Leveraging topology, geometry, and

 symmetries for efficient Machine Learning
Michaël Defferrard

Prof. Pierre Vandergheynst (EPFL), adviser
Prof. Pascal Frossard (EPFL), president
Prof. Martin Jaggi (EPFL), examiner
Prof. Max Welling (UvA, MSR), examiner
Prof. Yann LeCun (NYU, FAIR), examiner

Structured data

- Data is multi-dimensional.

Structured data

- Data is multi-dimensional.
- Measurements are discrete.

Structured data

- Data is multi-dimensional.
- Measurements are discrete.
- Dimensions are structured.

The (deep) learning revolution

From designing the solution f to designing the solution space \mathcal{F}.

\mathcal{F} is determined by the NN architecture. How to design it?

Design of solution spaces (NN architectures)

Constraints

Design of solution spaces (NN architectures)

Constraints

Biases

Symmetry constraints

- Equivariance for dense tasks: $f\left(P_{\sigma} x\right)=P_{\sigma} f(x) \quad \forall \sigma \in \mathrm{SO}(3)$.
- Invariance for global tasks: $f\left(P_{\sigma} x\right)=f(x) \quad \forall \sigma \in \operatorname{SO}(3)$.

Why leverage symmetries?

Symmetry constraints

- Equivariance for dense tasks: $f\left(P_{\sigma} x\right)=P_{\sigma} f(x) \quad \forall \sigma \in \mathrm{SO}(3)$.
- Invariance for global tasks: $f\left(P_{\sigma} x\right)=f(x) \quad \forall \sigma \in \mathrm{SO}(3)$.

Why leverage symmetries?

- Data efficiency.
- Generalization guarantee.
\Rightarrow Principled weight sharing.

Symmetries might not be enough

- What are the symmetries? Translations?

Symmetries might not be enough

- What are the symmetries? Translations?
- Few symmetries.
- A solution: "cheat" by treating the grid as a discretization of the plane.

Symmetries might not be enough

- What are the symmetries?

Symmetries might not be enough

- What are the symmetries?
- Asymmetric core with few symmetric motifs.
- Can't "cheat". No underlying continuous domain. Purely discrete.

Symmetries might not be enough

Why more weight sharing?

Symmetries might not be enough

Why more weight sharing?

- Higher data efficiency.
- Stronger generalization guarantee.
- Less powerful / general / flexible.

Symmetries might not be enough

Why more weight sharing?

- Higher data efficiency.
- Stronger generalization guarantee.
- Less powerful / general / flexible.

The bias-variance tradeoff.

Research question

How to leverage the topological and geometrical
structure of the data's domain to learn efficiently
without the help of symmetry action?

Contributions

- Transitive and known symmetry groups \Rightarrow group convolutions.
- Non-transitive and/or unknown symmetry groups \Rightarrow generalized convolutions.

My contributions: motivation, construction, analysis, and usage of generalized convolutions for efficient Machine Learning.

A discrete calculus

My contributions: motivation, construction, analysis, and usage of generalized convolutions for efficient Machine Learning.

Space: simplicial complexes

d-simplices.

Simplicial complex K.

- Simplex: set of vertices.
- Simplicial complex K : set of simplices. Single axiom: closed under taking subsets.
- K_{d} : set of all d-simplices.

Data

- Simplices naturally form a spatial basis.
- Vertex- $(d=0)$, edge- $(d=1)$, simplex-valued $(d \geq 2)$ functions.
- Covariant d-chain $x_{d} \in \mathbb{R}^{\left|K_{d}\right|}$ and contravariant d-cochain $f_{d} \in \mathbb{R}^{\left|K_{d}\right|}$.

Duality:

$$
\left\langle x_{d}, f_{d}\right\rangle=x_{d}^{\top} f_{d}
$$

Topology: an incidence structure

$$
K=\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}, \underbrace{\left.u_{3}, v_{1}\right\}}_{e_{1}}, \underbrace{\left.v_{1}, v_{2}\right\}}_{e_{2}}\}
$$

$$
B_{1}=\left(\begin{array}{cc}
+1 & -1 \\
0 & +1 \\
-1 & 0
\end{array}\right)
$$

- Ordering is arbitrary but necessary. $K_{0}=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}\right\}$ and $K_{1}=\left\{e_{1}, e_{2}\right\}$.
- Orientation is arbitrary but necessary. $e_{1}=\left\{v_{3}, v_{1}\right\}$ and $e_{2}=\left\{v_{1}, v_{2}\right\}$.

Topology: an incidence structure

- Boundary operator $B_{d}{ }^{\top}$: subdomain d-chain $x_{d} \rightarrow$ boundary $(d-1)$-chain $B_{d}{ }^{\top} x_{d}$.
- Differential operator ${ }^{1} B_{d}$: data ($d-1$)-cochain $f_{d-1} \rightarrow$ finite difference d-cochain $B_{d} f_{d-1}$.
$B_{d}{ }^{\top}$ and B_{d} are adjoint w.r.t. dual pairing:

$$
\left\langle B_{d}^{\top} x_{d}, f_{d-1}\right\rangle=\left\langle x_{d}, B_{d} f_{d-1}\right\rangle
$$

$$
\int_{\partial \Omega} \omega=\int_{\Omega} \mathrm{d} \omega
$$

[^0]
Geometry: an inner product

$$
\left\langle f_{d}, h_{d}\right\rangle_{M_{d}}=f_{d}^{\top} M_{d} h_{d}
$$

$$
\begin{aligned}
& M_{0}=\left(\begin{array}{ccc}
\text { weight }\left(v_{1}\right) & 0 & 0 \\
0 & \text { weight }\left(v_{2}\right) & 0 \\
0 & 0 & \text { weight }\left(v_{3}\right)
\end{array}\right) \\
& M_{1}=\left(\begin{array}{cc}
\text { weight }\left(e_{1}\right) & 0 \\
0 & \text { weight }\left(e_{2}\right)
\end{array}\right)
\end{aligned}
$$

Codifferential operator

$$
\left\langle B_{d} f_{d-1}, h_{d}\right\rangle_{M_{d}}=\left\langle f_{d-1}, B_{d}^{\dagger} h_{d}\right\rangle_{M_{d-1}}
$$

Codifferential operator $B_{d}{ }^{\dagger}=M_{d-1}{ }^{-1} B_{d}{ }^{\top} M_{d}$.

- $B_{d}{ }^{\dagger}$ is adjoint to B_{d} w.r.t. M_{d}.
- Gradient B_{1}, divergence $B_{1}{ }^{\dagger}$, $\operatorname{curl} B_{2}$.

Dirichlet energy: defines the Laplacian

$$
\left\langle B_{d}^{\dagger} f_{d}, B_{d}^{\dagger} h_{d}\right\rangle_{M_{d-1}}+\left\langle B_{d+1} f_{d}, B_{d+1} h_{d}\right\rangle_{M_{d+1}}=\left\langle f_{d}, L_{d} h_{d}\right\rangle_{M_{d}}
$$

Laplacian as the second-order differential operator

$$
L_{d}=B_{d} B_{d}^{\dagger}+B_{d+1}{ }^{\dagger} B_{d+1}
$$

Dirichlet energy: measure of variation

$$
E\left(f_{d}\right)=\left\langle f_{d}, L_{d} f_{d}\right\rangle_{M_{d}}=\left\|B_{d}^{\dagger} f_{d}\right\|_{M_{d-1}}^{2}+\left\|B_{d+1} f_{d}\right\|_{M_{d+1}}^{2}
$$

$$
E\left(f_{0}\right)=\left\langle f_{0}, L_{0} f_{0}\right\rangle_{M_{0}}=\left\|B_{1} f_{0}\right\|_{M_{1}}^{2}
$$

Generalized convolutions

My contributions: motivation, construction, analysis, and usage of generalized convolutions for efficient Machine Learning.

Graphs

- Graph G of $n=\left|K_{0}\right|$ vertices.
- Incidence matrix $B=B_{1}$.
- Unweighted vertices $M_{0}=I$ and edge weights $M=M_{1}$.
- Laplacian $L=L_{0}=B^{\dagger} B=B^{\top} M B$.

Symmetries

$\sigma \in \operatorname{Aut}(G) \subset S_{n}$

- Automorphism σ.
- Automorphism group Aut(G).
- $0 \leq|\operatorname{Aut}(G)| \leq\left|S_{n}\right|$ symmetries.

Representation (spatial basis): permutation matrix P_{σ}.

Equivariance

$$
P_{\sigma}^{\top} L P_{\sigma}=L \quad L P_{\sigma}=P_{\sigma} L
$$

- Symmetry preserves the adjacency structure.
- The Laplacian commutes with symmetry group actions.
- The Laplacian is an intrinsic and equivariant operator.

Fourier diagonalizes actions

$$
L=U \Lambda U^{-1}
$$

- Symmetries must act as rotations within the eigenspaces of L.
- Fourier jointly (block-)diagonalizes L and P_{σ}-without knowing the symmetries.

Fourier diagonalizes actions

Automorphism: $P L P^{\top}=L$.

Permutation: $P L P^{\top} \neq L$.

Spectral basis

$$
L=U \Lambda U^{-1}
$$

- Fourier $U=\left[u_{1}, \ldots, u_{n}\right]$, eigenvectors u_{i}.
- Squared frequencies $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, eigenvalues $0=\lambda_{1} \leq \cdots \leq \lambda_{n}$.
- Because L is positive semi-definite [spectral theorem].
- Reduces to the discrete cosine (DCT) and Fourier (DFT) transforms.

Spectral basis: eigenvalues

Spectral basis: eigenvectors

Spectral basis: Fourier transform

$$
\hat{x}=U^{-1} x \quad x=U \hat{x} \quad E(x)=x^{\top} L x=\hat{x}^{\top} \Lambda \hat{x}
$$

Generalized convolutions

$$
\Lambda=U^{-1} L U \quad \Pi_{\sigma}=U^{-1} P_{\sigma} U
$$

- The eigenspaces are the invariant subspaces of both operators.
- Λ is diagonal: one value per eigenspace.
- Π_{σ} is block-diagonal: one block per eigenspace. Each block implements a roto-reflection.

Generalized convolutions (spectral basis)

$$
\begin{gathered}
g(\Lambda)=\operatorname{diag}\left(g\left(\lambda_{1}\right), \ldots, g\left(\lambda_{n}\right)\right) \\
g(\Lambda) \Pi_{\sigma}=\Pi_{\sigma} g(\Lambda)
\end{gathered}
$$

The action $g(\Lambda)$ of g (scaling) is orthogonal to the action Π_{σ} of σ (roto-reflection).

Generalized convolutions (spatial basis)

$$
g(L)=U g(\Lambda) U^{-1}
$$

- Multiplication operator $g(\Lambda)$ and convolution operator $g(L)$.
- $g(L)$ is an equivariant operator, the defining property of convolutions.
- Generalized because it commutes with more than symmetries.

Filtering

$$
y=g(L) x=U g(\Lambda) U^{-1} x
$$

filtered signal y in the vertex domain

Left: data x in the spatial basis. Middle: data $\hat{x}=U^{-1} x$, concrete filter $\operatorname{diag}(g(\Lambda))$, and filtered data $\hat{y}=g(\Lambda) \hat{x}$ in the spectral basis. Right: filtered data $y=U \hat{y}$ in the spatial basis.

Filtering: heat diffusion

$$
-\tau L f(t)=\partial_{t} f(t) \quad \Rightarrow \quad f(t)=g_{\tau t}(L) f(0) \text { with } g_{\tau t}(\lambda)=\exp (-\tau t \lambda)
$$

$\hat{f}(5)=g_{1,5} \odot \hat{f}(0)$

$f(5)$

$\hat{f}(10)=g_{1,10} \odot \hat{f}(0)$

Designing g

Design a kernel $g: \mathbb{R} \rightarrow \mathbb{R}$ such that it acts interestingly as $y=g(L) x$.

- $g(\lambda)=\exp (-\tau t \lambda)$: heat diffusion.
- $g(\lambda)=\cos \left(t \arccos \left(1-\frac{\tau^{2}}{2} \lambda\right)\right)$: wave propagation.
- $g(\lambda)=\left\{\begin{array}{ll}1 & \text { if } \lambda_{\text {min }}<\lambda<\lambda_{\text {max }}, \\ 0 & \text { otherwise } .\end{array}\right.$ projection on a subspace.
- $g(\lambda)=\frac{1}{1+\tau \lambda}$: denoising with arg $\min _{y}\|y-x\|_{2}^{2}+\tau y^{\top} L y$.

Learn g if the process is unknown.

Convolution: symmetry action vs localization

Convolution with symmetry action.

$$
\left\langle y, \delta_{i}\right\rangle=\left\langle T_{i} g, x\right\rangle
$$

- $T_{i} g$ shifts g to the $i^{\text {th }}$ vertex.
- x and g are the same objects.

Convolution with localization.

$$
\begin{aligned}
\left\langle y, \delta_{i}\right\rangle & =\left\langle g(L) x, \delta_{i}\right\rangle \\
& =\left\langle x, g(L) \delta_{i}\right\rangle
\end{aligned}
$$

- $g(L) \delta_{i}$ localizes g at the $i^{\text {th }}$ vertex.
- x and g are different.

Localization is a generalization of symmetry action to non-homogeneous spaces.

Convolution: symmetry action vs localization

Localization reduces to symmetry action.

Spectral embedding

$$
E_{g}(f)=\langle f, g(L) f\rangle=\left\|g^{1 / 2}(\Lambda) U^{-1} f\right\|_{2}^{2}
$$

- Generalization of Dirichlet energy to $g \neq$ id.
- $g^{1 / 2}(\Lambda) U^{-1} f$ is an embedding of f in Euclidean space that reproduces:
- the symmetries of the space encoded in L,
- a notion of distance set by g.

Spectral embedding

Network (vertex) embedding

$$
Q=g^{1 / 2}(\Lambda) U^{-1}
$$

- Embedding $Q=\left[q_{1}, \ldots, q_{n}\right]$, where $q_{i} \in \mathbb{R}^{n}$ represents the $i^{\text {th }}$ vertex.
- Covariance $Q^{\top} Q=U g(\Lambda) U^{-1}=g(L)$. PCA with principal directions u_{i} and variances $g\left(\lambda_{i}\right)$.

Distance

$$
d_{g}^{2}\left(v_{i}, v_{j}\right)=\left\|q_{i}-q_{j}\right\|_{2}^{2}=E_{g}\left(\delta_{i}-\delta_{j}\right)
$$

Distances on a path graph.

- $g^{-1}(\lambda)=1$: Laplacian eigenmaps [Belkin \& Niyogi '01]
- $g^{-1}(\lambda)=1 / \lambda$: resistance/commute-time distance [Klein \& Randić '93] [Göbel \& Jagers '74] [Fouss et al. '07]
- $g^{-1}(\lambda)=\exp (-2 t \lambda)$: (heat) diffusion distance
[Coifman \& Lafon '06] [Kondor \& Lafferty '02]
- $g^{-1}(\lambda)=(a-\lambda)^{p}, a \geq \lambda_{\text {max }}: p$-step random-walk [PageRank, Brin \& Page '98]

Centrality

$$
C_{g}^{2}\left(v_{i}\right)=\left\|q_{i}\right\|_{2}^{2}=E_{g}\left(\delta_{i}\right)=(g(L))_{i i}
$$

- Measures how close a vertex is to all others.
- Why? $\sum_{j}\left\|q_{j}-q_{i}\right\|^{2}=\sum_{j}\left\|q_{j}\right\|_{2}^{2}+n\left\|q_{i}\right\|_{2}^{2} \propto\left\|q_{i}\right\|_{2}^{2}=C_{g}^{2}\left(v_{i}\right)$.
- Closer to the origin (center of mass) implies closer to all other vertices.

Designing g : different notions of distance

Krackhardt kite
graph.

Designing g : different notions of distance

Krackhardt kite graph.

Degree centrality
$g(\lambda)=\lambda$.

Closeness centrality $g(\lambda)=\lambda^{-1}$.

Diffusion centrality $g(\lambda)=\exp (0.2 \lambda)$.

Degree centrality is contravariant, the others are covariant.
Closeness centrality with resistance instead of the typical shortest-path distance.

Learning g : degrees of freedom

Number of independent distances: from 1 to n.

Transfer across graphs

- g is an abstract convolution kernel, specified independently of any graph.
- $g(L)=g\left(B^{\top} M B\right)=U g(\Lambda) U^{-1}$ is a concrete representation for a graph specified by B and M.
- $g \rightarrow g(L)$ is an homomorphism like $\sigma \rightarrow P_{\sigma}$ is.

Summary

1. The kernel g defines a notion of distance.
2. It is represented by the generalized convolution $g(L)=g\left(B^{\top} M B\right)$ on a domain specified by the topology B and geometry M.
3. $g(L)$ is mostly constrained by the domain's symmetries and complexity, constraining the functional space to learn from.
4. $g(L)$ is equivariant to unknown symmetries.
5. Filtering and embedding are one and the same.
6. Design g if you know what you want, learn it if you don't.

DeepSphere

My contributions: motivation, construction, analysis, and usage of generalized convolutions for efficient Machine Learning.

Problem: learning from spherical data

Acoustic field from Simeoni et al. 2019. 3D shape from Esteves et al. 2018.

Solution: spherical neural networks

input data
first convolutional layer convolution with N_{1} filters, activation, pooling, batch normalization

second convolutional layer convolution with N_{2} filters activation, pooling, activation, pooing,

Solution: spherical neural networks

Desideratum 1: equivariant to rotations

- Equivariance for dense tasks: $f\left(P_{\sigma} x\right)=P_{\sigma} f(x) \quad \forall \sigma \in \mathrm{SO}(3)$.
- Invariance for global tasks: $f\left(P_{\sigma} x\right)=f(x) \quad \forall \sigma \in \mathrm{SO}(3)$.

Why exploit symmetries?

- Data efficiency.
- Generalization guarantee.
\Rightarrow Principled weight sharing (convolution).

Desideratum 2: scalable

- Many inferences needed for training.
- Increasingly larger maps.
($n=10^{7}$ pixels is customary in cosmology.)

Figure from https://healpix.sourceforge.io.

Desideratum 3: flexible sampling, avoid interpolation

Sampling schemes: equiangular, HEALPix, cubed-sphere, icosahedral, Gauss-Legendre, etc.

Partial and irregular sampling.

Method 1: 2D projections

Manifold is locally Euclidean! Project on tangent planes.

Desiderata

\ominus Rotation equivariance: hard to glue planes together.
\oplus Scalability: well developed NN architectures and implementations. Some wastes at boundaries.
\ominus Flexibility: only handle compact subspaces.

[^1]
Method 2: discretization of continuous domain

Discretize but consider the continuous symmetries. Group convolution: multiplication in the spectrum after a spherical harmonic transform (SHT).

Desiderata

\oplus Rotation equivariance: well understood theory.
\ominus SHT is expensive. Even if faster transforms exist for some samplings.
\ominus Flexibility: unused pixels are mostly wasted.

Our method: discrete domain

Domain pixels K_{0}, topology B, geometry M

Data $x \in \mathbb{R}^{n}, n=\left|K_{0}\right|$

$$
\text { Map } g_{\alpha}(L) x=\sum_{k} \alpha_{k} L^{k} x, L=B M B^{\top}
$$

Parameters $\alpha \in \mathbb{R}^{K}$

Graph Fourier basis on the sphere

- Fourier modes approximate spherical harmonics.
- The graph approximates the sphere.

Mode $0: \ell=0,|m|=0$

Mode 4: $\ell=2,|m|=2$

Mode 8: $\ell=2,|m|=2$

Mode 1: $\ell=1,|m|=1$

Mode 5: $\ell=2,|m|=1$

Mode 9: $\ell=3,|m|=2$

Mode 2: $\ell=1,|m|=1$

Mode 6: $\ell=2,|m|=1$

Mode 10: $\ell=3,|m|=0$

Mode 3: $\ell=1,|m|=0$

Mode 7: $\ell=2,|m|=0$

Mode 11: $\ell=3,|m|=3$

Desideratum 1: equivariant to rotations

- Equivariance error:

$$
\mathbb{E}_{\sigma, x}\left(\frac{\left\|P_{\sigma} L x-L P_{\sigma} x\right\|}{\|L x\|}\right)^{2}
$$

- Tradeoff between equivariance and cost (number of vertices n and edges $k n$) in the topology B.
- Difficulty: get the geometry M right.

Desideratum 1: it matters!

	accuracy	time
Perraudin et al. 2019, 2D CNN baseline	54.2	104 ms
Perraudin et al. 2019, CNN variant, $k=8$	62.1	185 ms
Perraudin et al. 2019, FCN variant, $k=8$	83.8	185 ms
$k=8$ neighbors, optimal t	87.1	185 ms
$k=20$ neighbors, optimal t	91.3	250 ms
$k=40$ neighbors, optimal t	92.5	363 ms

Lower equivariance error translates to higher performance.

Tradeoff between cost and accuracy.

Desideratum 2: linear complexity

Goal: avoid the $O\left(n^{3}\right)$ EVD $L=U L U^{-1}$ and $O\left(n^{2}\right)$ matrix multiplication $U^{-1} x$ in evaluating $g(L) x=U g(\Lambda) U^{-1} x$.

Spatial parameterization (K-hops local):

$$
g_{\alpha}(L) x=\left(\sum_{k<K} \alpha_{k} L^{k}\right) x=\sum_{k<K} \alpha_{k} \bar{x}_{k}, \quad \bar{x}_{k}=L \bar{x}_{k-1}, \bar{x}_{0}=x .
$$

Spectral parameterization (global):

$$
g_{\alpha}(L) x=\sum_{k \in \mathcal{K}} \alpha_{k} u_{k} u_{k}^{\top} x, \quad \alpha_{k}=g\left(\lambda_{k}\right), \quad U=\left[u_{1}, \ldots, u_{n}\right] .
$$

Heisenberg's uncertainty principle: locality in the spatial domain implies smoothness in the spectral domain and vice-versa.

Desideratum 2: scalable

- Graph convolutions cost $O(n)$.
- Spherical convolutions cost $O\left(n^{2}\right)$ in general, $O\left(n^{3 / 2}\right)$ for some samplings.

Desideratum 2: it matters!

	performance		$\frac{\text { size }}{\text { params }}$	speed	
	F1	mAP		inference	training
Cohen et al. 2018 ($b=128$)	-	67.6	1400 k	38.0 ms	50 h
Cohen et al. 2018 (simplified, $b=64$)	78.9	66.5	400 k	12.0 ms	32 h
Esteves et al. 2018 ($b=64$)	79.4	68.5	500 k	9.8 ms	3 h
DeepSphere (equiangular, $b=64$)	79.4	66.5	190 k	0.9 ms	50 m
DeepSphere (HEALPix, $\left.N_{\text {side }}=32\right)$	80.7	68.6	190 k	0.9 ms	50 m

Classification of 3D shapes (SHREC'17): anisotropy is an unnecessary price to pay.

Desideratum 3: flexible sampling

GHCN-daily, TMAX, 2014-01-01

graph of GHCN stations

Application: discrimination of cosmological models

Classification of convergence maps created from two sets of cosmological parameters.

$$
\left(\Omega_{m}, \sigma_{8}\right)=(0.31,0.82) \text { or }(0.26,0.91)
$$

Power Spectrum Density
noiseless, 3-arcmin smoothing, Nside=1024

Ω_{m}, σ_{8}, smoothing chosen to get identical PS.

Maps with identical initial conditions.

Application: discrimination of cosmological models (results)

- Difficulty controlled by \#pixels per sample and amount of noise.
- Better performance than SVM on PSDs and histograms. Those statistics destroy too much information.
- Better performance than ConvNet on 2D projections. Equivariance matters.

Application: climate event segmentation

Segment extreme climate events: tropical cyclones (TC) and atmospheric rivers (AR).

- >1M spherical maps
- down-sampled to 10k pixels (original 900k)
- $0.1 \% \mathrm{TC}, 2.2 \% \mathrm{AR}, 97.7 \%$ background
- 16 channels (e.g., temperature, wind, humidity, pressure)

Application: climate event segmentation (results)

	accuracy	mAP
Jiang et al. 2019 (rerun)	94.95	38.41
T. S. Cohen et al. 2019 (S2R)	97.5	68.6
T. S. Cohen et al. 2019 (R2R)	97.7	75.9
DeepSphere (weighted loss)	97.8 ± 0.3	77.15 ± 1.94
DeepSphere (non-weighted loss)	87.8 ± 0.5	89.16 ± 1.37

Mean accuracy (over TC, AR, BG) and mean average precision (over TC and AR).

- Anisotropy is an unnecessary price to pay.
- Check your loss!

Application: weather forecasting

Ghiggi et al. 2022

Topology and geometry of the Earth

https://github.com/deepsphere/deepsphere-weather
Any (unstructured) grid: no interpolation!

convolution

$$
y=\sum_{k} w_{k} L^{k} x
$$

$$
\text { pooling } \quad y=P x
$$

non-linearity $\quad y=\sigma(x)$

Anisotropy

ChebLieNet, Aguettaz, Bekkers, and Defferrard 2021

- No free lunch: lift to symmetry group, required to be transitive and known.
- Similar to group convolutions, but with control of the equivariance-cost tradeoff.

Isotropic metric on \mathcal{M}.

Isotropic metric on $\operatorname{Sym}(\mathcal{M})$.

Anisotropic metric on $\operatorname{Sym}(\mathcal{M})$.

Diffusion on base Riemannian manifold $\mathcal{M}=\mathbb{R}^{2}$ and symmetry Lie group $\operatorname{Sym}(\mathcal{M})=\operatorname{SE}(2)$.

Summary

DeepSphere: a spherical CNN that strikes a controllable balance between desiderata.

Conclusion

My contributions: motivation, construction, analysis, and usage of generalized convolutions for efficient Machine Learning.

Summary

Leveraging topology, geometry, and symmetries for efficient Machine Learning

Generalized convolutions

theory emerge from the fundamentals of space: topology and geometry, method enable parameter sharing for non-transitive and unknown symmetry groups, to efficiently learn on arbitrary domains,
application lead to state-of-the-art results on important real-world problems.

Impact

My contributions:

- got $5000+$ citations and an h-index of 10 ,
- pioneered graph ML and put it on the global research agenda,
- proved useful in tackling important real-world problems.

Future: structural features and network embedding

Problem GNNs are good at leveraging graphs as a computational substrate to process data; But not to extract information from graphs.

Observation These operations are two sides of the same $g(L)$ coin. But spectral embeddings $Q=g^{1 / 2}(\Lambda) U^{-1}=\left[q_{1}, \ldots, q_{n}\right]$ are not invariant to automorphisms. DeepWalk, LINE, PTE, and node2vec embed in a subspace for some g [Qiu et al. 2018].

Solution Centrality $C_{g}^{2}\left(v_{i}\right)=\left\|q_{i}\right\|_{2}^{2}$ and distances $\left\{\left\{d_{g}^{2}\left(v_{i}, \cdot\right)\right\}\right\}=\left\{\left\{\left\|q_{i}-\cdot\right\|_{2}^{2}\right\}\right\}$.

Future: graph isomorphism

Problem Is Gl in P or NP-complete?

Observation Neither centrality $C_{g}^{2}\left(v_{i}\right)$ nor distances $\left\{\left\{d_{g}^{2}\left(v_{i}, \cdot\right)\right\}\right\}$ are complete invariants w.r.t. automorphism/isomorphism.

Michaël Defferrard @m_deff • Dec 31, 2020
2020: I got the GI disease
2021: I will find a cure or get immune
Happy New Year y'all!

The graph isomorphism disease ${ }^{\dagger}$
Ronald C. Read, Derek G. Corneil
First published: Winter 1977 | https://doi.org/10.1002/jgt. 3190010410
t Dedicated to George Pollya on his 90th Birthday.

Slides https://doi.org/10.5281/zenodo. 5780063

Papers Defferrard, Generalized convolutions, In preparation, 2022.
Ebli, Defferrard, Spreemann, Simplicial Neural Networks, TDA@NeurIPS, 2020.
Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN, ICLR, 2020.
Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications, Astronomy and Computing, 2019.

Defferrard, Bresson, Vandergheynst, Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS, 2016.

Code https://github.com/epfl-lts2/pygsp
https://github.com/stefaniaebli/simplicial_neural_networks https://github.com/deepsphere
https://github.com/mdeff/cnn_graph

[^0]: ${ }^{1}$ Also known as the coboundary or exterior derivative.

[^1]: Charting figure from https://en.wikipedia.org/wiki/manifold.

