators.

● Model Training and Evaluation: The annotated sentences with tool names have been used to
train and evaluate the NER model. By using Prodigy’s train recipe and a model pre-trained on
the whole corpus, the resulting trained NER model has an F-score59 of 91.622%.

● Managing training pipeline and Named Entity Recognition models: It is crucial for the
reproducibility and maintainability of the model to track changes to the following artifacts:

○ Dataset might change upon manual evaluation of false-positives or false-negative cases.
○ Pre-processing pipeline might undergo some changes to deal with different formats
○ NER models should be retrained if either dataset or pipeline gets changed.

All three aspects are tracked and version controlled by using DVC60, an extension of the git version
control system with improved support for large datasets and complex composed data structures -
which are typical for machine-learning tasks (training data, configuration, trained model, etc.). A DVC
Pipeline is defined by specifying the pre-processing and training steps and their inputs and outputs as
dependencies. The outputs are then stored on Google Cloud 61 storage.

4.6.2. Extraction Pipeline

The scope of extraction has been limited to publications which are already ingested in the SSHOC
Marketplace and have a valid link to the PDF file of the publication in the ‘acccessible_at’ property. The
extraction pipeline is defined as a DVC pipeline and consists of 5 tasks.

● Publication retrieval: SSHOC Marketplace is queried for publications containing valid PDF file
links in the ‘accessible_at’ property, using a custom written Python client for the SSHOC

61 Google Cloud: https://cloud.google.com [14.10.2021]

60 DVC: https://dvc.org [14.10.2021]

59 F-score: https://en.wikipedia.org/wiki/F-score [11.11.2021]

58 Prodigy: https://prodi.gy/ [14.10.2021]

57 JSON Lines: https://jsonlines.org/ [19.10.2021]

56 Text Encoding Initiative: https://tei-c.org/ [11.11.2021]

39

https://cloud.google.com
https://dvc.org
https://en.wikipedia.org/wiki/F-score
https://prodi.gy/
https://jsonlines.org/
https://tei-c.org/

D7.2 – v. 1.0

Marketplace Rest API. The output is a list of publication objects with links to the publication file,
and is saved as a pickle file62. A total of 2990 publications existed in the MP at the point of initial
tool extraction execution, and 478 publications had a valid PDF file link.

● Publication download: the output from the previous task is used to download the actual PDF
publications. The downloaded files are stored in a separate output directory. The output of the
task is a mapping of publications to filenames and is stored as a pickle file.

● Convert to XML: this task converts the downloaded PDF files to XML/TEI using the grobid tool63.
● Tool candidate extraction: The already trained NER model described in the previous section is

applied to each sentence of the XML/TEI files and returns a list of candidate tool names. These
tools are validated for relevance by checking in the MP if the tool name exists. There are two
output artifacts from this stage. The first one is the ‘publication to tool candidates’ mapping and
the second one is the list of tool names that are suggested by the NER model, but do not exist
in the SSHOC Marketplace. Both are stored as pickle files.

● Relation Ingestion: The output from the previous task is used to add the relation ‘Publication -
mentions -> Tool’ to the MP. All other candidates that are suggested by the model but are not
present in the marketplace are passed on to the Curation team for further investigations, and
might be semi-automatically or manually ingested as new tool names.

The extraction pipeline can be either executed manually or periodically by using a Gitlab CI/CD pipeline.

4.7. Deployment and configuration of the system

The system consists of multiple components deployed as separate containers in a dockerized
environment:

● backend component consisting of:
○ core application
○ Solr index
○ PostgreSQL database

● frontend component

The components can be easily deployed using the industry standard for light-weight virtualisation
Docker64.

The system is currently deployed in three instances on the servers run by DARIAH/OEAW:
● development - used by developers for testing new functionality
● staging - instance based on the latest version of the code and data model.

The ingests have been redirected to run against this instance, thus this instance also contains

64 See Docker website: https://www.docker.com/ [13.10.2021]

63 Grobid tool: https://github.com/kermitt2/grobid [14.10.2021]

62 More about pickle and pickle files: https://docs.python.org/3/library/pickle.html [11.11.2021]

40

https://www.docker.com/
https://github.com/kermitt2/grobid
https://docs.python.org/3/library/pickle.html

D7.2 – v. 1.0

the latest data. It will replace the production instance for the final release, once all the ingestion
and curation workflows have been tested and proven stable.

● production - publicly available stable instance based on the beta release

During the project the systems have been deployed using the container management tool Portainer65,
though the deployment will be moved to a Kubernetes66 cluster by the end of the project. Initially this
will be on a minimal cluster maintained by DARIAH/OEAW. As Kubernetes is the most common
state-of-the-art container-orchestration solution used in cloud computing, a Kubernetes-compatible
setup will stream-line the deployment and hosting of the system to external cloud providers, most
notably e-Infrastructures offering their services within the EOSC. This is inline with the strategy to have
the deployment and hosting under the project team’s control during the period of heavy development,
but have the system prepared to be readily hostable by professional cloud computing providers.

A continuous integration and deployment setup is in place, where pushing changes to corresponding
branches in the git repository trigger a set of tests to be run and upon successful completion a new
version of the application is automatically deployed.

There are a number of dynamic parts of the data model, which require configuration or initial
population upon installation of a new naked/empty instance. These “system data” are maintained as
YAML-configuration files as part of the backend source code and are applied during initialisation of the
system. This includes:

● Dynamic properties or property-types, e.g. activity-type, keyword
● Actor roles, e.g. contributor, author, funder
● Item relation types, e.g. is-documented-by, mentions
● Concept relation types, e.g. related, broader, sameAs
● Sources, e.g. TAPoR, Programming Historian
● Actor sources, e.g. ORCID, DBLP, Wikidata

Vocabularies, though also part of the system data, are not loaded automatically on application startup
anymore and need to be ingested separately. Similarly, if changes to the system data are needed for an
existing system with a populated database, corresponding API calls can be applied by the
Administrator.

To ensure data consistency and prevent data loss due to evolution of the data model, the Liquibase67

tool is used to manage the database schema migrations. Corresponding configuration files for the
schema migration are also maintained as YAML files (as part of the source code of the backend
component) and are executed only once during application startup, before loading of the system data.

67 See Liquidbase website: https://www.liquibase.org/ [13.10.2021]

66 Kubernetes: https://kubernetes.io/ [11.11.2021]

65 See Portainer tool: https://www.portainer.io/ [13.10.2021]

41

https://www.liquibase.org/
https://kubernetes.io/
https://www.portainer.io/

D7.2 – v. 1.0

4.8. Application Programming Interface
As described in section 4 Implementation, the REST API exposed by the server application is the only
way the client or any other component can interact with the data, decoupling the backend and
frontend and making explicit the contract between server and client.

The API is described using Swagger68 OpenAPI documentation.69 The endpoint of the SSH Open
Marketplace API is: https://marketplace-api.sshopencloud.eu/api/.

The API responses are in JSON and follow the Marketplace data model. For example, one can request a
description of all the tools and services that the SSH Open Marketplace provides at:

https://marketplace-api.sshopencloud.eu/api/tools-services

and following pages:

https://marketplace-api.sshopencloud.eu/api/tools-services?page=2

The API is open for anyone to use. All read methods (HTTP GET method) are accessible anonymously,
whereas for write operations (POST/PUT/DELETE) authentication is required, using the Bearer or token
authentication method70, in which first a JSON Web Token (JWT) has to obtained at the authentication
endpoint, and then sent as an Authorization header when connecting to other endpoints71.

5. EOSC Integration
Given the general goal of the whole SSHOC project developing the SSH part of the EOSC, it is crucial to
ensure that the outcomes of the project will become part of this new evolving ecosystem, which for the
SSH Open Marketplace as a service means primarily technical integration with the EOSC core services,
the most prominent ones being the EOSC Portal Catalogue and Marketplace, Authentication and

71 See Bearer authentication (also called token authentication) specification:
https://swagger.io/docs/specification/authentication/bearer-authentication/ [12.10.2021]

70 See the following resources for more details on the method:
https://swagger.io/docs/specification/authentication/bearer-authentication/ and
https://en.wikipedia.org/wiki/JSON_Web_Token [14.10.2021]

69 API Swagger documentation for the public instance of the Marketplace:
https://marketplace-api.sshopencloud.eu/swagger-ui/index.html?url=/v3/api-docs [12.10.2021]

68 See Swagger tools: https://swagger.io/ [12.10.2021]

42

https://marketplace-api.sshopencloud.eu/api/tools-services
https://marketplace-api.sshopencloud.eu/api/tools-services?page=2
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://en.wikipedia.org/wiki/JSON_Web_Token
https://marketplace-api.sshopencloud.eu/swagger-ui/index.html?url=/v3/api-docs
https://swagger.io/

D7.2 – v. 1.0

Authorization Infrastructure (AAI), Accounting, Monitoring and Helpdesk72. The SSH Open Marketplace
has already successfully implemented integration with the EOSC AAI and is in the process of
onboarding to the EOSC Portal. Integration with other EOSC core services is being considered.

However the SSH Open Marketplace, beyond being another service to become part of the EOSC
ecosystem, is also a domain-specific discovery platform and a thematic catalogue. Finding the right
resources in the vast, complex ecosystem is recognized as a major challenge, and there are numerous
efforts to map various sub-areas of the scientific resources landscape. At the top, the EOSC Portal
Catalogue and Marketplace and the OpenAire catalogue are emerging as the primary entry points for
discovering services, resources and research outcomes. The position of the SSH Open Marketplace in
this complex network of discovery solutions is detailed in section 5.3.

5.1. EOSC AAI
The federated identity management or AAI, is maybe the most critical core service of EOSC, given its
role in establishing trust between systems and users and radically simplifying for the researchers the
personalized access to the growing set of resources. Therefore the SSH Open Marketplace has been
integrated with the EOSC AAI. This allows both for simple and reliable user management on the side of
the Marketplace, and minimizing the entry barrier for users interested in getting actively involved,
community involvement being one of the central propositions of the Marketplace.

Because the EOSC AAI was not available to the SSH Open Marketplace team at the beginning of the
project, the EGI Check-In service has been used for the development environment. With the recent start
of the EOSC Future project - in April 2021 - the management of the EOSC AAI changed and all
communication and updates of configuration have to be handled via the EOSC Portal Helpdesk73. The
three SSH Open Marketplace environments are now using EOSC AAI (Production).

Technically, the authorization relies on the OAuth2 protocol. From the login page the user is redirected
first to the WAYF (Where are you from) interface, where they can pick their home organization. Then
the user is redirected again to the login page of the home organization and upon successful
authentication is redirected back to the originating application (i.e. the Marketplace in this case)
together with an implicit grant token as an URL fragment. This token is valid for only 30 seconds, during
which time the frontend has to call the method PUT /api/oauth/token with this grant token to retrieve
the actual JWT token in the Authorization header, which has to be then included in every subsequent
request. This whole procedure is governed solely by redirects in the client's browser with no direct
communication taking place between the server-side of the application and the identity provider.

73 EOSC Portal Helpdesk: https://eosc-portal.eu/helpdesk [12.10.2021]

72 For more details on the EOSC Architecture and the EOSC Core functions and services, see the EOSC Strategic
Research and Innovation Agenda (SRIA) - https://www.eosc.eu/sria [14.10.2021] or the EOSC architecture working
group view on the minimum viable EOSC - https://op.europa.eu/s/s26Y [14.10.2021].

43

https://eosc-portal.eu/helpdesk
https://www.eosc.eu/sria
https://op.europa.eu/s/s26Y

D7.2 – v. 1.0

In the case that the user has logged in for the first time, they will be redirected to a registration form
with prefilled “display name” and “email” as obtained from the identity provider to be but confirmed
and with further information to be completed manually, as well as to accept the privacy policy. Thus
while the authentication is done externally, there is still a local representation of the user in the system
with additional information.

5.2. Onboarding SSH Open Marketplace into the
EOSC portal

At the moment, the primary mode of integration of specialized services with EOSC is the “onboarding”
of these services to the EOSC portal; essentially making them “registered” and listed in the EOSC
catalogue, thus known and visible “citizens” of the EOSC ecosystem.

Onboarding services into the EOSC portal assists in implementing the SSHOC long-term strategy to
ensure availability and findability of its services. As such, there is a concerted effort moderated by the
project coordinator to identify mature services in their individual work packages and to ensure that
these services are onboarded, including the SSH Open Marketplace. The onboarding should take
place/be performed before the end of the project, however only after production release of the service,
this being a precondition to onboarding.

EOSC portal distinguishes between two main entities, Providers and Resources. These are formalized in
an interoperability framework called EOSC Profiles which defines the common data models and
specifications for EOSC entities (such as the Providers Profile74 and the Resource Profile75) to be
interoperable with its systems and others in the Ecosystem. These profiles allow a systematic
automated management of the EOSC resource information from the point of metadata being entered
by the service or resource provider during EOSC onboarding.

The rather complex onboarding process has been designed in a series of projects (such as
eInfraCentral, EOSC hub, EOSCPilot, OpenAIRE-Advance, CatRIS and EOSC-Enhance) as well as the
results produced by the EOSC Working Groups (e.g. Rules of Participation76). This rich experience
resulted in the EOSC onboarding process being well tested and rolled out successfully. The onboarding
process essentially boils down to two stages: onboarding, or registering first the Provider entity and
then subsequently registering the Provider´s “Resource”. While at the moment the resource profile is

76 See outputs of the EOSC Rules of Participation Working Group -
https://www.eoscsecretariat.eu/working-groups/rules-participation-working-group/eosc-rop-outputs [14.10.2021] -
and the newly established Rules of Participation Compliance Monitoring Task Force -
https://www.eosc.eu/implementation-eosc [14.10.2021] - for more details.

75 EOSC Resource Profile: https://eosc-portal.eu/providers-documentation/eosc-provider-portal-resource-profile
[08.10.2021]

74 EOSC Providers Profile: https://eosc-portal.eu/providers-documentation/eosc-provider-portal-provider-profile
[08.10.2021]

44

https://www.eoscsecretariat.eu/working-groups/rules-participation-working-group/eosc-rop-outputs
https://www.eosc.eu/implementation-eosc
https://eosc-portal.eu/providers-documentation/eosc-provider-portal-resource-profile
https://eosc-portal.eu/providers-documentation/eosc-provider-portal-provider-profile

D7.2 – v. 1.0

more geared towards services, there is ongoing work happening in the EOSC-Future project to extend
the profile to cover other resources, like data sources and research data. Another improvement within
EOSC-Enhance was the implementation of semi-automatic onboarding using the Providers API77. Even
though EOSC-Enhance is nearing completion in November 2021, further evolution/development of the
onboarding processes and Portal development is to be expected, as the EOSC-Enhance project is
handing over the work on the EOSC Portal to the EOSC Future project.

This onboarding is guided by the corresponding profiles, which are meanwhile available as registration
forms in the EOSC Provider Portal. These are rather elaborate operations and contain a number of
questions that may need extra consultation. Therefore, prior to commencing the actual registration
procedure, it is recommended that a copy of the profiles be shared and consulted with stakeholders of
the services, to allow for due preparation of the necessary information. This includes especially the
clarification of the question “who is the Resource Organisation and/or Provider”, and the related question
of commitment to provisioning and managing of the service on the portal. This topic has been
discussed extensively both in the WP7 group, as well as in the broader scope of the SSH Science Cluster
and the question of the long-term sustainability of the outcomes of the SSHOC project is taking shape
at the time of writing78. A Memorandum of Understanding between some of the main partners of the
project will ensure the continuity of the collaboration after the end of the project, and dedicated
services agreement(s) to clarify responsibilities among the SSH Open Marketplace Organisations and
Providers as well as the financial support to be provided are under negotiation for some of the SSHOC
outputs. Three ERICs involved in SSHOC are interested in sustaining the SSH Open Marketplace and
some service providers have also notified their interest in maintaining the service after the end of the
project.

5.3. Research community portals in the EOSC
Part of the work conducted during the SSHOC project was to monitor EOSC developments to
understand what would be the role of the SSH Open Marketplace, as a discovery portal answering SSH
communities needs, in this huge and complex growing ecosystem.

Grounded in community needs and requirements, the SSH Open Marketplace has been developed to
be as user-friendly as possible for any users. In line with the development that there has to be many
entry points into the vast and complex EOSC ecosystem, custom tailored to the specific needs of
individual research communities, the SSH Open Marketplace has the potential to represent the main
entrance for the SSH Science Cluster. In that sense, it is also foreseen that the SSH Open Marketplace
will become part of the EOSC-Exchange, understood as the set of federated resources registered to the

78 See for example SSHOC D7.5 Marketplace Governance published early October 2021.

77 https://providers.eosc-portal.eu/openapi

45

D7.2 – v. 1.0

EOSC by Research Infrastructures and Science Clusters to serve the needs of research communities79.
Next steps toward integrated discovery in the EOSC context (to which the SSH Open Marketplace could
contribute) have to be aligned with the research data cataloguing efforts done in the five Science
Cluster projects80, as well as the outcomes of the EOSC-Enhance project81. Furthermore, as the options
for integration of thematic catalogues in the EOSC catalogue are becoming clearer82concrete avenues
to ensure interoperability and integration of the SSH Open Marketplace within this ecosystem should
rapidly emerge and surely represent the main future line of work to further develop the SSH Open
Marketplace and ensure its sustainability as one of the SSH Cluster services in the EOSC.

6. Conclusion
This deliverable describes the successful implementation of the SSH Open Marketplace following the
system specification (D7.1). In the iterative implementation process of the last two years, with major
milestones being the minimum viable product, alpha and beta releases of the application, numerous
adjustments and refinements to the original plan were introduced, but both the overall system
architecture as well as the central principles of the data model proved right.

A tight collaboration between different dimensions of the work, such as the user requirements, the
technical implementation, the interoperability and curation aspects - reflected in the WP tasks
distribution - has been crucial for the success of the SSH Open Marketplace creation.

The SSH Open Marketplace is implemented, in line with the EOSC developments, as a resource
catalogue, or discovery platform, to serve the Social Sciences and Humanities. Seeing the developments
at the EOSC level, where the notion of “resource” is being gradually expanded beyond services to
encompass datasets, training materials and other information objects, is gratifying and a confirmation
of the SSH Open Marketplace path and data model.

Despite developing the SSH Open Marketplace against a very dynamic environment - the evolving EOSC
ecosystem - the successful implementation of this SSH discovery portal is one of the concrete and
tangible results of the SSHOC project and a good sign for the ongoing integration of the social scientists

82 See Workshop Incorporating National and Thematic Service and Resource Catalogues into the EOSC (esp.
“Agreements & Policies for Catalogues” Owen Appleton (EOSC Future))
https://eosc-portal.eu/events/incorporating-national-and-thematic-service-and-resource-catalogues-eosc
[13.10.2021]

81 See Carole Goble, & Nick Juty. (2021). Analysis of existing research data cataloguing efforts towards integrated
discovery. https://doi.org/10.5281/zenodo.4693217 [13.10.2021]

80 See Appleton, Owen, Petzold Andreas, Graf, Kay, Goble, Carole, Fischer, Frank, Richter, Tobias, & Willems,
Marieke. (2020, November 16). Thematic Discovery Marketplaces for the European Open Science Cloud. Realising
the European Open Science Cloud. Towards a FAIR research data landscape for the SSH and beyond., Online.
Zenodo. https://doi.org/10.5281/zenodo.4277601 [13.10.2021]

79 Next to the EOSC-Core and to the EOSC-Federation, the EOSC-Exchange is one of the main components of the
EOSC Architecture.

46

https://eosc-portal.eu/events/incorporating-national-and-thematic-service-and-resource-catalogues-eosc
https://doi.org/10.5281/zenodo.4693217
https://doi.org/10.5281/zenodo.4277601

D7.2 – v. 1.0

and humanists needs’ and resources into the EOSC.

7. References
● Appleton, Owen, Petzold Andreas, Graf, Kay, Goble, Carole, Fischer, Frank, Richter, Tobias, &

Willems, Marieke. (2020, November 16). Thematic Discovery Marketplaces for the European
Open Science Cloud. Realising the European Open Science Cloud. Towards a FAIR research data
landscape for the SSH and beyond., Online. Zenodo. https://doi.org/10.5281/zenodo.4277601

● Barbot, Laure, Moranville, Yoan, Fischer, Frank, Petitfils, Clara, Ďurčo, Matej, Illmayer, Klaus,
Parkoła, Tomasz, Wieder, Philipp, & Karampatakis, Sotiris. (2019). SSHOC D7.1 System
Specification - SSH Open Marketplace (1.0). Zenodo. https://doi.org/10.5281/zenodo.3547649

● Barbot, Laure, Moranville, Yoann, Buddenbohm, Stefan, Illmayer, Klaus, & Ďurčo, Matej. (2020).
MS42 Marketplace – alpha release (v1.0). Zenodo. https://doi.org/10.5281/zenodo.4585700

● Barbot, Laure, Fischer, Frank, Illmayer, Klaus, Ďurčo, Matej, König, Alexander, Van Uytvanck,
Dieter, & Larrousse, Nicolas. (2020). MS.43 - Marketplace - beta release (1.0). Zenodo.
https://doi.org/10.5281/zenodo.4785194

● EURISE Technical Reference: https://technical-reference.readthedocs.io
● Fischer, Frank, Moranville, Yoann, Barbot, Laure, Capelli, Laurent, Ngo, Virginie, Dumouchel,

Suzanne, Blotière, Emilie, Ďurčo, Matej, Van Uytvanck, Dieter, König, Alexander, Gingold,
Arnaud, Nowak, Aleksandra, & Parkoła, Tomasz. (2020, November 25). Exploring the SSH data
landscape: thematic discovery portals in the EOSC. REALISING THE EUROPEAN OPEN SCIENCE
CLOUD Towards a FAIR research data landscape for the social sciences, humanities and
beyond. Zenodo. https://doi.org/10.5281/zenodo.4290599

● Goble, Carole & Juty, Nick. (2021). Analysis of existing research data cataloguing efforts towards
integrated discovery. https://doi.org/10.5281/zenodo.4693217

47

https://doi.org/10.5281/zenodo.4277601
https://doi.org/10.5281/zenodo.3547649
https://doi.org/10.5281/zenodo.4585700
https://doi.org/10.5281/zenodo.4785194
https://technical-reference.readthedocs.io
https://doi.org/10.5281/zenodo.4290599
https://doi.org/10.5281/zenodo.4693217

D7.2 – v. 1.0

List of Figures

● Fig. 1 - Data Model v 1.5
● Fig. 2 - Statuses for items
● Fig. 3 - System Architecture Diagram as introduced in D7.1 System Specification
● Fig. 4 - Update of the system architecture
● Fig. 5 - low-fidelity sketches of the search result page
● Fig. 6 - Screenshot of the Gephi tool - Item detail view
● Fig. 7 - Overview on the different components of the ingestion workflow
● Fig. 8 - Ingestion workflow
● Fig. 9 - Screenshot of the Data Acquisition DPUs in Pool Party
● Fig. 10 - JSON to JSON transformation on the JOLT demo site for DARIAH-Campus source
● Fig. 11 - Screenshot of the edit form - “3DHOP - How To” item
● Fig. 12 - screenshot of the “My account” homepage for Administrator

List of Tables
● Table 1 - Vocabularies used in concept-based properties
● Table 2 - Components of the system architecture: foreseen vs. implemented

48

D7.2 – v. 1.0

8. Annex 1 - EURISE Software Quality Checklist
applied to the SSH Open Marketplace

General

● X Does the software have a descriptive name?
● X Is there a short high-level description of the software?
● X Is the purpose of the software clear?
● X Does the software exactly match its requirements?
● X Is the targeted audience of the software clear?
● X Has the software been tested by members of the target audience in respect of its usability?
● X Does the software (and its dependencies) use OSI approved licenses?
● X Is the software under version control?
● X Is there a website for the software?
● X Is the software’s website mobile friendly to a certain degree? I.e. can it be accessed on a

smartphone or tablet without hiding the most important information and features?
● X Are the user interface design and the software’s website mindful of accessibility? I.e. does it

consider e.g. a high contrast between colors for colorblind users, are there alternative texts for
images that can be read by a screenreader, are texts easily resizeable, …?

● X Does the software have a release mechanism?
● X Is the software available in packaged format or only sources?
● X Are maintainer and development status clear, including up to date and accessible contact

information?
● X Are the requirements listed and up to date?
● X Is copyright and authorship clear and accessible?
● X Is there a contribution guide?

Documentation

● X Is there an accessible low-level guide for getting started?
● X Is there an accessible user guide?
● X Is there a full user documentation?
● X Does the user interface link to held references?
● X Are there examples, FAQs and tutorials?
● X Is there information stated about who to ask when a problem is not covered by the FAQ?
● X Are known issues documented and easily accessible for all user groups?
● X Can bugs/issues be reported easily by other developers and users?

49

D7.2 – v. 1.0

Development

● X Is the development setup documented?
● X Is the build mechanism documented?
● X Does the build mechanism use a common single-command system (i.e. Maven)?
● X Is the software API documented?
● [in progress] Are all appropriate config options externalised and documented?
● X Does the code allow internationalisation (i18n)?
● [no] Is the software localised (l10n)? English is mandatory.
● X Is there a test suite?
● [94% classes, 79% methods and 76% lines] Is test coverage above 80%?
● X [run locally by developers before commit] Are the tests run on a regular and frequent basis, e.g.

on commit/every night/…?
● X Do you have and stick to a policy for security by design?
● X Is the software portable?
● X Has the portability been tested?

Interoperability

● X Are file formats standard compliant and documented?
● X Is the API standard compliant?
● X Does it provide a monitoring endpoint?
● X Does it adhere to an interface style guide?
● X Does it use existing authentication systems (OAuth2/eduGain)?

Administration

● X Are software requirements such as operating system, required libraries and dependencies
specified including versions?

● [planned] Are hardware requirements for CPU, RAM, HDD, Network specified?
● X Are there deployment instructions?
● [in progress] Is there a comprehensive and fully documented example configuration?
● X Is a startup script provided?
● X Are there troubleshooting guides?

50

	D7.2 Marketplace – Implementation1page 1
	D7.2 Marketplace – Implementation

