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Abstract
Dataflow graphs are a popular abstraction for describing
computation, used in many systems for high-level optimiza-
tion. For execution, dataflow graphs are lowered and opti-
mized through layers of program representations down to
machine instructions. Unfortunately, performance profiling
such systems is cumbersome, as today’s profilers present
results merely at instruction and function granularity. This
obfuscates the connection between profiles and high-level
constructs, such as operators and pipelines, making interpre-
tation of profiles an exercise in puzzling and deduction.

In this paper, we show how to profile compiling dataflow
systems at higher abstraction levels. Our approach tracks
the code generation process and aggregates profiling data to
any abstraction level. This bridges the semantic gap to match
the engineer’s current information need and even creates
a comprehensible way to report timing information within
profiling data. We have evaluated this approach within our
compiling DBMS Umbra, showing that the approach is gen-
erally applicable for compiling dataflow systems and can be
implemented with high accuracy and reasonable overhead.
CCS Concepts: • Software and its engineering → Data
flow architectures.
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1 Introduction
Dataflow graphs are a powerful abstraction for a variety of
applications and workloads: from more traditional systems
like databases and compilers to more widely adopted comput-
ing frameworks for big-data [29, 32, 51], graph- and stream-
processing [7, 44], and machine- or deep-learning [2, 40].
It allows developers to express the data dependencies be-
tween various tasks on a high abstraction level and map
computations to (pipelines of) operators [43].
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mov rax, [4 * rbx]
cmp rax, 0
je ...

for tuple t in table T
  if t[1] > 5
     ...

$eax = MOV32rm $rdi, 1
RETQ $eax
...

load int32 %40, i64 %13
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Figure 1. Layered organization of compiling dataflow sys-
tems on the left and profiling results of our novel Tailored
Profiling approach on the right.

Using expressive abstraction layers allows the system
stack to absorb the complexity of generating efficient code
and mapping it onto the available hardware resources, as
opposed to burdening the developer. In fact, compiling and
code-generating dataflows are what many believe to be the
only way to address the increasing heterogeneity of the
underlying computing resources and allow domain-expert
developers to focus on the important task at hand using a Do-
main Specific Language (DSL) at an abstraction level they are
most comfortable and productive at, without having to worry
about low-level details [8, 15, 23, 39, 42]. The key to this suc-
cess is that the background-process involves progressive
layering of optimization steps for dataflow graphs that gen-
erate lower-level intermediate representations (cf. Figure 1),
which eventually lead to a high-performant and efficient
binary program.

While this has many advantages, with each optimization
layer/step we lose semantic knowledge about the (higher-
level abstraction) dataflow so that some critical tasks, like
debugging and performance profiling, become intractable.
Most profiling tools used today primarily operate on a much
lower level and report metrics on an assembly instruction-
or function- granularity [3, 18, 25, 50]. While for systems
experts the task to map information provided by these pro-
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filers to self-written low-level code is rarely an issue, the
problem becomes less trivial when someone needs to read
performance profiling for machine-generated code and in-
terpret it in terms of higher-level abstractions — especially
since existing software systems are quite complex and in-
volve many components that interact during the dataflow
computation’s execution.
In this paper, we present how to performance debug and

profile compiling dataflow systems with Tailored Profiling —
in a way that brings value to any user working on a selected
abstraction level. To achieve understandable profiling we
analyze the state of the art to identify the reason behind
the big semantic gap between the original dataflow graph
and its subsequent transformations into lower abstraction
levels (cf. Section 3).We then list key requirements a dataflow
performance profiler should meet and present our high-level
design in Section 4.
Inspired by how debug tools enrich the generated code

with meta-data [11, 20], we propose extending the compi-
lation steps to also annotate the generated code with meta-
data, stored in a Tagging Dictionary that can be used to map
the profiling results back to the desired abstraction level.
To disambiguate samples on shared code locations to their
respective caller, we introduce Register Tagging, a novel,
lightweight alternative to call-stack sampling. This enables
us to post-process the data and present it at a granularity
that brings the best insights to the developer. The simplic-
ity of our solution makes it applicable to any system that
lowers the dataflow graph to generate Machine IR or native
instructions for hardware platforms that support profiling
with sampling (e.g., the CPU) [5, 8, 19, 29, 34, 46], provided
that they run on a single (machine) node.
In Section 5, we detail the steps needed to build such a

profiler with our prototype, integrated as part of our high-
performance compiling DBMS Umbra [34]. As appropriate
profiling is already challenging, the focus of the prototype
was on single-machine multi-threaded CPU computations —
leaving both distribution on multiple nodes and running on
heterogeneous hardware targets (accelerators) as directions
for future work. We discuss the benefits of our approach in
the context of a few compelling use-cases and show that we
can achieve good accuracy with moderate 38% overhead in
Section 6. Eventually, we conclude, discuss benefits and limi-
tations of our approach, and outline future work in Section 8.

2 Background
2.1 Code Generation
Dataflow systems express their computation on data with
dataflow graphs, which are used for high-level logical op-
timization. The system then automatically restructures the
graph to minimize the execution time. Dataflow graphs can
either process the input data through their operators, e.g.,
by interpreting the generic operator code according to the

input data and dataflow configuration, or generate machine
code just in time for each dataflow graph, thus removing any
interpretation overhead.

Most systems organize machine code generation in a lay-
ered approach with multiple intermediate representations
(IRs). Successive lowerings from dataflow graph to machine
instructions allows for different optimization strategies to be
applied to the corresponding layers that reorder and restruc-
ture the program to get better performance [8, 15, 23, 39, 51],
as shown on the left of Figure 1. The topmost graph layer
is translated into more concrete intermediate representa-
tions, which vary widely depending on the actual system.
For instance, Voodoo [42] proposes a vector algebra to reason
about data partitioning, instruction level, and thread paral-
lelism, while TVM uses low-level loop programs to reason
about control flow while still abstracting from a concrete
hardware implementation [8]. Such IR levels are usually fol-
lowed by imperative program representations that target
specific hardware instructions. A particular effect of these
optimizations is that when optimizations move code they
often intertwine instructions from different operators — an
effect commonly referred to as operator fusion.

2.2 Profiling Tools
To analyze the performance characteristics of complex com-
puter systems and find tuning opportunities, developers rely
on profiling tools [1, 14, 18, 25]. These tools output the sys-
tem’s performance profile for a given workload and show
the utilization of various micro-architectural hardware fea-
tures. To do this, profilers use the processor’s Performance
Monitoring Units (PMUs) to collect samples of selected hard-
ware events (e.g., stalled CPU cycles, cache-misses, memory
accesses, etc.) and map them to the assembly instructions
that triggered them. To make the output more user-friendly,
the profilers will often generate a performance report on a
source line or function granularity.

Recently, Intel introduced the Processor Event-Based Sam-
pling mode (PEBS) [17], where the processor itself records
and writes samples into a dedicated in-memory buffer with-
out raising an interrupt. This significantly improves the pre-
cision of the samples and reduces the overhead, as the kernel
is only involved when the buffer is full. In such cases, the in-
terrupt handler writes out the samples to memory and clears
the buffer for further sampling. In default mode, PEBS just
records the instruction pointer (IP) of the executed instruc-
tion at the sampling time-point, but one can also configure
it to record the full call-stack.

3 Profiling Dataflow Systems
The challenge of profiling dataflow systems is very often an
artifact of the complex compilation and optimization process
that undergoes a series of transformation steps. Many of
these optimization steps are designed by developers with
different fields of expertise, so any information that identifies
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Figure 2. Layers of intermediate representation for the Um-
bra dataflow system. With today’s profilers, developers with
expertise on different layers must all use profiling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how efficiently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the dataflow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not offload
computation to accelerators), the problem of mapping the
low-level profiling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Profilers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the profiles they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to find where these instructions originate from, a process
that can easily become involved, ineffective, and error-prone.
Profiling reports overall statistics for an event. Profil-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to different operators at runtime (e.g., for
streaming dataflow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identified limitations of existing profilers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-effect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, profil-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why profiling dataflows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Profiling Example
To make things more clear, let us walk through an example
that highlights the different steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other dataflow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
first parsed and then internally represented as the dataflow
graph in Figure 3b. The dataflow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = 'Chip'
Group By s.id;

Γ𝑠.𝑖𝑑,𝑎𝑣𝑔 (...)

1𝑝.𝑖𝑑=𝑠.𝑖𝑑

𝜎𝑐𝑎𝑡 .=′𝐶ℎ𝑖𝑝′ Tablescan
sales 𝑠

Tablescan
products 𝑝

(a) Example query in SQL (b) Dataflow graph for the query.

1 for each tuple 𝑡1 in sales s
2 if 𝑡1 has match in 1𝑝.𝑖𝑑=𝑠.𝑖𝑑 [𝑡1 .𝑖𝑑 ]
3 store 𝑡1 in hashtable of Γ𝑠.𝑖𝑑

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding dataflow graph
and generated code.
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1 loopTuples:
2 0% %localTid = phi [%1, %loopBlocks %2, %contScan]
3 0.1% %3 = getelementptr int8 %state, i64 320
4 0.1% %4 = getelementptr int8 %3, i64 262144
5 2.2% %5 = load int32 %4, %localTid
6 2.3% %7 = crc32 i64 5961697176435608501, %5
7 1.5% %8 = crc32 i64 2231409791114444147, %5
8 1.2% %9 = rotr i64 %8, 32
9 2.3% %10 = xor i64 %7, %9
10 2.2% %11 = mul i64 %10, 2685821657736338717
11 1.2% %12 = shr %11, 16
12 2.4% %13 = getelementptr int8 %5, i64 %12
13 32.1% %14 = load int32 %40, i64 %13
14 0.2% %15 = isnotnull ptr %12
15 0.3% condbr %15 %loopHashChain %nextTuple
16 loopHashChain:
17 0.1% %hashEntry = phi [%12, %loopTuples %99, %contProbe]
18 0.2% %16 = getelementptr int8 %hashEntry, i64 16
19 1.1% %17 = load int32 %16
20 0.3% %18 = cmpeq i32 %5, %17
21 0.2% condbr %18 %else %contProbe
22 else:
23 0.5% %19 = getelementptr int8 %0, i64 786432
24 2.2% %20 = load int32 %19, %localTid
25 9.8% ; ... // load values %22, %24, %26
26 9.5% %27 = sdiv i32 %22, %24
27 9.6% %28 = sdiv i32 %27, %26
28 2.9% %30 = crc32 i64 5961697176435608501, %20
29 2.4% %31 = crc32 i64 2231409791114444147, %20
30 1.3% %32 = rotr i64 %31, 32
31 1.4% %33 = xor i64 %30, %32
32 2.3% %34 = mul i64 %33, 2685821657736338717
33 1.7% %35 = and i64 %34, 1023
34 1.9% ; ... // find entry
35 2.2% store int32 %20, %37
36 0.2% %38 = getelementptr int8 %37, %4
37 2.1% store int32 %28, %38
38 ...

Listing 1. Performance profile of the actually generated
program in LLVM IR for the blue pipeline of Figure 3b.

Before discussing performance profiles of the generated
code, let us briefly inspect the structure of the generated code.
The operators of Figure 3b marked in blue form a pipeline
of operators that directly pass tuples to each other during
execution. Conceptually, the system generates the pseudo-
code of Figure 3c, where the scan operator loops over the
tuples of the input table (Line 1), passes each tuple to the join
operator (Line 2), which in case of a match forwards the tuple
to the aggregation operator (Line 3). In reality, however, the
system produces the detailed LLVM IR shown in Listing 1.
Now, when profiling the example query, the profiler will

report the results on line- or function-level of the IR pro-
gram as shown in Listing 1. Each line is annotated with the
number of collected samples the profiler attributes to the
corresponding source line. This approximates the execution
cost of each instruction. Observe how this profile view is
rather low-level. At first glance, it is apparent that a signifi-
cant amount of time is spent on the load instruction in Line
13. However, it takes quite some time and expertise to realize

that this instruction implements the directory lookup of the
chaining hash table used in the join operator. Further, it is
easy to miss that in total an even higher number of samples
(50%) belong to the aggregation operator, whose samples are
spread out over Lines 23–37. In short, the initial impulse to
focus on improving the join operator would miss the fact
that the aggregation operator is the main bottleneck.
Unfortunately, a report of samples on a function level —

as most profilers offer — does not remedy the situation ei-
ther. Operator fusion tightly couples operators of the whole
pipeline into a single function, leaving the function aggrega-
tion level too coarse to obtain any useful insights. Due to the
coupled operators, we cannot apply evident approaches such
as generating each operator instance’s code in a separate
source file or emitting instructions to update timers on entry
and exit from operators to derive high-level profiling infor-
mation. Additionally, neither the function nor the source-
level view lend themselves to visualize a time dimension.

4 Abstraction Appropriate Profiling
As shown in the previous section, today’s profilers present re-
ports mainly on the lowest abstraction level. This covers only
a fraction of the information needs of the different experts
involved in building dataflow systems. Here, we present our
profiling approach that caters to everyone involved.

We list the desired features in Section 4.1, propose a solu-
tion in Section 4.2, and present its advantages in Section 4.3.

4.1 Requirements from an Ideal Profiler
A profiler should report results at a granularity familiar to
the reader of the report. Specifically, the report should be in
terms they already use while interacting with the system.
Such terms could be operators from the dataflow graph or
vectors, loops, etc., from lower optimization layers.

While these terms can be quite high-level, the profiler
should not hide details due to aggregation. Information that
is available in profiling samples, e.g., timestamps, accessed
memory addresses, etc., should be presented to the reader.
Beyond the right format, a profiling report should also

accurately reflect the behavior of the executed computation.
This means, first, association of samples with high-level com-
ponents must be correct. Second, the sampling frequency
must be high enough to not miss any behavior, e.g., due to
aliasing effects, where frequent short running components
are not recorded sufficiently. Third, the performance over-
head of sampling should be low, so that the behavior of the
profiled process can be observed undisturbed.

In the next section, we present a profiler that meets these
demands. Our solution relies on hardware profiling support
to supply accurate, low-overhead samples with instruction
pointers and timestamps and requires that each low-level
component can be mapped to its next-higher abstraction
level component (cf. Section 4.2.5).
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Figure 4. Tailored Profiling requires small extensions to
collect a Tagging Dictionary during code generation and
enable Register Tagging. With this, it can generate high-
level performance reports for all parties involved.

4.2 Tailored Profiling
With Tailored Profiling, we bridge the semantic gap between
the low-level results traditional profilers produce and the
developers’ need for reports on higher abstraction levels. Tai-
lored Profiling supports all requirements listed in Section 4.1
and requires no conceptual changes of the dataflow system.

4.2.1 Solution Overview. Tailored Profiling solves tra-
ditional profilers’ shortcomings by tracking lineage of the
low-level Machine IR code generation across the many com-
pilation steps to enable linking profiling samples to higher
abstraction levels. Our approach, shown in Figure 4, achieves
this by 1 tracing the links between components of the dif-
ferent abstraction levels throughout the lowering process
and 2 storing the links for each lowering step in Tagging
Dictionary logs. After profiling, 3 a post-processing phase
uses the Tagging Dictionary to annotate the collected pro-
filing samples with abstraction information, e.g., operators,
and 4 produce a profile meeting the needs of the selected
developers depicted in Figure 4.

This solution works for dataflow systems that undergo
multiple lowering steps to generate code from a dataflow
graph.1 To do that, the system uses a single code generator
to lower the dataflow graph to Machine IR and then com-
piles Machine IR to native instructions with a second code
generator as we do in Umbra. Otherwise, we can perform all
lowering steps down to machine instructions within a single
code generator.

4.2.2 TaggingDictionary. The TaggingDictionary is pop-
ulated during the lowering of the dataflow graph at compile
time and consists of multiple logs (e.g., hash tables), one for
each lowering step as illustrated in Figure 5. Each log is filled
during its respective lowering phase 1 , and contains an
entry for each lower-level component that links it to the cor-
responding component on the next-higher level 2 . During
the first lowering step in Figure 5, Log A is populated and
links each source location2 of the imperative program to its
operator, while Log B is filled during the second lowering
step. The logs store entries as key-value pairs, called links,
with the lower-level component as key and the higher-level
counterpart as value. Thus, the post-processing phase can
map native samples bottom-up to the required abstraction
level(s) using the Tagging Dictionary 3 to provide profil-
ing results on different levels 4 . To capture the links, the
system’s compilation engine keeps track of the currently
lowered (active) component of the lowered level using an
Abstraction Tracker (cf. Section 4.2.4) and adds an entry
to the Tagging Dictionary’s corresponding log whenever a
lower-level component is created.

1Our highest-covered abstraction level is the dataflow graph, which most
dataflow systems already use to reason about query execution. Thus, it is
commonly known by domain experts and developers, and suited to explain
the procedural execution of DSL queries.
2Source locations refer to the imperative program code for which the system
emits Machine IR instructions (cf. Figure 3c and Listing 1).
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Figure 5. Tailored Profiling applies the Tagging Dictionary to report the profiling results on higher abstraction levels. The
Tagging Dictionary is populated during query compilation. Log A links the source locations (Figure 3c) to their operators
(Figure 3b), while Log B links Machine IR instructions (Listing 1) to their source locations. After execution, the profiler uses the
Tagging Dictionary to map the native samples to higher abstraction levels. The circled numbers match the numbers in Figure 4.
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4.2.3 Lowering Machine IR to Machine Instructions.
Tailored Profiling links the abstraction levels from the data-
flow graph down to Machine IR with one Tagging Dictio-
nary log for each lowering step, as shown in Figure 5. Most
systems use a compiler for the last lowering step from Ma-
chine IR to machine instructions that already provides debug
information (e.g., DWARF format), which we also use in our
Tailored Profiling’s prototype in Umbra to link these two
levels. In cases where the dataflow system itself performs
the last compilation step, one needs to add an additional
Tagging Dictionary log that links the machine instructions
to Machine IR.

4.2.4 Abstraction Trackers. During each lowering step,
Tailored Profiling uses an Abstraction Tracker to monitor
which higher-level component is currently lowered to the
next-lower level. The Abstraction Tracker is an auxiliary
structure, e.g., a pointer or stack, storing the currently low-
ered higher-level component. For our running example from
Figure 5, the Abstraction Tracker of the first lowering step
points to the active operator. Thus, whenever the compilation
engine creates a lower-level component in the lowering step,
it can determine its higher-level counterpart by checking
the Abstraction Tracker and storing the link in the Tagging
Dictionary’s log. In Figure 5, Tailored Profiling uses two Ab-
straction Trackers: one to track the active operator during
the first lowering step and a second one to track the active
source location when lowering the imperative program to
machine instructions.

4.2.5 Challenges with Shared Source Locations. The
Tagging Dictionary implicitly makes the assumption that
every lower-level component is generated by exactly one
higher-level component, i.e., every source location in the gen-
erated code belongs to exactly one operator in the dataflow
graph. Hence, we can map every profiling sample to one
source location, and thus, to exactly one operator.
While the assumption is true for most of the generated

code, it is still possible that two operators share a source
location. This happens, for example, in Umbra’s join operator.
It calls a pre-compiled insert function to add entries to a
hash table. Two instances of the join operator will then share
all source locations of the pre-compiled function. Yet, any
given profiling sample must be attributed to only one of
the two operators. Thus, we need to disambiguate shared
source locations. This can either be achieved with call-stack
sampling or our novel Register Tagging approach, both of
which we discuss next.

Call-Stack Sampling. The default approach on how a pro-
filer can disambiguate shared source locations is using call-
stack sampling that records the entire call-stack with each
sample. Having the call-stack stored in the sample can then
help us identify the higher-level component for each func-
tion that executes the shared source location. Thus, when

1 ...
2 prevValue = setTag(op1); // set op1 as currently active
3 insert(); // call shared code location
4 setTag(prevValue); // reset to previously active op
5 ...

Listing 2. Register Tagging uses a processor register to trace
the component that calls the shared code location. The reg-
ister is reserved for exclusive use by Register Tagging.

Tailored Profiling encounters a sample with shared source
locations, it traverses the call-stack to identify the active com-
ponents for each ambiguous abstraction level. Then, it links
the sample to all other abstraction levels with the Tagging
Dictionary and the disambiguated components. The major
drawback of this approach is its cost. It suffers either from
high performance overhead or is limited to a low sampling
frequency (cf. Section 6). The positive aspects are that it can
be applied without any alteration of the generated code and
when hardware support for Register Tagging is not available.

Register Tagging. As an alternative, we propose a novel
light-weight approach that we refer to as Register Tagging.
The key idea is to disambiguate the shared source location
by storing a tag in a machine register (tag register) that iden-
tifies the active component. During sampling, the profiler
records the register values along with a profiling sample, as
modern x86 processors have the ability to record machine
registers in the samples. Tailored Profiling can then use the
tag to disambiguate source locations for profiling samples
containing a shared location.
Linking back to our example, where two joins share the

function insert, just before the first join calls the common
function, the Register Tagging would generate code that
moves the tag for the first join into the tag register (shown in
Listing 2). Note that on setting the tag in Line 2, we remember
the previous value of the tag in order to reset the value after
the function call (Line 4). Thereby, Register Tagging can also
handle nested shared code locations. Register Tagging also
instructs the compiler to not use the tag register for any
other purposes to avoid overriding the value. Finally, when a
profiling sample is taken from the insert function, the value
of the tag register is also captured so that we can uniquely
identify the caller and map the sample to all abstraction
levels with the Tagging Dictionary.
The disadvantage of Register Tagging is that it relies on

hardware profiling support to also capture register values,
which is not possible for dataflow systems that run in man-
aged runtime like JVM. A second disadvantage is its inva-
siveness with respect to the code generation engine, because
it leaves the generator with a register less to work with. It
is important to note the small amount of changes to the
code generation process, compared to a significant reduction
in the overhead compared to call-stack sampling without
compromising accuracy.
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So far, we described how Register Tagging works for only
one abstraction level with shared source locations. However,
it can also cover them on multiple abstraction levels. To do
this, 1) one needs to reserve a machine register exclusively
for each abstraction level with shared source locations and
2) propagate awareness of higher-level components with
a shared source location through the progressive lowering
steps. For example, when the system uses a dataflow operator
with a pre-compiled function (shared source location), it has
to pass this information through all progressive lowering
steps down to code generation. The code generation then
encloses the sections of Machine IR code descending from
this pre-compiled functionwith Register Tagging towrite the
tag into the operator level’s tag register and disambiguate it
at runtime. If one wants to optimize the number of reserved
registers while keeping the performance overhead low, one
can place tags ofmultiple levels into a singlemachine register,
e.g., by splitting it into chunks of 8-bit or 16-bit instead of
using an entire register per level or even choosing each
level’s chunk size accordingly to its number of operators.

4.2.6 Generating Tailored Profiling Reports. Apply-
ing Tailored Profiling, the profiler aggregates samples at the
abstraction level that meets the developer’s needs. There-
fore, the profiler processes the samples and maps them to the
needed higher abstraction levels in a bottom-up approach
using the Tagging Dictionary, as illustrated in Figure 5.

To map a sample containing a machine instruction to the
dataflow graph, the profiler proceeds as follows: At first,
Tailored Profiling uses debug information to map the sam-
ple’s instruction to its Machine IR instruction, for this exam-
ple Instruction 7. Then, the profiler looks up the entry of
Instruction 7 in the Tagging Dictionary’s Log B to map it to
its imperative program component, which is Source Loc. 3.
Now, the profiler can look up the dataflow graph operator
of Source Loc. 3 in Log A to map the sample to Operator 2.
For samples containing instructions from shared source loca-
tions, the profiler first retrieves the active component either
from Register Tagging or the call-stack sampling.

Tailored Profiling also supports iterative dataflow graphs,
although the Tagging Dictionary cannot differ between itera-
tions. Therefore, the post-processing phase uses the samples’
timestamps to detect iterations and distinguish between it-
erations.

4.2.7 Optimization Techniques. The compilation en-
gine populates the Tagging Dictionary during the lowering
phase and applies Register Tagging around shared code lo-
cations. In doing so, Tailored Profiling also covers common
optimizations applied during the lowering phase and adapts
accordingly. Here, we describe how it can handle almost any
optimization (cf. Table 1) the compilation engine performs
itself or the ones for which it can track the optimized instruc-
tion’s origin (if performed externally) and briefly cover the
ones where it fails to capture the links.

Table 1. Tailored Profiling supports common optimization
transformations when lowering to Machine IR. Umbra sup-
ports Tailored Profiling for all implemented optimizations
(cf. Section 5.4).

Optimization Tailored Profiling Umbra

Operator fusion 2� ✓
Instruction fusing 2� ×
Code elimination 2� ✓
Constant folding 2� ✓
Common subexpression

2� ✓elimination
Loop unrolling & interleaving 2� ×
Polyhedral optimizations 2� ×
Dataflow graph operator fusion 2� ✓
Common abstraction for

2 ×heterogeneous accelerators
2� supported 2not yet supported by Tailored Profiling;
✓ implemented × not implemented in Umbra

Supported optimizations. Tailored Profiling implicitly
handles operator fusion by linking the components of differ-
ent abstraction levels during the lowering steps. Thus, we can
look up the code generating component of each Machine IR
instruction in the Tagging Dictionary and subsequently map
it back to the unfused operator using the logs.

The Tagging Dictionary covers Machine IR instruction fus-
ing by updating its log entries accordingly. For instance, if
we fuse Instruction 7 and Instruction 8 from Figure 5,
then we remove both links from Log B and add a new link
to Source Loc. 3 and Source Loc. 4 because the fused in-
struction belongs to both higher-level locations.
Code elimination does not require any changes, since the

eliminated Machine IR instructions will not appear in the
profiling samples; however, we can still remove them from
the Tagging Dictionary.

Constant folding is solely a compile-time operation; we just
apply code elimination to remove the original instructions.

Common subexpression elimination is equivalent to shared
source locations; thus, we handle it with Register Tagging.

For loop unrolling & interleaving, we trace eachMachine IR
instructions’ origin during the optimization and update the
Tagging Dictionary Log B accordingly. Loop control flow
instructions are attributed to the operators of all original
control-flow instructions, identical to instruction fusion.
Polyhedral optimizations applied to vectorized execution

can be handled similar to loop unrolling & interleaving. Dur-
ing the transformation we track which part of the trans-
formed code, e.g., control flow structures and vector opera-
tions, belongs to which original operator(s) and update the
Tagging Dictionary’s Log B accordingly.

If operators are fused at a higher abstraction level, i.e.,
Dataflow graph operator fusion, we track which parts of the
fused operator correspond to which original operator. In
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Γ (34%)

1 (58%)

𝜎 (1%) Tablescan
sales (4%)

Tablescan
products (3%)

(a)Query plan from Figure 3b annotated with each operator’s costs.

1 loopTuples:(tablescan 2.4% hash join 45.7%)
2 ... hash join

13 32.1% %14 = load int32 %40, i64 %13 hash join
14 0.2% %15 = isnotnull ptr %12 hash join
15 0.3% condbr %15 %loopHashChain %nextTuple hash join
16 loopHashChain: (hash join 1.9%)
17 0.1% %hashEntry = phi [%12, %loopTuples...] hash join
18 0.2% %16 = getelementptr int8 %hashEntry, ... hash join
19 1.1% %17 = load int32 %16 hash join
20 0.3% %18 = cmpeq i32 %5, %17 hash join
21 0.2% condbr %18 %else %contProbe hash join
22 else: (group by 50.0%)
23 0.5% %19 = getelementptr int8 %0, i64 786432 group by
24 2.2% %20 = load int32 %19, %localTid group by
25 9.8% ; ... // load values %22, %24, %26 group by
26 9.5% %27 = sdiv i32 %22, %24 group by
27 9.6% %28 = sdiv i32 %27, %26 group by
28 ...

(b) Excerpt of the performance profile from Listing 1 extended
using the data from the Tagging Dictionary. Note, the percentages
are based only on the samples of the blue pipeline.
Figure 6. Tailored Profiling provides the profiling reports
on developers’ abstraction levels.

Umbra we implement this, e.g., for the groupjoin [31] by
distinguishing between the group by and join sections inside
the fused operator (cf. Section 5.4 for technical details).
Unsupported Optimizations. Tailored Profiling can han-
dle optimizations performed by the compilation engine itself.
If an external compiler performs the optimizations, Tailored
Profiling needs to track the lineage between input and op-
timized output instructions. For example, when relying on
external compilers like LLVM for lowering Machine IR to
machine instructions, Tailored Profiling has to rely on the
provided debug information to track optimizations.

Although our prototype is implemented in Umbra, a CPU-
only system, we are certain that the concept of Tailored
Profiling can be extended to common abstraction for hetero-
geneous accelerators. We expect combining profiling results
of different hardware types as well as covering I/O latencies
to be the main challenges.

4.3 Benefits and Limitations of Tailored Profiling
We conclude Section 4 showing benefits and limitations of
Tailored Profiling.

Figure 7. Tailored Profiling associates each sample with
an operator and thus determines operator activity over the
query runtime.

Benefits. To show our approach’s advantages and practical
impact, let us revisit the example from Section 3.1.
For the domain expert, the profiler maps the samples to

the dataflow graph, in this example the query plan, and
aggregates them per operator as shown in Figure 6a. The
domain expert can then inspect the annotated query plan to
learn about the costs of each operator, derive decisions to
reconfigure the database system, and fine-tune SQL queries.
For the optimizer developer, the operator plan is also a

familiar abstraction. They can compare the profiling results
of different query plans for the same query to evaluate the
cardinality estimates of the optimizer and refine the query
plan optimizations.
The operator developer — even though they are familiar

with the low-level results of the IR program — still benefits
from Tailored Profiling. The profiler enriches the profiling
results, as shown in Figure 6b. It annotates each instruction
with its operator and aggregates the costs of each operator
on different granularities, e.g., on basic blocks and functions.
Thereby, the costs of each operator are provided as a frame of
reference to avoid missing expensive operations distributed
across multiple instructions.
Aggregating to appropriate levels enables an additional,

crosscutting feature. The components from each level pro-
vide an ideal base to visualize the performance profile over
time. For example, the profiler can show operator activity
over time, as shown in Figure 7. The operator developer can
inspect this to learn about the interaction between opera-
tors and detect temporal hotspots. Then they can use the
profiler to narrow down on the next lower abstraction level,
i.e., limit the results to the time interval of the hotspot. With
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visualization over time, developers can pinpoint bottlenecks
that would otherwise be hidden in aggregation.

Limitations. However, Tailored Profiling’s capabilities are
still limited by the hardware used. For example, when profil-
ing Umbra’s execution with PEBS (CPU profiling), the CPU
cannot record data while it is blocked, e.g., due to heavy disk
I/O, network contention, or memory latencies.

Furthermore, if the dataflow system uses an external code
generator, like LLVM, to compile Machine IR to machine
instructions, the generator must provide meta-data to map
the samples to Machine IR instructions. This can be achieved
either with debug information like DWARF or by adding
Tagging Dictionary support to the external code generator,
which we discuss in Section 8.

5 Integration into Umbra
We implemented Tailored Profiling in the compiling data-
flow system Umbra to demonstrate its feasibility and advan-
tages. In this section, we discuss the implementation details
of our prototype.

Umbra is a high-performance relational database system,
which compiles queries with data-centric code generation
based on the produce & consume model [30, 33, 34, 51].
Umbra’s query engine is implemented in C++ and lowers
dataflow graphs from relational operators (8a) through pipe-
lines of tasks (8b) and LLVM IR (8c) to machine instructions
(8d). Thus, the engine runs queries by executing native in-
structions, which allows the profiler to directly use hardware
features, such as PEBS, to collect samples.

5.1 Umbra’s Compilation Phase
Umbra’s query engine compiles the dataflow graph in three
progressive lowering steps (Figure 8).

First, the engine splits the dataflow graph at its tuple ma-
terialization points to lower the relational operators to a
pipeline abstraction [33] (or stages as used by [13]) and ap-
plies the operator fusion optimization. Figure 8b’s dataflow
graph has to materialize at the join’s build, the group by’s
materialize and aggregate, resulting in three pipelines. Each
pipeline contains all tasks [13] of operators between the ma-
terialization points. The tasks of materializing operators can
be split across multiple pipelines, e.g., the join’s build and
probe task.
In the second lowering step, code generation, the query

engine compiles each pipeline of tasks into tight-loops of
LLVM IR instructions (operator fusion), illustrated as blocks
in Figure 8c. For example, the pipeline containing the join’s
probe is translated to a program similar to Listing 1.
Finally, in the third step, the query engine compiles the

LLVM IR instructions to an executable of native instructions
using the LLVM compiler framework [22] before executing
it to process the query.

Scan p
Filter

Group By

Join

Scan s
Build
(Join)

Filter
Scan p

Materialize
(Group By)

Scan s

Probe
(Join)

Aggregate
(Group By)

(d) Executable(c) LLVM IR
       Program

(b) Pipelines
       of Tasks

(a) Dataflow
       Graph

Scan p
Filter
Build
Scan s
Probe
Materialize
Aggregate

Pipelining Code
Generation Compilation

P
ro

du
ce

C
on
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m

e

Figure 8. Umbra’s execution model compiles the dataflow
graph in 3 progressive lowering steps to native instructions.

5.2 Populating the Tagging Dictionary
As introduced in Section 4.2, Tailored Profiling links the
components of different abstraction levels with the Tagging
Dictionary during the lowering phase. In the case of Umbra,
we use two Tagging Dictionary logs. The first log links tasks
to their operators during the first lowering step, while the
second log links LLVM IR to tasks in the second step. Keeping
track of the higher-level component (i.e., relational operators
during the first lowering step or pipeline tasks during the
second step) is done with two Abstraction Trackers and
is integrated within the lowering steps. For the third step,
compilation, Umbra uses debug information to link native
instruction to LLVM IR.
Umbra’s code generation process is based on the pro-

duce& consumemodel. In produce& consume, each operator
is responsible for generating the code that implements the
operator’s functionality. When operators are composed into
an operator tree, e.g., as shown in the dataflow graph of
Figure 8a, they need to pass tuples among each other. This
happens through the interface of produce and consume func-
tions. An operator A can ask its input operator B to produce
tuples (i.e., generate code that produces tuples) by calling B’s
produce function. Operator B generates code that prepares
a tuple and then passes that code to A’s consume function.
Thus, the compilation engine traverses the operator tree in
depth-first order, as operators use the produce function to
delegate producing tuples down the tree until we reach a
leaf node (e.g., scan operator), before traversing back up by
invoking the corresponding consume functions.

Lowering Relational Operators to Tasks. The first low-
ering from operators to pipelines of tasks is done inside the
operators’ produce function. In the produce function, each
operator registers its task for the active pipeline and, in the
case of materialization, starts the new pipeline and task. For
example, the join operator consists of two tasks, Build and
Probe. First, it has to build a hash table for the tuples of
Scan 𝑝 , and then it probes the hash table with each tuple of
Scan 𝑠 to join them. Thus, the join operator first registers
the Probe task, then starts the left pipeline and registers the
Build task.
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When registering a task, Tailored Profiling checks the
active operator with the Abstraction Tracker and adds a link
for the task to the Tagging Dictionary log.

Lowering Tasks to LLVM IR. After reaching a leaf op-
erator (e.g., Scan 𝑝), we initiate the second lowering step
(code generation by calling the consume function). Starting
with this leaf node, each operator now first executes its own
consume function and afterwards calls its parent’s consume.
Inside the consume function, Umbra triggers the operator’s
registered task(s) that generate the LLVM IR code implement-
ing the task’s functionality. The generated code of all tasks
then forms the LLVM IR program, as shown in Figure 8c.
When a task generates an LLVM IR instruction, Tailored

Profiling checks the active task with the second Abstraction
Tracker and adds a link to the second Tagging Dictionary log,
linking the LLVM IR instruction to its task. After all the tasks
have finished generating their code, the second lowering step
is complete and the Tagging Dictionary is fully populated.

Lowering LLVM IR to Native Instructions. In the final
step, Umbra compiles the generated LLVM IR program to an
executable of native instructions with the LLVM compiler
framework and utilizes the debug information generated by
LLVM to link native instructions to their LLVM IR instruc-
tions.

Even though the described procedure seems to require
many changes to the lowering phase, this is not the case. In
Umbra, the produce, consume, task registration, task trigger-
ing, and instruction generation are all funnelled through a
single code location, which we use both to update the Ab-
straction Trackers and to populate the Tagging Dictionary.

5.2.1 Abstraction Trackers. During the lowering pro-
cess, Tailored Profiling always keeps track of both the cur-
rently active operator and the task with its two Abstrac-
tion Trackers. The active operator only changes when either
produce or consume is called. More specifically, on entry of
either function we update the operators’ Abstraction Tracker
to the called operator and reset to the previous operator on
exit. A task is active and generates code after being triggered
by the consume function. Thus, Tailored Profiling updates
the tasks’ Abstraction Tracker whenever a task is triggered
and resets it when the task is done generating code.

The Abstraction Trackers are implemented in Umbra as a
stack, where the active operator and task are always on top
of their stack. For example, to track the active operator, we
push each operator onto the stack when accessing it with
produce and remove it on the last visit with consume.

5.2.2 Tagging Dictionary. Umbra’s Tagging Dictionary
consists of two logs: one that links tasks to operators and
one that links LLVM IR instructions to tasks. Both logs are
populated during the respective lowering phase. Each log is

implemented as a hash table, with the lower level’s compo-
nents as keys and the higher level’s as values. For instance,
we use the unique LLVM IR variables (SSA-form) as keys to
map LLVM IR instructions to tasks. At the end of the com-
pilation phase we write all logs into a meta-data file, which
is read by the post-processing phase to map the samples
bottom-up to the abstraction levels’ components.

5.3 Register Tagging
Umbra applies Register Tagging to attribute samples of shared
source locations at LLVM IR level to their correct tasks.
Therefore, the system guards each call to a shared source
location with inline assembly instructions that execute the
tagging.

Let us pick up the example from Listing 2 to show how it
works. Umbra includes the insert into the generated code
of a task by generating a function call instruction. Register
Tagging is applied by adding inline assembly instructions
implementing setTag before and after the call instruction.
These inline assembly instructions extract the register’s pre-
vious value and write the active task’s tag into the register.

The system ensures only Register Tagging alters the used
register by removing it from allocation in the compilers.
Umbra itself is compiled with gcc and the system uses the
LLVM compiler framework to lower the generated code from
LLVM IR to native instructions. For gcc, the system reserves
the register using the -ffixed flag and we have modified
the LLVM compiler framework to exclude it as well. Only
the inline assembly instructions of Register Tagging can
therefore access the register.

5.4 Implemented Optimizations
Umbra applies operator fusion during the lowering steps and
keeps track of the links between the abstraction levels using
the Abstraction Trackers, Tagging Dictionary, and Register
Tagging as described in Section 5.1.

Code elimination and constant folding do not require up-
dating the Tagging Dictionary in Umbra. Both optimizations
are applied at the LLVM IR level and eliminate the original
instructions. Thus, the profiling samples will not contain the
eliminated instructions and we never look up their entries
in the Tagging Dictionary. Common subexpression elimina-
tion is handled identically to shared source locations. The
compilation engine frames each LLVM IR call to the shared
expression with Register Tags to determine the caller at run-
time. Umbra applies dataflow graph operator fusion to com-
bine suited operators into a more efficient physical operator,
e.g., group by and join might be fused to a groupjoin [31].
Tailored Profiling supports this by tracing the original op-
erators’ sections within the groupjoin on task level, i.e., we
update the Abstraction Tracker for tasks to groupjoin-join
when entering the join sections and to groupjoin-groupby for
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partitioning and aggregation. Thus, we can map LLVM IR in-
structions through the task level back to the original dataflow
graph operators.

5.5 Precise Timestamps for Profiling Samples
Tailored Profiling requires profiling samples with a reliable
timestamp to report results with a time dimension. Umbra
therefore uses the Linux kernel’s perf API [26] to record
profiling samples with PEBS.

However, the samples’ timestamps provided by the Linux
kernel have a bug and therefore do not represent the sam-
pling time point correctly, as we observed. Instead of the ex-
isting timestamp, we use the processor’s Timestamp Counter
(TSC) [17]. The TSC has cycle-grained resolution and is al-
ready collected in PEBS samples of processors since Sky-
lake, though currently dropped by the kernel during sample
formatting. We therefore modified the Linux kernel with a
workaround to include the TSC in the formatted samples
and convert it to 𝑛𝑠 using a kernel module [38].

6 Evaluation
In this section we evaluate the advantages of Tailored Profil-
ing as well as its accuracy and runtime overhead.
Tailored Profiling’s major feature is to produce profiling

reports at the right abstraction level for the developer, which
is hard to quantify and very subjective. Thus, instead of
success metrics, we show the value of Tailored Profiling
with use cases for different users. Afterwards, we evaluate
its accuracy and the induced overhead in Sections 6.2 to 6.3.

Experimental Setup. We used the TPC-H benchmark [49]
with a scale factor of 1 (dataset size 1GB) for the use-cases,
and scale factor 10 (dataset size 10GB) to measure perfor-
mance and accuracy. Umbra and Tailored Profiling support
multi-socket and multicore execution. However, we executed
all queries single-threaded with Umbra for experimental clar-
ity, e.g., to avoid locking and other side-effects. The use-cases
were conducted on a machine with an Intel Core i7-7700K
running at 4.2 GHz (turbo boost of 4.5 GHz), 32GB DRAM
and Ubuntu 19.10. The performance experiments’ test ma-
chine had an Intel Core i9-9900X with 3.5 GHz (turbo boost
of 4.4 GHz), 64 GB DRAM and Ubuntu 20.04. We used Linux
perf version 5.2 [25] to profile with PEBS, disabled sample
throttling and handed the samples to Tailored Profiling with
perf script. To profile costs and operator activity, we used
the INST_RETIRED.PREC_DIST event and recorded a sample
every 5000 events. For memory access patterns, we used the
MEM_INST_RETIRED.ALL_LOADS event and captured a sam-
ple all 1000 loads.

6.1 Use Cases
We begin the use cases with the domain expert and proceed
with the optimizer developer and the operator developer.

Select l_orderkey,
avg(l_extendedprice)

From lineitem, orders
Where o_orderdate <

'1995-04-01'
and o_orderkey =

l_orderkey
Group By l_orderkey;

Γ𝑙_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦,𝑎𝑣𝑔 (...) (65.1%)

1𝑜_𝑜𝑟𝑑...=𝑙_𝑜𝑟𝑑... (32.4%)

𝜎𝑜_𝑜𝑟𝑑<′1995...′ (0.3%) Tablescan
lineitem (1.6%)

Tablescan
orders (0.6%)

(a) Example query in SQL (b) Query plan with cost profile

Figure 9. Tailored Profiling can aggregate samples up to
query plan level — a concept database users are familiar
with.

Domain Expert. In the first use-case, a user of Umbra in-
vestigates why the query from Figure 9a runs slower than
expected.
At a familiar abstraction level, Tailored Profiling enables

the user to view how much compute time each operator
takes, as shown in Figure 9b. Here, they can quickly grasp
the overall execution plan for the query. The report reveals
that 65% of the runtime is spent in the aggregation operator
and 32% in the join operator.

To speed up the query, the user can nowmake an informed
decision on whether to, e.g., introduce index structures to
reduce the cost of the join computation. Alternatively, they
may decide to take computational shortcuts and add a sam-
pling operator to reduce the number of tuples that reach the
aggregation operator.

Note that most database systems have a feature that seem-
ingly offers the same view. The EXPLAIN ANALYZE command
counts how many tuples each operator processes and visual-
izes the statistics in an operator tree. However, even though
the tuple count is a decent approximation, our sampling
approach captures the actual time spent in each operator.

OptimizerDeveloper. As a second use-case, we inspect the
work of an expert in Umbra’s optimizer. They investigate the
performance of a query with the two alternative plans, as
shown in Figure 10. Both plans have identical intermediate
result sizes, so with the standard cost function the optimizer
could choose either plan. Choosing the left one (Figure 10a)
seems like a good option as the query plan first probes the
smaller hash table (expecting fewer cache-misses) that will
consequently reduce the number of tuples that also probe
the (more expensive) larger hash table. Yet, this results in a
slower runtime than the alternative.

As this is counter-intuitive, the developer wants to identify
the cause and refine the cost function. The developer thus
applies Tailored Profiling to inspect the operator activity
over time in the probing pipeline (cf. Figure 11). The report
confirms that the alternative plan is faster. Moreover, starting
at 70ms in the alternative plan, the join on orders becomes
dominant while becoming negligible in the original plan.
After this hint, further investigation reveals that lineitem
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(a) Plan chosen by the optimizer. (b) Alternative, faster plan.

Figure 10. Alternative query plans for the optimizer devel-
oper’s use-case.

is scanned in the order of the join attribute. This leads to a
situation where, first, the join on orders finds a match for
all tuples and passes them to the next operator until 70ms.
Then, starting at 70ms, the join on orders eliminates all
tuples, so the hash table for partsupp is not probed at all,
yielding an overall behavior that is easy to predict by branch
predictors, which is especially beneficial for hardware with
out-of-order execution capabilities. The optimizer developer
can now decide whether to extend to cost function with such
data-layout and hardware-specific properties.

Operator Developer. In the first use case, we have seen
how a user of the database system can get a higher-level
overview of the query’s performance (recall Figure 9). An
operator developer, who is responsible for implementing ef-
ficient operators, needs a more detailed view of the internals.
Very often, they are interested in the data access patterns,
which can play a big role on the actual performance of the
algorithm.
Tailored Profiling makes use of the hardware’s sampling

support to also record the addresses with every memory
access. With the Tagging Dictionary, the instruction that
initiated the memory access can be associated with an oper-
ator, and as a result we can get an accurate memory access
profile for each operator (Figure 12). The operator developer
can inspect the memory profile and compare it to their ex-
pectations. In this example, the table scans on orders and
lineitem show a linear data access pattern over time, which
is ideal for hardware prefetchers, etc. The join and group by
operators access memory in a more widespread fashion as
a result of using hash tables in their implementation. This
can be used as a starting point for further investigation, e.g.,
into a memory access profile with cache-miss information,
or for considering alternative operator algorithms.

6.2 Runtime Overhead
Our approach to Tailored Profiling incurs three sources of
runtime overhead.

First, while profiling, the hardware sampling mechanism
stores samples in a memory buffer (PEBS buffer), which occa-
sionally must be flushed by the operating system. Figure 13
shows how the sampling overhead increases with sampling
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Figure 12. Profile of memory access patterns for the oper-
ators of Figure 9b. Each point denotes a sample with time
(from query start) and accessed address (offset from lowest
address the operator accesses).

frequency. At our default setting of taking a sample every
5000 cycles (0.7MHz), the overhead is 35%. Note that this
overhead is solely caused by PEBS recording the samples.
The Tagging Dictionary is populated during compile time
and thus does not incur runtime overhead.
Second, the amount of information included in the sam-

ples potentially increases the overhead. Figure 13 also shows
the overhead for additionally sampling register values, as
required for Register Tagging. When sampling every 5000 cy-
cles the overhead grows to 38%, thus reserving a machine
register, and writing the tags into it introduces 3% additional
overhead. Call-stack sampling — the alternative to Register
Tagging — incurs an overhead of 529%, constructing and
recording the call-stack in each sample. In comparison, the
overhead of Register Tagging is moderate.
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Figure 13. Performance overhead of the profiling ap-
proaches for TPC-H Query 16. The results for IP, Time, Reg-
isters incur on average 3% more overhead than IP, Time.

Third, reserving one register for Register Tagging slows
down query execution, as the compiler generates worse code.
Over all 22 TPC-H queries, we observed an overhead of 2.8%,
on average.

Further overhead from profiling occurs in form of storage
space required for the recorded samples and the Tagging
Dictionary. Samples with IP, timestamp, and register val-
ues require 54 Bytes (when adding call-stack information
265 Bytes). Thus, at a sampling frequency of 0.7MHz we
need to store 77MB per second. Each entry in the Tagging
Dictionary is a triple of operator, task, and LLVM IR source
line, which we represent with 24 Bytes. With one triple per
LLVM IR instruction — of which there are on average ∼1320
in a TPC-H query — the dictionary requires ∼30 kB.
Overall, we observe that the induced overhead is rather

low, as we never encountered any interference of profiling
overhead with query execution and the performance profiles
are very plausible.

6.3 Accuracy
To validate the correctness of Tailored Profiling’s reports,
we check the accuracy of our approach and evaluate the
accuracy of the samples recorded by PEBS.
To test the accuracy of the profiling reports, we profiled

all 22 TPC-H queries with Tailored Profiling and report the
amount of samples covered by the Tagging Dictionary’s map-
ping in Table 2. The experiment shows that our approach can
attribute 98% of the samples to Umbra’s higher abstraction
levels and the kernel (e.g., for memory allocations). Further
investigation reveals that the remaining 2% belong to other
system libraries, for which we did not apply Register Tag-
ging.

An astute reader may have already observed that the Tai-
lored Profiling can only attribute samples correctly when the
sampled instruction pointer is accurate. We cross-checked
the sampled instruction pointers with Register Tagging by
applying the tagging not only for shared code locations but
also for all instructions in generated code. Our test over all
TPC-H queries yields no mismatches, thus, the instruction
pointer matches the Register Tagging for all samples. Fur-
thermore, we have evaluate the sample accuracy empirically

Table 2. Amount of samples attributed to Umbra by Tailored
Profiling over all TPC-H queries.

Attribution Amount of Samples

Umbra 98.0%
→ Operators 95.4%
→ Kernel Tasks 2.6%
No attribution 2.0%

Table 3. Lines of code of our prototype implementation of
Tailored Profiling.

Component Lines Added Lines Before

Umbra Code Gen. 56 ∼ 22, 000
Tailored Profiling 1,686 0
→ Sample Processing 1,176 0
→ Visualization 510 0

Σ 1,742 ∼ 22, 000

by profiling the query execution for different profiling events.
We cross-checked for three TPC-H queries (2, 16, 18) whether
the instruction pointers in all samples occur at instructions
that could plausibly cause the sampled event, e.g., samples
for load-misses always point to loads and branch-misses
contained either the branching instruction or the preceding
compare causing the misprediction.
Finally, we have evaluate the accuracy of the sampled

timestamps for Tailored Profiling’s time dimension. For this,
we profiled the query execution taking a sample every 5000
cycles and check the TSCs of consecutive samples. In our ex-
periment, the TSC values reflect the sampling distance (max.
deviation ∼40 cycles) and adapt accordingly when we vary it.
Ultimately, Tailored Profiling’s timing information depends
on the accuracy provided by the hardware. In our experience,
TSC-based timestamps appear to provide a precise resolution
reflecting the samples’ recording time.

Overall, our validation yields very small inaccuracies and
validates the reliability of Tailored Profiling’s reports and
time dimension.

6.4 Implementation Effort
Integrating our approach is lightweight and requires only
small additions to the dataflow system, as shown in Table 3.
Tailored Profiling leverages existing profilers to record sam-
ples and processes the profiling samples with the Tagging
Dictionary to map them to higher abstraction levels.

Thus, we need to add the Tagging Dictionary mechanism
and Register Tagging into the dataflow system and popu-
late the Tagging Dictionary during the lowering process,
as shown Figure 4. Integrating the dictionary into Umbra
required only 44 lines of code, while the Abstraction Tracker
needed 6 lines and Register Tagging has 6 lines. The main

486



EuroSys ’21, April 26–29, 2021, Online, United Kingdom Beischl et al.

implementation effort went into mapping the profiling sam-
ples to higher abstraction levels, followed by creating the
visualizations of the developer tailored views. Modifying
the kernel for samples with TSC timestamps needed just
1 line of code, and reserving a register in the LLVM compiler
framework took only 2 lines.
Portability. Porting our approach to a different compiling
dataflow system requires minor effort: adding the Tagging
Dictionary mechanism and Abstraction Trackers into the
system, creating a dictionary log for each lowering step, and
depending on the runtime environment, either integrating
Register Tagging or using call-stack sampling. The most
critical part would be that the reports created by Tailored
Profiling will need to be adapted to the system’s abstraction
levels.
Configuration Trade-Off. Depending on the dataflow sys-
tem’s runtime environment and requirements, one can either
rely on using call-stack sampling or Register Tagging. Some
dataflow systems that run on managed runtimes (e.g., Spark
on JVM) can primarily rely on call-stack sampling, while oth-
ers can decide on the trade-off between profiling resolution
and reserving machine registers.
To make that decision, we need to consider the number

of lowering steps that the system employs without a unique
mapping between the higher- and lower-level’s components.
For each of those lowering steps, Register Tagging requires
one exclusive register for disambiguation, which comes with
a performance overhead. Thus, we need to make the trade-off
between reserving more registers or switching to call-stack
sampling.

7 Related Work
Tailored Profiling was inspired by how debug tools instru-
ment executables with meta-data [11] to resolve native in-
structions to source code on a single level of abstraction [9,
47]. Li and Flatt extend this abstraction level to DSL terms
suitable for the user with macros [24]. Debug information
is also used by profilers to attribute profiling samples to exe-
cuted code. Most research on profiling and work on profilers
focuses on software that is compiled ahead of time [3, 18, 25,
50]. Consequently, they present profiles in terms of assembly,
source lines, and function calls. Hotspot and vTune also offer
an interactive view to zoom in on function-specific profiles
or time intervals, also by selecting hardware events of inter-
est. Furthermore, there are profilers built to analyze specific
events (e.g., Intel’s PIN monitors memory bandwidth usage),
while Noll et al. visualize memory access patterns [21, 28, 35].

Meanwhile, hardware vendors constantly improve the
selection of events available for profiling, increase the accu-
racy, and reduce the overhead [16]. How they translate into
practice is constantly being investigated [4, 10, 12, 36, 37].
Profiling (compiling) dataflow systems has always been

a non-trivial task. Prior work includes manual analysis of

profile components to attribute samples to operators [35],
replaying execution in a simulator [48], tracking memory
allocations to map samples to data-structures [41], call-stack
sampling within the Java virtual machine [45], or dynamic
calling contexts to reduce overhead of call-stack sampling [6].
All of these approaches, however, fall short of providing a
universal operator mapping that works for any abstraction
level and can at the same time be sampled with low overhead
and sufficient frequency to show behavior over time.

8 Conclusion
Despite having access to extensive hardware support, exist-
ing profilers are still unable to adequately present perfor-
mance profiles tailored to the needs of everyone involved in
building or using dataflow systems. In this paper, we have
propose Tailored Profiling which addresses this problem by
providing reports on any abstraction levels the developer
is comfortable using. Our approach is built on two novel
contributions:
First, we introduced the Tagging Dictionary that tracks

the links of high-level concepts and their generated low-level
code (concepts), populated during the dataflow system’s com-
pilation phases. The post-processing phase then combines
the Tagging Dictionary with existing low-level meta-data
(debug information) to map profiling samples to the dataflow
system’s higher abstraction levels. Second, to disambiguate
linking higher-level components having shared source loca-
tions, we have introduced Register Tagging as a light-weight
alternative to call-stack sampling.

Our approach is applicable for dataflow systems running
on a single (multi-socket, multicore) machine and provides
reports for code executed on CPUs that support sampling-
based profiling. Tailored Profiling can work with multiple
code generators as long as they keep track of their lowering
steps (with meta-data information populating the respective
logs of the Tagging Dictionary) and make that information
available to the post-processing phase. For example, our cur-
rent prototype in Umbra already works with two sequential
code generators. In the future, we envision our approach
to be a fit to proposals of meta-compiler frameworks like
MLIR [23].
Other venues for future work that are not yet in our sys-

tem’s scope are adding support for profiling distributed sys-
tems as well as for dataflows that leverage heterogeneous
compute resources (e.g., accelerators). This would require
combining Tagging Dictionary logs from different sources
and presenting them in an understandable and intuitive for-
mat.
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