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1. Introduction

F. Smarandache introduced the notion of neutrosophic probability measure as a function

NP : Y → [0, 1]3 where Y is a neutrosophic sample space, and introduced the probability

mapping to take the form NP(B) = (ch(B), ch(neutB), ch(antiB)) = (α, β, γ) where 0 ≤
α, β, γ ≤ 1 and 0 ≤ α + β + γ ≤ 3 [33]. Moreover, many researchers have investigated many

neutrosophic probability distributions like Poisson, exponential, binomial, normal, uniform,

Weibull,...etc. (See [32], [2], [18], [26]). Furthermore, researchers have introduced the notion

of neutrosophic queueing theory in [35], [36] this is one branch of neutrosophic stochastic

modelling. Besides, researchers have also investigated neutrosophic time series prediction and

modelling in many cases like neutrosophic moving averages, neutrosophic logarithmic models,

neutrosophic linear models and so on. [3], [4], [12].

On the other hand, neutrosophic logic is an extension of intuitionistic fuzzy logic by adding

indeterminacy component (I) where I2 = I, ..., In = I, 0.I = 0;n ∈ N and I−1 is undefined

(see [20], [32]). Neutrosophic logic has a huge brand of applications in many fields including
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decision making [29], [19], [25], machine learning [6], [27], intelligent disease diagnosis [30], [11],

communication services [8], pattern recognition [28], social network analysis and e-learning

systems [21], physics [34], sequences spaces [14] and so on. Neutrosophic logic has solved many

decision-making problems efficiently like evaluating green credit rating, personnel selection,

etc. [22], [23], [24], [1]. For more notions related to neutrosophic theory, we refer the reader

to [9, 10,14–17].

The study of neutrosophic random variables has become one of the fundamental pillars in

neutrosophic theory and probability. Recent results of great importance can be seen in [37] and

[13]. Taking into account mentioned above, in this article we study independent neutrosophic

random variables and conditioned expectation.

2. Preliminaries

In this section, we show some well-known definitions and properties of neutrosophic logic

and neutrosophic probability which are useful for the development of this paper.

Definition 2.1. (see [31]) Let X be a non-empty fixed set. A neutrosophic set A is an object

having the form {x, (µA(x), δA(x), γA(x)) : x ∈ X}, where µA(x), δA(x) and γA(x) represent

the degree of membership, the degree of indeterminacy , and the degree of non-membership

respectively of each element x ∈ Xto the set A.

Definition 2.2. (see [5]) Let K be a field, the neutrosophic filed generated by K and I is

denoted by 〈K ∪ I〉 under the operations of K, where I is the neutrosophic element with the

property I2 = I.

Definition 2.3. (see [32]) Classical neutrosophic number has the form a + bI where a, b are

real or complex numbers and I is the indeterminacy such that 0.I = 0 and I2 = I which

results that In = I for all positive integers n.

Definition 2.4. (see [33]) The neutrosophic probability of event A occurrence is NP (A) =

(ch(A), ch(neutA), ch(antiA)) = (T, I, F ) where T, I, F are standard or non-standard subsets

of the non-standard unitary interval ]−0, 1+[.

Recently, Bisher and Hatip [37] introduced and studied the notions of neutrosophic random

variables by using the concepts presented by [33], these notions were defined as follows:

Definition 2.5. Consider the real valued crisp random variable X which is defined as follows:

X : Ω→ R

where Ω is the events space. Now, they defined a neutrosophic random variable XN as follows:

XN : Ω→ R(I)
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and

XN = X + I

where I is indeterminacy.

Theorem 2.6. Consider the neutrosophic random variable XN = X + I where cumulative

distribution function of X is FX(x) = P (X ≤ x). Then, the following statements hold:

(1) FXN
(x) = FX(x− I),

(2) fXN
(x) = fX(x− I).

Where FXN
and fXN

are cumulative distribution function and probability density function of

XN , respectively.

Theorem 2.7. Consider the neutrosophic random variable XN = X + I, expected value can

be found as follows:

E(XN ) = E(X) + I.

Proposition 2.8 (Properties of expected value of a neutrosophic random variable). Let XN

and YN be neutrosophic random variables, then the following properties holds:

(1) E(aXN + b+ cI) = aE(XN ) + b+ cI; a, b, c ∈ R,

(2) If XN and YN are neutrosophic random variables, then E(XN ± E(YN ) = E(XN ) ±
E(YN ),

(3) E[(a+ bI)XN ] = aE(XN ) + bIE(XN ); a, b ∈ R,

(4) |E(XN )| ≤ E|XN |.

Theorem 2.9. Consider the neutrosophic random variable XN = X + I, variance of XN is

equal to variance of X, i.e. V (XN ) = V (X).

Now, Granados [13] studied the notions of neutrosophic random vector and joint neutro-

sophic random variable, these notions were defined as follows:

Definition 2.10. A neutrosophic random vector of two dimension is a vector (XN , YN )

in which each coordinate is a neutrosophic random variable. Analogously, we can de-

fine a neutrosophic random vector multidimensional as follows (XN1 , XN2 , ..., XNn) in which

XN1 , XN2 , ..., XNn are neutrosophic random variables for each n = 1, 2, ....

Definition 2.11. Let (XN , YN ) be a neutrosophic random vector, we define probability func-

tion of a neutrosophic continuous random vector (XN , YN ). Then, joint probability neutro-

sophic function of a discrete random vector (XN , YN ) fN (x, y) : R2 → [0,∞) in which is

non-negative and integrable, and for any (x, y) ∈ R2 , it is defined as follows

P (XN ≤ x, YN ≤ y) = P (X ≤ x− I, Y ≤ y − I) =

∫ y−I

−∞

∫ x−I

−∞
f(XN ,YN )(u, v)dvdu
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Similarly, probability function of a neutrosophic discrete random vector (XN , YN ) is defined

similar by using sum.

Definition 2.12. Let (XN , YN ) be a neutrosophic random vetor, we define neutrosophic joint

distribution function which will be denoted by F(XN ,YN )(x, y) = P (XN ≤ x, YN ≤ y) = P (X ≤
x− I, Y ≤ y − I).

Definition 2.13. Let f(XN ,YN )(x, y) be a joint probability neutrosophic function of a contin-

uous random variable (XN , YN ). We define neutrosophic marginal function of XN as follows:

fXN
(x) =

∫ +∞

−∞
f(XN ,YN )(x, y)dy

and we define neutrosophic marginal function of YN as follows:

fYN (y) =

∫ +∞

−∞
f(XN ,YN )(x, y)dx

Similarly, joint probability neutrosophic function of a discrete random variable is defined

similar by using sum.

Definition 2.14. Expected value of a neutrosophic random vector (XN , YN ) in which expected

value of XN and YN exist, we define E(XN , YN ) = (E(XN ), E(YN )).

Next, we will show some new notions on neutrosophic random variables which have not bee

studied so far and are needed.

Let (XN , YN ) be neutrosophic vector and φ : R2 → R be a function, then φ(XN , YN ) is a

neutrosophic random variable and its expectation is defined as follows:

E[φ(XN , YN )] =

∫ +∞

−∞
(x− I)dFφ(XN ,YN )(x),

as well as one dimensional case, we are required to find out the distribution φ(XN , Yn) by

which can be difficult in some cases. Next, we establish an alternative way in which we

can calculate expectation of φ(XN , YN ) without known its distribution, but we must know

(XN , YN ) distribution. Let (XN , YN ) be neutrosophic vector and φ : R2 → R be a function

such that φ(XN , YN ) has finite expected, then:

E[φ(XN , YN )] =

∫
R2

φ(x− I, y − I)dFφ(XN ,YN )(x, y),

This can be proved easily due to this is a Riemmann-Stieltjes integral in two dimensional.

In case of XN and YN be independence (see section 3), this increment is

FX(xi − I)FY (yj − I)− FX(xi − I)FY (yj−1 − I)− FX(xi−1 − I)FY (yj − I)

+ FX(xi − I)FY (yj − I) = ∆FX(xi − I)∆FY (yj − I),

i.e, bidimensional integral can be separated in two integral and can be written as follows
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E[φ(XN , YN )] =

∫
R2

φ(x− I, y − I)dFXN
(x)dFYN (y).

When (XN , YN ) is a discrete vector, we have

E[φ(XN , YN )] =
∑

x−I,y−I
φ(x− I, y − I)P (X = x− I, Y = y − I),

in which the sum is applied over all possible valued (x− I, y − I) on (XN , YN ).

Theorem 2.15. Let XN and YN be two neutrosophic random variable with finite expectation,

then

E(XN + YN ) = E(XN ) + E(YN ).

Proof. Let φ(x− I, y− I) = x− I+ y− I, φ1(x− I, y− I) = x− I and φ2(x− I, y− I) = y− I.

Then,

E(XN + YN ) = E(φ(XN , YN ))

=

∫
R2

(x− I + y − I)dFXN ,YN (x, y)

=

∫
R2

(x− I)dFXN ,YN (x, y) +

∫
R2

(y − I)dFXN ,YN (x, y)

= E(φ1(XN , YN )) + E(φ2(XN , YN ))

= E(XN ) + E(YN )

Theorem 2.16. Let XN and YN be two independence neutrosophic random variable and g

and h be two functions such that g(XN ) and h(YN ) have finite expected, then

E[g(XN )h(YN )] = E[g(XN )]E[h(YN )].

Proof.

E[g(XN )h(YN )] =

∫
R2

g(x− I)h(y − I)dFXN ,YN (x, y)

=

∫
R2

g(x− I)h(y − I)dFXN
(x)dFYN (y)

=

∫
R
g(x− I)dFXN

(x)

∫
R
g(y − I)dFYN (y)

= E[g(XN )]E[h(YN )]
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3. Independence neutrosophic random variables

Let XN and YN be two neutrosophic random variables. XN and YN are independence if the

events (X ≤ x − I) and (Y ≤ y − I) are independence for any real-value x and y, i.e., if the

following equality is satisfied

P [(X ≤ x− I) ∩ (Y ≤ y − I)] = P (X ≤ x− I)P (Y ≤ y − I). (1)

The left side of the equality (1) can be written as P (X ≤ x−I, Y ≤ y−I) or FX,Y (x−I, y−I),

and it is said to be the joint distribution function of XN and YN evaluate in the point (x, y).

Therefore, note that (1) can be expressed as follows

FX,Y (x− I, y − I) = FX(x− I)FY (y − I), for x, y ∈ R. (2)

In this way, in order to determine whether two neutrosophic random variables are indepen-

dent, it is necessary to know both the joint probabilities P (X ≤ x−I, Y ≤ y−I) as individual

probabilities P (X ≤ x−I) and P (Y ≤ y−I), and verify the identity (2) for each real numbers

x and y. Hence, it is enough that there exists a pair (x − I, y − I) for which the equality

(2) does not hold to be able to conclude that X and Y are not independent. Granados [13]

studied on random vectors and explained how to obtain the individual distributions from the

joint distribution of two random variables.

Example 3.1. Let (XN , YN ) be a neutrosophic random vector with density function f(x −
I, y − I) = 4(x− I)(y − I) for I ≤ x, y ≤ 1− I.

The marginal density function of XN is calculated as follows for I ≤ x ≤ 1− I

fX(x− I) =

∫ 1−I

I
4(x− I)(y − I)dy = 2(x− I).

Analogously, we can prove that fYN (y) = 2(y − I) for I ≤ x ≤ 1− I. Therefore, XN and YN

are independence, due to FX,Y (x− I, y − I) = FX(x− I)FY (y − I).

Proposition 3.2. Let XN and YN be two independence neutrosophic random variables , and

let g and h be two functions of R→ R. Then, the neutrosophic random variables g(XN ) and

h(YN ) are independence neutrosophic random variables.

Proof : Let A = (−∞, x− I] and B = (−∞, y − I], then

P (g(XN ) ≤ x, h(YN ) ≤ y) = P (g(XN ) ∈ A, h(YN ) ∈ B)

= P (XN ∈ g−1(A), YN ∈ h−1(B))

= P (XN ∈ g−1(A))P (YN ∈ h−1(B))

= P (g(XN ) ∈ A)P (h(YN ) ∈ B)

= P (g(XN ) ≤ x)P (h(YN ) ≤ y)
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Theorem 3.3. Let XN and YN two discrete neutrosophic random variables, then

(1) Using P (X ≤ x− I, Y ≤ y − I) =
∑

u≤x−I

∑
v≤y−I

P (X = u, Y = v), we have

P (X = x− I, Y = y − I) = P (X ≤ x− I, Y ≤ y − I)

− P (X ≤ x− I − 1, Y ≤ y − I)

− P (X ≤ x− I, Y ≤ y − I − 1)

+ P (X ≤ x− I − 1, Y ≤ y − I − 1).

(2) Using (1), independence condition P (X ≤ x − I, Y ≤ y − I) = P (X ≤ x − I)P (Y ≤
y − I) is equivalent to P (X = x− I, Y = y − I) = P (X = x− I)P (Y = y − I).

Proof :

(1) This result can be obtained by using the following equality

(X = x− I, Y = y − I) = (X ≤ x− I, Y ≤ y − I)− (X ≤ x− I − 1, Y ≤ y − I)

− (X ≤ x− I, Y ≤ y − I − 1)

+ (X ≤ x− I − 1, Y ≤ y − I − 1).

(2) Using (1) and by hypothesis of independence, we have

P (X = x− I, Y = y − I) = P (X ≤ x− I)P (X ≤ y − I)−

P (X ≤ x− I − 1)P (Y ≤ y − I)

− P (X ≤ x− I)P (Y ≤ y − I)

+ P (X ≤ x− I − 1)P (Y ≤ y − I − 1)

= [P (X ≤ x− I)− P (X ≤ x− I − 1)]

× [P (Y ≤ y − I)− P (Y ≤ y − I − 1)]

= P (X = x− I)P (Y = y − I).

Theorem 3.4. Let XN and YN be two independence neutrosophic random variables which

have finite expectation. Then,

E(XNYN ) = E(XN )E(YN ). (3)

Proof : We prove the case when XN and YN are discrete neutrosophic random variables,

the case for continuous neutrosophic random variables are proved similarly.
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Let

E(XNYN ) =
∑
x,y

(x− I)(y − I)P (XN = x, YN = y)

=
∑
x

∑
y

(x− I)(y − I)P (XN = x, YN = y)

= (
∑
x

(x− I)P (XN = x))(
∑
y

(y − I)P (YN = y))

= E(XN )E(YN ).

Definition 3.5. Let XN1 , XN2 , ..., XNn be a collection of neutrosophic random variables with

joint function distribution FX(x1−I, x2−I, ..., xn−I), and consider marginals functions distri-

bution FXN1
(x1), FXN2

(x2), ..., FXNn
(xn), respectively. Then, we say that XN1 , XN2 , ..., XNn

are independence if for any real numbers x1 − I, x2 − I, ..., xn − I the following equality holds

FX(x1 − I, x2 − I, ..., xn − I) = FXN1
(x1)FXN2

(x2)...FXNn
(xn).

Analogously, we can define it in terms of neutrosophic density function f(x1−I, x2−I, ..., xn−I)

if the following equality holds

f(x1 − I, x2 − I, ..., xn − I) = fXN1
(x1)fXN2

(x2)...fXNn
(xn).

Example 3.6. Let XN and YN be two continuous neutrosophic random variables with joint

density function

f(X,Y )(x− I, y − I) =


e−x−y+2I if x, y > I,

0 otherwise.

Nuetrosophic marginals probability functions are defined as follows

fX(x− I) =


e−x+I if x > I,

0 otherwise.

and

fY (y − I) =


e−y+I if y > I,

0 otherwise.

Therefore, f(X,Y )(x− I, y − I) = fX(x− I)fY (y − I) for any real numbers x− I and y − I,

and hence we conclude XN and YN are independence.

Example 3.7. Let XN and YN be two discrete neutrosophic random variables with joint

density function
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f(X,Y )(x− I, y − I) =


1

4
if x, y ∈ {I, 1 + I},

0 otherwise.

Nuetrosophic marginals probability functions are defined as follows

fX(x− I) =


1

2
if x ∈ {I, 1 + I},

0 otherwise.

and

fY (y − I) =


1

2
if y ∈ {I, 1 + I},

0 otherwise.

Therefore, f(X,Y )(x− I, y − I) = fX(x− I)fY (y − I) for any real numbers x− I and y − I,

and hence we conclude XN and YN are independence.

Remark 3.8. It can be said that an infinite set of neutrosophic random variables is indepen-

dence if any finite subset is independence.

This statement can be useful due to for future work the concepts of neutrosophic central

limit theorem and neutrosophic laws of large numbers can be studied.

4. Conditional expectation

In this section, we introduce the concept of conditional expectation of a neutrosophic random

variable with respect to a σ-algebra, and some of its elemental properties are studied. We will

consider that has a base probability space (Ω,F , P ), and G is a sub-algebra of F . We have

defined expectation of a neutrosophic random variable as a Riemann-Stieltjes integral as follows

E(XN ) =

∫ +∞

−∞
(x− I)dFXN

(x).

however, to make the notation simpler in this section, it is sometimes convenient to adopt

the notation of measure theory and denote the expectation of a netrusophic random variable

XN as follows

E(XN ) =

∫
Ω
XNdP.

We shall recall that if we know distribution of neutrosophic vector (XN , YN ) and we take

valued y−I such that fY (y−I) = fYN (y) 6= 0, conditional expectation of XN known Y = y−I
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is the function

y − I 7→ E(XN |YN = y) =

∫ +∞

−∞
(x− I)dFXN |YN (x|y), (4)

when fYN (y) 6= 0. (4) is equivalent to write

E(XN |YN = y) =

∫ +∞

−∞
(x− I)fXN |YN (x|y)dx.

If we make a change in order of integration, we can see that

E(XN ) =

∫ +∞

−∞
E(XN |YN = y)fYN (y)dy,

if we apply this expression by using total probability theorem in terms of expectation. In

the case when (XN , YN ) is a discrete neutrosophic vector, we have

E(XN |YN = y) =
∑
x

(x− I)fXN |YN (x|y)

=
∑
x

(x− I)P (XN = x|YN = y),

considering fYN (y) 6= 0 and sum is absolutely convergent. Again, applying a change in order

of sum, we have

E(XN ) =
∑
y

E(XN |YN = y)P (YN = y).

In any cases, we can also see, when YN and XN are independence, we have

E(XN |YN = y) = E(XN ).

Example 4.1. We will find expectation of E(XN |YN = y) for each y ∈ (I, 1 + I) when XN

and YN have the following joint neutrosophic density function.

fX|Y (x− I, y − I) =


12(x− I)2 if I < x < y < 1 + I,

0 otherwise.

For I < y < 1 + I,
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E(XN |YN = y) =

∫ y−I

0
(x− I)

12(x− I)2

4(y − I)3
dx

=
3

(y − I)3

∫ y−I

0
(x− I)3dx

=
3

4

(y − 2I)4 − I
(y − I)3

Analogously to (4), if Q is an event with positive probability and XN is a integrable neu-

trosophic random variable, conditional expectation of XN known Q is

E(XN |Q) =

∫ +∞

−∞
(x− I)dFXN |Q(x),

where FXN |Q(x) = P (XN ≤ x|A) = P (X ≤ x − I|A) =
P (X ≤ x− I,Q)

P (Q)
. Next, we will

show a more generally definition which generalized concepts showed so far.

Definition 4.2. Let XN be a neutrosophic random variable with finite expectation, and let G
be a sub-algebra of F . Conditional expectation of XN known G, it is a neutrosophic random

variable which will be denoted by E(XN |G) which satisfies the following conditions:

(1) It is G-measurable,

(2) It has finite expectation,

(3) For any event G ∈ G,

∫
G
E(XN |G)dP =

∫
G
XNdP .

Remark 4.3. Just as it happens in a random variable, part of the difficulty in understanding

this general definition is that an explicit formula is not provided for this neutrosophic random

variable but only the properties it satisfies. The objective of this section is to find the meaning

of this neutrosophic random variable, interpret its meaning, and explain its relationship with

the concept of elementary conditional expectation.

Remark 4.4. When G = σ(YN ) for any neutrosophic random variable YN , conditional ex-

pected will be written by E(XN |YN ) instead of E(XN |σ(YN )).

Remark 4.5. Let Q be any event, then conditional expected E(1Q|G) will be denoted by

P (Q|G).

Now, we will show some properties on E(XN |YN ) when YN is a discrete neutrosophic ran-

dom variable.

Let XN and YN be two neutrosophic random variables. Now, consider that XN has finite

expected and YN is discrete with possible values y1 − I, y2 − I, ... Conditional expectation of
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XN known event (YN = yj) = (Y = yj− I) is E(XN |YN = yj), this value depends of the event

(YN = yj), and we can consider that we have a function defined over Ω as follows: If ω is such

that Y (ω) = yj − I, then

ω 7→ E(XN |YN )(ω) = E(XN |YN = yj).

We can see that E(XN |YN ) takes at much different values as YN does. Generally, function

can be rewritten in terms of indicator function as follows

E(XN |YN )(ω) =

∞∑
j=1

E(XN |YN = yj)1(YN=yj)(ω).

In this way, we can define the function E(XN |YN ) : Ω→ R which is denoted by

ω 7→ E(XN |YN )(ω) = E(XN |YN = yj) if Y (ω) = yj − I

is a neutrosophic random variable.

Theorem 4.6. Let XN be a integrable neutrosophic random variable, and let YN discrete with

possible values y1 − I, y2 − I, ... E(XN |YN ) : Ω→ R is a neutrosophic random variable which

satisfies the following conditions:

(1) It is σ(YN )-measurable,

(2) It has finite expected,

(3) For any event G ∈ σ(YN ),

∫
G
E(XN |YN )dP =

∫
G
XNdP .

Proof :

(1) Through possibles values, the neutrosophic random variables YN divides in different

part Ω, i.e (YN = y1), (YN = y2), ... are disjunct events. σ(YN ) = σ{(YN = y1), (YN =

y2), ...} ⊂ F . Since E(XN |YN ) is constant in each element of partition, implies that

E(XN |YN ) is σ(YN )-measurable, and hence it is a neutrosophic random variable.

(2) Taking the event G as Ω in the third property, we get that XN and E(XN |YN ) have

the same finite expectation.

(3) Since each element of σ(YN ) is union of disjunct elements of (YN = yj), by properties

of integral it is enough to show that

∫
G
E(XN |YN )dP =

∫
G
XNdP for these simple
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events. Then, we have∫
(YN=yj)

E(XN |YN )(ω)dP (ω) = E(XN |YN = yj)P (YN = yj)

=

∫
Ω
XN (ω)dP (ω|YN = yj)P (YN = yj)

=

∫
Ω
XN (ω)dP (ω, YN = yj)

=

∫
(YN=yj)

XN (ω)dP (ω).

Remark 4.7. We have to see the different between E(XN |YN = yj) and E(XN |YN ). First

term is a possible numerical value, second term is a neutrosophic random variable. However,

both expressions are called conditional expectation. We will see next a particular case of this

neutrosophic random variable. Besides, we will show that the conditional expectation can

be seen as a generalization of the basic concept of conditional probability, and it can also be

considered as a generalization of the concept of expectation.

Proposition 4.8. Let XN be a neutrosophic random variable with finite expectation, then

E(XN |{∅,Ω}) = E(XN ) = E(X) + I.

Proof : This proofs follows since E(XN |G) is measurable respected to G, and any measurable

function respected to {∅,Ω} is constant. Now, for any event G ∈ {∅,Ω},
∫
G
E(XN |{∅,Ω})dP =∫

G
XNdP =

∫
Ω
XNdP = E(XN ) = E(X) + I.

Theorem 4.9. Let XN and YN be two neutrosophic random variables with finite expectation

and b ∈ R. Then, the following statements hold:

(1) If X ≥ I, then E(XN |G) ≥ 0,

(2) E(bXN + YN |G) = bE(XN |G) + E(YN |G),

(3) If XN ≤ YN , then E(XN |G) ≤ E(YN |G),

(4) E(E(XN |G)) = E(XN ),

(5) If XN is G-measurable, then E(XN |G) = XN a.s. In particular, E(b|G) = b,

(6) If G1 ⊂ G2, then

E(E(XN |G1)|G2) = E(E(XN |G2)|G1) = E(XN |G1),

(7) |E(XN |G)| ≤ E(|XN ||G),

(8) E|E(XN |G)| ≤ E(|XN |).

Proof :

(1) Follows directly from definition and the fact that X ≥ I ≡ XN ≥ 0.
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(2) For all G ∈ G, we have∫
G
E(bXN + YN |G)dP =

∫
G

(bXN + YN )dP

= b

∫
G
XNdP +

∫
G
YNdP.

Now, ∫
G

[bE(XN |G) + E(YN |G)]dP = b

∫
G
E(XN |G)dP +

∫
G
E(YN |G)dP

= b

∫
G
XNdP +

∫
G
YNdP.

(3) Follows directly from definition and the fact that XN ≤ YN .

(4) Taking G = Ω, we get the equality.

(5) Since XN is G-measurable, three condition of the definition hold. Now,

∫
G
E(XN )dP =∫

G
E(XN )dP . Therefore, XN = E(XN |G) a.s.

(6) For all G ∈ G1 ⊂ G2, we have∫
G
E(E(XN |G1)|G2)dP =

∫
G
E(XN |G1)dP

=

∫
G
XNdP.

Analogously,

∫
G
E(E(XN |G2)|G1)dP =

∫
G
E(XN |G2)dP

=

∫
G
XNdP.

(7) Consider that

∫
G
|E(XN |G)|dP = |

∫
G
E(XN |G)dP |. Then,

|
∫
G
E(XN |G)dP | = |

∫
G
XNdP |

≤
∫
G
|XN |dP

=

∫
G
E(|XN ||G)dP.

(8) Proof follows from parts (4) and (7) of this theorem.

Definition 4.10. Let XN be a neutrosophic random variable with finite second moment, and

G be a sub-algebra of F . Conditional variance of XN known G which will be denoted by

V ar(XN |G), it is defined as a neutrosophic random variable as follows

V ar(XN |G) = E[(XN − E(XN |G))2|G].
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We shall recall that neutrosophic conditional variance is not a number, it is a neutrosophic

random variable. Therefore, the only way that we have the neutrosophic variance of a random

variable from conditional variance is V ar(XN ) = V ar(X) = V ar(XN |{∅,Ω}).
On the other hand, we have that

V ar(XN |G) = V ar(X + I|G)

= V ar(X|G)

= E[(X − E(X|G))2|G],

this shows that conditional covariance is equal to neutrosophic conditional covariance.

5. Conclusion

In this article we study the notion of neutrosophic random variable taking into account the

notions previously studied by [37] and [13]. These results are of great importance because

convergence on neutrosophic random variables, neutrosophic central limit theorem and neu-

trosophic laws of large numbers can be studied. Secondly, this results can be applied in quality

control, stochastic modeling, reliability theory, queueing theory, electrical engineering and so

on.
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