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Structured data

» Data is multi-dimensional.
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tensor
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Structured data

» Data is multi-dimensional.

» Measurements are discrete.

time

space
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Structured data

» Data is multi-dimensional.

» Measurements are discrete.

» Dimensions are structured.

time

space
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The (deep) learning revolution

From designing the solution f to designing the solution space F.

Fis determined by the NN architecture. How to design it?

y = f(z)
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Design of solution spaces (NN architectures)

Constraints
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Design of solution spaces (NN architectures)

p(DIM)

Well-Specified Model
Calibrated Inductive Biases
Ezample: CNN

Simple Model

Poor Inductive Biases
Example: Linear Function
Complex Model

Poor Inductive Biases
Ezample: MLP

é J¢

C ted -
C(I)Eil —?0 CIFAR-10 MNIST Dataset

Structured Image Datasets

Constraints Biases

Bias figure from Wilson and Izmailov 2020.
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Symmetry constraints
> Equivariance for dense tasks:
m Jx) = B f(x) Vo € SO(3).
\' \J > Invariance for global tasks:
E E f(Bx) = f(x) Vo € S0(3).

Why leverage symmetries?
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Symmetry constraints
> Equivariance for dense tasks:
m Jx) = B f(x) Vo € SO(3).
\' \J > Invariance for global tasks:
f(Bx) = f(x) Vo€ SO(@3).

Why leverage symmetries?
> Data efficiency.
> Generalization guarantee.

= Principled weight sharing.
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Symmetries might not be enough

» What are the symmetries? Translations?
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Symmetries might not be enough

» What are the symmetries? Translations?
> Few symmetries.

> Asolution: “cheat” by treating the grid as a
discretization of the plane.
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Symmetries might not be enough

O O » What are the symmetries?
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Symmetries might not be enough

» What are the symmetries?

» Asymmetric core with few symmetric motifs.

» Can’t “cheat”. No underlying continuous domain.
Purely discrete.
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Symmetries might not be enough

Why more weight sharing?

14/85



Symmetries might not be enough

Why more weight sharing?
> Higher data efficiency.
> Stronger generalization guarantee.

> Less powerful / general / flexible.
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Symmetries might not be enough

Why more weight sharing?
> Higher data efficiency.
> Stronger generalization guarantee.

> Less powerful / general / flexible.

The bias—variance tradeoff.
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Research question

How to leverage the topological and geometrical
structure of the data’s domain to learn efficiently

without the help of symmetry action?
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Contributions

> Transitive and known symmetry groups = group convolutions.

» Non-transitive and/or unknown symmetry groups = generalized convolutions.

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.
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A discrete calculus

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Space: simplicial complexes

. | A A

0-simplex 1-simplex 2-simplex 3-simplex

d-simplices. Simplicial complex K.

> Simplex: set of vertices.

> Simplicial complex K: set of simplices.
Single axiom: closed under taking subsets.

> K;: setof all d-simplices.
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Data

» Simplices naturally form a spatial basis.
> Vertex- (d = 0), edge- (d = 1), simplex-valued (d > 2) functions.
» Covariant d-chain x4 € RIXdl and contravariant d-cochain f; € RI¥al,

Duality: T
(Xd> fa) = X4 Ja
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Topology: an incidence structure

K = {{Ul}a .}, {Us}a\{vs > U1 };ivl ’ Uzﬂ

€1 €2
+1 -1
Bl = 0 +1
T o
€2
> Ordering is arbitrary but necessary.
@ Ky = {{UI},{UZ}’ {Us}} andK; = {91, 6’2}-

> Orientation is arbitrary but necessary.
ey ={vs, v} and e, = {vy, vy}
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Topology: an incidence structure

» Boundary operatorBdT:
subdomain d-chain x4 — boundary (d — 1)-chain B; x,.

» Differential operator! By:
data (d — 1)-cochain f;_; — finite difference d-cochain B; f;_;.

B," and By are adjoint w.r.t. dual pairing:

(Ba'Xa» fa—1) = (X, Bafa—1) fmw=fgdw

Also known as the coboundary or exterior derivative.
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Geometry: an inner product

(a> hadpg, = fa'Mghg

0 weight(v,) 0
0 0 weight(vs)

‘L @ weight(v;) 0 0
MO =

@ M, = (weight(el) 0 )

0 weight(e,)

Weights can represent similarities or distances/volumes.
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Codifferential operator

(Bafa-1-haly, = <fd—1’BdThd>M

d-1
Codifferential operator B;* = My_,"'B,"M,.

» B,'isadjoint to By w.rt. M.

> Gradient By, divergence BIT, curl B,.
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Dirichlet energy: defines the Laplacian

<Bded’BdThd>M + Bar1fas Barihady,, | = Jar Laha)y,

d-1

Laplacian as the second-order differential operator

Lg =ByBy" + Byy1"Byy
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Dirichlet energy: measure of variation

2 2
B(fa) = (f-Lafabyg, = 1Ba" faly,_ + VBasifallyy,

2" Lr = 0.48 x' Ly = 2.75 2 Ly = 6.88

E(fo) = (fos Lofodyy, = IBifoly,
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Generalized convolutions

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Graphs

v

Graph G of n = |K| vertices.

v

Incidence matrix B = B.

v

Unweighted vertices M, = I and edge weights M = M,.

v

LaplacianL = L, = B'B = BTMB.
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Symmetries

o € Aut(G) C S,

» Automorphism o.
> Automorphism group Aut(G).

> 0 < |Aut(G)| £ |S,| symmetries.

Representation (spatial basis): permutation matrix E,.
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Equivariance

T — —
> Symmetry preserves the adjacency structure.

> The Laplacian commutes with symmetry group actions.

> The Laplacian is an intrinsic and equivariant operator.
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Fourier diagonalizes actions

L=UAU"!

> Symmetries must act as rotations within the eigenspaces of L.

> Fourier jointly (block-)diagonalizes L and B,—without knowing the symmetries.

Special case of the Peter-Weyl theorem (compact groups) and Pontryagin duality (Abelian groups).
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Fourier diagonalizes actions

Automorphism: PLPT = L. Permutation: PLPT # L.
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Spectral basis

L=UAU"1

v

Fourier U = [uy, ..., u,], eigenvectors u;.

v

Squared frequencies A = diag(4;, ..., 4,,), eigenvalues0 = 1; < --- < 4,,.

v

Because L is positive semi-definite [spectral theorem].

v

Reduces to the discrete cosine (DCT) and Fourier (DFT) transforms.
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Spectral basis: eigenvalues

empty K¢ complete Kig strongly regular srg(16, 9, 4, 6) cycle Ci¢ path Pig
e ® o
[ ] [ ]
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i tors

elgenvec

IS

Spectral bas

uy Luy = 0.10 ug Luz = 0.10 uy Lug = 0.20 ug Lus = 0.38 ug Lug = 0.38 u Luy = 0.48

ulTLul =0.00

=235

uy Lug

= 1.59

ug Lug

= 1.50

ud Lug

= 0.86

uy Luy = 0.33 ug Lug = 0.44 u] Luy

uf Luy = 0.00
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Spectral basis: Fourier transform

frequency content &(\)

0.2

0.0

0.75 4 0.75 4 0.75 4

0.50 1 0.50 0.50 1

0.25 1 0.25 1 0.25 4 N_NW\AM,/\
0.00 1 : - 0.00 L ; 0.004_4

»1t

8
graph frequency A

8
graph frequency A

graph frequency A
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Generalized convolutions

A=U"LU I, =U"PU

> The eigenspaces are the invariant subspaces of both operators.
> Aisdiagonal: one value per eigenspace.

» I1, is block-diagonal: one block per eigenspace. Each block implements a
roto-reflection.
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Generalized convolutions (spectral basis)
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0.2 o o @ ®
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Generalized convolutions (spatial basis)

gL) = UgM)U™

> Multiplication operator g(A) and convolution operator g(L).

> g(L)is an equivariant operator, the defining property of convolutions.

> Generalized because it commutes with more than symmetries.
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Filtering

y=gL)x =UgA)U'x

input signal x in the vertex domain signals in the spectral domain filtered signal y in the vertex domain
0.8 1.0 —— input signal & 0.8
06 —— kernel g 06
—— filtered signal §
0.4 08 0.4
=z
02 = 02
206
0.0 § 0.0
z
-02  £04 -02
]
g
-04 & —0.4
0.2
—0.6 —0.6
~0.8 ~0.8
0.0

o’ L = 61.93 y"Ly = 10.75

0.0 25 5.0 75 100 125
graph frequency A

Left: data x in the spatial basis. Middle: data £ = U~'x, concrete filter diag(g(A)), and filtered data
¥y = g(A)x in the spectral basis. Right: filtered data y = Uy in the spatial basis.
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: heat diffusion

Filtering

= gx(L)f(0) with g(4) = exp(—7td)
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Designing g

Design a kernel g : R — R such that it acts interestingly as y = g(L)x.
> g(4) = exp(—ttd): heat diffusion.
2
> g(1) = cos (t arccos (1 - %A)): wave propagation.

1 ifdgin < A < Apae —
> g(1) = ' Amin , M@ projection on a subspace.
0 otherwise.

_ L' . . . . _ 2 T
» g() = ot denoising with arg min,, ly — xI|5 + zy"Ly.
Learn g if the process is unknown.
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Convolution: symmetry action vs localization

Convolution with symmetry action. Convolution with localization.
»,6;) = (Tig, x) . 61) = (g(L)x, &)
= (x,g(L)d;)
» T,g shifts g to the i*" vertex. > g(L)&; localizes g at the i vertex.
> x and g are the same objects. > x and g are different.

Localization is a generalization of symmetry action to non-homogeneous spaces.
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Convolution: symmetry action vs localization

~—~ 1.0

0.5 1

0.0

heat kernel

T T
2 4
eigenvalues A

=

heat kernel

T
0 5 10
eigenvalues \

g(L)do 9(L)d1o
1.0 O
0.5
0.0
9(L)do 9(L)d10
0.4
L4
¢ 0.2
0.0

Localization reduces to symmetry action.

g(L)d20

Ol

9(L)d20
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Spectral embedding

Eg(f) = (f.eDf) = |g>()U-1f Hj

> Generalization of Dirichlet energy to g # id.

» g2(A)U~'f is an embedding of f in Euclidean space that reproduces:

> the symmetries of the space encoded in L,

> anotion of distance set by g.
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Spectral embedding
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Network (vertex) embedding

Q=g"*(M)u™!

» Embedding Q = [q;, ..., qn], where q; € R" represents the i" vertex.

» Covariance Q"'Q = Ug(A)U! = g(L).
PCA with principal directions u; and variances g(4;).
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Distance

d3(vi,v) = llqi — gl = Eg(&; — &)

— g1 » g~1(1) = 1: Laplacian eigenmaps
59 o g-1(A) =
DR / [Belkin & Niyogi '01]
44 —— g7HA) =Amax — A
-] » g1(1) = 1/2: resistance/commute-time distance
N;i [Klein & Randi¢ *93] [Gobel & Jagers *74] [Fouss et al. 07]
5
1 » g71(1) = exp(—2tA): (heat) diffusion distance
o [Coifman & Lafon ’06] [Kondor & Lafferty '02]
—107) — P .
Distances on a path graph. > g (A1) =(a—2), a2 Apay p-step random-walk

[PageRank, Brin & Page "98]
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Centrality

2
C2(vp) = llgull2 = Ey(8) = (g(D)),,
> Measures how close a vertex is to all others.

> Why? 3 llg = ail* = X, gl + nllqil; o llaill; = C3wy).

> Closer to the origin (center of mass) implies closer to all other vertices.
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Designing g: different notions of distance

o 9
¥

Krackhardt kite
graph.
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Designing g: different notions of distance

]2 9 61 J
| C 5| 1.5 o
0 2 1
) ol 0.6
o) 1.0 A
% 3 0.4 1
21 0.5 024
O 1 B
L B 0.0 - 0.0 -
VoV1V32V3V4VsVeV7Vg Vo Vo V1 V2 V3 Vg Vs Vg V7 Vg Vg Vo V1 V2 V3 V4 Vs Vg V7 Vg Vg
Krackhardt kite Degree centrality Closeness centrality Diffusion centrality
graph. g(d) = A gV =1L g(1) = exp(0.21).

Degree centrality is contravariant, the others are covariant.
Closeness centrality with resistance instead of the typical shortest-path distance.
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Learning g: degrees of freedom

empty Kig complete K6 strongly regular srg(16, 9, 4, 6) cycle Ci¢
o ® o
(] [ ]
([ ] ([ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
o q ©
1 unique eigenvalues 2 unique eigenvalues 3 unique eigenvalues 9 unique eigenvalues 16 unique eigenvalues
15 eeeccccccscsene| 12 R 4 et
0.04 101 .e
0.021 3 e
3 101 8- esescesce
0.00{evsesescscscsceccs 6 24 oo
- 1 54 44
0.02 . oo
2 .o
~0.04 A
04 04 04{e""

Ao Az e Ao Az Ars Ao Az As Ag A Ais Ao Az As Ag Az Ais Ao Az As Ae Az Ars

Number of independent distances: from 1 to n.
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Transfer across graphs

> gisan abstract convolution kernel, specified independently of any graph.

» g(L) = g(B'TMB) = Ug(A)U~ ! is a concrete representation
for a graph specified by Band M.

» g — g(L)isan homomorphism like o — P, is.
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Summary

1. The kernel g defines a notion of distance.

2. Itis represented by the generalized convolution g(L) = g(B"MB) on a domain
specified by the topology B and geometry M.

3. g(L)is mostly constrained by the domain’s symmetries and complexity, constraining
the functional space to learn from.

4, g(L)is equivariant to unknown symmetries.
5. Filtering and embedding are one and the same.

6. Design g if you know what you want, learn it if you don’t.
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DeepSphere

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Problem: learning from spherical data

inputx : S2x - — R4 output f(x)
intrinsic projection classification  regression
“sleepy”
global Py O, 03
“alert”

dense

Acoustic field from Simeoni et al. 2019. 3D shape from Esteves et al. 2018.
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Solution: spherical neural networks
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Solution: spherical neural networks

geometry pre-processing

optional mesh generation

features / data
= functions of pixels

layers are

multiplications by

sparse matrices convolution

layer

Laplacian

pixel centers

matrix

pooling
layer

interpolation
matrix

convolution
layer

Laplacian

pixel centers

matrix

(

data
processing
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Desideratum 1: equivariant to rotations
> Equivariance for dense tasks:
m Jx) = B f(x) Vo € SO(3).
\' \J > Invariance for global tasks:
fB&x) = f(x) Vo e S0(@3).

Why exploit symmetries?
> Data efficiency.
> Generalization guarantee.

= Principled weight sharing (convolution).
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Desideratum 2: scalable

> Many inferences needed for training.

> Increasingly larger maps. (n = 107 pixels is customary in cosmology.)

Figure fromhttps://healpix.sourceforge.io.
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https://healpix.sourceforge.io

Desideratum 3: flexible sampling, avoid interpolation

simulated weak lensing mass map
(DES DR1 area)

galaxy count
(5055 DR14)

Partial and irregular sampling.

Some figures from Boomsma and Frellsen 2017 and https://climatereanalyzer.org.
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https://climatereanalyzer.org

Method 1: 2D projections

Manifold is locally Euclidean!
Project on tangent planes.

Desiderata

© Rotation equivariance: hard to glue planes
together.

@ Scalability: well developed NN architectures and
. > implementations. Some wastes at boundaries.

© Flexibility: only handle compact subspaces.

Charting figure from https://en.wikipedia.org/wiki/manifold.
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https://en.wikipedia.org/wiki/manifold

Method 2: discretization of continuous domain

Discretize but consider the continuous symmetries.
. Group convolution: multiplication in the spectrum af-
ter a spherical harmonic transform (SHT).

- O ‘ Desiderata
’ o C\ . @ Rotation equivariance: well understood theory.
e / © SHT is expensive. Even if faster transforms exist
Spectral decomposition. for some samplings.
© Flexibility: unused pixels are mostly wasted.

Figure fromhttps://rodluger.github.io/starry.
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https://rodluger.github.io/starry

Our method: discrete domain

Domain pixels K, topology B, geometry M
Data x € R", n = |K|
Map g.(L)x = ¥, axL*x, L = BMB'

Parameters a € RX
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Graph Fourier basis on the sphere

> Fourier modes approximate spherical harmonics.
> The graph approximates the sphere. 0

Mode 0: /=0, |m|=0

Mode 1: /=1, |m|=1

Mode 2: [=1, [m|=1 Mode 3: /=1, |m|=0

graph eigenvectors

Mode 4: £=2, |[m|=2  Mode 5: =2, |m|=1

Mode 6: £=2, [m|=1  Mode 7: £=2, |m|=0

Eigenvalues of the graph Laplacian.

index:
192 pixels 768 pixels 3072 pixels
0 SH degree ! 11 [ SHdegree! 23 0 SH degree 47

Spherical harmonic transform of the graph Laplacian's eigenvectors.

H]

o o

Mode 8: £=2, |m|=2 Mode 9: £ Mode 10: /=3, [m|=0 Mode 11: /=3, |m|=3

Correspondence

3, |m|=2

°

°
8

—— 192 pixels
—— 768 pixels.
—— 3072 pixels

AR

0

10 20 30 40
spherical harmonic degree £
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Desideratum 1: equivariant to rotations

—— noc32?
—— 2 . .
" M mecpd » Equivariance error:

—— noc128?

2
. (llPaLx - LPaxll)
\\ ag,X ”Lx”

» Tradeoff between equivariance and
cost (number of vertices n and
edges kn) in the topology B.

mean equivariance error Fp ¢

.i
<
.

—— Khasanova & Frossard, k=4

S
&
.

— Perraudin et al., k=8
—— k-NN graph, k=8 neighbors

» Difficulty: get the geometry M
right.

—— k-NN graph, k=20 neighbors
—— k-NN graph, k=40 neighbors

T
10! 102
spherical harmonic degree ¢
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Desideratum 1: it matters!

accuracy  time
Perraudin et al. 2019, 2D CNN baseline 54.2 104 ms
Perraudin et al. 2019, CNN variant, k = 8 62.1 185ms
Perraudin et al. 2019, FCN variant, k = 8 83.8 185ms
k = 8 neighbors, optimal ¢ 87.1 185ms
k = 20 neighbors, optimal ¢ 91.3 250 ms
k = 40 neighbors, optimal ¢ 92.5 363 ms

Lower equivariance error translates to higher performance.

accuracy [%]
(e} O
o N

©
©
L

k=8

200 250 300 350
inference time [ms]
Tradeoff between cost
and accuracy.
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Desideratum 2: linear complexity

Goal: avoid the O(n®) EVD L = ULU ! and O(n?) matrix multiplication U~x in
evaluating g(L)x = Ug(A)U~!x.

Spatial parameterization (K-hops local):

g (L)x = (Z ockLk>x = > agXp, X =LXgy, X = X.
k<K k<K

Spectral parameterization (global):

gaLx = D) g x, g = g(Ak), U = [uy, ..., uy).
kex

Heisenberg’s uncertainty principle: locality in the spatial domain implies smoothness in the spectral

domain and vice-versa.
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Desideratum 2: scalable

» Graph convolutions cost O(n).
» Spherical convolutions cost O(n2) in general, O(n*?) for some samplings.

] Sph. harm., £max = 3Nsige
10%9 _ o Sph. harm., Lmex = 2Nsige N
103 ] —— Graph, poly. order K=15 26’3’%
b —e— Graph, poly. order K=5 Nsige .-
o 102 —e- Partial graph 1/12, K=15 102:1,,::,'
£ —e- Partial graph 1/192, K=15 ’gsidze P s
8’ 10* 5 Nsige ’,4::: -
0 256 __-""-"°
© 1004 Nige P ="
S 128 _.-~ o
£ 100 | S =7
- = ..
1072 4 /’/
—_ —T
1073 d e—mr—i—— o— =" -
106 107

Number of pixels
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Desideratum 2: it matters!

performance size speed
F1 mAP  params inference training
Cohen etal. 2018 (b = 128) - 67.6 1400 k 38.0ms 50h
Cohen et al. 2018 (simplified,b = 64) 78.9 66.5 400 k 12.0ms 32h
Esteves et al. 2018 (b = 64) 79.4 68.5 500 k 9.8 ms 3h
DeepSphere (equiangular, b = 64) 79.4 66.5 190k 0.9ms 50m
DeepSphere (HEALPix, Ng4o = 32) 80.7 68.6 190 k 0.9ms 50 m

Classification of 3D shapes (SHREC’17): anisotropy is an unnecessary price to pay.
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Desideratum 3: flexible sampling

GHCN-daily, TMAX, 2014-01-01 graph of GHCN stations

E—— ——
—20°C 0°C 20°C 40°C
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Application: discrimination of cosmological models

Model 1: Qp = 0.31 0 = 0.82 z0om 10 x 10 deg

Classification of convergence maps created e
from two sets of cosmological parameters. :

(2., 03) = (0.31,0.82) or (0.26,0.91)

Power Spectrum Density

4 noiseless, 3-arcmin smoothing, Nside=1024
10 0,014 0.029 0.03 0.04

Model 2: Q= 0.26 0 = 0.91 z0om 10 x 10 deg
smoothing 1 deg smoothing 5 arcmin

Cp-L-(L+1)/(2-m)

—— class 1, Q, =0.31, 03 =0.82
—— class 2, Q, =0.26, 05 =0.91

1077
102 10°
£: spherical harmonic index o —T, o e
Q,, 03, smoothing chosen to get identical PS. Maps with identical initial conditions.
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Application: discrimination of cosmological models (results)

Accuracy in %

Order 0= 1: 1,048,576 pixels per samples (1/12 sphere)

Order o = 2: 262,144 pixels per samples (1/48 sphere)

Order o = 4: 65,536 pixels per samples (1/192 sphere)

100 ] 100 100
95 95 TS
95 h
N EY 90 ~
\ ® ® S N
% N s s e N\ -
—— DeepSphere (FCN variant) 8 g0 —— DeepSphere (FCN variant) § go] —— DeepSphere (FCN variant)
~+- DeepSphere (CNN variant) § -+~ DeepSphere (CNN variant) é -+~ DeepSphere (CNN variant)
8571 —=— 2D ConvNet (FCN variant) < 5] —— 2D ConvNet (FCN variant) < 751 —— 2D ConvNet (FCN variant)
~+- 2D ConvNet (CNN variant) B -+~ 2D ConvNet (CNN variant) 2047 2D ConvNet (CNN variant)
0l — linear SVM on histogram 01 —— linear SVM on histogram \ —— linear SVM on histogram \
—— linear SVM on PSD 654 —— linear SVM on PSD \ 651 —— linear SVM on PSD

0.00 025 050 075 1.00 125 150 175 2.00
Relative noise level

000 025 050 075 1.00 125 150 175 2.00
Relative noise level

000 025 050 075 1.00 125 150 175 2.00
Relative noise level

» Difficulty controlled by #pixels per sample and amount of noise.

> Better performance than SVM on PSDs and histograms.

Those statistics destroy too much information.

> Better performance than ConvNet on 2D projections.

Equivariance matters.
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Application: climate event segmentation

Segment extreme climate events: tropical cy-
clones (TC) and atmospheric rivers (AR).

> >1M spherical maps
» down-sampled to 10k pixels (original 900k)
> 0.1% TC, 2.2% AR, 97.7% background

» 16 channels (e.g., temperature, wind,
humidity, pressure)

CAMS5 HAPPI20 run 1, TMQ, 2106-01-01

—

40 kg/m?

80 kg/m?
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Application: climate event segmentation (results)

accuracy  mAP

Jiang et al. 2019 (rerun) 94.95 38.41

T.S. Cohen et al. 2019 (S2R) 97.5 68.6

T.S. Cohen et al. 2019 (R2R) 97.7 75.9
DeepSphere (weighted loss) 97.8+0.3 77.15+£1.94

DeepSphere (non-weighted loss) 87.8+0.5 89.16 + 1.37

Mean accuracy (over TC, AR, BG) and mean average precision (over TC and AR).

> Anisotropy is an unnecessary price to pay.

> Check your loss!
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Application: weather forecasting

Ghiggi et al. 2022

Topology and geometry

of the Earth

Any (unstructured) grid:
no interpolation!

HourlyWeekly Climatology

7 % 2 14

R
Leadtime (h)

https://github.com/deepsphere/deepsphere-weather

Scalable

Computing time of Forward + Backward Pass

convoluton Yy = Z wiLFx

pooling

k
y = Px

non-linearity  y = o(x)
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Anisotropy

ChebLieNet, Aguettaz, Bekkers, and Defferrard 2021

> No free lunch: lift to symmetry group, required to be transitive and known.
> Similar to group convolutions, but with control of the equivariance-cost tradeoff.

T Tz

Isotropic metric on M. Isotropic metric on Sym(M). Anisotropic metric on Sym(M).

Diffusion on base Riemannian manifold M = R? and symmetry Lie group Sym(M) = SE(2).
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Summary

DeepSphere: a spherical CNN that strikes

a controllable balance between desiderata.
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Conclusion

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Summary

Leveraging topology, geometry, and symmetries for efficient Machine Learning

Generalized convolutions
theory emerge from the fundamentals of space: topology and geometry,

method enable parameter sharing for non-transitive and unknown symmetry
groups, to efficiently learn on arbitrary domains,

application lead to state-of-the-art results on important real-world problems.
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Impact

My contributions:

> got 5000+ citations and an h-index of 10,
> pioneered graph ML and put it on the global research agenda,

> proved useful in tackling important real-world problems.

82/85



Future: structural features and network embedding

Problem GNNs are good at leveraging graphs as a computational substrate to process
data; But not to extract information from graphs.

Observation These operations are two sides of the same g(L) coin. But spectral
embeddings Q = g"2(A)U~! = [qy, ..., q,,] are not invariant to
automorphisms. DeepWalk, LINE, PTE, and node2vec embed in a subspace
for some g [Qiu et al. 2018].

Solution Centrality Ca(v;) = ||q,-||§ and distances {{d2(v;, )}} = {{Mqi - -||§}}.
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Future: graph isomorphism

Michaél Defferrard @m_deff - Dec 31,2020
2020: | got the Gl disease
2021: | will find a cure or get immune

Problem Is Glin P or NP-complete? )

Al
Observation Neither centrality CZ(v;) nor Happy New Year yall!

; 2
distances {{dZ(v;, -)}} are ' o
. . The graph isomorphism disease

complete invariants w.r.t. au- ot Resd, Derck 6. cornen

tomorphism/isomorphism. Winter 1977 | https://doi.org/10.1002/jgt.3190010410
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Slides https://doi.org/10.5281/zenodo.5780063

Papers Defferrard, Generalized convolutions, In preparation, 2022.

Code

Ebli, Defferrard, Spreemann, Simplicial Neural Networks, TDA@NeurlPS, 2020.

Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN, ICLR, 2020.

Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional Neural
Network with HEALPix sampling for cosmological applications, Astronomy and Computing,

20109.

Defferrard, Bresson, Vandergheynst, Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering, NIPS, 2016.

https
https
https
https

://github.
://github.
://github.
://github.

com/epfl-1ts2/pygsp
com/stefaniaebli/simplicial_neural_networks
com/deepsphere

com/mdeff/cnn_graph
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https://doi.org/10.5281/zenodo.5780063
https://arxiv.org/abs/2010.03633
https://arxiv.org/abs/2012.15000
https://arxiv.org/abs/1810.12186
https://arxiv.org/abs/1810.12186
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://github.com/epfl-lts2/pygsp
https://github.com/stefaniaebli/simplicial_neural_networks
https://github.com/deepsphere
https://github.com/mdeff/cnn_graph

