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Abstract—The paper introduces a robotic manipulation frame-
work suitable for the execution of manipulation tasks. Based
on the ROS platform, the framework provides advanced mo-
tion planning and control functionalities for robotic systems to
guarantee a high level of autonomy during the execution of
an action. The integrated motion planning module can handle
multiple motion planners to generate collision-free trajectories
for a given planning scene that can be dynamically uploaded. In
the same way, the robot controllers can be changed online on
the base of the robot behavior required by the action under
execution. The motion control of the robotic system is fully
demanded to the manipulation framework relieving the upper
control layers from the management of low-level functionalities
and the task geometrical information. The framework can be
used downstream to a task planner or as a standalone library to
simplify the robot programming in complex manipulation tasks.
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I. INTRODUCTION

Providing a unique definition of “robotic manipulation” is
not trivial. Literature presents a few definitions of manipula-
tion that changes according to the field of the applications [1],
and its use open to user interpretation. Since early research
activities on grasping, manipulation was referred to the ability
to produce a stable grasping of an object, sometimes with
the terms manipulation and grasping used as synonyms. Over
the years, robotic manipulation has moved to refer to a
broader combination of motion planning and motion control
of a robotic arm, equipped by a proper tool as an end-
effector, to execute a predefined task where it is required to
interact with objects in the surrounding environment [2]. In
this regard, euRobotics association [3], through the strategic
research agenda [4], defined manipulation as “the function of
utilising the characteristics of a grasped object to achieve a
task”. More in general robotic manipulation can also include
perception to feed and monitor the goals of the manipulation
task. Following this definition, it is possible to extend the
manipulation over the classic pick&place, including many
other actions such as screw, assembly, or any action where the
robot interacts with the environment through a grasped object.
With a similar approach, in [5] authors optimize the grasping
contact selection, the grasping force, and the manipulator

arm/hand motion planning to provide the arm/hand optimal
posture able to guarantee a stable grasping contact.

Task management is, in general, demanded by a high-level
“task planner”, that is a software tool supervises the overall
process working at an abstract level, frequently supported
by AI algorithms [6]. The task planner can be implemented
following many different approaches, but the hierarchical
approach to task planning is the most common one. In this
case, the task planner acts both as a decision-maker and
as an executor able to: (i) decompose a complex task into
single actions, (ii) plan a feasible sequence of actions and
(iii) supervise their executions. In this case, the task planner
is involved in a massive number of operations that can be
somehow coded and automated at a different level.

In [7], a layered approach was adopted, demanding the con-
trol and the execution of simple actions to a layer named action
planner. Similarly, [8] introduced a framework that addresses
manipulation tasks through three interconnected layers: plan
and execute (high-layer), learn from the experience (medium-
layer), and deal with the motion planning (low-layer).

A few examples are currently available as software ap-
plications dedicated to robotic manipulation. Primarily, they
are devoted to grasping simulations such as the pioneering
library GraspIt! [9] developed to simulate the performance of
robotic hands. More in general, some well-known software
packages, such as ADAMS or MATLAB, can be used to
simulate grasping, even if they are not specifically designed
for robotics. However, they cannot be used as an integrated
framework to plan and control the motion of a robotic system
(arm + grasping system) applied to a manipulation task.

Closer to the recent definition of manipulation, (i.e., inte-
grated planning and control), the MoveIt! library [10], [11]
provides a package able to perform a pick&place task but
with limited features and a rigid definition of the manipu-
lation pipeline. Indeed, it considers a unique grasping pose
of a unique object at time, allowing the path planning for
the approaching movement, the reaching of the picking or
grasping pose, and the leaving movements. Recently, [12] has
merged MoveIt! with a framework that compose tasks taking
into account the planning context.



Figure 1. Task, Actions and Skills hierarchy.

A. Motivation and contribution

For a given task, this work aims to present a manipulation
framework able to:

(i) process manipulation actions (such as pick, place,
pick&place, screw, packing, etc...) with a certain level of
autonomy relieving the task planner, and eventually the
action planner, from the management and the execution
of simple actions;

(ii) handle the kinematics model of the robotic system
(robotic arm + grasping system) being able to compute
forward and inverse kinematics;

(iii) embed motion planning functionalities to generate
collision-free trajectories for a given planning scene and
a given robotic system (robotic arm + grasping system)
in a planning environment that can dynamically change;

(iv) be as modular as possible to be easily extended by the
user with custom actions.

The goal was reached starting from the analysis and the
formalization of a generic manipulation task. The task decom-
position into simple actions (e.g. pick, place, screw, etc...) and
consequently into skills (e.g. move to, close gripper, switch
on screwer, etc...) allowed to define general data structures
flexible enough to be reused in all the manipulation actions.
In the same way, basic functionalities such as motion planning
and kinematics model management were grouped into basic
modules to be easily reused.

The manipulation framework embeds a motion planner to
plan optimal collision-free trajectories between the robotic
arm, the grasping system, and the surrounding environment.
The planning scene is shared between multiple actions and it
can be easily updated by information coming from a percep-
tion system. In general, the use of the manipulation framework
as a standalone library, without involving task and/or action
planners, can simplify the robot programming task avoiding
the user to make long and tedious programming sessions to
define collision-free trajectories.

The paper is organized as follows: Section II provides
basic definitions, data structure introduction, and manipula-

tion framework modules description. Section III shows how
the manipulation framework was developed and Section IV
provides conclusions and future works.

II. FRAMEWORK DEFINITIONS AND MODULES

Within the scope of this work, we are going to use the
following nomenclature:
Task: it is the final goal to be reached by the robotic

system represented by a group of Actions. The Task
decomposition into single Actions is made by a task
or an action planner that assign single Action to the
manipulation framework.

Action: it is a sequence of elementary movements made by
the robotic system, examples of Actions are pick,
place, screw, etc....

Skill: it is the elementary movement executed by the robotic
system, a group of Skills forms an Action. For exam-
ple, the pick Action can be decomposed in the Skills:
move to the approach position, move to the object
grasping position, actuate the grasping system, move
to the leave position.

Figure 1 shows Task, Action and Skill hierarchy.

A. Data structures

The analysis of manipulation Actions allows to define the
following generic data structures.

1) Location: is the elementary data structure for a generic
manipulation pose (position + orientation) in the free space
defined as:

Location:
string name
string frame
Pose pose
Pose approach_pose
Pose leave_pose

where name and frame are two strings that identify the
unique Location name and the reference frame in which the
Location is defined. The elements pose, approach_pose



Figure 2. Locations Manager module description.

and leave_pose are respectively the exact, the approach
and the leave poses for a given Location.

2) Grasp: is the description of a grasping Location defined
as:

Grasp:
string tool_name
Location location

where the string tool_name is the grasping tool name
to be used for grasping, while location is the grasping
Location as defined in Section II-A1.

3) Object: is the description of an object that needs to be
manipulated. An object can be grasped with different grasping
poses, e.g. the grasping pose can have multiple tool orientation
to grasp the same object in the same position. To this scope
the Object data structure is defined as:

Object:
string name
string type
Grasp[] grasping_locations

where name and type are two strings that rep-
resent the Object unique name and family type. The
grasping_location is an array of Grasp type, as defined
in Section II-A2, describing all the possible Locations that
can be used to grasp the object. The grasping locations are
treated with the same priority and the choice is demanded
to the motion planner on the base of the minimum distance
collision free trajectory.

4) Box: is the recipient where an object can be grasped,
each Box can contain multiple Objects, the data structure is
defined as:

Box:
string name
Object[] objects
Location location

where name is the unique name of the Box, object is the
array of the type Objects contained in the Box and location
is its Location.

Figure 3. Skills Manager module description.

5) Slot: is the description of the place where an object can
be released, the data structure is defined as:

Slot:
string name
int slot_size
Location location

where name is the unique name of the Slot, the
slot_size is an integer that describes the capacity of the
Slot, the value can be: minor than 0 if the slot has infinite space
(e.g. to simulate a conveyor track that remove immediately
the object once the object is released in the Slot), equal to 1
for single space slot (in this case only one object at a time
can be contained) and major than 1 for slot that can contain
contemporary multiple objects (e.g. to simulate a basket where
an object falls after the release). The Slot data structure does
not include information about the dimensions of the contained
objects, so the capacity need to computed and fixed by the user.
Finally, location is the Location of the slot.

B. Modules

1) Locations Manager: this module handles an array of
Locations (Figure 2). The module dynamically adds and
removes Locations, and it embeds a planning pipeline, i.e., it
allows the use of different motion planners, planning scene and
a kinematics modules according to the user needs. Every time a
new Location is added the inverse kinematics for a given move
group (robotic arm + grasping system) is computed and stored,
when a new trajectory planning is required the planning scene
is updated and used to generate the trajectory. The planning
scene is evaluated only one time before planning a new
trajectory, the online trajectory re-planning is not supported.
The trajectory planning is made avoiding robot self collisions
and collisions between the robotic system (i.e. arm + grasping
system + manipulated object if present) and the entities in the
scene. A Locations Manager can handle multiple move groups
(i.e. multiple robotic arms). The planning scene is unique and
shared between multiple Locations Manager, objects can be
dynamically added, removed and uploaded depending on the



Figure 4. Action Manager module description.

real scene evolution, a perception system can be used to this
scope. The collision detector can be also changed online.

2) Skills Manager: this module is the core element for
all the Actions. As shown in Figure 3, the module allows
loading/unloading of the robot controllers according to the
running Skill (e.g. a standard trajectory tracker controller may
be used for the approach movement, or a Cartesian impedance
controller may be used when it is required a peg-in-hole
Skill). The Skills Manager module provides the ability to start
and monitor the execution of the trajectories planned by the
Locations Manager for a specific move group. Finally, the
module enables the control of the tool required by the Action
e.g. for a screw action set the screwer type, set the tightening
torque and the number of rounds per minute of the screwer.

3) Action Manager: this module supervises the execution
of specific Actions defined by the user. As shown in Figure 4,
the module is based on a Skills Manager and which in turn
includes a Locations Manager inheriting all the functionalities
previously described. The decomposition of a specific Action
into Skills is defined by the user, e.g. the action place object
can be decomposed into the following elementary Skills: move
to the approach position, move to the release position (i.e. on
the desired slot), release the grasped object, move to the leave
position.

The manipulation framework provides some standard Ac-
tions such as pick objects or place objects, but the user can
develop custom Actions. In the same way, the user has to
create services to interact with the module, e.g. for a pick
object action: add/remove objects to be picked or add/remove
picking boxes. Once a new action is taken in charge, the Action
Manager module supervises the action execution, checks if
all the Skills are properly completed and partially manages
unexpected behaviours, if severe errors occurs an error mes-
sage is returned to the action planner and the action execution
is stopped. This approach relieves the task and the action
planners from the management of Actions and atomic Skills,
as the actions geometrical information and the path planning
that is completely demanded to the manipulation framework.

C. Interconnections and Architecture

A general overview for the manipulation framework is pro-
vided in Figure 5, the scheme shows the layered architecture.
The three base layers are described in Sections II-B1, II-B2
and II-B3. The bottom layer (the green layer) has in charge the
geometrical information management and the motion planning.
The intermediate layer (the orange layer) manages the trajec-
tories execution, the robot controllers and tools management.
Finally, the top layer (the blue layer) deals with the Actions
decomposition and the Skills execution.

The action planner can add and remove dynamically Actions
and multiple Actions can contemporary exists. The scheduling
of the Actions is in charge to the action planner or to a task
planner, in general, the manipulation framework can be used
by the user even without the presence of task/action planner
on the above levels, but by simply exploiting the powerful
motion planning and motion control functionalities.

Each Action is isolated from the others without exchanging
information, e.g. the Locations referred to an Action are stored
in its relative Locations Manager. The only exception is
represented by the planning scene that is shared between all
the Locations Managers and by other entities if necessary.

III. IMPLEMENTATION

The manipulation framework was developed as C++ library
based on ROS [13]. In Figure 6 all the external libraries used
to develop the modules described in Section II are highlighted.

The motion planning features are based on the well-known
MoveIt! [10]. MoveIt! was used to exploit its planning pipeline
and its planning scene. Thanks to the plugins mechanism
provided by ROS, the motion planners can be dynamically
loaded by using the state-of-the-art motion planning algo-
rithms provided by MoveIt!, such as OMPL, CHOMP, STOMP,
or third party algorithms such as [14].

The planning scene enables the collision checking, where,
as for the motion planners, collision detectors can be loaded
as plugins. The manipulated objects can be added to the scene
and all the possible collisions with the environment, during the
manipulation, are evaluated by the motion planner. Every time
a new trajectory planning is required, the Locations Manager
clones the common planning scene to check collisions and
generates a collision-free path plan. The evaluation of the
scene is made at the beginning of the path planning, so further
updates (e.g. movements of the operator in the scene) coming
after the cloning cannot be used for an online path re-planning.
Objects in the scene can be dynamically added, removed
and updated (i.e. their position) while the integration with a
perception system can provide information about the moving
elements in the scene such as the presence of operators in a
collaborative application.

The planning time is hardly predictable because is strongly
related by several factors such as: the complexity of the
planning scene, the collision detector and the motion planner.

The move groups kinematics are handled by MoveIt! with
the exception of the inverse kinematics that is computed
through the header-only library RosDyn [15], instead of the



Figure 5. Manipulation framework layers description.

MoveIt! IK native function. RosDyn is able to get better
computation time performance that in fundamental when the
presence of a huge number of objects, associated to multiple
grasping poses, impose the computation of thousands times
the inverse kinematics.

The robot controllers can also be set online and smoothly
changed during the execution of different Skills. The dynamic
change of controllers provides a high degree of flexibility to
the manipulation framework being able to adapt the robot
behavior on the base of the specific Skill under execution, e.g.
trajectory tracking controller when the robot needs to move
accurately on the desired position or impedance control when
the robot interacts with the environment. The library [16], an
extension of standard ROS control architecture [17], allows
to seamlessly start/stop ROS controllers, with the main differ-
ence that complex control architecture, with multiple nested
controller, can be defined and loaded. The library [16] enables
controllers communication by shared memory, instead of the
standard publisher/subscriber ROS mechanism, providing high
communication performance and enabling the concatenation
of a high number of controllers. The library [16] provides
standard ROS controllers interfaces supporting also the use of
state-of-the-art ROS controllers.

The manipulation framework is an open source li-
brary available in the public repository: https://github.com/
JRL-CARI-CNR-UNIBS/manipulation. Currently there are

three predefined Actions available in the manipulation library:
pick objects, place objects and go to location.

Examples about the use of the manipulation frameworks
are available in the public repository: https://github.com/
JRL-CARI-CNR-UNIBS/manipulation examples.

IV. CONCLUSION AND FUTURE WORKS

The paper introduced a manipulation framework designed
to address manipulation tasks. The framework is designed to
have a certain level of autonomy in processing Actions and
Skills relieving task and action planners from the management
of low level functionalities as the robotic system (arm + grasp-
ing system) motion plan and control and objects geometry
information.

The framework manages the robotic system kinematics and
embeds motion planners able to generates collision-free tra-
jectories. The collision check is made by querying a planning
scene that can be dynamically updated and connected to a
perception system. The robot controllers can be started/stopped
on the base of the required Skills.

The framework is provided with three basic Actions, pick,
place and go to location, but it is designed to be easily
extended by the user with custom actions.

The framework is developed also with the intention to
simplify the robot programming for the users that want to

https://github.com/JRL-CARI-CNR-UNIBS/manipulation
https://github.com/JRL-CARI-CNR-UNIBS/manipulation
https://github.com/JRL-CARI-CNR-UNIBS/manipulation_examples
https://github.com/JRL-CARI-CNR-UNIBS/manipulation_examples


Figure 6. Manipulation framework external dependencies.

use it as a standalone library avoiding tedious robot program
development to generate collision-free trajectories.

The package is an open source project that is continuously
evolved and improved, future works will include the devel-
opment of new Actions to cover a wide range of real robotic
applications. Moreover, a Human Machine Interface (HMI)
will be developed to further simplify the usage of the package
also for the users that are not familiar with ROS and more
in general with robotic programming. The combination of
the framework and the HMI has the final goal to reduce the
programming time w.r.t. the standard programming interfaces
(i.e. robot tech pendant and offline programming softwares).
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