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Abstract

Motivation: Omics data, such as transcriptomics or phosphoproteomics, are broadly used to

get a snap-shot of the molecular status of cells. In particular, changes in omics can be used to

estimate the activity of pathways, transcription factors and kinases based on known regulated

targets, that we call footprints. Then the molecular paths driving these activities can be

estimated using causal reasoning on large signaling networks.

Results: We have developed FUNKI, a FUNctional toolKIt for footprint analysis. It provides a

user-friendly interface for an easy and fast analysis of several omics data, either from bulk or

single-cell experiments. FUNKI also features different options to visualise the results and run

post-analyses, and is mirrored as a scripted version in R.

Availability: FUNKI is a free and open-source application built on R and Shiny, available in

GitHub at https://github.com/saezlab/ShinyFUNKI under GNU v3.0 license and accessible also

in https://saezlab.shinyapps.io/funki/

Contact: pub.saez@uni-heidelberg.de

Supplementary information: We provide data examples within the app, as well as extensive

information about the different variables to select, the results, and the different plots in the help

page.

1. Introduction

Multiple methods are conceived to infer the activities of specific processes or molecules using

the abundance of known targets from omic data (see Supplementary Table for a list of them).

We call them footprint-based methods (Dugourd and Saez-Rodriguez, 2019), and we have

develop such tools for transcription factor from transcripts of target genes (Garcia-Alonso et al.,

2019), kinases from phosphorylated sites (Wirbel et al., 2018), and pathways from downstream

responsive genes (Schubert et al., 2018). These activities can then be used to contextualize

large signaling networks by identifying paths that can explain the changes in activities via

reverse causal reasoning (Liu et al., 2019; Dugourd et al., 2021).

FUNKI (FUNctional analysis toolKIt) is an user-friendly interface developed in R (Team, 2020),

and designed using Shiny (Chang et al., 2020), to analyze omics data using footprint methods.

This application provides an interface for the R implementations (Bioconductor packages) for

the aforementioned tools. All methods run on bulk data for human samples, and we have shown

that they can also be applied to single-cell transcriptomics (Holland, Tanevski, et al., 2020) and

mouse (Holland, Szalai, et al., 2020).
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Figure 1. Graphical overview of analysis and visualisation features provided by FUNKI.
FUNKI provides an user interface to upload omics data, and then run DoRothEA, PROGENy, KinAct,

CARNIVAL and COSMOS to estimate the activity of pathways, transcription factors, and kinases. The

results are visualized in diverse forms.

2. Features

The footprint methods implemented in FUNKI allow users to recover functional insight from

several omics data without notions of programming. This application also enhances the analysis

with an extended graphic visualisation of the results. Thus, the typical FUNKI pipeline comprises

three steps: (i) import user’s omic data, (ii) select the analysis accordingly (DoRothEA,

PROGENy, CARNIVAL, COSMOS or KInAct), and (iii) visualise the results in tables and

graphical representations (Fig. 1).

2.1 DoRothEA

DoRothEA (Discriminant Regulon Expression Analysis) is a resource that links transcription

factors (TFs) with their downstream targets. TFs activities are computed from gene expression

where the regulons (the collection of transcriptional targets for each TF) are the underlying

gene-sets.
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2.2 PROGENy

PROGENy (Pathway RespOnsive GENes) is a footprint method developed to infer pathway

activity from gene expression data. The scores are calculated using a linear model with weights

based on consensus gene signatures obtained from publicly available perturbation experiments.

2.3 KinAct
KinAct is a resource linking kinases to phosphorylation sites. Kinase activity estimation is

performed using the same algorithm as DoRothEA to estimate activity scores. Instead of

TF-target interactions, KinAct uses collections of kinase-substrate interactions via OmniPath

(Türei et al., 2016) and phosphoproteomic data instead of transcriptomic data.

2.4 CARNIVAL and COSMOS

CARNIVAL (CAusal Reasoning for Network identification using Integer VALue programming)

reconstructs signalling networks from downstream TF activities by finding the upstream

regulators. COSMOS is an extension of CARNIVAL that provides a multi-omic network to

connect different types of omic data together, including transcriptomics, metabolomics, and

phosphoproteomics. Both methods identify coherent mechanistic hypotheses (subnetworks) that

explain how the measured deregulation may be reached.

3. Implementation

FUNKI is a shiny application developed using R programming language under version 4.0.2 and

upgraded to run for 4.1.1 (Team, 2020; Chang et al., 2020). It is directly accessible in the cloud

through https://saezlab.shinyapps.io/funki/. The source code is freely available at

https://github.com/saezlab/ShinyFUNKI, and it can be run locally in any platform (Windows,

macOS and Linux) either downloading the repository or running it directly from GitHub (see

https://saezlab.github.io/ShinyFUNKI/ for details).

4. Conclusion

FUNKI provides an intuitive user-friendly interface to run footprint methods from different omics.

Together with the analysis implementation, FUNKI also incorporates several graphical

representations to explore the results from different perspectives. Users with programming skills

can take advantage of an extended script-based version of FUNKI for transcriptomic data

(https://github.com/saezlab/transcriptutorial).
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Supplementary table 1

Name Activity type Available interface Reference

Viper TF/Kinase No (Alvarez et al., 2016)

RoKAI Kinase No (Yılmaz et al., 2021)

KARP Kinase No (Wilkes et al., 2017)

KSEA Kinase No (Hernandez-Armenta et al., 2017)

KSTAR Kinase No (Crowl et al., 2021)

INKA Kinase No (Beekhof et al., 2019)

KEA3 Kinase Yes (Kuleshov et al., 2021)

BART TF No (Wang et al., 2018)

TFEA.ChiP TF Yes (Puente-Santamaria et al., 2019)

oPOSSUM TF Yes (Kwon et al., 2012)

CHEA3 TF Yes (Keenan et al., 2019)

MAGICACT TF No (Roopra, 2018)

SPEED Pathway Yes (Parikh et al., 2010)

SPEED2 Pathway Yes (Rydenfelt et al., 2020)

List of other methods to infer the activity of proteins from different omics based on the idea of looking

at the target molecules (what we call the footprint-based approach). TF = Transcription Factor.
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