
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 12, No. 1, February 2022, pp. 1018~1029 

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i1.pp1018-1029      1018  

 

Journal homepage: http://ijece.iaescore.com 

Automated hierarchical classification of scanned documents 

using convolutional neural network and regular expression 

 

 

Rifiana Arief, Achmad Benny Mutiara, Tubagus Maulana Kusuma, Hustinawaty  
Faculty of Computer Science and Information Technology, Gunadarma University, Depok, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 7, 2021 

Revised Jul 5, 2021 

Accepted Aug 6, 2021 

 

 This research proposed automated hierarchical classification of scanned 

documents with characteristics content that have unstructured text and 

special patterns (specific and short strings) using convolutional neural 

network (CNN) and regular expression method (REM). The research data 

using digital correspondence documents with format PDF images from 

Pusat Data Teknologi dan Informasi (Technology and Information Data 

Center). The document hierarchy covers type of letter, type of manuscript 

letter, origin of letter and subject of letter. The research method consists of 

preprocessing, classification, and storage to database. Preprocessing covers 

extraction using Tesseract optical character recognition (OCR) and 

formation of word document vector with Word2Vec. Hierarchical 

classification uses CNN to classify 5 types of letters and regular expression 

to classify 4 types of manuscript letter, 15 origins of letter and 25 subjects of 

letter. The classified documents are stored in the Hive database in Hadoop 

big data architecture. The amount of data used is 5200 documents, consisting 

of 4000 for training, 1000 for testing and 200 for classification prediction 

documents. The trial result of 200 new documents is 188 documents 

correctly classified and 12 documents incorrectly classified. The accuracy of 

automated hierarchical classification is 94%. Next, the search of classified 

scanned documents based on content can be developed. 
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1. INTRODUCTION 

The increase and variety of documents make document classification necessary to direct, summarize 

and organize documents effectively. Document classification can be defined as the grouping of documents 

automatically into certain classes based on the similarity of document content [1]. Document classification is 

one aspect of the fundamental problems experienced in the management of information management and 

information retrieval tasks. Document classification is the process of grouping documents into predetermined 

category criteria. In digitalizing the data, document classification needs to perform for effective huge data 

organization that saves a lot of user time and helps in analyzing customer feedback. In the task of 

classification, the condition which more than two classes existing is called multi-class classification [2]. The 

document collections are organized as hierarchical class structure in many application fields: Web 

taxonomies, email folders and product catalogs, this is called hierarchical classification [3]. The inclining 

document availability in the organization and the rapid growth of data cause the automated document 

classification to become an important key method for searching documents quickly and accurately [4]. 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Automated hierarchical classification of scanned documents using … (Rifiana Arief) 

1019 

Machine learning algorithm can be used in designing such new logic that can classify the document and 

manage it when a new instance of data arrives, without human intervention [5]. 

To date, most of the text classification methods generally used to assign multiple topics to 

documents [6], grouping of documents into a fixed number of predefined classes [7], sentiment analysis to 

determine the viewpoint/polarity of a writer with respect to some topic [8], spam filtering of emails [9], 

automatic hate speech detection [10]. In the era of big data, the increasing number of complex documents 

makes traditional machine learning methods difficult to implement because conventional learning processes 

are not designed for big data and will not work properly with high data volumes. Traditional machine 

learning algorithms such as Naïve Bayes and others are designed for data that will actually be loaded into 

memory and cannot be handled should the data refer to large data. Therefore, other algorithms are required to 

handle it [11]. Newer machine learning method for document classification is taken from deep learning. This 

becomes increasingly necessary because the performance of conventional methods will decline with the 

inclining number of documents. Deep learning has been widely used for image processing, but numerous 

recent studies have implemented deep learning in other domains such as text and data mining [12]. The 

increase and diversity of data, the validity of uncertain data form, as well as the need for access quickly lead 

to a classification trend by utilizing deep learning neural network that has more capabilities than conventional 

methods of machine learning for big data characteristics [13]. 

Numerous government institution in Indonesia archives various types of correspondence documents 

digitally through the scanning process. In digital correspondence documents there are various different types 

of letters and every document has a letter number in which there is a certain meaning, among others, the 

origin of the letter and the subject of the letter. The existing correspondence documents filing system still 

requires operator assistance to interpret the information in the digital correspondence documents and classify 

it according to the criteria in the document hierarchy (letters) manually. The amount of letter from various 

criteria that continues to increase requires a method that is able to classify each letter automatically into an 

appropriate hierarchy according to the applicable correspondence procedure in the institution, and 

subsequently file the classified documents to the database. The characteristics of data possessed by digital 

correspondence documents are the existence of unstructured text information content and number of letters 

with short strings with special code specifications. The letter hierarchy consists of several levels and each 

level consists of several class categories. Analysis of unstructured text information content for main level 

classification (to get the letter type criteria), and short string with special code specifications for the next 

level classification/sub-document (to get the criteria for the type of letter script, the origin of the letter and the 

subject of the letter) is needed. 

Problems of image document classification can be done with a text-based approach with the help of 

optical character recognition (OCR) and machine learning [14]. Various methods are used to solve the 

problem of classification of scanned documents by adding the preprocessing process to convert the scanned 

document into a text document first. Tesseract OCR was the best open source available in various languages 

used to extract and recognize text content from scanned documents in image format [15]. Besides, there are 

other various OCR applications that we can use, such as free online OCR, online OCR.net, free OCR, 

i2OCR, Google Vision OCR. Based on small trial, the accuracy performance of Google Vision OCR was the 

best comparing to other OCR tools [16]. In previous studies, the automatic classification of scanned 

electronic health record documents done by extracted text using (OCR and multiple text classification 

machine learning models, including both "bag of words" and deep learning approaches [17], the classifying 

image spam detection using OCR, machine learning and natural language processing [18] and the classifying 

promotion images using OCR and Naïve Bayes classifier [19]. From research [17]-[19] show that text-based 

classification systems can accurately classify scanned documents. The problem of text classification can also 

be solved by deep learning using the convolutional neural network (CNN) such as for hate speech 

classification [20], news classification [21] and sentiment analysis [22]. Classification of text documents 

based on matching input strings efficiently used the regular expression conducted in [23]-[25]. Other research 

performs hierarchical classification for news article document [26] and multi-level classification for medical 

datasets [27]. Hierarchical classification by combining CNN and recurrent neural network (RNN) method as 

deep learning model for learning into each level in the text document hierarchy using WOS-11967, 46985 

and 5736 datasets with accuracy of 82.3% was carried out in [28]. The research studies mentioned above, 

hierarchically classified the documents and its sub-documents, but the method used has not been able to 

classify different documents based on the extraction of short and unique codes from the contents of the 

document. Classification tasks in the form of big data sentiment analysis can use big data tools such as 

Apache Hadoop [29] and Apache Spark [30]. 

Based on review from several previous studies, the OCR-assisted classification of scanned 

documents had been carried out. However, there has not been classification of scanned documents based on 

the document hierarchy that has data characteristics in the form of unstructured text information content and 

short strings with special code specifications. This research proposes solution of hierarchical 
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classification/multi-level classification for scanned documents that are automatically supported by OCR with 

the combination of CNN and regular expressions method. This research aims to automate the digital 

correspondence documents classification process belonging to Technology and Information Data Center 

institution in the form of scanned documents in the PDFImages format according to the predetermined rules 

of official script administration. This proposed method has the advantage of being able to automate the 

classification process of scanned image-formatted documents with the condition of documents that have 

unstructured text content and have special patterns (specific and short strings) so that each image-format 

scanned document will be classified based on the document hierarchy with a depth of 4 levels, namely 

manuscripts letter -> letter type -> letter origin -> letter subject automatically. With this automation the 

classification process no longer requires manual human intervention to classify types of letters, types of letter 

manuscripts, types of letter origins and types of subject matter. By implementing this method, every digital 

correspondence documents previously will be classified automatically according to the letter hierarchy and 

after that will be archived into a filing system that has been prepared for big data needs, namely the big data 

architecture in the Hive database automatically. 

 

 

2. RESEARCH METHOD  

This research implemented automated hierarchical classification (4 level) of scanned documents 

with the help of Tesseract OCR, with the character of the document content have unstructured text content 

and have special patterns with storage on Hadoop architecture database with big data technology. We adapt 

the research of Kowsari [28] which performs a hierarchical classification (2 level) using the CNN and RNN 

methods. We use CNN method and change RNN methods with regular expression. CNN method uses to 

classify letter types and regular expression method use to extract information on letter numbers which 

contain short and short codes but have special meanings and specifications according to the numbering rules 

in the established correspondence so that it can classify manuscript of letter, origin of letter and subject of 

letter accurately quickly. Hierarchical classification is carried out to automatically obtain the criteria for 

manuscripts of letter, types of letters, origin of letters and subject of letters from every digital correspondence 

documents as shown in Figure 1. 

 

 

 
 

Figure 1. Hierarchical of digital correspondence documents 

 

 

The object of this research uses digital correspondence documents in PDFImages format as shown 

in Figure 2 (see in appendix), which is consisted of 5 types of letters, namely letter of decision, letter of 

statement, letter of command, letter of assignment, letter of invitation. Each document has a unique number 

with a special code indicating the origin of letter and the subject of letter. By extracting the special code in 

the letter number on the document it can show the information classification of the letter manuscript (there 

are 4 categories), the origin of the letter (there are 15 categories) and the subject of the letter (there are  

25 categories). 
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The hierarchical classification of digital correspondence documents consists of 3 stages: 

preprocessing, classification and storage to database illustrated in Figure 3. The contribution in this research 

is a classification block that produces a multi-level classification (4 level) model by combining the CNN and 

regular expression methods so that it can classify scanned documents in the form of digital correspondence 

documents based on the manuscript of letter, type of letter, origin of the letter and subject of the letter then 

the classified documents are automatically saved to the database Hive. 

 

 

 
 

Figure 3. Method of automated hierarchical classification of digital correspondence documents 

 

 

2.1.  Preprocessing 

Before the scanned documents are classified, there is preprocessing stage of extraction and stage of 

word vector formation. The stage of extraction consists of converting PDFImages documents into JPG 

documents with Apache PDFBox followed by the extraction of text contents from image document using 

Tesseract OCR [13]. The extraction result of text document is used for classification based on the text 

approach. The stage of word vector formation is to transform the text of words in a document into the form of 

word vector. Word vectorization needs to be completed because the document classification process using 

the convolutional neural network (CNN) is not able to use text. Word vectorization is made based on words 

from the extraction results of all letter documents using Word2Vec [11]. All the contents of the text 

documents in the folder of the extraction result are united and stored in one file. Then, the separation of each 

sentence and tokenization to receive the words from the document. Preprocessing to eliminate all numbers, 

symbols, and special symbols. The process of a vector model formation of each word with 1 iteration and 

epoch of 1 time training will form a word vector should a word occurs at least 5 times and the length of each 

word vector is 100. The result of word vector will be stored in the word vector path for use in the 

classification stage.  

 

2.2.  Hierarchical classification  

Hierarchical classification aims to classify each scanned document of digital correspondent 

documents as a document that is automatically type of letter, type of manuscript letter, origin of letter, and 

subject of letter. The hierarchical classification model to digital correspondence documents combines CNN 

and regular expression method as shown in Figure 4. CNN method processes the word vector representing 

words in text documents to obtain criteria for type of letter. Meanwhile, regular expression method extracts 

and captures information content in documents with special patterns to obtain the criteria for text, origin, and 

subject of letter quickly and accurately without having to go through a training process as CNN method. 

Regular expression will certainly save time and money. The classification criteria consist of 5 types of letters, 

4 types of manuscript letters, 15 origins of letters and 25 subjects of letters. Evaluation of classification 

modeling is made by training and testing as well as predictions of new documents. The results of the 

classification stage are classified documents to be stored in database. 

 

2.2.1. Classification for type of letter 

The classification process with CNN begins with the establishment of CNN model architecture by 

adding layers and configuring input layer, extraction layer, and output layer specifically for use in the 

document classification process [18]. After the architecture is configured, the data is loaded to be used for 

training and testing datasets from OCR extracted text documents in the form of word vectors. The training 

process or training uses a training dataset on the architecture that has been created and evaluation uses a 

dataset testing of models that have been trained. 
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The formation of the CNN architecture for the classification of 5 types of letters will be used to 

classify documents based on the type of letter. It starts by configuring a basic neural network with batch 100, 

vector 300, Epochs 10, deduction of word length 256, l2 0.0001, layer of feature maps 100, random data, 

RELU activation function, updater Adam (0.01). Next, configure the layer on the neural network by adding 

an input layer, convolution layer cnn3 with kernel size (3, 300), stride (1, 300), convolution layer cnn4 with 

kernel size (4, 300), Stride (1, 300), convolution layer cnn5 with kernel size (5, 300) , Stride (1, 300), with 

input from input and output layers to feature layer, pooling layer with maximum type, DropOut (0.5), 

combined layer (cnn3, cnn4, cnn5), output layer with LossFunction.MCXENT function, SOFTMAX 

activation function, input (3 * cnnLayerFeatureMaps) and Output of 5 class. The 5 classes for the type of 

letter (letter of decision, letter of statement, letter of command, letter of assignment, letter of invitation). 

The process of loading word vector that will be used for the classification of type of letter. Started 

by taking the word vectors from the path where the word vectors are formed and taking the training dataset 

containing the word document vector for the training process and the testing dataset that contains the word 

document vector for the testing process. The training and testing dataset were previously taken from the 

folder path of 5 different types of letters that were determined both for the training and testing process. Each 

document from each folder with a different type will be accommodated in a file and will be mapped to the 

entire contents of the document in such folder, thus each document will be displayed in the form of a word 

vector, and each followed by labeling that has been done before. Documents in the form of word vectors will 

then go through a classification process that is training and testing according to the CNN architecture. 

The training process will manage and arrange documents in the form of word vectors prepared for 

training according to the label given for each document with Epoch 10 to documents labeled with different 

types of letters that have been set. Next, an evaluation is carried out through the testing process of documents 

labeled with different types of letters that have been set. The document classification training and testing 

process will run on the convolutional neural network architecture that has been determined by running the 

process in the input layer, feature extraction layer and classification layer. Thus, the evaluation results of 

classification are obtained. 

 

 

 
 

Figure 4. Model of automated hierarchical classification scanned document using combination of 

convolutional neural network and regular expression 

 

 

2.2.2. Classification for type manuscript of letter, origin of letter, and subject of letter 

More detailed classification for document is completed by regular expression method after 

classifying the type of letter using the CNN method. Each letter has text content, and inside this, there are 

certain codes that can describe the origin of the letter and the contents of the letter. The rules in coding the 

origin of the letter and the subject of the letter are highly simple and short. Therefore, regular expression 

method is highly effective in being able to find codes with certain patterns in documents quickly and 

accurately [20]. 

 

a) Classification algorithm for manuscript of letter 
Input: Classification Result base on Type of Letter 

Output: Classification for Manuscript of Letter 
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1. Retrieve documents that have been classified according to Type of Letter through the 
Convolutional Neural Network method 

2. Decide the pattern for Manuscript Letter based on Type of Letter  
   If Type of Letter = Letter of Decision Then Manuscript Letter = Script of Determination 

   If Type of Letter = Letter of Command and Letter of Assignment  

                       Then Manuscript Letter = Script of Assignment 

   If Type of Letter = Letter of Invitation Then Manuscript Letter = Script of 

Correspondence 

   If Type of Letter = Letter of Description Then Manuscript Letter = Script of Special 

official 

   In addition, Manuscript Letter = No Category 

3. Match the criteria for Manuscript of Letter that is suitable based on type of Letter  
4. Receive the suitable criteria for Manuscript of Letter 

5. Save the classification result for Manuscript of Letter from documents 

 

b) Classification algorithm for origin letter 
Input: Content of Classified Document base on certain Type of Letter  

Output: Classification for Origin of Letter (15 Categories) 

1. Read Content for Classified Document of Certain Type of Letter  

2. Decide pattern of Regular Expression for the criteria type of origin of letter 

3. Match the content of document with pattern of Regular Expression that has been set  

4. If there is string matching to the criteria for origin of letter in its content then 

value of string is classified as the origin of letter.  

5. If not match Then classification result for the origin of letter = none 

6. Receive value of string found matching with the pattern criteria that has been made 

7. Save the value matching to the pattern found as the classification result for the 

origin of letter 

 

Table 1 describes pattern of regular expression for classifying documents based on the origin code 

of letter. In the origin code of letter, there are various patterns for the origin of letter, from simple pattern, for 

example, containing only strings/MPK/to numbering details separated by dots and combinations of letters 

and numbers, for example /SA4.A1/. 

 

 

Table 1. Pattern of regular expression for origin of letter (15 categories) 
No Pattern of Regular Expression Code Categories 

1 “/\/\bMPK\//” /MPK/ 
Kementerian Pendidikan dan Kebudayaan (Minister of 

Education and Culture) 
2 “/\/\bMPK\.[A-P]\//” /MPK.A/ until /MPK.P/ 

Variation code detail of categories Minister of Education 
3 “/\/\bMPK\.[A-P]\d{1}\//” /MPK.A1/ until /MPK.P9/ 

4 “/\/\bSA\//" /SA/ Staff Ahli Menteri (Minister's Expert Staff) 
5 “/\/\bSA\.[A-P]\d{1}\//” /SA.A1/ until /SA.P9/ Variation code detail of categories Minister's Expert Staff 

6 “/\/\bSA[1-4]//” /SA1/ until /SA4/ 

SA1 Staff Ahli Bidang Inovasi dan Daya Saing 

(Expert Staff for Innovation and Competitiveness) 
SA2 Staff Ahli Bidang Hubungan Pusat dan Daerah 

(Expert Staff for Central and Regional Relations) 

SA3 Staff Ahli Bidang Pembangunan Karakter 
(Expert Staff for Character Development) 

SA4 Staff Ahli Bidang Regulasi Pendidikan dan Kebudayaan 

(Expert Staff for Education and Culture Regulation) 
7 “/\/\bSA[1-4]\.[A-P]\d{1}\//” /SA1.A1/ until/SA4.P9/ Variation code detail of categories Expert Staff 

8 “/\/[A-P]\//” /A/ until /P/ 

A Sekretariat Jenderal (General Secretariat) 

B Direktorat Jenderal Guru dan Tenaga Kependidikan 
(Directorate General of Teachers and Education Personnel) 

C Direktorat Jenderal Pendidikan Anak Usia Dini dan 

Pendidikan Masyarakat (Directorate General of Early 
Childhood Education and Community Education) 

D Direktorat Jenderal Pendidikan Dasar dan Menengah 

(Directorate General of Primary and Secondary Education) 
E Direktorat Jenderal Kebudayaan (Directorate General of 

Culture) 

F Inspektorat Jenderal (Inspectorate General) 
G Badan Pengembangan dan Pembinaan Bahasa (Ministry of 

Education and Culture's National Agency for Language 

Development and Books) 
H Badan Penelitian dan Pengembangan (Research and 

Development Agency) 

P Pusat (Center) 
9 “/\/[A-P]\.[A-P]\d{1}\//” /A.A1/ until /P.P9/ 

Variation code detail of categories from Number. 8 10 “/\/[A-P]{1}\d{1}/” /A1 / until /P9/ 

11 “/\/[A-P]{1}\d{1}.\d{1}\//” /A1.1/ until /P9.9/ 
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c) Classification algorithm for subject of letter 

Classification algorithm for the subject of letter is as same as algorithm for the origin of letter but 

with a simpler pattern (not varied for 25 categories). Table 2 describes pattern of regular expression for 

classifying documents based on code for subject of letter. For example, the regular expression pattern 

"/\/[A][K]\//" is to search for criteria in regard to the subject of letter with the code /AK/. Thus, this will 

search for text document of OCR result containing a string /AK/ for instance in the document with letter 

number 0568/A.A1/AK/2016, thus we will receive /AK/ as a criterion for subject of letter indicating subject 

of letter on Accreditation. 

 

 

Table 2. Pattern of regular expression for subject of letter (25 categories) 
No Pattern of 

Regular 

Expression 

Code Categories No Pattern of 
Regular 

Expression 

Code Categories 

1 "/\/[A][K]\//” AK 
Akreditasi (Accreditation) 

14 "/\/[H][M]\//” HM Hubungan Masyarakat (Public 
Relations) 

2 "/\/[B][P]\//” BP Bantuan Pendidikan 

(Education Assistance) 

15 "/\/[P][P]\//” PP Pendidikan dan Pelatihan 

(Education and Training) 
3 "/\/[G][T]\//” GT Guru & Tenaga Kependidikan 

(Teacher & Education Personel) 

16 "/\/[P][M]\//” PM Pendidikan Masyarakat 

(Community Education) 

4 "/\/[O][T]\//” OT Organisasi dan Tata Laksana 
(Organization Administration) 

17 "/\/[P][G]\//” PG Penelitian dan Pengembangan 
(Research and development) 

5 "/\/[H][K]\//” HK Hukum (Law) 18 "/\/[P][B]\//” PB Perbukuan (Bookkeeping) 

6 "/\/[B][S]\//” BS Kebahasaan (Language) 19 "/\/[W][S]\//” WS Pengawasan (Supervision) 
7 "/\/[S][P]\//” SP Sarana Prasarana Pendidikan 

(Facilities Infrastructure) 

20 "/\/[P][R]\//” PR Perencanaan dan Penganggaran 

(Planning and Budgeting) 

8 "/\/[K][P]\//” KP Kepegawaian (Staffing) 21 "/\/[L][K]\//” LK Perlengkapan (Equipment) 
9 "/\/[K][S]\//” KS Kerjasama (Cooperation) 22 "/\/[P][F]\//” PF Perfilman (Movies) 

10 "/\/[R][T]\//” RT Kerumahtanggaan(household) 23 "/\/[P][D]\//” PD Peserta Didik (Learners) 

11 "/\/[T][U]\//” TU Ketatausahaan 
(Administration) 

 "/\/[K][B]\//” KB 
Kebudayaan (Culture) 

12 "/\/[K][U]\//” KU Keuangan (Finance) 25 "/\/[T][I]\//” TI Tek. Inf & Komunikasi (ICT) 

13 "/\/[K][R]\//” KR Kurikulum (Curriculum)  

 

 

2.3.  Storage 

The storage stage of classified documents to the database is the process after the hierarchical 

classification of digital correspondence documents.  

 

Algorithm for storage of classified document on hive database (framework Hadoop) 
Input: Result classification from Document  

Output: Information of classified document on Hive Database 

1. Read the classification results (the latest index information, the document name to [i] 

in the directory, the content of document, the origin of letter, subject of letter, the 

text of letter, type of letter, classification value for the type of letter. 

2. Input the information into the table in the Hive database in the form of document id, 

document name, content, the origin of letter, the subject of letter, the text of letter, 

the type of letter, classification value. 

 

 

3. RESULTS AND DISCUSSION 

The total data used is 5200 digital correspondent documents (scanned documents in PDFImages 

format). Training data of 4000 documents (each type of letter totaling 800 labeled documents) and testing 

data of 1000 documents (each type of letter totaling 200 labeled documents). For prediction data, 200 new 

scanned documents, not training data, not testing data, and they are not labeled.  

Table 3 shows the summary of classification testing result in the form of accuracy, precision, recall 

and F1Score from 10 Epochs. High score is epoch 5. Started from epoch 6, the score tends to decrease. In the 

end of Epoch 10, it reaches the accuracy of 94%. Table 4 shows the results for the confusion matrix of 5 

types of text documents classification (decision, statement, command, assignment, and invitation) for epoch 

values 10. The average accuracy 94%. Table 5 shows the trial results for the classification of 200 documents. 

There are 188 documents accurately classified (accurately) for all level. However, 12 documents are 

inaccurately classified that its origin or subject of letters are no match. Accuracy of classification by dividing 

the number of documents classified accurately with the total number of documents tested is multiplied by 

100%, then 188/200x100% is 94%. 
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Table 3. Evaluation result of classification 
No Epoch Accuracy Precision Recall F1 Score 

1 Epoch 1 0.953 0.956 0.953 0.953 

2 Epoch 2 0.955 0.958 0.955 0.955 
3 Epoch 3 0.955 0.960 0.955 0.955 

4 Epoch 4 0.955 0.958 0.955 0.955 

5 Epoch 5 0.955 0.958 0.955 0.955 
6 Epoch 6 0.939 0.943 0.939 0.938 

7 Epoch 7 0.941 0.944 0.941 0.940 

8 Epoch 8 0.939 0.942 0.939 0.938 
9 Epoch 9 0.939 0.942 0.939 0.938 

10 Epoch 10 0.939 0.942 0.939 0.938 

 

 

Table 4. Confusion matrix 
No Type of Letter Decision Statement Command Assignment Invitation Accuracy 

1 Decision 160 24 0 0 16 80% 

2 Statement 2 191 2 0 5 96% 

3 Command 0 0 200 0 0 100% 
4 Assignment 0 0 2 194 4 97% 

5 Invitation 2 0 2 2 194 97% 

  Average of accuracy 94% 

 

 

Table 5. Hierarchical classification accuracy (convolutional neural network & regular expression) 
No Description Total 

1 Total of Document Accurately Classified 188 Documents 
2 Total of Document Inaccurately Classified 12 Documents 

3 Total of Document 200 Documents 

4 Accuracy Rate 188/200*100 %=94% 

 

 

Table 6 shows the types of errors that occurred while testing the automatic classification of 200 

documents. The CNN method is able to classify the type of letter correctly but errors often occur in the 

regular expression method when classifying the origin of the letter and the subject of the letter. The cause of 

the error can be in the form of the characters in the letter number are illegible (text characters from OCR 

were not recognized correctly), data does not match the provided regular expression pattern and 

unpredictable. 

 

 

Table 6. Types of errors that occur when classifying documents automatically 
No Document Name Error Type Cause 

1. 
36612016 Koordinasi dan Evaluasi 

pelaksanaan 
Origin of the Letter I2.1 and 

Subject of Letter KP failed to be classified 
The characters in the letter 

number are illegible 

2. 
00452016 Penunjang PTP a.n 

Hardianto 

Origin of the Letter P2.3 and 

Subject of Letter KP failed to be classified 

The characters in the letter 

number are illegible 

3. Ceramah Ilmiah dan seminar Nasional 
Origin of the Letter G2 and 

Subject of Letter TU failed to be classified 

The characters in the letter 

number are illegible 

4. 
13303 G1 TU 2017 Kegiatan 

penyampaian pagu definitif tahun 2018 
Origin of the Letter G1 and 

Subject of Letter TU failed to be classified 
The characters in the letter 

number are illegible 

5. 
4340 G1 SOSIALISASI PROGRAM 

KPR 19 OKT 2017 
Subject of Letter TU failed to be classified 

The characters in the letter 

number are illegible 

6. 
Peringatan Maulid Nabi Muhammad 

SAW 

Origin of the Letter G and 

Subject of Letter TU failed to be classified 

The characters in the letter 

number are illegible 

7. Permohonan pendaftaran BPJS 
Origin of the Letter G1 and 

Subject of Letter TU failed to be classified 
The characters in the letter 

number are illegible 

8. Rapat standar kompetensi 2 okt 2017 
Origin of the Letter G1 and 

Subject of Letter KP failed to be classified 

The characters in the letter 

number are illegible 

9. Pameran dan Publikasi Kegiatan 
Origin of the Letter G1 and 

Subject of Letter TU failed to be classified 

The characters in the letter 

number are illegible 

10. 
07122016 Ijin Buka Blokir Gedung 
BPMP Semarang_PENGANTAR 

Subject of Letter LL failed to be classified 
Data does not match the provided 

Regular Expression pattern 

11. 

Pameran dan Publikasi dalam Kegiatan 

Wonderful Sabang and Marine Expo 
2017 

Origin of Letter & Subject of Letter failed to 

be classified. The letter number 008 / MSV-
UND / IV / 2017 does not the criteria 

Data does not match the provided 

Regular Expression pattern 

12. Bimbingan Teknis Kehumasan 2017 Subject of the Letter TU misclassified to KP Unpredictable. 
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This study adapts, modifies and combines the methods in previous studies (scanned document 

classification with OCR-assisted text approach [17]-[19], hierarchical classification [28], CNN [20]-[22], 

regular expression [23]-[25] and framework Hadoop [29] which in the end this proposed method is able to 

overcome the problem of classifying scanned documents (using a text-based approach with the help of OCR) 

at a depth of 4 levels automatically in a hierarchical manner that is able to classify different document types 

with document conditions that have unstructured text content using CNN and have special patterns (specific 

and short strings) using regular expression and implementation of big data technology using Hadoop 

framework for store and analysis of large-scale data. This method is powerful and effective to overcome the 

multilevel classification problem in the case of this electronic mail document. The inaccuracy of the scanned 

document extraction results from Tesseract OCR causes the strings in the text content to be illegal and Errors 

may occur due to the absence of a regular expression pattern. 

 

 

4. CONCLUSION  

The combination of CNN and regular expression method has successfully solved the problem of 

hierarchical classification of scanned documents with the characteristics of documents containing 

unstructured text content and having special codes in the form of short strings to 4 levels according to the 

automated document hierarchy with an accuracy of 94%. The inaccuracy of the scanned document extraction 

results from Tesseract OCR causes the strings in the text content to be illegible and errors may occur due to 

the absence of a regular expression pattern. Some errors are caused by the unavailability of appropriate 

regular expression patterns, unclear writing, and unpredictable errors. This automatic hierarchical 

classification method is very necessary and useful to replace inefficient manual classification and store 

classified documents on hive databases (Hadoop architecture) to anticipate the increasing and varied growth 

of scanned documents is the right strategies. The future work is to classify documents for the different 

institution and search for the classified scanned documents based on content. 

 

 

APPENDIX 

 

 

 

 

 

Figure 2. Five letter types of digital correspondence documents (PDFImages format) 
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Figure 2. Five letter types of digital correspondence documents (PDFImages format) (Continue) 
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