
Feedforward Neural Networks Initialization
based on Discriminant Learning

Kateryna Chumachenkoa,∗, Alexandros Iosifidisb, Moncef Gabbouja

aFaculty of Information Technology and Communication Sciences, Tampere University,
FI-33720 Tampere, Finland

bDepartment of Electrical and Computer Engineering, Aarhus University, DK-8200 Aarhus,
Denmark

Abstract

In this paper, a novel data-driven method for weight initialization of Multi-
layer Perceptrons and Convolutional Neural Networks based on discriminant
learning is proposed. The approach relaxes some of the limitations of compet-
ing data-driven methods, including unimodality assumptions, limitations on the
architectures related to limited maximal dimensionalities of the corresponding
projection spaces, as well as limitations related to high computational require-
ments due to the need of eigendecomposition on high-dimensional data. We
also consider assumptions of the method on the data and propose a way to
account for them in a form of a new normalization layer. The experiments on
three large-scale image datasets show improved accuracy of the trained mod-
els compared to competing random-based and data-driven weight initialization
methods, as well as better convergence properties in certain cases.

Keywords: Neural networks initialization, discriminant learning

1. Introduction

In recent years, Deep Learning became the dominant paradigm in the fields
of Machine Learning and Computer Vision owing to the availability of large
public data and computational resources. Multilayer Perceptrons (MLPs) and
Convolutional Neural Networks (CNNs) are being widely utilized for a variety
of tasks, including object detection [1, 2, 3], object tracking [4], semantic image
segmentation [5] and action recognition [6, 7].

With the rise of Deep Learning, methods for weight initialization in neural
networks received increased attention, and weight initialization strategies that
can accelerate the training process while leading to competitive performance
remain an open research problem. Multiple approaches have been proposed to

∗Corresponding author
Email addresses: kateryna.chumachenko@tuni.fi (Kateryna Chumachenko),

ai@ece.au.dk (Alexandros Iosifidis), moncef.gabbouj@tuni.fi (Moncef Gabbouj)

solve this problem to date. Early works in the field of artificial neural networks
were relying on weight initialization from random distributions, further evolving
to initialization methods with controlled parameters, such as Glorot [8] or He
initialization [9]. Others methods proposed data-driven initialization procedures
[10, 11, 12, 13, 14, 15], which are described in more detail in Section 2.1. The
main motivation behind the latter approach primarily stems from the nature
of training processes of neural networks: since gradient-based optimization of
non-convex functions leads to local minima solutions, starting the optimization
from a favourable point can result in better performance and faster convergence.

Several data-driven initialization methods were proposed based on statisti-
cal learning, primarily focusing on utilization of Principal Component Analysis
(PCA) [16] or Linear Discriminant Analysis (LDA) [17] to determine the data
transformations in successive layers of the network. Nevertheless, these methods
have a number of limitations: PCA only satisfies the criteria of high variance
in the data while not enforcing discriminative properties, and LDA assumes
unimodal class distributions for the data representations in all the layers of the
neural network. Here it should be noted that while data representations at the
last hidden layer of a trained neural network equipped with softmax/linear out-
put neurons are expected to form unimodal classes, this is not the case for early
layers. Therefore, the assumption of class unimodality throughout the layers of
the network for weight initialization limits the potential of the model. Another
major limitation comes from the limited dimensionality of the projection direc-
tions learnt by these methods, thus limiting the number of neurons/weights that
can be initialized by adopting them.

As a remedy for the above-mentioned limitations, in this paper, we propose a
novel data-driven weight initialization approach based on discriminant learning
that allows to relax the above-mentioned limitations. First, we relax the class
unimodality assumption for the data representations at all network layers by
representing it with several subclasses and formulating the optimization problem
for weights initialization accordingly, hence improving the suitability of a model
for real-world scenarios. Second, the proposed approach relaxes limitations to
the model architecture, as the maximal number of initialized neurons/filters
at a certain layer relies on a controlled parameter, i.e. the total number of
subclasses forming the classification problem. Third, the proposed approach
does not rely on eigendecomposition that becomes computationally intensive
for high-dimensional data, hence providing faster initialization especially for
wide CNN architectures, i.e., those with a large number of neurons/filters in
each layer.

The main contributions of the paper can be summarized as follows:

• A novel weight initialization procedure for MLPs and CNNs is proposed
that leads to flexible network architecture design and potentially better
generalization due to its multi-modal formulation. It is experimentally
shown that the adoption of the proposed initialization procedure leads
to faster convergence of the subsequent gradient-based training process
compared to existing approaches.

2

• A new normalization layer that overcomes limitations related to the as-
sumption of mean-centered data, adopted by the proposed method, as well
as other data-driven network initialization methods is proposed.

• Experimental results show that utilization of a small number of data sam-
ples generally suffices for effective network initialization, hence, further
reducing the computational requirements for training the network.

The remainder of the paper is structured as follows. Section 2 describes the
related methods utilized for weight initialization in neural networks, Section
3 describes the proposed weight initialization approach along with the moti-
vation behind it, Section 4 presents the experiments performed to assess the
proposed approach, along with the experimental results, and Section 5 provides
conclusions of the work.

2. Related Work

Generally, methods for weight initialization of neural networks can be di-
vided into two categories: the first is based on initialization from a random
distribution and the second follows a data-driven process. For a long time, the
most widely-used and straightforward initialization approach was the initial-
ization from a random distribution: a Gaussian distribution with zero mean
and small hand-tuned standard deviation, or from a Uniform distribution in

the range of
[
− 1√

n
, 1√

n

]
, where n is the number of input neurons in the corre-

sponding layer. It has been further observed that such initialization often leads
to poor convergence, and saturated activations. In [8], it was shown that the
commonly-used activation functions, namely, sigmoid, hyperbolic tangent, and
softsign suffer from saturation of activation in the top layers of the network,
when initialized from random uniform distribution. As a remedy, a new weight
initialization method was proposed, with an objective of preserving the vari-
ance of activation vectors between the layers during the forward propagation,
and the variance of the gradients between the layers during backward propaga-
tion. In practice, the following initialization approach is utilized, approximately
satisfying the above-mentioned objectives:

Wj ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
, (1)

where Wj is the weight matrix at layer j, U [·] denotes the Uniform distribu-
tion, and nj and nj+1 denote the number of neurons at layers j and j + 1,
respectively. Hereafter, we refer to this approach as Glorot initialization (also
commonly referred to as Xavier initialization) [8] . Here we should note that,
in its derivation, the method assumes linear activations at the initialization and
that the input feature variances are equal.

A further step towards controlling the statistics of the distribution from
which the weights are initialized was taken in [9], where a similar motivation to

3

that of Glorot is utilized for initialization. Unlike the work in [8], the authors
consider ReLU activation, and show that the proposed approach outperforms
the Glorot initialization especially when used for deep neural networks. The
initialization is done as follows:

Wj ∼ N

[
0,

√
2

√
nj

]
, (2)

i.e., the weights of layer j are initialized from a Gaussian distribution with zero
mean and variance of 2

nj
. Additionally, fully-randomized methods based on

stochastic configuration algorithms have been proposed [18].
As opposed to methods based on random initialization, multiple approaches

exploiting certain data properties have recently been proposed. The most no-
table one is initialization by pre-training on a larger dataset of similar domain1,
such as ImageNet [20] for Computer Vision tasks. Nevertheless, such initializa-
tion was questioned in [21], where it was shown that the benefits arising from
weights initialization based on pre-training generally lie in faster convergence in
earlier iterations, but not necessarily leading to better performance as compared
to random initialization. Other notable data-driven approaches include initial-
ization from cluster centroids obtained by applying (spherical) clustering on
whitened data, hence capturing statistical properties of the dataset [22, 10, 23].
Another method performs normalization of networks’ weights based on the em-
pirical statistics of the network activation obtained from the training data sam-
ples, as well as its gradients [10] Notably, the approach presented in [10] applies
the normalization to both k-means and PCA initialized networks.

2.1. Weight initialization via subspace learning

A set of data-driven weight initialization methods that were proven benefi-
cial for weight initialization in neural networks relies on utilization of subspace
learning techniques. The early works utilizing subspace learning for determining
the weights of neural networks include PCANet [13] and LDANet [14]. These
methods focus on supervised image classification in a CNN-like manner, where
a set of patches are extracted from the training images and flattened to form
a data matrix. From this data representation, a weight matrix is obtained by
applying Principal Component Analysis [16] or Linear Discriminant Analysis
[17]. The resulting weight matrix is subsequently reshaped to obtain a set of
convolutional filters, which are convolved with the training images to obtain
the data representations at the output of the first layer. This process is applied
for several layers2, followed by a pooling operation and an activation function.
In these approaches, no subsequent fine-tuning of the network’s parameters via
back-propagation is performed, while the pooling operation as well as the uti-

1This approach is commonly referred to as transfer learning [19].
2The original LDANet and PCANet methods apply this process twice to determine the

filters of two convolutional layers.

4

lized activation function are specially designed, i.e. they are not among the
commonly-used ones in the field of deep learning. However, these methods can
be perceived as the first baselines drawing the connection between the subspace
learning and deep learning methods.

Further notable attempts of linking subspace learning with deep learning
architectures include LDA-based weight initialization proposed in [15, 24]. By
its nature, this work is more similar to our proposed approach in that the
weights obtained by a discriminant learning method are used for initialization
of the neural network which is further trained with backpropagation, instead
of solely considering the forward propagation scenario. LDA is employed to
initialize the weights of a layer, and each subsequent layer is initialized from
the weight matrix obtained by LDA applied to the outputs of the preceding
layer. Similarly to PCANet and LDANet, the weight matrix is learnt from
patches extracted from the outputs of the previous layer and is flattened to
obtain a rectangular data matrix. The last classification layer is initialized with
the discriminant matrix of LDA, and the network is subsequently trained with
backpropagation.

The authors in [11, 12] proposed a feedforward design approach for initial-
izing the layers in CNN based on data statistics from the output of their pre-
ceding layers. The weights in convolutional layers are obtained from a variant
of Principal Component Analysis proposed by the authors, namely, Subspace
Approximation with Adjusted Bias (Saab). The dense layers that are added
after the convolutional layers are trained by applying a linear regression using
subclass labels obtained by clustering the data. The last fully-connected layer
is trained by linear regression to true class labels. This method focuses on the
forward propagation scenario too.

3. Initialization based on Discriminant Learning

Let us consider a standard dense feedforward neural network. Given a vec-
tor x ∈ RD as input, a neural network with L layers applies a hierarchical
transformation

y = fLa (WT
Lf

L−1
a (WT

L−1 ... f
1
a (WT

1 x + b1) + bL−1) + bL), (3)

where f la(·) is the (element-wise) activation function at layer l, Wl ∈ RDl×Dl+1 is
the corresponding weight matrix, and bl is the bias term. For the sake of simplic-
ity of notation, here we assume that the bias terms are accounted for by using
an augmented version of the data representations of the network layers and,
thus, are incorporated in the corresponding weight matrices Wl, l = 1, . . . , L.
Similarly, a CNN performs a hierarchical data transformation of the form

y = fLa (ŴL ∗ fL−1a (ŴL−1 ∗ ... ∗ f1a (Ŵ1 ∗ x + b1) + bL−1) + bL), (4)

where Ŵl is a set of convolutional filters at layer l, bl is the bias term,
and f la(·) is the activation function. For CNNs which combine convolutional

5

and dense layers, the corresponding data transformation is obtained by simply
combining data transformations of the form in (4) and (3) in a hierarchical
manner.

3.1. Motivation

Most of the earlier data-driven methods primarily focused on the affine trans-
formation of y = WT

l x
(l), where x(l) is the representation of the input sample

at the feature space defined at layer l. To deal with the convolution operation
y = Ŵl ∗x(l) in (4), the convolution operation is transformed to a vector-based
affine transformation by sampling patches from the input x(l), flattening them
to create vectors and determining an affine transformation matrix Wl, which is
further reshaped to form Ŵl. Several works [14, 15] utilize LDA for learning the
matrix Wl, i.e., the projection is obtained by solving the eigendecomposition

problem of S
(l)
w w = λS

(l)
b w and selecting eigenvectors corresponding to smallest

eigenvalues, where S
(l)
w and S

(l)
b are the within-class and between-class scatter

matrices defined on the data representations at the layer l. Others [13, 11, 12]
have applied Principal Component Analysis, i.e, the matrix W is obtained by
performing eigendecomposition on the covariance matrix of the data represen-

tations at layer l, i.e. S
(l)
t .

Both of these approaches have certain limitations. Being an unsupervised
method, PCA does not take advantage of the class label information of the data.
Therefore, one of its limitations lies in the fact that the learnt subspace is only
optimal in terms of preserving the variance of the projected data; however, no
discriminative properties are enforced. Besides, PCA can only learn a (sub)space
with dimensionality at most equal number of dimensions to that of the original
space. This leads to the inability of learning enough meaningful (i.e., those
having discriminative properties) filters/neurons, as the number of filters of the
first layers is generally significantly higher than that of dimensions in the the
input data, especially in the case of CNNs.

Linear Discriminant Analysis provides a remedy to the limitation of PCA
related to the disregard of the class label information of data, finding a sub-
space where the classes are discriminated. However, it relies on an assumption
of unimodality of data of each class, which is rarely the case in real-world sce-
narios, and especially on the earlier layers of the networks. As a result, such an
assumption leads to limitations in the learning potential of the model. Besides,
the limitation of LDA with regard to the ability to learn a reasonable amount of
meaningful neurons or filters is even higher than that of PCA, as the dimension-
ality of the learnt subspace is bounded by the rank of the between-class scatter
matrix, which is, in turn, bounded by the number of classes. Therefore, the use
of LDA for initialization only allows to obtain a very limited number of meaning-
ful projection dimensions, and, consequently, a limited number of meaningful
neuron weights in the layer, putting limitations on the network architectures
that can be initialized using it.

In addition to the above-mentioned limitations, one can notice that both
LDA and PCA rely on eigendecomposition of D × D matrices that becomes

6

computationally intensive especially for high-dimensional data. At the same
time, especially in the case of CNN, the data is likely to reach significantly
high dimensionality: given the data matrix is created similarly to [10, 15, 13],
the dimensionality of the patch matrix corresponding to layer j reaches k2nj ,
where k is the filter size, and nj is the number of filters. Considering commonly-
used CNN models, where the number of filters of convolutional layers generally
ranges from 32 to 512, and a commonly-used filter size of 5 pixels, this leads
to dimensionality ranging from 800 up to 12800, which is substantially high
in terms of computational requirements of eigendecomposition-based subspace
learning methods. For example, in this case the computational complexity of
initialization based on LDA or PCA would reach N(k2nj)

2 + (k2n)3 [25], while
for the proposed approach it is proportional to Nk2njd or k2njN

2 if N < k2nj
and N(k2nj)

2 if N > k2nj [26], where N is the number of samples and d is
the dimensionality of the learnt space, which is in either case less than the
complexity of initialization based on LDA or PCA.

3.2. Proposed approach

In this section we consider the limitations of already existing methods and
propose steps for their relaxation. More specifically, we consider assumptions on
unimodality of data representations in the layers of a network, limitations in the
number of neurons/filters that can be initialized, and the high computational
requirements in high-dimensional settings. A first step towards overcoming these
limitations can be taken by employing Subclass Discriminant Analysis [27], that
relaxes the assumptions on unimodality of classes. To recall, this is achieved
by expressing each class with a set of subclasses determined by applying some
clustering algorithm on the data of each class. Similarly to LDA, SDA optimizes
the Fisher-Rao’s criterion. Considering the optimization problem to be solved
for initializing the weights of the l-th layer, the generalized eigenanalysis problem

S
(l)
t w = λS

(l)
b w is solved, where

S
(l)
t =

N∑
i=1

(x
(l)
i − µ(l))(x

(l)
i − µ(l))T , (5)

S
(l)
b =

C−1∑
i=1

C∑
n=i+1

Ki∑
j=1

Kn∑
h=1

p
(l)
ij p

(l)
nh(µ

(l)
ij − µ

(l)
nh)(µ

(l)
ij − µ

(l)
nh)T , (6)

where C is the number of classes, Ki is the number of subclasses in class i, µ(l) is
the mean of the data representations in layer l, i and n are class labels, and j and

h are subclass labels. p
(l)
ij and p

(l)
lh are the subclass priors, i.e. p

(l)
ij =

Nij

N , where
Nij is the number of samples in subclass j of class i and N is the total number of

samples in X(l) = [x
(l)
1 , . . . ,x

(l)
N] ∈ RDl×N . The matrix Wl ∈ RDl×Dl+1 can be

then formed by the eigenvectors corresponding to the Dl+1 smallest eigenvalues.
Such representation is particularly beneficial in the CNN case, where each

data sample constitutes a representation of a patch from an image. Assuming

7

that patches within the same class corresponding to non-essential background
and those representing the object of interest or certain useful features are clus-
tered into different subclasses, there is no penalization for them being matched
far from each other in the learnt feature space. In contrast, LDA forces all data
samples belonging to the same class to lie close to each other in the projection
space, enforcing unnecessary similarity requirements for essential features and
background patches. Moreover, by utilizing SDA the potential dimensionality
of the subspace is bounded by the total number of subclasses forming the prob-
lem at hand. That is, the maximum number of discriminant directions that can
be determined is increased to

∑C
i=1Ki. The potential set of architectures is,

therefore, significantly expanded compared to LDA. However, it is still bounded
by the dimensionality of input data. We propose to overcome this limitation by
following a process inspired by Graph Embedding [28] and Spectral Regression
[29] in the following.

The criterion function of SDA can be reformulated utilizing Graph Embed-
ding framework [28]. For data centered at µ(l), it can be seen that

S
(l)
t = X(l)X(l)T , (7)

S
(l)
b = X(l)L

(l)
b X(l)T , (8)

where L
(l)
b is the Laplacian matrix defined on the data representations at the

l-th layer of the network for the between-class matrix:

L
(l)
b (i, j) =

N−Nci

N2Nch
, if z

(l)
i = z

(l)
j = h

0, if z
(l)
i 6= z

(l)
j , ci = cj

− 1
N2 , if ci 6= cj

, (9)

where ci is the class label of x
(l)
i , and z

(l)
i is the subclass label of x

(l)
i , Nc is the

number of samples in class c and N
(l)
ch is the number of samples in subclass h of

class c at layer l.

Exploiting the new formulations of S
(l)
b and S

(l)
t , and Spectral Regression

[29], the solution can be obtained by following several steps:

1. The between-class Laplacian matrix L
(l)
b is created following Eq. 9.

2. Assuming there exists such t that t = X(l)Tw, the eigenanalysis problem

L
(l)
b t = λt is solved and the matrix T(l) is created out of the obtained

vectors.

3. The regression of T(l) to W(l) is performed as

W(l) =
(
X(l)X(l)T + αI

)−1
X(l)T(l)T . (10)

The matrix W(l) ∈ RDl×Dl+1 can be further orthogonalized or l2-normalized. In
practice, we observed that l2-normalization results in better performance. More-

8

over, when applying l2-normalization instead of orthogonalization, the number
of projection directions Dl+1 can be expanded beyond the dimensionality Dl of
the data representations at layer l. This is achieved by performing a class-wise
clustering process to determining

∑C
i=1Ki > Dl+1 subclasses, and using the

eigenvectors of L
(l)
b corresponding to the largest Dl+1 eigenvalues to form T(l).

Such an approach allows us to define the number of neurons in layer l + 1 by
controlling the total number of subclasses in layer l, leading to the initialization
of as many meaningful neurons as is required by the architecture of the net-

work. Note that, due to the block structure of L
(l)
b , the first C − 1 dimensions

are guaranteed to encode the class discriminant information, similarly to LDA.
In this sense, the layer initialized using the proposed approach is guaranteed to
have at least the same discriminative power as using LDA.

Here we should note that the use of clustering and subsequent cluster label
information has been previously performed in [22, 11]. In [22], clustering is ap-
plied to the whole dataset and the cluster centroids are used for initialization. In
[11], clustering is applied to the whole dataset and one-hot encoded vectors are
created using the obtained cluster labels, followed by a least-squares regression
to obtain the projection matrix used for initialization. In both of these settings,
however, the class label information is not considered. Therefore, the use of
such methods in a supervised setting is rather limited. Besides, the proposed
approach determines the projection directions in which the data achieves opti-
mal subclass separability, rather than regressing directly to the cluster labels.

The proposed approach can further be extended to improve the computa-

tional efficiency on large datasets, where eigendecomposition of L
(l)
b becomes

infeasible. The speed-up is achieved by observing that L
(l)
b has a certain block

structure, therefore its eigenvectors have a similar block structure as well. Given

that a vector of ones is an eigenvector of L
(l)
b , we can create the

∑C
i=1Ki − 1

target vectors of random values with desired structure and orthogonalize them
starting from a vector of ones. The detailed procedure for creation of target vec-
tors is shown in Algorithm 1. The approach has recently been shown beneficial in
a conventional subspace learning setting for speeding up eigendecopmposition-
based SDA [26, 30], and an incremental solution was proposed [31]. While the
methods in [26, 30, 31] were proposed for purely shallow statistical learning, here
we investigate the utilization of similar ideas for data-driven neural network ini-
tialization. The suitability of the proposed ideas for network initialization is
dictated by a range of advantages provided by the method in terms of account-
ing for potential multi-modality present in intermediate layers of the network,
faster initialization compared to conventional data-driven methods, as well as
absence of restrictions in terms of width of neural network layers. At the same
time we investigate ways of addressing the limitations of the methodology in
terms of assumptions on data properties. For the sake of clarity, hereafter we
refer to the proposed initialization approach as fastSDA as defined in [26, 30, 31]
in contrary to eigendecomposition-based SDA.

9

Algorithm 1: Discriminant target vectors calculation

Function getTargets(y,ycl,C,Z,N ,D):
Input: y : N × 1 vector with class labels; ycl : N × 1 vector with the cluster

labels; Z : number of clusters in each class; C : number of classes; N :
number of elements; D : dimensionality of data;

%class-level vectors;

for i ← iterate through 1:C do
RV als = random(1,C-1)
T (l)[y == i, :] = tile(RV als, len(y==i),1)

end

S ← unique numbers of elements in each class sorted in ascending order;

%cluster level vectors;

for s ← iterate through S do
k ← classes with s elements; m ← length(k);
RV als = random(m ∗ Z, m*(Z - 1))
for i ← iterate through k do

for j ← iterate through 1:Z do
ixs = where(y == i & ycl == j)
Tclust(l)[ixs,:]← tile(RV als, (length(ixs),1))

end

end

T (l) ← append Tclust(l) as columns on the right;

end

T (l) ← append N×1 vector of ones as a column on the left;

Orthogonalize T (l); remove first column of T (l);
return T (l)T

Algorithm 2: Initialization of lth Dense layer.

Function dense init(X(l),y,N neur,C,D):

Input: X(l) : D ×N data representation at lth layer; y : N × 1 vector with
class labels;N neur :number of neurons;

Z ←ceil(N neur/C)

X(l) ← X(l)−mean(X(l))√
var(X(l))+ε

ycl ← Cluster(X(l), Z)
T (l) ← getTargets(y,ycl,C,Z,N ,D)
if D < N then

R← (chol(X(l)X(l)T))−1

W (l) ← RRTX(l)T (l)T

else

R← (chol(X(l)TX(l)))−1

W (l) ← X(l)RTRT (l)T

end

W (l) ←Select first N neur dimensions of W (l) and normalize with l2 norm
return W (l)

3.3. Initialization procedures

The proposed approach can be used for initializing Dense and Convolutional
layers following equations (3) and (4). The initialization procedure starts from

10

learning the weight matrix of the first layer on the input data. The data is
further transformed with the learnt matrix and transformations defined by the
architecture, e.g., Activation and Pooling. The transformed data is subsequently
used for initializing the next Dense or Convolutional layer, and the process
continues until the Output layer, which is initialized randomly3. After the
initialization of the whole network, it is trained with backpropagation in the
conventional manner. The procedures for initializing weight matrix W(l) and
filters Ŵ(l) for the lth Dense or Convolutional layer are shown in Algorithms 2
and 3, respectively.

In order to account for the mean-centering assumption on the data, the
input data at each layer is standardized during the weight initialization step.
Therefore, to take this into account during the backpropagation step, we add
Batch Normalization layers before each of the Dense layers in the architecture.

3.4. Vector Batch Normalization

Initializing the parameters of a neural network with the proposed method
requires the training data to be mean-centered, such that Eqs. (7) and (8)
express the total and the between-class scatter of the training data. For ini-
tializing Dense layers, this is accounted by means of Batch Normalization. For
Convolutional layers, the standard Batch Normalization does not satisfy our
needs, since the normalization is done using the per-channel mean and vari-
ance. Instead, we would like to normalize the feature maps in a way that would
produce the mean-centered rectangular patch matrix. In other words, we seek
to standardize each non-overlapping k×k×dl−1 patch with the mean and stan-
dard deviation of all such patches (or alternatively, all patches in a mini-batch).
Therefore, to account for mean-centering in Convolutional layers, we introduce
a new normalization layer that we further refer to as Vector Batch Normaliza-
tion. We extract all non-overlapping k× k× dl−1 dimensional patches from the
input appropriately padded with zeros. Further, each patch is flattened to a
1× k2dl−1 vector and the mean and variance are calculated from the resulting
NNp × k2dl−1 data matrix. The feature maps are then normalized as follows:

x̂k
i =

xk
i − µB√
σ2
B + ε

, (11)

yk
i = γx̂k

i + β, (12)

where xk
i is the ith flattened patch, µB and σ2

B are the 1× k2dj−1-dimensional
mean and variance vectors of the vectorized patches in the minibatch, and γ
and β are the learnt parameters controlling the scale and offset, initialized as

3Least-squares regression to class labels can also be applied to initialize the last layer.
However, we observed that in most cases random initialization of the output layer results in
better generalization performance of the models during the subsequent training using back-
propagation.

11

Algorithm 3: Initialization of lth Convolutional layer

Function VectorBNorm(X(l),f size):

Input: X(l) : N × S1× S2×D data representation at lth layer; f size : filter
size

X(l) ← Zero-pad X(l) to shape divisible by f size

X
(l)
fl ← Extract and vectorize all f size× f size non-overlapping patches from

X(l)

µ ← mean(X
(l)
fl); σ ← var(X

(l)
fl);

for patch ← iterate through all non-overlapping f size× f size patches in X(l)

do

patch← flatten(patch)−µ√
σ+ε

patch← Reshape patch to (f size× f size×D)
end

return X(l)

Function conv init(X(l),y,N filt, f size):

Input: X(l) : N × S1× S2×D data representation at lth layer; y : N × 1
vector with class labels; N filt :number of filters; f size :filter size;

Z ← ceil(N filt/C)
X(l) ← VectorBNorm(X(l), f size)

X
(l)
fl ← Extract and vectorize all f size× f size non-overlapping patches from

X(l)

ycl ← Cluster(X
(l)
fl , Z)

T (l) ← getTargets(y,ycl,C,Z,N ,D)
if D < N then

R ← (chol(X
(l)
fl X

(l)T
fl))−1

W (l) ← RRTX
(l)
fl T

(l)T

else

R ← (chol(X
(l)T
fl X

(l)
fl))−1

W (l) ← X
(l)
fl R

TRT (l)T

end

W (l) ←Select first N filt dimensions of W (l) and normalize with l2 norm
Ŵ (l) ←Reshape W (l) to (N filt, f size, f size,D)

return Ŵ (l)

1 and 0, respectively. Similarly to conventional Batch Normalization, moving
mean and moving variance are estimated for normalization during inference.

4. Experimental setup

In order to evaluate the proposed network initialization approach, we ran ex-
periments on three image classification datasets: CIFAR-10 [32], MNIST [32],
and Linnaeus-5 [33]. CIFAR-10 dataset contains images of 32 × 32 pixels with
3 channels and 10 object categories: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. MNIST dataset contains grayscale images of size
28×28 posing a handwritten digit recognition problem. Linnaeus-5 dataset con-
tains RGB images of 32×32 dimensionality of 5 object categories: berry, bird,

12

dog, flower, and other. We use the provided train-test splits for evaluation. In
CIFAR-10 dataset, training set is split into 48,000 images used for training, and
12,000 for validation. In MNIST dataset, training set is split into 40,000 and
10,000 images for training and validation, respectively. In both datasets, 10,000
images are used for testing. In Linneaus-5 datasets, 4,800 images are used for
training, 1,200 for validation, and 2,000 for testing. Sample images from each
dataset are shown in Fig. 1. Additionally, we employ two non-image datasets:
CovType [34] and KDD [35]. CovType poses the task of classification of forest
cover type from cartographic variables, having 7 classes with 54 attributes. We
utilize 348,612 samples for training, and 116,200 for testing and validation. The
KDD dataset poses the task of classification of network traffic into different
types of attacks. The dataset has 23 classes and 41 attributes. We utilize a
subset of 296,431 samples for training, and 98,795 for validation and testing.

Figure 1: Examples of dataset images from Linnaeus-5 (top), MNIST (middle) and CIFAR-10
(bottom) datasets.

In this work, we focus on settings that require small models, as well as on
settings where large datasets might not be available, and hence data-dependant
initialization is especially required for model performance. Experiments with
initialization of deeper models are therefore left for future work. We evaluate
our approach on two CNN architectures with 5 and 6 hidden layers, and MLPs
with 4 and 5 hidden layers. Recall that following the proposed methodology,
the maximum number of neurons in MLPs or filters in CNNs at a certain layer
is equal to

∑C
i=1Ki, where Ki is the number of subclasses for class i. We set

Ki = Z subclasses for all classes, leading to CZ−1 neurons in MLPs or filters in
CNNs at a certain layer. In our experimental setup we construct the networks
starting from 16 or 32 subclasses and reducing the number of subclasses by a
factor of 2 with each subsequent layer. This results in two architectures with
the layers having width of{319, 159, 79, 39, 19} or {159, 79, 39, 19} neurons/filters
for MNIST and CIFAR datasets, and {159, 79, 39, 19, 9} or {79, 39, 19, 9} neu-
rons/filters for Linnaeus-5 dataset. In CNN case, another fully-connected layer
of 128 neurons is added after the last convolutional layer, initialized following
Algorithm 2. The output layer consists of 5 or 10 neurons depending on the

13

dataset, and a softmax activation function.

Figure 2: Structure of fastSDA-initialized Dense network

The overall architecture structure for MLPs is outlined in Fig. 2. We apply
an activation function after each Dense layer, and a Batch Normalization layer
before each Dense layer except the output layer (assuming the input data is
standardized). The overall structure of the CNN architectures is shown in Fig.
3. We apply a Vector Batch Normalization layer before every convolution layer,
followed by Max Pooling and Activation. After the last convolutional block,
data is flattened and Batch Normalization is applied, followed by a Dense layer
with 128 neurons, an activation function, and an output layer with softmax
activation. For all the networks we perform experiments with three commonly-
used activation functions: ReLU, LeakyReLU with α=0.3, and Tanh (hyperbolic
tangent). The output layer is initialized randomly from a Gaussian distribution
with zero mean and standard deviation equal to 0.05. In CNN, the bias terms
are omitted in all models, and in MLPs they are initialized from zeros. To obtain
the cluster labels during fastSDA initialization, mini-batch k-means clustering
is performed [36].

Figure 3: Structure of fastSDA-initialized CNN

In MLPs we compare the proposed initialization approach with random ini-
tialization from Gaussian distribution with µ = 0 and σ = 0.05 (RNorm),

random initialization from uniform distribution in the range
[
− 1√

n
, 1√

n

]
(RUni),

14

where n is the number of input neurons in the corresponding layers. We also pro-
vide comparisons with Glorot initialization [8] and He initialization [9]. We also
compare the results with data-driven approaches by substituting the fastSDA
step with either K-Means initialization (KM), LDA, or PCA. For K-Means ini-
tialization, we whiten the data and apply spherical clustering into n clusters,
subsequently initializing each neuron with one of the cluster centroids following
[37]. In LDA and PCA initialization, we initialize the neurons to the eigenvec-
tors of the corresponding weight matrices, similarly to [15, 24]. Since LDA and
PCA can return at maximum C−1 and D eigenvectors, respectively, in the case
that the number of eigenvectors corresponding to non-zero eigenvalues are lower
than the number of neurons required by the architecture, we initialize them ran-
domly from a Gaussian distribution with zero mean and standard deviation of
0.05. In LDA and PCA, eigenvector matrices are normalized such that the l−2
norm of each column is equal to 1, similarly to the proposed approach, to ensure
that any difference in performance arises from the utilized statistical learning
method rather than from normalization. The output layers are initialized ran-
domly, similarly to our proposed approach. All the initialization methods are
evaluated on the same architectures as the proposed approach.

Similarly, in CNN, we compare the proposed initialization approach with
Glorot initialization [8], He initialization [9], random Gaussian and random uni-
form distributions with the parameters similar to the ones utilized in MLPs,
K-Means initialization, and PCA initialization. We use the same architecture
as shown in Fig. 3 for all initialization methods. Besides, for random initializa-
tions, He, and Glorot methods we provide the results for the architectures where
Vector Batch Normalization is replaced with conventional Batch Normalization,
to ensure that the accuracy gain obtained with the proposed approach does not
result solely from the new normalization layer.

It can be noted that the patch extraction in the initialization of CNN re-
sults in a significant increase in the number of data samples used to learn the
projection space, which might lead to undesired overhead during the clustering
step of the proposed approach. As a remedy for this, we show that a small
number of samples is generally sufficient to learn a good projection space that
leads to competitive performance. To showcase this, we provide the results in
which only a limited number of training samples is used during the initialization
step. Specifically, we test the proposed approach with 200 and 500 samples per
class (i.e., the total of 2000 or 5000 samples in CIFAR-10 and MNIST, and 1000
or 2500 samples in Linnaeus-5 dataset). Besides, we also evaluate the methods
without utilization of any type of Batch Normalization. In this case, normal-
ization of data is also not performed during learning of the projection space
initialization of the weights, and the solution is, therefore, approximate.

We train the models with Stochastic Gradient Descent with a learning rate
of 0.001, a batch size of 32, and categorical cross-entropy as the loss function
until the accuracy on the validation set stops improving for 10 epochs. The
model that resulted in the best validation accuracy is then used for reporting
the results on the test set. Data in MLP experiments is standardized and images
in CNN experiments are mean-centered and rescaled to match the range of 0 to

15

Table 1: Accuracies on MLP architectures

Linnaeus-5
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 37.25 31.30 30.40 29.55 32.50 33.60
RUni 35.05 35.25 31.35 30.95 30.95 32.65
He 36.70 32.45 32.95 38.55 29.65 32.00
Glorot 39.55 31.35 33.90 37.00 30.60 36.25
KM 38.65 34.70 35.60 40.75 31.00 32.40
LDA 32.65 32.70 33.00 37.25 31.40 33.00
PCA 32.95 34.60 33.90 33.30 31.90 35.65
fSDA 39.10 38.10 36.80 38.60 40.35 36.50
fSDA500 37.05 38.45 37.00 37.80 37.80 37.05
fSDA200 36.30 35.30 34.40 35.20 30.20 34.05

CIFAR-10
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 47.46 45.69 39.78 47.10 43.28 38.36
RUni 45.68 42.09 36.77 45.42 42.49 38.12
He 47.26 43.89 40.30 46.72 41.65 39.00
Glorot 47.16 44.61 42.21 47.14 41.66 40.86
KM 47.15 45.81 42.35 48.47 45.44 41.81
LDA 46.09 44.59 40.44 46.44 43.46 39.69
PCA 48.85 45.04 40.66 47.29 42.91 40.24
fSDA 48.20 46.32 44.51 47.97 48.18 43.49
fSDA500 48.56 47.32 43.65 48.77 48.48 42.66
fSDA200 47.55 46.19 43.55 46.93 46.40 42.62

MNIST
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 96.54 96.44 95.78 96.42 96.26 96.06
RUni 95.85 95.11 93.59 96.33 95.70 94.46
He 96.33 96.06 95.44 96.22 95.18 95.29
Glorot 96.85 96.38 96.15 96.55 96.13 95.80
KM 96.52 96.38 96.17 96.76 96.25 96.29
LDA 96.12 95.75 95.98 96.44 95.79 95.71
PCA 96.72 96.44 96.11 96.59 96.10 95.67
fSDA 96.85 96.56 96.34 96.72 96.70 96.35
fSDA500 96.81 96.89 96.34 96.95 97.29 96.53
fSDA200 97.22 96.72 95.92 97.12 96.68 96.83

1.

4.1. Results

The accuracy for MLP models with different initialization methods is shown
in Table 1 and Table 2, where we report results on three activation functions
and two architectures, i.e., LReLU16 stands for architecture corresponding to 16
subclasses as described earlier and Leaky ReLU activation function. Similarly,
Tables 3 and 4 show the accuracies for CNNs without and with normalization
layers, respectively. The best accuracy is highlighted in bold.

16

Table 2: Classification results of linear methods in COVTYPE and KDD datasets

COVTYPE
ReLU16 LReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 58.81 60.11 63.65 57.35 52.08 52.14
RUni 59.19 59.25 60.37 54.08 59.90 56.33
He 59.61 61.48 59.15 54.84 52.22 54.37
Glorot 63.42 59.96 63.88 53.68 51.29 53.71
KM 59.80 63.01 61.46 55.91 59.35 55.05
LDA 60.68 60.20 65.07 53.42 56.01 54.27
PCA 59.89 59.24 64.13 52.51 56.10 56.91
fSDA 63.97 57.42 63.14 57.65 60.83 54.60
fSDA500 61.39 63.84 62.58 51.54 57.06 55.73
fSDA200 63.66 62.65 63.13 56.84 53.29 58.04

KDD
ReLU16 LReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 97.10 95.88 96.79 98.96 97.88 99.13
RUni 98.48 96.75 98.34 97.73 97.52 99.05
He 90.29 94.28 97.92 97.48 97.70 99.20
Glorot 96.98 96.78 98.31 97.62 97.95 9823
KM 96.88 95.99 98.68 98.43 97.70 98.00
LDA 97.12 96.05 98.36 97.92 98.12 98.94
PCA 97.19 96.63 97.73 98.85 96.64 99.17
fSDA 96.62 96.86 97.56 98.18 97.31 98.87
fSDA500 98.73 98.08 96.96 99.17 98.42 98.05
fSDA200 97.30 96.68 98.50 99.03 97.67 98.46

17

Table 3: CNN results without normalization

Linnaeus-5
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 63.05 55.70 60.85 57.40 60.00 59.10
RUni 48.15 50.95 54.65 52.55 50.40 56.30
He 55.70 55.95 61.85 58.85 56.15 58.60
Glorot 61.85 61.75 60.40 61.50 60.90 62.10
KM 61.90 52.00 46.50 63.25 63.85 45.45
PCA 64.50 54.05 59.35 61.30 64.70 62.15
fSDA 64.75 48.85 62.10 64.55 61.90 63.55

CIFAR-10
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 68.54 68.29 67.08 66.35 65.40 65.67
RUni 64.02 62.02 66.53 69.01 68.65 70.92
He 68.33 67.75 70.68 68.77 69.25 72.61
Glorot 70.27 70.49 71.00 71.01 70.93 71.28
KM 70.46 69.75 70.72 72.25 71.41 70.70
PCA 70.31 70.20 70.70 71.87 70.62 71.10
fSDA 71.10 69.83 71.01 72.66 71.52 70.46

MNIST
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 98.99 98.96 99.23 98.81 98.98 99.18
RUni 98.78 99.01 99.13 98.93 99.05 99.35
He 98.85 98.92 99.24 98.91 98.86 99.30
Glorot 98.79 98.79 99.09 99.00 98.68 99.24
KM 99.03 99.02 99.21 99.01 99.14 99.10
PCA 99.01 99.13 99.27 98.97 99.08 99.18
fSDA 99.05 99.03 99.28 99.08 99.17 99.26

As can be seen from Table 1, in the majority of architectures and datasets,
the proposed initialization outperforms other competing methods in terms of
accuracy. In the CNN scenario, the proposed approach often outperforms com-
peting methods already without considering mean-centering and the use of any
type of normalization layers. We can see that mean-centering of the data dur-
ing the initialization and the subsequent use of VectorBatchNormalization layers
result in improved accuracy even further in the vast majority of the scenarios.
Note that such normalization also leads to improved accuracy of PCA and K-
Means initialization in most of the cases.

Considering the initialization using smaller number of samples, we observe
that in the CNNs, both 200 and 500 samples are often sufficient for outper-
forming the competing methods (in the case fSDA200 or fSDA500 outperforms
competing methods except fSDA, it is underlined in the tables). Considering
the MLP initialization, the results with regard to initialization with a smaller
number of samples are rather similar to that of CNN and the use of a small
number of samples generally leads to a fair performance. Another fact worth

18

Table 4: CNN results with normalization layers

Linnaeus-5
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N
o
rm

RNorm 52.55 51.45 48.80 51.75 50.10 46.15
RUni 59.00 55.25 49.65 58.50 58.30 47.70
He 55.00 52.20 50.55 57.30 53.95 50.10
Glorot 54.50 54.95 53.00 57.20 56.35 52.60

V
ec
B
N
o
rm

RNorm 49.55 47.05 44.85 50.80 47.70 41.85
RUni 53.90 51.55 44.30 51.85 52.90 43.80
He 55.15 53.40 50.75 57.20 54.10 51.15
Glorot 56.40 52.90 53.00 58.85 57.05 52.90
KM 60.70 62.40 60.85 61.55 58.70 57.65
PCA 60.90 62.90 60.00 63.90 60.35 59.75
fSDA 64.25 62.30 61.75 59.75 62.70 61.75
fSDA500 62.00 64.35 62.10 61.45 64.20 61.70
fSDA200 60.65 62.90 59.70 60.95 64.05 59.20

CIFAR-10
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N
o
rm

RNorm 66.17 63.67 59.35 64.89 62.05 63.78
RUni 69.50 69.38 62.32 71.66 70.23 64.88
He 68.49 68.74 65.89 70.18 71.34 64.57
Glorot 71.71 72.04 68.41 73.77 73.51 66.94

V
ec
B
N
o
rm

RNorm 63.65 61.89 59.96 64.50 60.68 62.71
RUni 64.99 65.71 54.70 67.31 66.65 56.32
He 69.17 68.17 64.24 71.54 70.11 64.88
Glorot 71.45 71.75 65.79 73.73 72.88 68.56
KM 72.03 75.01 68.52 77.18 76.20 67.03
PCA 72.67 74.40 68.06 72.71 77.17 71.65
fSDA 75.02 75.36 70.59 76.66 77.79 71.87
fSDA500 74.13 74.35 69.80 71.29 76.22 72.60
fSDA200 70.32 74.57 69.35 75.71 77.33 71.39

MNIST
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N
o
rm

RNorm 98.82 98.78 98.45 98.94 98.70 98.41
RUni 99.16 99.20 99.03 99.11 99.19 99.04
He 99.00 99.17 99.03 99.19 99.30 99.10
Glorot 99.10 99.30 99.23 99.22 99.35 99.24

V
ec
B
N
o
rm

RNorm 98.76 98.35 98.30 98.76 98.63 98.19
RUni 98.99 98.81 98.49 99.10 98.92 98.58
He 99.03 99.14 98.95 99.13 99.14 98.87
Glorot 99.18 99.21 99.08 99.15 99.16 99.22
KM 99.10 99.07 99.12 99.21 99.20 99.18
PCA 98.82 99.18 99.20 99.25 99.24 99.34
fSDA 98.67 99.26 99.24 99.25 99.24 99.28
fSDA500 98.98 99.14 99.17 97.92 99.13 99.10
fSDA200 98.65 99.04 95.16 99.17 99.18 99.05

19

noticing is that in a few cases, the use of a smaller number of samples leads to
performance improved compared to using the full dataset. A possible interpre-
tation of this is that the model trained on a smaller number of samples overfits
less to the training data, thus providing better generalization properties.

Figure 4: Convergence plots on MLPs. Datasets top to bottom: Linnaeus-5, CIFAR-10,
MNIST

Figures 4 and 5 show the convergence speed of different methods, where we
plot the accuracy on the validation set versus the number of training epochs.
For the sake of variety, we provide the results on architectures corresponding
to 32 subclasses and ReLU activation function for MLP architectures, and 16
subclasses and LeakyReLU activation function for CNN architecture. The plots
outline several essential points: we observe that fastSDA-initialized models gen-
erally start from a higher accuracy compared to other methods, and generally
they also take less epochs to converge. This is clearly seen especially on the
MLP architectures. In addition, we can see that utilization of a larger number
of samples for initialization results in a higher initial accuracy and a faster con-
vergence compared to using a smaller number of samples. In CNN, we observe
that the convergence properties are not as good as in the MLP case, and our
proposed methods are mostly doing on-par with competing ones. However, this

20

Figure 5: Convergence plots on CNNs. Datasets top to bottom: Linnaeus-5, CIFAR-10,
MNIST

is compensated by the fact that our methods are able to achieve a better overall
accuracy, and a more detailed investigation on the convergence properties of
CNNs is left as a future work. Overall, these observations support our intuition
that fastSDA initialization allows to start the optimization process from a more
favourable point in the feature space.

For reference, we provide the initialization times in seconds for larger archi-
tecture corresponding to 32 subclasses for MLPs and CNNs in Table 5. As can
be seen, the speed of initialization depends both on dimensionality and dataset
size (recall that MNIST has 1 channel unlike CIFAR-10 and Linnaeus-5 that
have 3 channels, and Linnaeus-5 is the smallest dataset). In MLPs, the overhead
created by clustering plays a bigger role compared to dimensionality of data,
leading to fastSDA with full training data being slower than PCA. However, in
CNN and when using a smaller number of images for initialization, our approach
is generally faster.

21

Table 5: Times for initialization in 32-subclass architecture (seconds)

MLP
KM LDA PCA fSDA fSDA500 fSDA200

CIFAR 108 1251 25 108 42 26
MNIST 73 68 3 41 11 8
LIN 23 176 23 25 16 8

CNN
KM PCA fSDA fSDA500 fSDA200

CIFAR 22020 12364 6315 807 532
MNIST 16301 6158 4516 521 294
LIN 958 1208 369 216 152

5. Conclusion

In this paper we proposed a novel data-driven approach for weight initializa-
tion based on discriminant learning. The proposed initialization was formulated
for dense and convolutional layers appearing in Multilayer Perceptrons (MLPs)
and Convolutional Neural Networks (CNNs). In addition, we considered some of
the limitations of the method caused by assumptions on the data and proposed
ways to remedy them. Experimental results show that the proposed approach
provides several benefits compared to competing ones, including improved train-
ing accuracy and initial accuracy, while achieving equal or faster convergence
and initialization time. In addition, we showed that the initialization time can
be improved even further by applying the initialization based on a small number
of samples with no degrading effect on accuracy.

Acknowledgment

This work is supported by Business Finland under project 5G Vertical Inte-
grated Industry for Massive Automation (5G-VIIMA). A. Iosifidis acknowledges
funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 957337 (MARVEL).

References

[1] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, Centernet: Keypoint
triplets for object detection, in: Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 6569–6578.

[2] Z.-Q. Zhao, P. Zheng, S.-t. Xu, X. Wu, Object detection with deep learn-
ing: A review, IEEE transactions on neural networks and learning systems
30 (11) (2019) 3212–3232.

[3] K. Chumachenko, A. Männistö, A. Iosifidis, J. Raitoharju, Machine learn-
ing based analysis of finnish world war ii photographers, IEEE Access 8
(2020) 144184–144196.

22

[4] S. Yun, J. Choi, Y. Yoo, K. Yun, J. Y. Choi, Action-driven visual object
tracking with deep reinforcement learning, IEEE Transactions on Neural
Networks and Learning Systems 29 (6) (2018) 2239–2252.

[5] C. Li, W. Xia, Y. Yan, B. Luo, J. Tang, Segmenting objects in day and
night: Edge-conditioned cnn for thermal image semantic segmentation,
IEEE Transactions on Neural Networks and Learning Systems (2020).

[6] X. Chen, J. Weng, W. Lu, J. Xu, J. Weng, Deep manifold learning combined
with convolutional neural networks for action recognition, IEEE transac-
tions on neural networks and learning systems 29 (9) (2017) 3938–3952.

[7] A. Iosifidis, A. Tefas, I. Pitas, ”view-invariant action recognition based
on artificial neural networks, IEEE Transactions on Neural Networks and
Learning Systems 23 (3) (2012) 412–424.

[8] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 2010, pp. 249–256.

[9] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[10] P. Krähenbühl, C. Doersch, J. Donahue, T. Darrell, Data-dependent initial-
izations of convolutional neural networks, arXiv preprint arXiv:1511.06856
(2015).

[11] C.-C. J. Kuo, M. Zhang, S. Li, J. Duan, Y. Chen, Interpretable convolu-
tional neural networks via feedforward design, Journal of Visual Commu-
nication and Image Representation 60 (2019) 346–359.

[12] Y. Chen, Y. Yang, M. Zhang, C.-C. J. Kuo, Semi-supervised learning via
feedforward-designed convolutional neural networks, in: 2019 IEEE Inter-
national Conference on Image Processing (ICIP), IEEE, 2019, pp. 365–369.

[13] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, Pcanet: A simple
deep learning baseline for image classification?, IEEE transactions on image
processing 24 (12) (2015) 5017–5032.

[14] Y. Ge, J. Hu, W. Deng, Pca-ldanet: A simple feature learning method
for image classification, in: 2017 4th IAPR Asian Conference on Pattern
Recognition (ACPR), IEEE, 2017, pp. 370–375.

[15] M. Alberti, M. Seuret, V. Pondenkandath, R. Ingold, M. Liwicki, Historical
document image segmentation with lda-initialized deep neural networks,
in: Proceedings of the 4th International Workshop on Historical Document
Imaging and Processing, 2017, pp. 95–100.

23

[16] R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd Edition, Wiley,
New York, NY, USA, 2000.

[17] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification, John Wiley &
Sons, 2012.

[18] D. Wang, M. Li, Stochastic configuration networks: Fundamentals and
algorithms, IEEE transactions on cybernetics 47 (10) (2017) 3466–3479.

[19] M. Rosenstein, Z. Marx, L. Kaelbling, T. Dietterich, To transfer or not to
transfer, in: Neural Information Processing Workshop on Transfer Learn-
ing, 2005, pp. 1–4.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A
Large-Scale Hierarchical Image Database, in: CVPR09, 2009.

[21] K. He, R. Girshick, P. Dollár, Rethinking imagenet pre-training, in: Pro-
ceedings of the IEEE international conference on computer vision, 2019,
pp. 4918–4927.

[22] A. Coates, A. Y. Ng, Learning feature representations with k-means, in:
Neural networks: Tricks of the trade, Springer, 2012, pp. 561–580.

[23] J. Mairal, P. Koniusz, Z. Harchaoui, C. Schmid, Convolutional kernel net-
works, in: Advances in neural information processing systems, 2014, pp.
2627–2635.

[24] M. Seuret, M. Alberti, M. Liwicki, R. Ingold, Pca-initialized deep neural
networks applied to document image analysis, in: 2017 14th IAPR In-
ternational Conference on Document Analysis and Recognition (ICDAR),
Vol. 01, 2017, pp. 877–882.

[25] D. Cai, X. He, J. Han, Training linear discriminant analysis in linear time,
in: 2008 IEEE 24th International Conference on Data Engineering, IEEE,
2008, pp. 209–217.

[26] K. Chumachenko, J. Raitoharju, A. Iosifidis, M. Gabbouj, Speed-up and
multi-view extensions to subclass discriminant analysis, Pattern Recogni-
tion 111 (107660) (2020) 1–15.

[27] M. Zhu, A. Martinez, Subclass discriminant analysis, IEEE Transactions
on Pattern Analysis and Machine Intelligence 28 (2006).

[28] Y. Shuicheng, X. Dong, B. Zhang, H. Zhang, Q. Yang, S. Lin, Graph em-
bedding and extensions: a general framework for dimensionality reduction,
IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007)
40–51.

[29] D. Cai, X. He, J. Han, Srda: an efficient algorithm for large scale discrimi-
nant analysis, IEEE Transactions on Knowledge and Data Engineering 20
(2007) 1–12.

24

[30] K. Chumachenko, M. Gabbouj, A. Iosifidis, Robust fast subclass discrimi-
nant analysis, in: European Signal Processing Conference, 2020.

[31] K. Chumachenko, J. Raitoharju, M. Gabbouj, A. Iosifidis, Incremental
fast subclass discriminant analysis, in: International Conference on Image
Processing, 2020.

[32] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from
tiny images (2009).

[33] G. Chaladze, L. Kalatozishvili, Linnaeus 5 dataset for machine learning,
Tech. rep., Tech. Rep (2017).

[34] J. A. Blackard, D. J. Dean, Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from car-
tographic variables, Computers and electronics in agriculture 24 (3) (1999)
131–151.

[35] J. Stolfo, W. Fan, W. Lee, A. Prodromidis, P. K. Chan, Cost-based model-
ing and evaluation for data mining with application to fraud and intrusion
detection, Results from the JAM Project by Salvatore (2000) 1–15.

[36] D. Sculley, Web-scale k-means clustering, in: Proceedings of the 19th in-
ternational conference on World wide web, 2010, pp. 1177–1178.

[37] A. Coates, A. Y. Ng, Learning feature representations with k-means, in:
Neural networks: Tricks of the trade, Springer, 2012, pp. 561–580.

25

	Introduction
	Related Work
	Weight initialization via subspace learning

	Initialization based on Discriminant Learning
	Motivation
	Proposed approach
	Initialization procedures
	Vector Batch Normalization

	Experimental setup
	Results

	Conclusion

