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Abstract

Clinical trajectory is a clinically relevant sequence of ordered patient phenotypes representing consecu-
tive states of a developing disease and leading to some final state. Extracting trajectories from large scale
medical data is of great interest for dynamical phenotyping of various diseases but remains a challenge for
machine learning methods, especially in the case of synchronic (with short follow up) observations. Here
we describe an approach for trajectory-based analysis of cancer data using elastic principal trees and test
it on a large collection of molecular tumoral profiles for breast cancer. We show that the disease progress
quantified with pseudotime (the geodesic distance from the root) along a particular trajectory can serve
as a significant prognostic factor, not redundant with gene expression-based predictors. We conclude that
application of the elastic principal trees to transcriptomic data can be of interest for clinical applications.

clinical trajectories, breast cancer, transcriptome, principal tree, survival analysis

1 Introduction

Machine learning-based analysis of Big Data in medicine promises to accelerate rationalizing and optimizing
treatment of various diseases. For unsupervised type of analysis of medical data, we can distinguish two basic
types of approaches for achieving this goal: static analysis based on clustering and the analysis of clinical
trajectories. This distinction takes its roots back to the very origin of medicine as a field. Thus, the father
of medicine, Hippocrates, was considering any patient with a particular disease as a process that can be
characterized by the rules of its dynamics [1]. For example, he introduced the term ‘crisis’ in a disease as a
decisive bifurcation point, determining the patient’s fate at rather well defined moments of time. This notion
of disease as a specific and complex dynamics is the opposite of the naive idea of a discrete diagnosis that
defines disease as a condition or state. Following the ideas of the Koan’s school founded by Hippocrates,
during many centuries the work of many thousands of best medical experts had the aim to transform the
scrupulous observations on the millions of individual patients’ disease trajectories into standard medical
protocols. Thanks to these efforts, today we can sometimes make a prognosis for a patient, and not merely
diagnose his current condition. But we need much more: to identify typical crises and to make a reliable
individual forecast.

Today we can investigate the patient’s organism more systematically than ever, including the molecular
level. Sometimes we can record everything that happens with the whole nations in terms of health into
billions of clinical records. For example, a dataset containing an electronic health registry collected during
15 years and covering the whole population of Denmark, with 6.2 million individuals, have been analyzed
with an objective to determine previously unreported disease co-morbidities [2]. An ambitious ‘Data Health
Hub’ (https://www.health-data-hub.fr/) project has been recently launched in France with the aim to
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make available for machine learning-based analysis the collection of several decades-long population-wide
anonymized health insurance records [3].

The Big Data point of view on medicine has been connected for long with the principle of clustering. The
state of a patient can be represented as a vector in a multi-dimensional space combining all bits of information
collected, including very precise molecular measurements. Collecting many such vectors, one can think of
applying an unsupervised machine learning approach and define patient subgroups with similar states. In
cancer research, this approach being applied to omics measurements, leads to the definition of molecular
cancer subtypes [4]. The hypothesis is that each such a subgroup of patients requires a specific treatment.
Quite strikingly, this approach appears to be in direct contradiction with the Hippocrates legacy, since by
classifying the snapshot states of the patients, we tend to neglect the dynamical nature of the disease as a
process.

The instantaneously observed state of a patient does not tell how the patient arrived there, the process
that could take years and be preceded by other diagnoses. Mere classifying the current patient state also does
not immediately allow predicting the probable future states. Therefore, today we are facing the paradigm
change from defining a disease as a static snapshot of the organism’s state towards the notion of an individu-
alized clinical or disease trajectory. The disease trajectory represents the history of a patient with interplay
and mutual influences of multiple diagnoses. Millions of such trajectories can be grouped into dynamical
phenotypes, representing fewer number of major stereotypical pathological scenarios [2]. Dynamical pheno-
typing is the conceptual paradigm underlying such studies which can be applied at organismal and cellular
scales [5–7]. It states that distinguishing various dynamical types of progression of a disease or a cellular
program is more informative than classifying biological system states at any fixed moment of time. From
the machine learning point of view, this dictates different choices of methods, with clustering more adapted
to the synchronic (snapshot) data [8] while more specific methods for trajectory analysis are needed in the
case of diachronic (having important temporal aspect) data [9–13]. Modern methods of artificial intelligence
based on collecting large amounts of clinically relevant data can help us to perform such dynamical patient
phenotyping.

There is still one big problem in this respect. Reconstructing precise individual clinical trajectory requires
long-term follow up of a patient, with systematic collection of the information about the state of the patient’s
organism. These data (called longitudinal or diachronic observations) remain very difficult and expensive
to collect. We have in possession much more synchronic (snapshot) data by observing patients within a
relatively short period of time (for example, during the stay in a hospital).

We hypothesize that if the number of synchronic observations is large, then they will map the structure
of clinical trajectories because each patient would represent a different state of a progressing disease, along
a particular disease trajectory. Then the large-scale clinical data can be modeled as a bouquet of diverging
clinical trajectories, even if the nature of the data is synchronic and none of the patients is followed for a
long time. The root of this bouquet corresponds to the least complicated disease state, the onset of many
possible pathological scenario.

We suggest to model the clinical data using the method of elastic principal trees, based on the idea
of topological grammars [14–16]. Recently we developed a Python package, ClinTrajAn, which can be
conveniently used in order to extract trajectories from various types of clinical data, using principal trees [17].
This approach has been applied to the analysis of several large-scale clinical datasets such as the database of
complications of myocardial infarction and the diabetes management dataset [18]. In these case studies, the
datasets contained various measurements of the patient physiology or the details precising the context of the
patient’s stay in hospital. Such data are extremely valuable but remain difficult to collect and standardize,
especially in the context of increasing stringency of the personal data protection legal rules.

With the arrival of high-throughput molecular profiling technologies to clinics, it is tempting to use these
data in order to extract trajectories directly from a sufficiently large set of molecular profiles. Indeed, it
was observed that in some diseases such as cancer, the molecular measurements can be ordered in clinically
relevant fashion by applying linear and non-linear unsupervised machine learning approaches [19,20]. One of
the first attempts to define trajectories in transcriptomic breast cancer datasets was undertaken in [21] using
topological data analysis. Principal curves initially suggested by Hastie [22] have been used to model the
transcriptomic data in colon and breast cancer [20,23]. In these studies existence of a single global trajectory
without branching was assumed. This approach was further extended to the case of branching trajectories,
assembled into a principal tree, leading to refining the breast cancer classification into subtypes and detecting
new rare subtypes [24]. In order to extract branching trajectories, the authors used either cluster-wise
assembly of principal curves into a global tree or a structure learning approach denoted as reversed graph
embedding, similar in spirit to the elastic principal trees but based on simplified heuristics [25].

Here we apply the ClinTrajAn Python pack) age, developed by us earlier, to the analysis of large tran-

2



scriptomic breast cancer dataset METABRIC, which was previously analysed by clustering approaches [26]
and by detecting clinical trajectories [23, 25]. Complementing the previous studies, we focus on the clinical
significance of the branching pseudotime quantified with ClinTrajAn. We stored the data and code at kaggle
datasets (https://www.kaggle.com/alexandervc/breast-cancer-omics-bulk-data/code), one can use it to make
further analysis.

2 Material and methods

2.1 Method of elastic principal trees

Principal tree is a set of principal curves assembled in a tree-like structure, characterized by branching
topology [14, 27]. Principal trees can be constructed using ElPiGraph computational tool, which has been
previously exploited in determining branching trajectories in various genomics datasets (in particular, in
single cell omics data) [16,28,29].

Elastic principal graph (ElPiGraph) is an undirected graph with a set of nodes V = {Vi} and a set of
edges E = {Ei}. The set of nodes V is embedded in the multidimensional space. In order to denote the
position of the node in the data space, we will use the notation φ(Vj), where φ(Vj) is a map φ : V → Rm. The
optimization algorithm search for such φ(·) that the sum of the data approximation term and the graph elastic
energy is minimized. The details of the optimization-based approach can be found elsewhere [16,27,30,31].

In this study we used freely available ClinTrajAn Python package built on top of ElPiGraph and facilitat-
ing the extraction and the analysis of clinical trajectories [18]. The principal tree inference with ElPiGraph
was performed here using the following parameters: R0 =∞, α = 0.01, µ = 0.1, λ = 0.05. Parameters have
the following meaning: R0 is the trimming radius such that points further than R0 from any node do not
contribute to the optimization of the graph, λ is the edge stretching elasticity modulo regularizing the total
length of the graph edges and making their distribution close to equidistant in the multidimensional space, µ
is the star bending elasticity modulo controlling the deviation of the graph stars from harmonic configurations
(for any star Sj , if the embedding of its central node coincides with the mean of its leaves embedding, the
configuration is considered harmonic). α is a coefficient of penalty for the topological complexity (existence
of higher-order branchings) of the resulting graph. (The detailed explanations on parameters can be found
in [18], section ”Method of Elastic Principal Graphs (ElPiGraph)” formulas 2,3,4,5 ).

The ElPiGraph and ClinTrajAn packages are freely available from https://github.com/sysbio-curie/

ElPiGraph.P and https://github.com/sysbio-curie/ClinTrajAn.

2.2 Projecting data points onto principal tree

An artbitrary vector x – not necessary belonging to the dataset X – can be projected onto the principal tree
and receive a position in its intrinsic geodesic coordinates. The projection is achieved by finding the closest
point on the principal graph as a piecewise linear manifold, composed of nodes and edges as linear segments
connecting nodes. Therefore, the projection can end up in a node or on an edge. In further we define a
projection function {p, ε} = Proj(x,G), returning a couple containing the index of the edge which is the
closest one to x and the position of the projection from the beginning of the edge Ep(0) as a fraction of the
edge length ε ∈ [0, 1]. Therefore, if ε = 0 then x is projected into Ep(0) and if ε = 1 then the projection is in
Ep(1). If ε ∈ (0, 1) then the projection is on a linear segment, connecting Ep(0) and Ep(1).

2.3 Quantifying pseudotime along clinical trajectories

After computing the principal tree, a root node Vroot has to be defined by the user, accordingly to the
application-specific criteria. For example, it can correspond to the node of the graph closest to a set of data
points enriched with those having the least of disease severity.

The pseudotime Pt(x) of an arbitrary vector x is defined as the total geodesic distance in the principal
tree from Vroot to the projection {p, ε} = Proj(x,G) of x on the graph. Algorithmically, we need to define
which node of the edge Ep is the closest to the Vroot and add the ε accordingly, i.e.

Pt(x) =


|Vroot → Ep(0)|+ ε,

if |Vroot → Ep(0)| < |Vroot → Ep(1)|

|Vroot → Ep(0)| − ε,
if |Vroot → Ep(0)| > |Vroot → Ep(1)|

(1)
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where |Vi → Vj | signifies the number of edges (length) of the trajectory Vi → Vj .

2.4 METABRIC transcriptomic breast cancer dataset

METABRIC dataset is the largest publicly available collection of transcriptomic profiles of breast tumors,
accompanied by their clinical annotations, including the molecular subtype, follow up time, overall survival
and relapse free status that allows application of survival analysis and identification of prognostic biomarkers
[26]. METABRIC was used in 2012 DREAM Breast Cancer Challenge for predicting breast cancer patient
survival using machine learning methods. Using traditional clustering approach, breast cancer transcriptomes
in METABRIC can be classified into molecular subtypes called normal-like, luminal A, luminal B, HER2-
enriched, basal-like and more recently introduced ’claudin-low’ breast cancer subtype [4]. METABRIC dataset
contains 1981 tumoral transcriptomic profiles each of which contained 24360 genes. All the samples underwent
transcriptional profiling on the Illumina HT-12 v3 platform and data were normalized as described in [26].

3 Results

3.1 Extracting trajectories in the breast cancer transcriptome

For the trajectory-based analysis we used 1000 most variable genes, for which 30 principal components have
been computed, so the trajectories were computed in the reduced data space.

By exploring several preprocessing schemes and parameter values for ElPiGraph, we concluded that
considering 20 nodes in the principal tree, using tree pruning (reducing branches with just one node) and
extending end nodes by additional edge produces biologically and clinically relevant definition of trajectories,
as described below.

We identify the root node of the tree to be node #20 (see Figure 1) on the basis of the following
reasoning. This node is a terminal node of the graph located in the region of the data space where data
points labeled as ’Luminal A’ and ’normal-like’ dominate, thus it is reasonable to suggest that it corresponds
to tumors which are most similar to normal cells, and so having good prognosis. This choice of the root node
defines three trajectories in the omics data: trajectory #20-#19, passing through the luminal breast cancer
tumors, trajectory #20-#18 leading to the basal-like breast tumor profiles, trajectory #20-#21, leading to
HER2+ breast tumors (Figure 3). These trajectories are connected through two branching points, one of
which corresponds to the divergence between basal-like and HER2+ molecular profiles, while the second one
corresponds to the split between luminar profiles. Thus distance from the root node along one of the three
trajectories serves a measure how malignant the tumor is. The further analysis confirms the reasonable choice
of the root node.

3.2 Partitioning breast cancer patients accordingly to the segments of the prin-
cipal tree

Having trajectory defined for the data, it automatically implies splitting data into certain clusters defined by
trajectory segments. It is done in the following way: first one splits the graph into non-intersecting segments
which connect branching or end nodes to other branching or end nodes (and not containing any branching
points inside), second one assigns to each point of the data the nearest segment of the graph. Thus the data
is split into partitions enumerated by graph segments. We refer to [18] (section ”Partitioning (clustering) the
data according to the principal graph segments” and Figure 9 therein) for more details. Such clusters are
natural from the point of view of introduced pseudotime. Indeed, one can imagine data points representing
some objects changing in time. If a branching point occurs then it is natural to think that objects after
this branching point are significantly different from those before the branching (otherwise it would not be a
branching point). Thus, it is natural to think of branching points as points where new clusters emerge.

Figure 1 shows data points partitioned in two ways: using the standard PAM50(+cluadin-low) definition
of clusters provided with METABRIC annotation and the clusters defined by the principal graph segments.
Let us argue that new clusters in many respects are at least not worse then the original ones from the clinical
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Figure 1: PCA plots for METABRIC dataset with trajectory visualisation. Colored by PAM50 subtypes
(left) and trajectory based subtypes (right).

Figure 2: Kaplan-Meier survival curves for subtypes. PAM50 subtypes (left) and trajectory based subtypes
(right).

point of view, also being defined in a completely unsupervised way. Indeed, the structure of clusters is similar
to the original PAM50 classification, e.g. HER2 and Basal clusters in our and PAM50 classifications strongly
overlap and fit to each other. Our luminal A, B clusters are split in a way different from PAM50. We also
suggest a new cluster intermediate between luminal A,B and HER2+ subtypes (see Figure 1).

To elucidate the clinical significance of the breast tumor clustering based on the principal tree, we per-
formed Kaplan-Meier survival analysis for each cluster and compare with analysis for PAM50 clusters (see
Figure 2). To be more precise we calculated the Kaplan-Meier curves for relapse free survival, that is standard
practice in breast cancer analysis.

We see that the definition of principal tree-based clusters is consistent from the survival point of view -
luminal A is the best, luminal B is the second (which is different from PAM50), Her2 is the worst (similar to
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Figure 3: Principal tree metro map visualisation. Circles colored according to proportion of corresponding
PAM50 subtype in neighbourhoods of the point. The colors shown in the pie-charts correspond to the ones
used in Figure 1.

PAM50), our new cluster has survival intermediate between Her2 and luminal B, which corresponds to what
we can expect from its position. Figure 2 also demonstrates that the principal tree segments are separating
survival status at least not worse than the original PAM50 clusters, so it gives another evidence that our
clusters are clinically relevant.

We also present metro map visualization of the principal graph and the dataset [32]. In this visualization,
the graph is embedded into 2D using Kamada-Kawai algorithm and data points plotted according to their
relative position to the nearest graph point, Figure 3). It shows how the original PAM50 clusters are
recombined into neighbourhoods of nodes.

3.3 Genes associated with transcriptomic trajectories in METABRIC

Figure 4 shows the expressions of some of the selected genes along the trajectories defined by the constructed
principal tree. The analysis shows that behavior of key genes correspond to known biological facts. Let us
briefly summarize it. ESR1 is the gene coding one of two main types of estrogen receptor, it is well-known to
be elevated for luminal tumors and suppressed in HER2/basal tumors, that agrees with the pseudotemporal
expression plots. FOXA1 acts as a pioneer factor for ERa in ERa+ breast cancer, it is well-known to be
highly correlated with ESR1 gene (for METABRIC data correlation is 0.72), so we see that its expression
plot is reasonably similar to ESR1 plot. ERBB2 gene is a known marker for HER2+ breast tumors. One can
see it is most highly expressed at the end of the trajectory 20-21 which ends at HER2 region. CDC20 is one
of the key cell cycle genes and thus typically elevated for cancer cells which proliferate a lot, high expression
typically correspond to poorer outcomes. So we can conclude that behaviour of key genes along trajectories
is biologically relevant.

3.4 Properties of pseudotime as a prognostic biomarker in the standard survival
analysis

Pseudotime can be quantified along each trajectory, and provides a measure how far the data point is from
the root node, which presumably represents the least advanced stage of the tumorigenesis. In our situation
we provide a biological interpretation of growing pseudotime as progression towards more malignant tumor
phenotype (at least for the first and the third trajectories). According to that interpretation one might
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Figure 4: Visualization of several selected gene expressions along the clinical trajectories as a function of
pseudotime.

expect that pseudotime would be a prognostic factor for these trajectories. To confirm that proposal we
construct Kaplan-Meier curves for the groups of patients splitted by pseudotime, see Figure 5. Indeed,
one can conclude that the pseudotime-based tumor groups correspond to different survival curves for the
corresponding trajectories. Moreover, we compare pseudotime performance as predictor with performance
of the best genes used for prognostic purposes. As one can see from the same Figure, pseudotime provides
comparable performance. We provide picture only for CDC20 gene, but the results for other highly prognostic
genes are similar.

In order to better characterize the predictive power of pseudotime compared with individual gene-based
predictors, we determined 38 genes whose p-value in the univariate Cox survival regression was smaller than
the one of pseudotime. As expected, approximately half of these genes (including CDC20, UBE2C, CCNB2)
were related to cell cycle molecular mechanism or regulation of proliferation, and many indeed represented
well-known breat cancer survival prognosis markers (such as ESR1, PGR, FGD3, SUSD3). We asked if
the measure of pseudotime was redundant with respect to these known prognostic factors, and constructed
multivariate Cox regression using these 38 gene expression levels and the value of pseudo-time as co-variates.
We found that for one of the trajectories, #20-#21 leading to HER2+ tumoral profiles, pseudotime remained
as a significant predictive factor, selected among the first three best predictive features. In several other
computational experiments we observed that including pseudotime as a feature in the logistic regression
predicting absence or presence of relapse in the 5 years following the cancer treatment systematically improved
the area under the curve (AUC) value. As a result, we have concluded that the value of pseudotime can
complement the traditional gene expression-based linear predictors of breast cancer survival.

To provide yet another demonstration for the performance of pseudotime as a prognostic biomarker, we
analysed the behaviour of an average relapse free time along each trajectory, Figure 6. The plots are splitted
into two groups: red points and mean value curves correspond to those patients with relapse occurred while
blue points and mean curves correspond to those where relapse was not observed.

We can see that red curves for the first and the third trajectories are decreasing, thus average relapse free
time decreases along the first and the third trajectories, which confirms our interpretation of pseudotime for
these trajectories: higher pseudotime corresponds to more malignant tumors. From these plots one may also
see that density of red points is drastically higher for relapse free time less than 60 months especially near
the end of trajectory 20-18, that corresponds to the known fact: the risk of relapse is much higher for the
first 3–5 years, but afterwards drops sharply and substantially for the basal subtype of breast cancer.
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Figure 5: Kaplan-Meier curves for groups of patients. Red and orange colored lines correspond to split by
pseutotime. Green and red colored lines correspond to split by the cell cycle ’CDC20’ gene. One can see
the pseudotime is good prognostics factor the first and the third group, however it is not more effective than
’CDC20’ gene (similar results holds for several other specially selected genes).

Figure 6: Average relapse free time along trajectories, red curves - patients with relapse occurred, blue
curves - relapse was not observed. For the first and the third trajectories red curves decreases which fully
correspond to the intuition that: further from the root, more malignant is the tumor.

4 Discussion

To conclude, we demonstrated that trajectory-based approach makes sense for the analysis of bulk transcrip-
tomic tumoral data. It provides a clinically meaningful alternative to the standard clustering analysis and also
provides more “contiunous” representation of the molecular changes in the tumors from the tumors closest to
normal tissue samples (presumably least advanced) to the most malignant tumoral phenotypes. Indeed, we
demonstrated that clusters defined by the trajectory-based analysis in a completely unsupervised manner are
overlapping and not worse than the standard molecular subtypes defined by PAM50 classification. However,
the trajectories and pseudotime quantified from them provides a measure to describe gradual change from one
cluster to another, rather than a discrete picture of molecular changes represented by cluster labels, which
does not correspond to the geometry of the data point cloud where the clusters are not clearly separated.
We have demonstrated that for two out of three trajectories pseudotime has clear biological interpretation:
it corresponds to the degree of how malignant the tumor is. For the remaining trajectory, the pseudotime
summarizes important heterogeneity within luminal breast tumors which, however, is not associated with
poorer prognosis.

There exists two possible interpretations of the nature of the clinical trajectories extracted from the bulk
omics profiles. The pragmatic one simply suggests that the trajectories and pseudotime define the metrics
of deviation of a transcriptomic profile from the one of the matching normal tissue, taking into account
the geometry of the low-dimensional data manifold. More challenging interpretation consists in claiming
that the extracted trajectories do reflect the biological processes underlying tumorigenesis, such that a tumor
characterized by a larger value of the pseudotime corresponds to a more advanced observed stage in the tumor
development. Indeed, transformation between cancer subtypes in the process of tumorigenesis seems to be a
feasible scenario [24,33]. On the other hand, molecular subtypes can be connected to different cells of origin:
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in this case, between-type transformation is more difficult to justify. We suggest that the interpretation of
the trajectories as representations of accumulation of malignant molecular changes for a hypothetical tumor
is valid at least in some cases: for example, for the case of transformation between luminal breast cancer
subtypes.

We also note that the trajectory-based model of breast cancer transcriptome suggested here is significantly
different from the one previously introduced in [24]. The previously suggested model was characterized by
only one major branching between HER2+ and Basal-like subtypes, with other minor branchings representing
less important divergencies in the transcriptomic profiles. Therefore, the previous model basically defined two
successions of states: Normal-like → Luminal-A → Luminal-B → HER2+ and Normal-like → Luminal-A →
Luminal-B → Basal-like. By constrast, in our study, we suggest that there exists a particular set of luminal
breast cancer tumors (denoted as “Graph LumAB” in Figure 1) diverging relatively early from the main
trend of expression changes along the luminal tumors and seeding the transition to more aggressive subtypes.
Indeed, we can see from Figure 2, right panel, that this group of tumors is characterized by significantly
poorer relapse-free survival with increase of relapse probability appearing very early in pseudotime (Figure 6).
Therefore, the trajectory-based model of breast cancer transcriptome suggested here can be abstracted as
existence of three paths: Normal-like→ Luminal-A→ Luminal-B (good prognosis), Normal-like→ Luminal-
A → LumA/B → HER2+ (bad prognosis) and Normal-like → Luminal-A → LumA/B → Basal-like (bad
prognosis). The discrepancy between two suggested models can be in part explained by that in our case
the method of principal trees has been applied in pure unsupervised setting, while in [24] a selection of
features based on survival analysis have been performed prior to the trajectory reconstruction, using an
ad-hoc approach, based on computation of local first principal components.

From the general machine learning perspective for supervised (prognostic) tasks (e.g. survival analysis)
both clusters and trajectories can be thought as a kind of engineered features. Both cluster labels and
pseudotime provide a non-linear combination of original features into a new prognostic factor (new feature).
We have argued that pseudotime is a good prognostic factor on the one hand, and has a clear biological
interpretation on the other hand. Even though the performance of pseudotime in terms of relapse prediction
in METABRIC dataset is comparable to several individual gene-based predictors, we can suggest that it
can better generalize to independent datasets (of course, this has to be demonstrated). Indeed, pseudotime
value is based on combination of expression of many individual genes into a feature reflecting the geometrical
structure of the data point cloud which can have better reproducibility than the connection of any individual
gene with clinical annotation. Pseudotime is constructed in a pure unsupervised fashion and is free from the
usual multiple testing problematics.

Summarising biological and clinical insights from the trajectory-based analysis performed in the present
work, we argue that key genes expressions along the trajectories have clear biological interpretation which
agrees with known facts. Survival analysis also confirms the clinical relevance of trajectories and pseudotime.
First part of our analysis shows that clusters defined by trajectories gives good separation by survival status,
the second part shows that pseudotime is a good prognostic factor for survival analysis, and the third part
shows reasonable behavior of the average survival time along trajectories.

The present study provides arguments to a claim that trajectory-based analysis of omics datasets can be
a general tool which can be applied together with a wide class of machine learning tasks, improving omics
data analysis in many respects, in particular its interpretability and explainability.
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