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Structured data

▶ Data is multi-dimensional.

▶ Measurements are discrete.

▶ Dimensions are structured.
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The (deep) learning revolution

From designing the solution 𝑓 to designing the solution spaceℱ.

ℱ is determined by the NN architecture. How to design it?
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Design of solution spaces (NN architectures)
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Bias figure fromWilson and Izmailov 2020.
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Symmetry constraints
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▶ Equivariance for dense tasks:
𝑓(𝑃𝜍𝑥) = 𝑃𝜍𝑓(𝑥) ∀𝜎 ∈ SO(3).

▶ Invariance for global tasks:
𝑓(𝑃𝜍𝑥) = 𝑓(𝑥) ∀𝜎 ∈ SO(3).

Why leverage symmetries?

▶ Data efficiency.
▶ Generalization guarantee.

⇒ Principled weight sharing.
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Symmetries might not be enough

▶ What are the symmetries? Translations?

▶ Few symmetries.

▶ A solution: “cheat” by treating the grid as a
discretization of the plane.
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Symmetries might not be enough

▶ What are the symmetries?

▶ Asymmetric core with few symmetric motifs.

▶ Can’t “cheat”. No underlying continuous domain.
Purely discrete.
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Symmetries might not be enough

Whymore weight sharing?

▶ Higher data efficiency.

▶ Stronger generalization guarantee.

▶ Less powerful / general / flexible.

The bias–variance tradeoff.
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Research question

How to leverage the topological and geometrical

structure of the data’s domain to learn efficiently

without the help of symmetry action?
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Contributions

▶ Transitive and known symmetry groups⇒ group convolutions.

▶ Non-transitive and/or unknown symmetry groups⇒ generalized convolutions.

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.

18 / 85



A discrete calculus

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Space: simplicial complexes

0-simplex 1-simplex 2-simplex 3-simplex

𝑑-simplices. Simplicial complex 𝐾.

▶ Simplex: set of vertices.

▶ Simplicial complex 𝐾: set of simplices.
Single axiom: closed under taking subsets.

▶ 𝐾𝑑: set of all 𝑑-simplices.
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Data

▶ Simplices naturally form a spatial basis.

▶ Vertex- (𝑑 = 0), edge- (𝑑 = 1), simplex-valued (𝑑 ≥ 2) functions.

▶ Covariant 𝑑-chain 𝑥𝑑 ∈ ℝ|𝐾𝑑| and contravariant 𝑑-cochain 𝑓𝑑 ∈ ℝ|𝐾𝑑|.

Duality:
⟨𝑥𝑑, 𝑓𝑑⟩ = 𝑥𝑑𝖳𝑓𝑑
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Topology: an incidence structure

𝐾 = {{𝑣1}, {𝑣2}, {𝑣3}, {𝑣3, 𝑣1}⏟⎵⏟⎵⏟
𝑒1

, {𝑣1, 𝑣2}⏟⎵⏟⎵⏟
𝑒2

}

𝐵1 = (
+1 −1
0 +1
−1 0

)

▶ Ordering is arbitrary but necessary.
𝐾0 = {{𝑣1}, {𝑣2}, {𝑣3}} and 𝐾1 = {𝑒1, 𝑒2}.

▶ Orientation is arbitrary but necessary.
𝑒1 = {𝑣3, 𝑣1} and 𝑒2 = {𝑣1, 𝑣2}.
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Topology: an incidence structure

▶ Boundary operator 𝐵𝑑𝖳:
subdomain 𝑑-chain 𝑥𝑑→ boundary (𝑑 − 1)-chain 𝐵𝑑𝖳𝑥𝑑.

▶ Differential operator1 𝐵𝑑:
data (𝑑 − 1)-cochain 𝑓𝑑−1→ finite difference 𝑑-cochain 𝐵𝑑𝑓𝑑−1.

𝐵𝑑𝖳 and 𝐵𝑑 are adjoint w.r.t. dual pairing:

⟨𝐵𝑑𝖳𝑥𝑑, 𝑓𝑑−1⟩ = ⟨𝑥𝑑, 𝐵𝑑𝑓𝑑−1⟩ ∫
𝜕𝛺

𝜔 = ∫
𝛺
d𝜔

1Also known as the coboundary or exterior derivative.
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Geometry: an inner product

⟨𝑓𝑑, ℎ𝑑⟩𝑀𝑑
= 𝑓𝑑

𝖳𝑀𝑑ℎ𝑑

𝑀0 = (
weight(𝑣1) 0 0

0 weight(𝑣2) 0
0 0 weight(𝑣3)

)

𝑀1 = (weight(𝑒1) 0
0 weight(𝑒2)

)

Weights can represent similarities or distances/volumes.
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Codifferential operator

⟨𝐵𝑑𝑓𝑑−1, ℎ𝑑⟩𝑀𝑑
= ⟨𝑓𝑑−1, 𝐵𝑑†ℎ𝑑⟩𝑀𝑑−1

Codifferential operator 𝐵𝑑† = 𝑀𝑑−1
−1𝐵𝑑𝖳𝑀𝑑.

▶ 𝐵𝑑† is adjoint to 𝐵𝑑 w.r.t.𝑀𝑑.

▶ Gradient 𝐵1, divergence 𝐵1†, curl 𝐵2.
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Dirichlet energy: defines the Laplacian

⟨𝐵𝑑†𝑓𝑑, 𝐵𝑑†ℎ𝑑⟩𝑀𝑑−1
+ ⟨𝐵𝑑+1𝑓𝑑, 𝐵𝑑+1ℎ𝑑⟩𝑀𝑑+1

= ⟨𝑓𝑑, 𝐿𝑑ℎ𝑑⟩𝑀𝑑

Laplacian as the second-order differential operator

𝐿𝑑 = 𝐵𝑑𝐵𝑑† + 𝐵𝑑+1†𝐵𝑑+1
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Dirichlet energy: measure of variation

𝐸(𝑓𝑑) = ⟨𝑓𝑑, 𝐿𝑑𝑓𝑑⟩𝑀𝑑
= ‖𝐵𝑑†𝑓𝑑‖

2
𝑀𝑑−1

+ ‖𝐵𝑑+1𝑓𝑑‖
2
𝑀𝑑+1

x>Lx = 0.48 x>Lx = 2.75 x>Lx = 6.88
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𝐸(𝑓0) = ⟨𝑓0, 𝐿0𝑓0⟩𝑀0
= ‖𝐵1𝑓0‖

2
𝑀1
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Generalized convolutions

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Graphs

▶ Graph𝐺 of 𝑛 = |𝐾0| vertices.

▶ Incidence matrix 𝐵 = 𝐵1.

▶ Unweighted vertices𝑀0 = 𝐼 and edge weights𝑀 = 𝑀1.

▶ Laplacian 𝐿 = 𝐿0 = 𝐵†𝐵 = 𝐵𝖳𝑀𝐵.
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Symmetries

𝜎 ∈ Aut(𝐺) ⊂ 𝑆𝑛

▶ Automorphism 𝜎.

▶ Automorphism group Aut(𝐺).

▶ 0 ≤ | Aut(𝐺)| ≤ |𝑆𝑛| symmetries.

Representation (spatial basis): permutation matrix 𝑃𝜍.
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Equivariance

𝑃𝜍𝖳𝐿𝑃𝜍 = 𝐿 𝐿𝑃𝜍 = 𝑃𝜍𝐿

▶ Symmetry preserves the adjacency structure.

▶ The Laplacian commutes with symmetry group actions.

▶ The Laplacian is an intrinsic and equivariant operator.
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Fourier diagonalizes actions

𝐿 = 𝑈𝛬𝑈−1

▶ Symmetries must act as rotations within the eigenspaces of 𝐿.

▶ Fourier jointly (block-)diagonalizes 𝐿 and 𝑃𝜍—without knowing the symmetries.

Special case of the Peter-Weyl theorem (compact groups) and Pontryagin duality (Abelian groups).
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Fourier diagonalizes actions

Automorphism: 𝑃𝐿𝑃𝖳 = 𝐿. Permutation: 𝑃𝐿𝑃𝖳 ≠ 𝐿.

33 / 85



Spectral basis

𝐿 = 𝑈𝛬𝑈−1

▶ Fourier𝑈 = [𝑢1,… , 𝑢𝑛], eigenvectors 𝑢𝑖.

▶ Squared frequencies𝛬 = diag(𝜆1,… , 𝜆𝑛), eigenvalues 0 = 𝜆1 ≤ ⋯ ≤ 𝜆𝑛.

▶ Because 𝐿 is positive semi-definite [spectral theorem].

▶ Reduces to the discrete cosine (DCT) and Fourier (DFT) transforms.
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Spectral basis: eigenvalues

empty K16 complete K16 strongly regular srg(16, 9, 4, 6) cycle C16 path P16
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Spectral basis: eigenvectors

u>1 Lu1 = 0.00 u>2 Lu2 = 0.10 u>3 Lu3 = 0.10 u>4 Lu4 = 0.20 u>5 Lu5 = 0.38 u>6 Lu6 = 0.38 u>7 Lu7 = 0.48

u>1 Lu1 = 0.00 u>2 Lu2 = 0.33 u>3 Lu3 = 0.44 u>4 Lu4 = 0.86 u>5 Lu5 = 1.50 u>6 Lu6 = 1.59 u>7 Lu7 = 2.35
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Spectral basis: Fourier transform

̂𝑥 = 𝑈−1𝑥 𝑥 = 𝑈 ̂𝑥 𝐸(𝑥) = 𝑥𝖳𝐿𝑥 = ̂𝑥𝖳𝛬 ̂𝑥

xTLx = 0.48 xTLx = 2.75 xTLx = 6.88
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Generalized convolutions

𝛬 = 𝑈−1𝐿𝑈 𝛱𝜍 = 𝑈−1𝑃𝜍𝑈

▶ The eigenspaces are the invariant subspaces of both operators.

▶ 𝛬 is diagonal: one value per eigenspace.

▶ 𝛱𝜍 is block-diagonal: one block per eigenspace. Each block implements a
roto-reflection.
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Generalized convolutions (spectral basis)

𝑔(𝛬) = diag(𝑔(𝜆1),… , 𝑔(𝜆𝑛))

𝑔(𝛬)𝛱𝜍 = 𝛱𝜍𝑔(𝛬)

The action 𝑔(𝛬) of 𝑔 (scaling) is orthogonal
to the action𝛱𝜍 of 𝜎 (roto-reflection).
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Generalized convolutions (spatial basis)

𝑔(𝐿) = 𝑈𝑔(𝛬)𝑈−1

▶ Multiplication operator 𝑔(𝛬) and convolution operator 𝑔(𝐿).

▶ 𝑔(𝐿) is an equivariant operator, the defining property of convolutions.

▶ Generalized because it commutes with more than symmetries.
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Filtering

𝑦 = 𝑔(𝐿)𝑥 = 𝑈𝑔(𝛬)𝑈−1𝑥

xTLx = 61.93

input signal x in the vertex domain
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signals in the spectral domain
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filtered signal ŷ

yTLy = 10.75

filtered signal y in the vertex domain
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Left: data 𝑥 in the spatial basis. Middle: data ̂𝑥 = 𝑈−1𝑥, concrete filter diag(𝑔(𝛬)), and filtered data
̂𝑦 = 𝑔(𝛬) ̂𝑥 in the spectral basis. Right: filtered data 𝑦 = 𝑈 ̂𝑦 in the spatial basis.
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Filtering: heat diffusion

−𝜏𝐿𝑓(𝑡) = 𝜕𝑡𝑓(𝑡) ⇒ 𝑓(𝑡) = 𝑔𝜏𝑡(𝐿)𝑓(0) with 𝑔𝜏𝑡(𝜆) = exp(−𝜏𝑡𝜆)
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Designing 𝑔

Design a kernel 𝑔 ∶ ℝ → ℝ such that it acts interestingly as 𝑦 = 𝑔(𝐿)𝑥.

▶ 𝑔(𝜆) = exp(−𝜏𝑡𝜆): heat diffusion.

▶ 𝑔(𝜆) = cos (𝑡 arccos (1 − 𝜏2

2
𝜆)): wave propagation.

▶ 𝑔(𝜆) = {
1 if 𝜆min < 𝜆 < 𝜆max,
0 otherwise.

: projection on a subspace.

▶ 𝑔(𝜆) = 1
1+𝜏𝜆

: denoising with argmin𝑦 ‖𝑦 − 𝑥‖22 + 𝜏𝑦𝖳𝐿𝑦.

Learn 𝑔 if the process is unknown.

43 / 85



Convolution: symmetry action vs localization

Convolution with symmetry action.

⟨𝑦, 𝛿𝑖⟩ = ⟨𝑇𝑖𝑔, 𝑥⟩

▶ 𝑇𝑖𝑔 shifts 𝑔 to the 𝑖th vertex.
▶ 𝑥 and 𝑔 are the same objects.

Convolution with localization.

⟨𝑦, 𝛿𝑖⟩ = ⟨𝑔(𝐿)𝑥, 𝛿𝑖⟩
= ⟨𝑥, 𝑔(𝐿)𝛿𝑖⟩

▶ 𝑔(𝐿)𝛿𝑖 localizes 𝑔 at the 𝑖th vertex.
▶ 𝑥 and 𝑔 are different.

Localization is a generalization of symmetry action to non-homogeneous spaces.
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Convolution: symmetry action vs localization
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Localization reduces to symmetry action.

45 / 85



Spectral embedding

𝐸𝑔(𝑓) = ⟨𝑓, 𝑔(𝐿)𝑓⟩ = ‖
‖𝑔

1/2(𝛬)𝑈−1𝑓‖‖
2

2

▶ Generalization of Dirichlet energy to 𝑔 ≠ id.

▶ 𝑔1/2(𝛬)𝑈−1𝑓 is an embedding of 𝑓 in Euclidean space that reproduces:

▶ the symmetries of the space encoded in 𝐿,

▶ a notion of distance set by 𝑔.
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Spectral embedding
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Network (vertex) embedding

𝑄 = 𝑔1/2(𝛬)𝑈−1

▶ Embedding𝑄 = [𝑞1,… , 𝑞𝑛], where 𝑞𝑖 ∈ ℝ𝑛 represents the 𝑖th vertex.

▶ Covariance𝑄𝖳𝑄 = 𝑈𝑔(𝛬)𝑈−1 = 𝑔(𝐿).
PCA with principal directions 𝑢𝑖 and variances 𝑔(𝜆𝑖).
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Distance

𝑑2𝑔(𝑣𝑖, 𝑣𝑗) = ‖𝑞𝑖 − 𝑞𝑗‖
2
2
= 𝐸𝑔(𝛿𝑖 − 𝛿𝑗)

v0 v1 v2 v3 v4 v5

0

1

2

3

4

5

d2 g
(v

0,
)

g 1( ) = 1
g 1( ) = 1/
g 1( ) = exp( )
g 1( ) = max

Distances on a path graph.

▶ 𝑔−1(𝜆) = 1: Laplacian eigenmaps
[Belkin & Niyogi ’01]

▶ 𝑔−1(𝜆) = 1/𝜆: resistance/commute-time distance
[Klein & Randić ’93] [Göbel & Jagers ’74] [Fouss et al. ’07]

▶ 𝑔−1(𝜆) = exp(−2𝑡𝜆): (heat) diffusion distance
[Coifman & Lafon ’06] [Kondor & Lafferty ’02]

▶ 𝑔−1(𝜆) = (𝑎 − 𝜆)𝑝, 𝑎 ≥ 𝜆max: 𝑝-step random-walk
[PageRank, Brin & Page ’98]
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Centrality

𝐶2
𝑔(𝑣𝑖) = ‖𝑞𝑖‖

2
2 = 𝐸𝑔(𝛿𝑖) = (𝑔(𝐿))𝑖𝑖

▶ Measures how close a vertex is to all others.

▶ Why?∑𝑗 ‖𝑞𝑗 − 𝑞𝑖‖
2 = ∑𝑗 ‖𝑞𝑗‖

2
2
+ 𝑛‖𝑞𝑖‖

2
2 ∝ ‖𝑞𝑖‖

2
2 = 𝐶2

𝑔(𝑣𝑖).

▶ Closer to the origin (center of mass) implies closer to all other vertices.
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Designing 𝑔: different notions of distance
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Closeness centrality
𝑔(𝜆) = 𝜆−1.
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Diffusion centrality
𝑔(𝜆) = exp(0.2𝜆).

Degree centrality is contravariant, the others are covariant.
Closeness centrality with resistance instead of the typical shortest-path distance.
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Designing 𝑔: different notions of distance

01 234
56

7

8

9

Krackhardt kite
graph.

v0v1v2v3v4v5v6v7v8v9
0

1

2

3

4

5

6

C
2 g
()

Degree centrality
𝑔(𝜆) = 𝜆.
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Diffusion centrality
𝑔(𝜆) = exp(0.2𝜆).

Degree centrality is contravariant, the others are covariant.
Closeness centrality with resistance instead of the typical shortest-path distance.
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Learning 𝑔: degrees of freedom

empty K16 complete K16 strongly regular srg(16, 9, 4, 6) cycle C16 path P16

0 3 6 9 12 15

0.04

0.02

0.00

0.02

0.04

1 unique eigenvalues

0 3 6 9 12 15

0

5

10

15

2 unique eigenvalues

0 3 6 9 12 15

0

2

4

6

8

10

12
3 unique eigenvalues

0 3 6 9 12 15

0

1

2

3

4
9 unique eigenvalues

0 3 6 9 12 15

0

1

2

3

4
16 unique eigenvalues

Number of independent distances: from 1 to 𝑛.
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Transfer across graphs

▶ 𝑔 is an abstract convolution kernel, specified independently of any graph.

▶ 𝑔(𝐿) = 𝑔(𝐵𝖳𝑀𝐵) = 𝑈𝑔(𝛬)𝑈−1 is a concrete representation
for a graph specified by 𝐵 and𝑀.

▶ 𝑔 → 𝑔(𝐿) is an homomorphism like 𝜎 → 𝑃𝜍 is.
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Summary

1. The kernel 𝑔 defines a notion of distance.

2. It is represented by the generalized convolution 𝑔(𝐿) = 𝑔(𝐵𝖳𝑀𝐵) on a domain
specified by the topology 𝐵 and geometry𝑀.

3. 𝑔(𝐿) is mostly constrained by the domain’s symmetries and complexity, constraining
the functional space to learn from.

4. 𝑔(𝐿) is equivariant to unknown symmetries.

5. Filtering and embedding are one and the same.

6. Design 𝑔 if you knowwhat you want, learn it if you don’t.
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DeepSphere

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Problem: learning from spherical data

input 𝑥 ∶ 𝑆2 ×⋯ → ℝ𝑑

intrinsic projection
GHCN-daily, TMAX, 2014-01-01

−20◦C 0◦C 20◦C 40◦C

CMB temperature map
(Planck 2015)

-0.00025 0.00025

galaxy count
(SDSS DR14)

0 6

simulated weak lensing mass map
(DES DR1 area)

-0.014 0.02

MEG evoked potential, 0.1s

output 𝑓(𝑥)

classification regression

global {
“sleepy”
“alert”

𝛺𝑚, 𝜎8

dense

Acoustic field from Simeoni et al. 2019. 3D shape from Esteves et al. 2018.
57 / 85



Solution: spherical neural networks
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Solution: spherical neural networks
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Desideratum 1: equivariant to rotations

convolution

convolution

ro
ta
tio
n

ro
tatio

n

▶ Equivariance for dense tasks:
𝑓(𝑃𝜍𝑥) = 𝑃𝜍𝑓(𝑥) ∀𝜎 ∈ SO(3).

▶ Invariance for global tasks:
𝑓(𝑃𝜍𝑥) = 𝑓(𝑥) ∀𝜎 ∈ SO(3).

Why exploit symmetries?
▶ Data efficiency.
▶ Generalization guarantee.

⇒ Principled weight sharing (convolution).
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Desideratum 2: scalable

▶ Many inferences needed for training.
▶ Increasingly larger maps. (𝑛 = 107 pixels is customary in cosmology.)

Figure from https://healpix.sourceforge.io.
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Desideratum 3: flexible sampling, avoid interpolation

strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).
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a grid can be implemented efficiently using standard 2D convolutions when taking care of using
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increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
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Sampling schemes: equiangular, HEALPix, cubed-sphere, icosahedral, Gauss–Legendre, etc.

CMB temperature map
(Planck 2015)

-0.00025 0.00025

galaxy count
(SDSS DR14)

0 6

simulated weak lensing mass map
(DES DR1 area)

-0.014 0.02

GHCN-daily, TMAX, 2014-01-01

−20◦C 0◦C 20◦C 40◦C

Partial and irregular sampling.

Some figures from Boomsma and Frellsen 2017 and https://climatereanalyzer.org.
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Method 1: 2D projections

Manifold is locally Euclidean!
Project on tangent planes.

Desiderata
⊖ Rotation equivariance: hard to glue planes

together.
⊕ Scalability: well developed NN architectures and

implementations. Some wastes at boundaries.
⊖ Flexibility: only handle compact subspaces.

Charting figure from https://en.wikipedia.org/wiki/manifold.
63 / 85

https://en.wikipedia.org/wiki/manifold


Method 2: discretization of continuous domain

Spectral decomposition.

Discretize but consider the continuous symmetries.
Group convolution: multiplication in the spectrum af-
ter a spherical harmonic transform (SHT).

Desiderata
⊕ Rotation equivariance: well understood theory.
⊖ SHT is expensive. Even if faster transforms exist

for some samplings.
⊖ Flexibility: unused pixels are mostly wasted.

Figure from https://rodluger.github.io/starry.
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Our method: discrete domain

Domain pixels 𝐾0, topology 𝐵, geometry𝑀

Data 𝑥 ∈ ℝ𝑛, 𝑛 = |𝐾0|

Map 𝑔𝛼(𝐿)𝑥 = ∑𝑘 𝛼𝑘𝐿
𝑘𝑥, 𝐿 = 𝐵𝑀𝐵𝖳

Parameters 𝛼 ∈ ℝ𝐾
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Graph Fourier basis on the sphere

▶ Fourier modes approximate spherical harmonics.
▶ The graph approximates the sphere.

Mode 0: =0, |m|=0 Mode 1: =1, |m|=1 Mode 2: =1, |m|=1 Mode 3: =1, |m|=0

Mode 4: =2, |m|=2 Mode 5: =2, |m|=1 Mode 6: =2, |m|=1 Mode 7: =2, |m|=0

Mode 8: =2, |m|=2 Mode 9: =3, |m|=2 Mode 10: =3, |m|=0 Mode 11: =3, |m|=3

Mode 12: =3, |m|=3 Mode 13: =3, |m|=2 Mode 14: =3, |m|=1 Mode 15: =3, |m|=1
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Spherical harmonic transform of the graph Laplacian's eigenvectors.
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Desideratum 1: equivariant to rotations
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spherical harmonic degree `
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Khasanova & Frossard, k= 4

Perraudin et al., k= 8

k-NN graph, k= 8 neighbors
k-NN graph, k= 20 neighbors
k-NN graph, k= 40 neighbors

n∝ 322

n∝ 642

n∝ 1282 ▶ Equivariance error:

𝔼𝜍,𝑥(
‖𝑃𝜍𝐿𝑥 − 𝐿𝑃𝜍𝑥‖

‖𝐿𝑥‖ )
2

▶ Tradeoff between equivariance and
cost (number of vertices 𝑛 and
edges 𝑘𝑛) in the topology 𝐵.

▶ Difficulty: get the geometry𝑀
right.
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Desideratum 1: it matters!

accuracy time

Perraudin et al. 2019, 2D CNN baseline 54.2 104ms
Perraudin et al. 2019, CNN variant, 𝑘 = 8 62.1 185ms
Perraudin et al. 2019, FCN variant, 𝑘 = 8 83.8 185ms
𝑘 = 8 neighbors, optimal 𝑡 87.1 185ms
𝑘 = 20 neighbors, optimal 𝑡 91.3 250ms
𝑘 = 40 neighbors, optimal 𝑡 92.5 363ms

Lower equivariance error translates to higher performance.
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k= 8

k= 20

k= 40

Tradeoff between cost
and accuracy.
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Desideratum 2: linear complexity

Goal: avoid the𝑂(𝑛3) EVD 𝐿 = 𝑈𝐿𝑈−1 and𝑂(𝑛2)matrix multiplication𝑈−1𝑥 in
evaluating 𝑔(𝐿)𝑥 = 𝑈𝑔(𝛬)𝑈−1𝑥.

Spatial parameterization (𝐾-hops local):

𝑔𝛼(𝐿)𝑥 = (∑
𝑘<𝐾

𝛼𝑘𝐿𝑘) 𝑥 = ∑
𝑘<𝐾

𝛼𝑘 ̄𝑥𝑘, ̄𝑥𝑘 = 𝐿 ̄𝑥𝑘−1, ̄𝑥0 = 𝑥.

Spectral parameterization (global):

𝑔𝛼(𝐿)𝑥 = ∑
𝑘∈𝒦

𝛼𝑘𝑢𝑘𝑢𝑘𝖳𝑥, 𝛼𝑘 = 𝑔(𝜆𝑘), 𝑈 = [𝑢1,… , 𝑢𝑛].

Heisenberg’s uncertainty principle: locality in the spatial domain implies smoothness in the spectral
domain and vice-versa.
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Desideratum 2: scalable

▶ Graph convolutions cost𝑂(𝑛).
▶ Spherical convolutions cost𝑂(𝑛2) in general,𝑂(𝑛3/2) for some samplings.
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Graph, poly. order K=15
Graph, poly. order K=5
Partial graph 1/12, K=15
Partial graph 1/192, K=15
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Desideratum 2: it matters!

performance size speed

F1 mAP params inference training

Cohen et al. 2018 (𝑏 = 128) – 67.6 1400 k 38.0ms 50 h
Cohen et al. 2018 (simplified, 𝑏 = 64) 78.9 66.5 400 k 12.0ms 32 h
Esteves et al. 2018 (𝑏 = 64) 79.4 68.5 500 k 9.8ms 3 h
DeepSphere (equiangular, 𝑏 = 64) 79.4 66.5 190 k 0.9ms 50m
DeepSphere (HEALPix,𝑁side = 32) 80.7 68.6 190 k 0.9ms 50m

Classification of 3D shapes (SHREC’17): anisotropy is an unnecessary price to pay.
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Desideratum 3: flexible sampling

GHCN-daily, TMAX, 2014-01-01

−20◦C 0◦C 20◦C 40◦C

graph of GHCN stations
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Application: discrimination of cosmological models
Classification of convergence maps created
from two sets of cosmological parameters.

(𝛺𝑚, 𝜎8) = (0.31, 0.82) or (0.26, 0.91)

102 103

: spherical harmonic index
10 7

10 6

10 5

10 4

C
(

+
1)

/(2
)

Power Spectrum Density
noiseless, 3-arcmin smoothing, Nside=1024

class 1, m = 0.31, 8 = 0.82
class 2, m = 0.26, 8 = 0.91

𝛺𝑚, 𝜎8, smoothing chosen to get identical PS. Maps with identical initial conditions.
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Application: discrimination of cosmological models (results)
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Order o = 1: 1,048,576 pixels per samples (1/12 sphere)

DeepSphere (FCN variant)
DeepSphere (CNN variant)
2D ConvNet (FCN variant)
2D ConvNet (CNN variant)
linear SVM on histogram
linear SVM on PSD
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Order o = 2: 262,144 pixels per samples (1/48 sphere)

DeepSphere (FCN variant)
DeepSphere (CNN variant)
2D ConvNet (FCN variant)
2D ConvNet (CNN variant)
linear SVM on histogram
linear SVM on PSD
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Order o = 4: 65,536 pixels per samples (1/192 sphere)

DeepSphere (FCN variant)
DeepSphere (CNN variant)
2D ConvNet (FCN variant)
2D ConvNet (CNN variant)
linear SVM on histogram
linear SVM on PSD

▶ Difficulty controlled by #pixels per sample and amount of noise.

▶ Better performance than SVM on PSDs and histograms.
Those statistics destroy toomuch information.

▶ Better performance than ConvNet on 2D projections.
Equivariance matters.
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Application: climate event segmentation

Segment extreme climate events: tropical cy-
clones (TC) and atmospheric rivers (AR).

▶ >1M spherical maps
▶ down-sampled to 10k pixels (original 900k)
▶ 0.1% TC, 2.2% AR, 97.7% background
▶ 16 channels (e.g., temperature, wind,

humidity, pressure)

CAM5 HAPPI20 run 1, TMQ, 2106-01-01

AR
TC

0 kg/m2 40 kg/m2 80 kg/m2
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Application: climate event segmentation (results)

accuracy mAP

Jiang et al. 2019 (rerun) 94.95 38.41
T. S. Cohen et al. 2019 (S2R) 97.5 68.6
T. S. Cohen et al. 2019 (R2R) 97.7 75.9
DeepSphere (weighted loss) 97.8 ± 0.3 77.15 ± 1.94
DeepSphere (non-weighted loss) 87.8 ± 0.5 89.16 ± 1.37

Mean accuracy (over TC, AR, BG) andmean average precision (over TC and AR).

▶ Anisotropy is an unnecessary price to pay.

▶ Check your loss!
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Application: weather forecasting
Ghiggi et al. 2022
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Anisotropy
ChebLieNet, Aguettaz, Bekkers, and Defferrard 2021

▶ No free lunch: lift to symmetry group, required to be transitive and known.
▶ Similar to group convolutions, but with control of the equivariance–cost tradeoff.

Isotropic metric onℳ. Isotropic metric on Sym(ℳ). Anisotropic metric on Sym(ℳ).

Diffusion on base Riemannian manifoldℳ = ℝ2 and symmetry Lie group Sym(ℳ) = SE(2).
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Summary

DeepSphere: a spherical CNN that strikes

a controllable balance between desiderata.
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Conclusion

My contributions: motivation, construction, analysis, and usage
of generalized convolutions for efficient Machine Learning.



Summary

Leveraging topology, geometry, and symmetries for efficient Machine Learning

Generalized convolutions

theory emerge from the fundamentals of space: topology and geometry,

method enable parameter sharing for non-transitive and unknown symmetry
groups, to efficiently learn on arbitrary domains,

application lead to state-of-the-art results on important real-world problems.
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Impact

My contributions:

▶ got 5000+ citations and an h-index of 10,

▶ pioneered graph ML and put it on the global research agenda,

▶ proved useful in tackling important real-world problems.
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Future: structural features and network embedding

Problem GNNs are good at leveraging graphs as a computational substrate to process
data; But not to extract information from graphs.

Observation These operations are two sides of the same 𝑔(𝐿) coin. But spectral
embeddings𝑄 = 𝑔1/2(𝛬)𝑈−1 = [𝑞1,… , 𝑞𝑛] are not invariant to
automorphisms. DeepWalk, LINE, PTE, and node2vec embed in a subspace
for some 𝑔 [Qiu et al. 2018].

Solution Centrality 𝐶2
𝑔(𝑣𝑖) = ‖𝑞𝑖‖

2
2 and distances {{𝑑2𝑔(𝑣𝑖, ⋅)}} = {{‖𝑞𝑖 − ⋅‖22}}.
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Future: graph isomorphism

Problem Is GI in P or NP-complete?

Observation Neither centrality 𝐶2
𝑔(𝑣𝑖) nor

distances {{𝑑2𝑔(𝑣𝑖, ⋅)}} are
complete invariants w.r.t. au-
tomorphism/isomorphism.
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Slides https://doi.org/10.5281/zenodo.5780063

Papers Defferrard, Generalized convolutions, In preparation, 2022.

Ebli, Defferrard, Spreemann, Simplicial Neural Networks, TDA@NeurIPS, 2020.

Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN, ICLR, 2020.

Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional Neural
Network with HEALPix sampling for cosmological applications, Astronomy and Computing,
2019.

Defferrard, Bresson, Vandergheynst, Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering, NIPS, 2016.

Code https://github.com/epfl-lts2/pygsp
https://github.com/stefaniaebli/simplicial_neural_networks
https://github.com/deepsphere
https://github.com/mdeff/cnn_graph
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